双作用高压齿轮泵的结构

合集下载

气体动力专业知识14-油泵基础知识及用途

气体动力专业知识14-油泵基础知识及用途

3.2 柱塞泵结构 A.轴向柱塞泵(图1)
3.2 柱塞泵结构 A.轴向柱塞泵(图2) 在红色半圈转动时,为排油过程, 在绿色半圈转动时,为吸油过程
3.2 柱塞泵结构 B.斜轴式轴向柱塞泵
3.2 柱塞泵结构 C.径向柱塞泵(图1)
3.2 柱塞泵结构 C.径向柱塞泵(图2)

3.3 柱塞泵特点 与其他容积式油泵比较: 1)优点: 耐压高、效率高、传输功率大、转速范围宽、寿命长。 2)缺点: 是对工作介质清洁度要求苛刻、结构复杂价格高、维
护困难等。
4. 叶片泵 4.1叶片泵工作原理: 叶片泵分为双作用泵和单作用泵: 双作用泵工作原理:它由定子、转子、叶片和配油盘等组成。定子内壁近 似椭圆形。叶片安装在转子径向槽内并可沿槽滑动,转子与定子同心安装。 当转子转动时,叶片在离心力的作用下压向定子内表面,并随定子内表面 曲线的变化而被迫在转子槽内往复滑动,相邻两叶片间的密封工作腔就发 生增大和缩小的变化。叶片由小半径圆弧向大半径圆弧处滑移时,密封工 作腔随之逐渐增大形成局部真空,于是油箱中油液通过配油盘上吸油腔吸 入;反之将油压出。转子每转一周,叶片在槽内往复滑移2次,完成2次吸 油和2次压油,并且油压所产生的径向力是平衡的,故称双作用式,也称平 衡式。
4.1叶片泵工作原理: 单作用式叶片泵工作原理:主要由定子、转子、叶片和配油盘等组成。定子 的内表面是一个圆柱形,转子偏心安装在定子中,即有一个偏心距e,叶片 装在转子径向滑槽中,并可在槽内径向滑动。转子转动时,在离心力和叶片 根部压力油的作用下,叶片紧贴在定子内表面上,这样相邻两片叶片间就形 成了密封工作腔。在其中一边,叶片逐渐伸出,密封工作腔逐渐增大,形成 局部真空,形成吸油;反之,另一边,形成压油。转子每转一周,叶片在滑 槽内往复滑移1次,完成1次吸油1次压油。油压所产生的径向力是不平衡的, 故称单作用式,也称不平衡式叶片泵。

船舶辅机图片

船舶辅机图片

水封环结构示意图
6CBZ-7型串、并联自吸式离心泵
外混合式自吸离心泵自吸过程示意图
离心泵性能曲线图
CZ60/30空压机结构图
空压机系统示意图
液压千斤顶示意图
液压元件结构式表示的原 理图
液压元件图形符号表示的 原理图
电 磁 换 向 阀 工 作 原 理
不同的“通”和“位”的滑阀式换向阀主体部分 的结构形式和图形符号.
SCYl4-1B斜盘式手动变量柱塞泵的结构
l-变量手轮;2-回程盘;3-内套;4-回程弹簧;5-配流盘; 6-驱动轴;7-缸体; 8-柱塞;9-滑靴;10-斜盘及变量头组件;1l-壳体;12-变量活塞;13-拨叉
手动伺服变量机构
1-拉杆;2-先导阀;3-随动活塞;4-销 钉;5-变量头;6-随动阀外壳
往复泵结构图
单缸单作用
单缸双作用
双缸四作用 (曲柄夹角90)
三缸三作用 (曲柄夹角120)
齿轮泵的结构图
齿轮泵的结构图
带月牙形隔板的内啮合齿轮泵结构图
三螺杆泵实物图
三螺杆泵结构图
双螺杆泵结构图
机械轴封
单螺杆泵实物图
单、双作用叶片泵示意图
水环泵结构构图
悬臂式单级离心泵
离心泵的结构图
美国海军锚 ( US N Anchor)
A型马氏大抓力锚 (Type A High Holding Power Matrosov Anchor)
叶片式液压马达
冷凝器
P
P
HP LP
储液器

滑油 分离器
压缩机


食 冷 库 系 统 图
温度继电器-18~-14℃
过滤器
10℃ 0℃ - 25℃

齿轮泵原理及工作图解A.pptx

齿轮泵原理及工作图解A.pptx
▪ 平衡径向力的措施都是以增加径向泄
漏为代价。
第5页/共11页
▪ 困油现象与卸荷措施
▪ 困油现象产生的原因 齿轮重迭系数ε>1,在两对轮
齿同时啮合时,它们之间将形成一个与吸、压油腔均 不相通的闭死容积,此闭死容积随齿轮转动其大小发 生变化,先由大变小,后由小变大。
▪ 困油现象描述
第6页/共11页
▪ 困油现象的危害 闭死容积由大变小时油液受挤压, 导
➢ 齿轮泵是利用齿轮啮合原理工作的, 根据啮合形式不同分为外啮合齿轮泵 和内啮合齿轮泵。因螺杆的螺旋面可 视为齿轮曲线作螺旋运动所形成的表 面,螺杆的啮合相当于无数个无限薄 的齿轮曲线的啮合,因此将螺杆泵放 在齿轮泵一起介绍。
第1页/共11页
外啮合齿轮泵
➢ 结构组成
一对几何参数完全相 同的齿轮,齿宽为B, 齿数为z
第4页/共11页
▪ 液压径向力及平衡措施
▪ 齿谷内的油液由吸油区的低压
逐步增压到压油区的高压。作 用在齿轮轴上液压径向力和轮 齿啮合力的合力 F = K p B De K为系数,对主动齿轮K=0.75; 对从动齿轮K=0.85。
▪ 液压径向力的平衡措施之一:通过在
盖板上开设平衡槽,使它们分别与低、高 压腔相通,产生一个与液压径向力平衡的 作用。
➢ 齿轮节圆直径一定时,为增大泵的排量,应增大模数, 减小齿数。
➢ 齿轮泵的齿轮多为修正齿轮。
▪ 齿轮泵的瞬时理论流量是脉动的,这
是齿轮泵产生噪声的主要根源。为减少 脉动,可同轴安装两套齿轮,每套齿轮 之间错开半个齿距,组成共压油口和吸 油口的两个分离的齿轮泵。
第3页/共11页
外啮合齿轮泵的结构特点
➢ 特点
无困油现象
流量脉动小,噪声低

液压泵齿轮泵的拆装

液压泵齿轮泵的拆装

液压泵、齿轮泵的拆装一、实验目的通过对液压泵的拆装可加深对泵结构、工作原理及使用范围的了解,理解选择液压泵的原则和主要拫据;二、实验仪器齿轮泵、叶片泵、内六角扳手、固定扳手、螺丝刀等拆装工具;三、实验内容齿轮泵的拆装在各类容积式液压泵中,齿轮栗具有结构简单、重量轻、容易制造、成本低、工作可靠、维修方便等特点,因而广泛应用于中低压系统中;它的缺点是容积效率低、轴承载荷大,此外,流量脉动、压力脉动和噪音都比较大;叶片泵的拆装叶片泵具有结构紧凑、体积小、运转平稳、输油量均匀、噪音小、寿命长等优点,因此,在中低压系统中应用非常广泛;随着结构、工艺材料的改进,叶片泵正向中高压和高压方向 I发展;它的缺点是结构复杂,吸油性能较差,对油液的污染较敏感;柱塞泵的拆装没做柱塞泵分为径向柱塞泵和轴向柱塞泵两种:1径向柱塞泵性能较稳定、工作较可靠,但自吸能力差、径向尺寸大、结构复杂、价格髙;柱塞数多为奇数2轴向柱塞泵性能稳定、工作可靠、结构紧凑、径向尺寸小、惯性小、容积效率高,但轴向尺寸较大、轴向作用力也大,结构复杂、价格高;柱塞泵多用于需要高压大流量和流量需要调节的液压系统中;四、实验步骤利用提供的拆装工具,按顺序拆装液压泵,并记录拆装顺序;了解完泵的结构后,按顺序将泵装配复原;检查装配完的泵,零件不可多一件,也不可少一件齿轮泵:拆装步骤如下:1 拆解齿轮泵时,先用内六方扳手在对称位置松开紧固螺栓,之后取掉螺栓,取掉定位销,掀去前泵盖,观察卸荷槽、吸油腔、压油腔等结构,弄清楚其作用,并分析工作原理2 从泵体中取出主动齿轮及轴、从动齿轮及轴; _3 分解端盖与轴承、齿轮与轴、端盖与油封;4 装配步骤与拆卸步骤相反;齿轮泵工作原理:在吸油腔,轮齿在啮合点相互从对方齿谷中退出,密封工作空间的有效容积不断增大,完成吸油过程;在排油腔,轮齿在啮合点相互进入对方齿谷中,密封工作空间的有效容积不断减小完成排油过程;二双作用叶片泵:拆装步骤及注意事项:1拆解叶片泵时,先用内六方扳手对称位置松开后泵体上的螺栓后,再取掉螺检,敲打使传动轴和前泵体及泵盖部分从轴承上脱下,把叶片分成两部分;2观察后泵体内定子、转子、叶片、配流盘的安装位置3取掉泵盖,取出传动轴,观察所用的密封元件4拆卸过程中,注意仔细观察发现进油出油路线,分析液压泵原理,多多请教指导老师5装配时,遵循先拆的部件后安装,后拆的零部件先安装的原则,正确合理的安装,注: 配流盘、定子、转子、叶片应保持正确装配方向,安装完毕后应使栗转动灵活,没有卡死现象;五.实验报告根据拆装结果,完成下列问题的回答.1、选用液压泵的原则和根据有那些答:选择液压泵的原则是:根据主机工况、功率大小和系统对工作性能的要求,首先确定液压泵的类型,然后按系统所要求的压力、流量确定其规格型号;选择液压泵时要考虑的因素有工作压力、流量、转速、定量或变量、变量方式、合积效率、总效率、寿命及原动机的种类、噪声、压力脉动率、自吸能力等,还要考虑与液压油的相容性、尺寸、重量、经济性、维修性等;这些因素,有些己写在产品样本或技术资料里,要仔细研究,不明确的地方最好询问制造厂;2、通过拆装,从结构上理解齿轮栗的工作原理怎样的;答:依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵;由两个齿轮、泵体与前后盖组成两个封闭空间,当齿轮转动时,齿轮脱开侧的空间的体积从小变大,形成真空,将液体吸入,齿轮啮合侧的空间的体积从大变小,而将液体挤入管路中去;3、通过拆装,从结构上理解齿轮泵的困油、泄漏和径向不平衡现象及解决方法答:液压油在渐开线齿轮泵运转过程中,因齿轮相交处的封闭体积随时间改变,常有一部分的液压油被密封在齿间,称为困油现象,因液压油不可压缩将使外接齿轮产生极大的振动和噪声,影响系统正常工作;齿轮泵困油现象解决方法:是在齿轮啮合处的侧面向排油腔开一道卸油槽,使困于两齿间的油可以被排出以消除困油现象,齿轮泵工作时有三个主要泄露途径:1齿轮两侧面与端盖间轴向间隙2泵体内孔和齿轮外圆间的径向间隙3两个齿面啮合间解决泄露问题的对策是选用适当的间隙进行控制;端面间隙补偿采用静压平衡措施,高压齿轮泵往往通过在泵的前、后端盖间增设浮动轴套或浮动侧板的结构措施,以实现轴向间隙的自动补偿;齿轮泵工作时,在齿轮和轴承上承受径向液压力的作用;泵的右侧为吸油腔,在压油腔内有液压力作用于齿轮上,沿着齿顶的泄漏油,具有大小不等的压力,就是齿轮和轴承收到的径向不平衡力;另外压油腔因齿顶泄漏,其压力为递减;液压力越高,这个不平衡力就越大,其结果不仅加速了轴承的磨损,降低了轴承的寿命,甚至使轴变形,造成齿顶和泵体内壁的摩擦等;解决径向不平衡问题的简单办法是缩小压油口,使压油腔仅作用在一个齿到两个齿的范围内,也可以采用开压力平衡槽的办法来消除径向不平衡力4、通过拆装,从结构上理解叶片泵对油液污染敏感叶片泵的结构非常紧凑,间隙也非常小,它的转子与定子之间的间隙只有2~4丝,单面只有1-2丝,叶片与转子槽之间的配合间隙更小,如果液压油出现油渍那么可能会将液压泵卡住甚至于使其报废;5、通过拆装,从结构上理解为什么叶片泵比齿轮泵自吸能力差叶片泵和齿轮泵都属于容积泵的一种,若是加工在同等精度要求下他们的自吸能力是一样的;但是叶片泵一般多为输送有杂质的介质在生产时人为的将叶片与泵壳之间的间隙放大防止卡住,所以相对于一般输送洁净介质的齿轮泵来说他的配合间隙大了那么自吸能力相对产生影响也就降低了叶片泵的自吸能力;6、双作用叶片泵为什么会出现困油现象在双作用式叶片泵中,每个密封工作的容积,在通过定子长半径圆弧和短半径圆弧处的封油区时,—般按照原理来说是不会产生困油现象的;但由于定子上的圆弧曲线以及叶片泵都不可能做得很准确,所以还是有可能出现轻微的困油现象;这种困油现象虽然不像齿轮泵那样严重,但也会使液压泵产生液压冲击、振动和流置不均匀等危害;为解决这种困油现象产生的危害,可以将液压泵中配油盘的排油窗口,在叶片从封油区进入排油区的一边,开一个三角形截面的三角槽,用来减小油腔中压力的突然变化,以降低输出压力的脉动和噪声;当配油盘上开了三角槽以后,封闭的油液在还没有接通排油腔之前就通过三角槽与压力油相连,使其压力逐渐上升,这样就使泵的压力脉动、流量脉动和噪声都降下来了;1、3—吸油口2、4一排油口 d—三角槽7、柱塞泵分为哪几种类型各有何特点常见的柱塞泵分为径向柱塞泵,轴向柱塞泵,直轴斜盘式柱塞泵,液压柱塞泵1、轴向柱塞泵轴向柱塞泵是活塞或柱塞的往复运动方向与缸体中心轴平行的柱塞泵;轴向柱塞泵是利用与传动轴平行的柱塞在柱塞孔内往复运动所产生的容积变化来进行工作的;由于柱塞和柱塞孔都是圆形零件,加工时可以达到很高的精度配合,因此容积效率高,运转平稳,流量均匀性好,噪声低,工作压力高等优点,但对液压油的污染较敏感,结构较复杂,造价较高;2、直轴斜盘式柱塞泵直轴斜盘式柱塞泵分为压力供油型的自吸油型两种;压力供油型液压泵大都采用有气压的油箱,也有液压泵本身带有补油分泵向液压泵进油口提供压力油的;自吸油型液压栗的自吸油能力很强,无需外力供油;靠气压供油的液压油箱,在每次启动机器后,必须等液压渍箱达到使用气压后,才能操作机械;如液压油箱的气压不足时就担任执器,会对液压泵内的滑鞭造成拉脱现象,会造成泵体内回程板与压板的非正常磨损;3、径向柱塞泵径痴柱塞泵可分为阀配流与轴配流两大类;阀配流径向柱塞泵存在故障率高、效率低等缺点;国际上 70、80年发展的轴配流径向柱塞泵克服了阀配流径向柱塞泵的不足;由于径向泵结构上的特点,限定了轴配流径向柱塞泵比轴向柱塞泵耐冲击、寿命长、控制精度髙;变量行程短泵的变量是在变量柱塞和限位柱塞的作用下,改变定子的偏心距实现的,而定于的最大偏心距为5—9mm 根据排量大小不同,变量行程很短;且变量机构设为高压操纵,由控制阀进行控制;故该泵的响应速度快;径向结构设计克服了如轴向柱塞菜滑靴偏磨的问题;使其抗冲击能力大幅度提高;4、液压柱塞泵液压柱塞泵靠气压供油的液压油箱,在每次启动机器后,必须等液压渍箱送到使用气压后,才能操作机械;直轴斜盘式柱塞泵分为压力供油型的自吸油型两种;压力供油型液压泵大都采用有气压的油箱,也有液压泵本身带有补油分泵向液压泵进油口提供压为油的;自吸油型液压泵的自吸油能力很强,无需外力供油;对于自吸油型柱塞泵,液压油箱内的油液不得低于油标下限,要保持足够数量的液压油;液压油的清洁度越高,液压泵的使用寿命越长;。

常见泵的知识讲解

常见泵的知识讲解

潜水电泵(充油式)
充油式潜水泵机械结构和干式相似,其密封装置除了采用上述机械密 封装置外,电动机内腔还充满了变压器油或锭子油,起防潮、绝缘、冷 却和润滑作用。
例如,QY—7型,其中Q表示潜水电泵,Y表示充油,7表示水泵的额定 扬程(m)。充油式潜水泵的优点是水和潮气不易侵入电机内部,机件浸在 油中不易锈蚀,电动机定子绕组可用普通电磁线。缺点是对密封要求高, 功率损耗大。充油式潜水泵广泛使用于农业排灌,也可用于水塔送水、 井下提水、雨后排涝等。QY系列适用于清水或含沙量少的水中。
螺杆泵
螺杆泵是容积式转子泵, 它是依靠由螺杆和衬套形成的 密封腔的容积变化来吸入和排 出液体的。 螺杆泵按螺杆数目 分为单螺杆泵、双、三和五螺 杆泵。螺杆泵的特点是流量平 稳、压力脉动小、有自吸能力、 噪声低、效率高、寿命长、工 作可靠;而其突出的优点是输 送介质时不形成涡流、对介质 的粘性不敏感,可输送高粘度 介质。
柱塞泵
轴向柱塞泵(斜轴式)
径向柱塞泵
柱塞泵(轴向)
斜盘式轴向柱塞泵 改变斜盘的倾角 δ ,就可以改密封 工作容积的有效变 化量,实现泵的变 量;为了减小流量 的脉动,选择较多 的柱塞数量,并且 一般为奇数;从结 构工艺性和脉动率 综合考虑,常用的 柱塞数为7、9或11。
柱塞泵(轴向)
斜轴式轴向柱塞泵
常见泵基础知识
常见液压泵、水泵的结构、原理、参数、选型及注意事项
第一部分:泵的简介
第二部分:常见泵结构、原理及应用
第三部分:泵的选型
第四部分:注意事项
泵的原理及作用
泵的简介
泵的分类
泵的原理及作用
泵是输送流体或使流体增压的机械。它将原动机的 机械能或其他外部能量传送给液体,使液体能量增加。 泵主要用来输送水、油、酸碱液、乳化液、悬乳液和 液态金属等液体,也可输送液、气混合物及含悬浮固 体物的液体。

液压传动 第三章

液压传动  第三章

m
Tt T
Tt
Tt T
(3-6)
式中, ΔT ——液压泵的机械摩擦损耗。
3、总效率 η
液压泵的输出功率与输入功率的比值称为总效率,即
Po Pi
pq T
vm
(3-7)
由上式表明,液压泵的总效率等于容积效率和机械效率的乘积。
五.液压泵的转速




额定转速 ns
在额定压力 下,能连续长 时间正常运转 的最高转速。
其中,端面泄漏量最大,约占总泄漏量的 75%~80% 。泵的压力越高, 端面泄漏量越大。
对于低压齿轮泵,为了减小端面泄漏,在设计和制造时都对端面间隙 加以严格控制,但这一办法用于高压齿轮泵则不能取得好的效果,因为泵 在使用一段时间后磨损会使间隙越来越大。
对于高压齿轮泵通常采取端面间隙自动补偿措施,在齿轮与前后盖板 间增加一个零件,如浮动轴套或弹性侧板。
(3-1)
式中,pi ——液压泵的输入转矩; n ——泵轴的转速。
2、输出功率 po 液压泵的输出功率为其实际流量 q 和工作压力 p 的乘积,即
Po pq
(3-2)
液压泵工作时,由于存在泄漏和机械摩擦,就会出现能量损失,故其功 率有理论功率和实际功率之分,并且输出功率 po 小于输入功率 pi 。如果忽 略能量损失,则液压泵的输入功率(理论功率)等于输出功率(理论功率), 其表达式为 2πnTt pqt pnV ,则有
螺杆直径越大、螺旋糟越深,泵的排量就 越大;螺杆的密封层次越多,泵的额定压力就 越高。
螺杆泵结构紧凑,自吸能力强,运转平稳, 输油量稳定,噪声小,对油液污染不敏感,并 允许采用高转速,特别适用于对压力和流量变 化稳定要求较高的精密机械。 其主要缺点是, 加工工艺复杂,加工精度要求高。

齿轮泵

齿轮泵

齿轮油泵适用于输送各种有润滑性的液体,温度不高于70℃,如需高温200℃,可配用耐高温材料即可,粘度为5×10-5~1.5×10-3m2/s。

本泵不适用于输送腐蚀性的、含硬质颗粒或纤维的、高度挥发或闪点低的液体,如汽油、苯等。

润滑系统中机油泵的作用:机油泵作用是将机油提高到一定压力后,强制地压送到发动机各零件的运动表面上。

其结构多采用齿轮式机油泵。

发动机工作时,曲轴带动主动齿轮传动,被动齿轮作反方向旋转。

吸油腔内的机油便沿着齿隙和泵壁压入出油腔。

因吸油腔内的机油被不断带走,故吸油腔内产生吸力,不断地将油底壳内的机油吸入吸油腔,并同时将一定压力的机油泵入润滑油路。

一工作原理齿轮泵是用两个齿轮互啮转动来工作,对介质要求不高。

一般的压齿轮油泵力在6MPa以下,流量较大。

齿轮油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。

A为吸入腔,B为排出腔。

齿轮油泵在运转时主动齿轮带动被动齿轮旋转,当齿轮从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。

被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵排出口排出泵外。

齿轮油泵结构原理图注:1、齿轮油泵不宜作空运转,使用时,抽吸完毕,即停泵,否则会加速磨损。

也可能磨损泵管,因本泵电机空载转速可达10000转/分。

2、齿轮油泵及时调换电刷,电刷磨损到将不能使用时,须及时调换(2只电刷同时调换)否则会使电刷与换向器接触不良引起坏损,损坏换向器,严重时会烧坏电枢。

3、齿轮油泵在下列情况下不得使用,在使用过程中如发现绝缘损坏,电源线工电缆护套破裂,插头插座开裂或接触不良,以及断续运转,出现严惩火花等故障时,电机外壳操作时,应立即进行修理。

在未修复前不得使用。

4、齿轮油泵防止过载,使用时,凡遇转速异常或降低时,应即停机检查是否有杂物卡住叶轮或电机是否发生故障,抽液泵因故刹车时必须立即切断电源5、齿轮油泵使用工具要爱惜,所有抽涂泵要小心轻放避免受到冲击。

动画演示11种泵的工作原理,很直观易懂!

动画演示11种泵的工作原理,很直观易懂!

动画演示11种泵的工作原理,很直观易懂!更多好内容:化工707网下载此文档:化工707论坛在化工生产中,泵是一种特别重要的设备,了解泵的工作原理不仅能够预防和减少流体泄漏事故、冒顶事故、错流或错配事故。

还能够在泵运行故障中快速诊断。

因此了解泵的工作原理是一件非常重要的事,今天小七就带领大家了解一下各种泵的工作原理,希望能够对大家有所帮助。

液压泵工作原理液压泵是靠密封容腔容积的变化来工作的。

上图是液压泵的工作原理图。

当凸轮1由原动机带动旋转时,柱塞2便在凸轮1和弹簧4的作用下在缸体3内往复运动。

缸体内孔与柱塞外圆之间有良好的配合精度,使柱塞在缸体孔内作往复运动时基本没有油液泄漏,即具有良好的密封性。

柱塞右移时,缸体中密封工作腔a的容积变大,产生真空,油箱中的油液便在大气压力作用下通过吸油单向阀5吸入缸体内,实现吸油;柱塞左移时,缸体中密封工作腔a的容积变小,油液受挤压,便通过压油单向阀6输送到系统中去,实现压油。

如果偏心轮不断地旋转,液压泵就会不断地完成吸油和压油动作,因此就会连续不断地向液压系统供油。

从上述液压泵的工作过程可以看出,其基本工作条件是:1.具有密封的工作容腔;2. 密封工作容腔的容积大小是交替变化的,变大、变小时分别对应吸油、压油过程;3. 吸、压油过程对应的区域不能连通。

基于上述工作原理的液压泵叫做容积式液压泵,液压传动中用到的都是容积式液压泵。

齿轮泵的工作原理上图是外啮合齿轮泵的工作原理图。

由图可见,这种泵的壳体内装有一对外啮合齿轮。

由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。

当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。

因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。

随着齿轮的转动,每个齿间中的油液从右侧被带到了左侧。

齿轮泵的组成

齿轮泵的组成

齿轮泵的组成
齿轮泵是一种常用的液压泵,由多个齿轮组成,用于输送液体或润滑油。

下面我们将详细介绍齿轮泵的组成。

1. 齿轮泵的主体部分是由两个或多个齿轮组成的泵体。

其中有一个齿轮称为驱动齿轮,另一个齿轮称为从动齿轮。

驱动齿轮通过电机或其他动力源带动从动齿轮旋转,从而实现液体的吸入和排出。

2. 泵体内部的齿轮是齿轮泵的核心部件,通常由高强度的金属制成,如钢或铜合金。

齿轮间的啮合间隙非常小,能够有效地输送液体,并确保泵的高效率运行。

3. 在齿轮泵的泵体中还设置有进出口,用于液体的进入和排出。

进口处通常连接液体源,如油箱或储液罐,而出口处连接液压系统或润滑系统。

4. 齿轮泵还配备有轴承和密封件。

轴承能够有效支撑齿轮的转动,减少摩擦和磨损;而密封件则用于防止液体泄漏,保持泵体内部的密封性能。

5. 除此之外,齿轮泵还包括连接泵体和动力源的联轴器。

联轴器能够传递动力,确保泵体和电机等设备之间的有效连接。

总的来说,齿轮泵的组成主要包括泵体、齿轮、进出口、轴承、密封件和联轴器等部件。

这些部件共同协作,实现液体的输送和压力
的增加,广泛应用于工程机械、汽车、船舶等领域。

通过了解齿轮泵的组成结构,可以更好地理解其工作原理和维护保养方法,确保设备的正常运行和延长使用寿命。

超全面21种泵原理分解图

超全面21种泵原理分解图

泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。

一起来学习各种泵的工作原理,希望有助!两齿轮的齿相互分开,形成低压,液体吸入,并友壳壁送到另一侧。

另一侧两齿轮互相合拢,形成高压将液体排出。

性能特点:优点:结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸力强、对油液污染不敏感、转速范围大、能耐冲击性负载,维护方便、工作可靠。

缺点:径向力不平衡、流动脉动大、噪声大、效率低,零件的互换性差,磨损后不易修复,不能做变量泵用。

2.多级离心泵相当于多个离心泵串联,一级一级增压,可获得较高压头。

性能特点:多级离心泵与单级泵相比,其区别在于多级泵有两个以上的叶轮,能分段地多级次地吸水和压水,从而将水扬到很高的位置,扬程可根据需要而增减水泵叶轮的级数。

多级泵主要用于矿山排水、城市及工厂供水,农业灌溉用的很少,仅适用于高扬程、小流量的高山区提水来解决人畜饮水的困难。

欢迎关注微信号:直观学机械。

多级高心泵有立式和卧式两种型式多级离心泵的泵轴上装有串联的两个亦上的叶轮,它相对于一般的单级离心泵,可亦实现更高的扬程;相对于活塞泵、隔膜泵等往复式泵,可亦泵送较大的流量。

多级离心泵效率较高,能够满足高扬程、高流量工况的需要,在石化、化工、电力、建筑、消防等行业得到了广泛的应用。

由于其本身的特殊性,与单级离心泵相比,多级离心泵在设计、使用和维护维修等方面,有着不同、更高的技术要求。

往往是人们在一些细节上的疏忽或者考虑不周,使得多级离心泵投用后频繁发生异常磨损、振动、抱轴等故障,亦致停机。

3.离心泵液体注满泵壳,叶轮高速旋转,液体在离心力作用下产生高速度,高速液体经过逐渐扩大的泵壳通道,动压头转变为静压头。

性能特点:1、高效节能:采用CFD计算流体动力学,分析计算出泵内压力分布和速度分布关系、优化泵的流道设计,确保泵有高效的水力形线,提高了泵的效率。

2、安装、维修方便:立式管道式结构,泵的进出口能象阀门一样安装在管路的任何位置及任何方向,安装维修极为方便。

液压与气动技术第二节常见液压泵的原理结构

液压与气动技术第二节常见液压泵的原理结构
2)转子每转一周,每个柱塞吸排油一次,配油轴受着径向 不平衡力。
3)柱塞顶部与定子内表面为点接触,易磨损。 4)径向尺寸大、结构复杂、自吸能力差,目前使用的很少,
逐渐被轴向柱塞泵所代替。
液压与气动技术 机械工程系
各类液压泵的性能比较与应用
齿轮泵
外啮:自吸性能好,对油污染不敏感,结构简单,造价低;但脉动大,噪声大,泄漏 大,效率低;输出低压。
液压与气动技术 机械工程系
双作用叶片泵的应用
由于双作用叶片泵不仅作用在转子上的力 平衡,且运转平稳、输油量均匀、噪声 小。 但结构较复杂,自吸能力差,对油的污染 较敏感,一般用于要求运动平稳、噪声 小,工作环境较好的中等压液压系统。
液压与气动技术 机械工程系
3.单作用叶片泵
单作用叶片工作原理; 限压压变量泵工和特性。
C→b时 密封容积最小,隔开吸
具体措施:在泵盖(或轴承座)上开两个卸荷槽以消除困 油,CB-B形泵将卸荷槽整个向吸油腔侧平
移一段距离,效果更好。
液压与气动技术 机械工程系
消除困油的措施
液压与气动技术 机械工程系
径向作用力不平衡
径向不平衡力的产生和改善 液压力分布规律: 沿圆周从高压腔到低压腔,压力
沿齿轮外圆逐齿降低。p↑,径向 不平衡力增大,齿轮和轴承受到很 大的冲击载荷,产生振动 和噪声。 改善措施:①缩小压油口,以减小 压力油作用面积;②增大泵体内表 面和齿顶间隙和③开压力平衡槽, 都会使容积效率降低。
液压与气动技术 机械工程系
泄漏三种途径
啮合线泄漏— 约占齿轮泵总泄漏量的 5% 径向泄漏—约占齿轮泵总泄漏量的 20%~25% 端面泄漏* —约占齿轮泵总泄漏量的 75%~80% 结论:泵工作压力愈高,泄漏量愈大。要提高齿轮泵的

双作用液压泵特点用途

双作用液压泵特点用途

双作用液压泵特点用途为液压传动提供加压液体的一种液压元件,是泵的一种。

它的功能是把动力机(如电动机和内燃机等)的机械能转换成液体的压力能。

影响液压泵的使用寿命因素很多,除了泵自身设计、制造因素外和一些与泵使用相关元件(如联轴器、滤油器等)的选用、试车运行过程中的操作等也有关系。

液压泵的工作原理是运动带来泵腔容积的变化,从而压缩流体使流体具有压力能。

必须具备的条件就是泵腔有密封容积变化。

液压泵是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件。

液压泵按结构分为齿轮泵、柱塞泵、叶片泵和螺杆泵。

电动泵站是一种独立完整的液压泵站。

产品特点:①体积小重量轻、使用方便、工作压力高②单级泵站:结构简单、可获得较高输出压力③双级泵站:低压空行程充液时,高、低压泵。

电动泵站是一种独立完整的液压泵站。

产品特点:①体积小重量轻、使用方便、工作压力高②单级泵站:结构简单、可获得较高输出压力③双级泵站:低压空行程充液时,高、低压泵同时供油,可获得较大的输出流量。

高压工作时,低压泵经卸荷溢流阀自动空载回油,减少功率消耗。

④保压功能:在外油路无泄露的情况下,压力输出口接Φ63X200油缸,达到额定压力,停泵计时保压3分钟,压力下降不超过5MPa。

用途:①与油缸或专用机具配套,可实现起重、弯曲、校直、挤压、剪切、铆接、拆卸、压装等工作。

②装置在某些机械设备中,作为液压动力源。

③作为各种高压液压元件、高压容器、高压胶管的试压泵站。

结构原理简述:D系列电动泵站由电机、R系列径向柱塞泵(高压泵)、低压齿轮泵、控制阀、油箱、仪表等组成。

工作原理:泵启动后,关闭手动卸荷阀,低压时,高、低压泵经高、低压单向阀同时供油,当系统压力达到低压卸荷调定压力时,低压泵无负载卸荷,电机功部供高压泵工作,系统由低压快进转为高坟工进工况,压力达到高压阀调定值时高压泵溢流,完成工作行程后可停泵保压,作业完毕打开生动荷,工作缸回程。

液压控制阀常见故障现象及排除办法

液压控制阀常见故障现象及排除办法

故障
故障原因
叶片移动不灵活
各连接处漏气
输油量不足或压力 间隙过大(端面、径向)
不高
吸油不畅或液面太低
叶片和定子内表面接触不良
噪声、振动过大
吸油不畅或液面太低 有空气侵入 油液粘度过高 转速过高 泵与原动机不同轴 配油盘端面与内孔不垂直或叶片垂 直度太差
排除方法 不灵活叶片单独配研 加强密封 修复或更换零件 清洗过滤器或向油箱补油 定子磨损发生在吸油区,双作 用叶片泵可将定子旋转180º后 重新定位装配。 清洗过滤器或向油箱补油 检查吸油管、注意液位 适当降低油液粘度 降低转速 调整同轴度至规定值 修磨配油盘端面或提高叶片垂 直度
排除方法 更换密封件 紧固管接头或螺钉 修磨密封面或更换壳体 改善油箱散热条件或使用冷 却器 选用合适的液压油 降低工作压力 回油口接至油箱液面以下
纠正转向或重装传动键 提高转速或补油至最低液面 以上 加热至合适粘度后使用 疏通管路、清洗过滤器 密封吸油管路
2.1.2.3 叶片泵常见故障及排除方法
倾斜盘部分主要包括倾斜盘和变量机构,转动手柄1,通过丝杆移动 螺母滑块,使倾斜盘绕钢球中心摆动,改变倾斜盘斜角的大小,实现流 量的调节。
2.1.1.1 柱塞泵
柱塞泵的特点: 这种泵具有结构紧凑、工作压力高、密封性好、容积效率和总效率高、
流量易于调节、使用寿命长等优点。常用于高压、大流量、大功率和流 量需要调节的液压系统,如航空、船舶、冶金、矿山、压铸、锻造、机
2.1.2 液压泵常见故障现象及排除方法
2.1.2.1 柱塞泵常见故障及排除方法
• 柱塞泵无流量输出或输出流量不足 1、柱塞泵输出流量不足。可能的原因是:泵的转向不对、进油管漏
气、油位过低、液压油粘度过大等。 2、泵的泄漏量过大。主要原因是密封不良,同时液压油粘度过低也

齿轮泵以及叶片泵的拆装

齿轮泵以及叶片泵的拆装

液压泵拆装1.1实训目的液压动力元件——液压泵是液压系统的重要组成部分,通过对液压泵的拆装实训以达到下列目的:1、进一步理解常用液压泵的结构组成及工作原理。

2、掌握的正确拆卸、装配及安装连接方法。

3、掌握常用液压泵维修的基本方法。

1.2实训用液压泵、工具及辅料1、实习用液压泵:齿轮泵2 台、叶片泵2 台、轴向柱塞泵 1 台。

2、工具:内六方扳手2 套、固定扳手、螺丝刀、卡簧钳等。

3、辅料:铜棒、棉纱、煤油等。

1.3实训要求1、实习前认真预习,搞清楚相关液压泵的工作原理,对其结构组成有一个基本的认识。

2、针对不同的液压元件,利用相应工具,严格按照其拆卸、装配步骤进行,严禁违反操作规程进行私自拆卸、装配。

3、实习中弄清楚常用液压泵的结构组成、工作原理及主要零件、组件特殊结构的作用。

1.4实训内容及注意事项在实习老师的指导下,拆解各类液压泵,观察、了解各零件在液压泵中的作用,了解各种液压泵的工作原理,按照规定的步骤装配各类液压泵。

1.4.1齿轮泵型号:CB-B 型齿轮泵。

结构:泵结构见图2-1 及图2-2。

1.4.1.1工作原理在吸油腔,轮齿在啮合点相互从对方齿谷中退出,密封工作空间的有效容积不断增大,完成吸油过程。

在排油腔,轮齿在啮合点相互进入对方齿谷中,密封工作空间的有效容积不断减小,实现排油过程。

图1-1 外啮合齿轮泵结构示意图图1-2 齿轮泵结构示意图1-后泵盖 2-滚针轴承 3-泵体 4-前泵盖 5-传动轴1.4.1.2拆装步骤1、拆解齿轮泵时,先用内六方扳手在对称位置松开6个紧固螺栓,之后取掉螺栓,取掉定位销,掀去前泵盖4,观察卸荷槽、吸油腔、压油腔等结构,弄清楚其作用,并分析工作原理。

2、从泵体中取出主动齿轮及轴、从动齿轮及轴。

3、分解端盖与轴承、齿轮与轴、端盖与油封。

(此步可以不做)4、装配步骤与拆卸步骤相反。

1.4.1.3拆装注意事项1、拆装中应用铜棒敲打零部件,以免损坏零部件和轴承。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双作用高压齿轮泵的结构
双作用式高压齿轮泵的一种典型结构见图3—19.在左泵体1和右泵体?内安装有定子4,转子3、配油盘2和6.在转子3上的槽内装有叶片5.由定子内表面、转子外圆面、叶片和两个配油盘的端面组成工作空间.叶片在转予槽内可以自由滑动,转子由传动轴9带
动回转.传动轴9由左、右泵体内的两个球轴承支承.
从图中可以看出,定子、转子、叶片和左右两个配油盘可以先用螺钉组装成一个分部件,然后再装入泵体内.这样组装式的结构便于装配和维修,泵体用紧固螺钉把紧的程度对泵的性能影响不大,并且拆装前后能保持泵的工作性能.在该组装结构中,右配油盘6压向定子的承压面积与推开定子的承压面积之比为1.2;:l,因此,当高压齿轮泵运转建立起压力后,配油盘6右侧的液压力就使配油盘压向定子侧面,并且油压越高,压紧力越大,因此减少了配油盘端面处的泄漏,提高了泵的容积效率.
为了使叶片顶部和定子内表面紧密接触,以减少泄漏,在配油盘的瑞面上有一个与压油腔相通的环槽o,环槽又与叶片槽底部西相通,这样压力油就可以进到叶片底部,叶片在压力油和它本身在回转时的离心力的作用下,压向定子内表面,保证了紧密接触.为了减少定子内表面和叶片顶端的磨损,定子由38CrMoAIA材料制成,氮化热处理至Hv900,氮化层深度为0.35mm,叶片厚度为1.8—2.0mm,由W18Cr4V构·料制成.为了防止转子出现断裂现象,转子材料用20Cr,经渗碳淬火,以提高其抗冲击韧性.
这种高压齿轮泵还可以改变其回转方向.当需要改变回转方向时,只要拆下泵体的四个紧固螺钉,取出内部的组件,卸下组件的两个紧固螺钉,将定子、转子、叶片绕组件两螺钉孔连线翻转0,重新安装好,即可实现反转工作.正、反转工作时,转子和定子的相对位置如图3—20所示.从图中还可以看出,在转子的圆周上均匀地装有12个叶片.为了实现泵的正、反转工作,配油盘设计成对称的结构,如图3—21所示。

这种双作用式高压齿轮泵密封性能好,容积效率一般可达95g6左右.泵的输出油液的压力脉动约在±1 X 10~Pa左右。

工作时泵的噪声较小.泵的工作寿命较高,一般都超过5000小时.
东莞巨丰液压制造有限公司。

相关文档
最新文档