第十四章光学习题及解答和评分标准

合集下载

(完整版)工程光学习题参考答案第十四章光的偏振和晶体光学

(完整版)工程光学习题参考答案第十四章光的偏振和晶体光学

第十四章 光的偏振和晶体光学1. 一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率 1.54n =,试计算(1)反射光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。

解:光由玻璃到空气,354.50sin 1sin ,30,1,54.11212121=⎪⎪⎭⎫ ⎝⎛-====θθθn n n n o①()()()()06305.0tan 1tan ,3528.0sin 1sin 212212-=+-==+--=θθθθθθθθp s r r002222min max min max 8.93=+-=+-=ps ps r r r r I I I I P ②oB n n 3354.11tan tan1121=⎪⎭⎫ ⎝⎛==--θ ③()()4067.0sin 1sin ,0,5790212021=+--===-==θθθθθθθθs p B B r r 时,0298364.018364.011,8364.01=+-===-=P T r T p s s注:若221122,,cos cos p p s s t T t T n n ηηθθη===)(cos ,21222220min 0max θθ-=+-===ps s ps p s p T T t t t t P I T I I T I 或故 2. 自然光以布儒斯特角入射到由10片玻璃片叠成的玻片堆上,试计算透射光的偏振度。

解:每片玻璃两次反射,故10片玻璃透射率()2022010.83640.028s s T r =-==而1p T =,令m m I I in axτ=,则m m m m I I 110.026890.94761I I 10.02689ax in ax in p ττ---====+++3. 选用折射率为2.38的硫化锌和折射率为1.38的氟化镁作镀膜材料,制作用于氟氖激光(632.8nm λ=)的偏振分光镜。

大学物理第14章习题解答

大学物理第14章习题解答

第十四章习题解答1选择题:⑴ B ;⑵ B ;⑶ D ;⑷ B ;⑸ B 。

2填空题:⑴ /sin λθ;⑵ 4;⑶ 变疏,变疏;⑷ 3.0nm ;⑸ N 2,N 。

3计算题:1 用波长为nm 3.589=λ的单色平行光,垂直照射每毫米刻有500条刻痕的光栅.问最多能看到第几级明纹?总共有多少条明纹?解:5001=+b a mm 3100.2-⨯= mm 由λϕk b a =+sin )(知,最多见到的条纹级数k max 对应的2πϕ=, 所以有3max 2.010 3.39589.3a bk λ+⨯==≈,即实际见到的最高级次为3max =k 总共可见7条明纹。

2 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级? (1) a+b=2a ;(2)a+b=3a ;(3)a+b=4a 。

解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k ab a k '+=时明纹缺级. (1) a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2) a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.3 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1) 零级明条纹能否分开不同波长的光? (2) 在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什么因素有关?解:(1)不能。

(2)红光。

与波长有光。

4 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为480nm 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1) 中央明纹宽度为:60480105010220.02l f a λ-⨯⨯⨯==⨯mm 4.2=cm (2) 由缺级条件:λϕk a '=sin ,λϕk b a =+sin )(知:k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级. 中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.5 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求:(1) 光栅常数a +b(2) 波长λ2解:(1)()sin a b k θλ+=,01()sin 303a b λ+=,6()=3.3610a b m -+⨯(2)12()sin 34a b θλλ+==,2=420nm λ6某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线? 解:41() 1.25108000cm a b cm -+==⨯,0=(a+b)sin30625nm λ= 22sin 1()()k a b a b λλθ===++,02=90θ故不能观察到。

大学物理课件 第14章光的干涉习题答案

大学物理课件 第14章光的干涉习题答案
A.有一凹陷的槽,深入 / 4B. 有一凹陷的槽,深入 / 2
C.有一凸起的埂,深入 / D4 . 有一凸起的埂,深入
天道酬勤
4
6.一束白光以30度的入射角照射平静的湖水(水的折射 率为4/3)表面的一层透明液体(折射率为 10)2 的薄膜, 若反射光中波长为600nm的光显得特别明亮,则该透 明液体薄膜的最小厚度为( )
r1' r1 x sin
r2 r2' x sin
x
sin sin
天道酬勤
10
2.在1题基础上,考虑使用激光测速仪测量微粒运动速度 问题。在激光测速仪里两列交叉的相干激光束照射运 动微粒,…求微粒运动速度大小。
解:利用1题结论,粒子走过的路程
为λ/(sinθ+sinφ),其中θ、φ分
别为30度。
距D=1.0m,若第二级明条纹离屏中心的距离为
6.0mm,此单色6光00的n波长 相邻两明条纹间的3距m离
为.
m
m
10.在不同的均匀媒质中,若单色光通过的光程相等时,
其几何路程
同不,其所需时间
相同。
11.两光相干除了满足干涉的三个必要条件,即频率相同、 振动方向相同、相位相等或相位差恒定之外,还必须满足 两个附加条件 两相干光的振幅不可相差太大 , 两 相干光的光程差不能太大 。
6
二、填空题
1.真空中的波长为 的单色光在折射率为n的媒质中由
A点传到B点时,周相改变量为3,则光程的改变量
为 3λ/,2 光从A传到B所走过的几何路程为 3。λ/2n
2.如图所示,在杨氏双缝实验中,若用红光做实验,则 相邻干涉条纹间距比用紫光做实验时相邻干涉条纹间
距 ,大若在光源S2右侧光路上放置一薄玻璃片,则中

工程光学物理光学11、12、14章答案

工程光学物理光学11、12、14章答案

1λ第十一章 习题及答案 1。

双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少? 解:由杨氏双缝干涉公式,亮条纹时:dDm λα=(m=0, ±1, ±2···) m=10时,nm x 89.511000105891061=⨯⨯⨯=-,nm x 896.511000106.5891062=⨯⨯⨯=- m x x x μ612=-=∆2。

在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一片折射率1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。

21r r l n =+∆⋅22212⎪⎭⎫⎝⎛∆-+=x d D r 22222⎪⎭⎫⎝⎛∆++=x d D r x d x d x d r r r r ∆⋅=⎪⎭⎫⎝⎛∆--⎪⎭⎫ ⎝⎛∆+=+-222))((221212mm r r d x r r 2211210500512-=⨯≈+⋅∆=-∴ ,mm l mm l 2210724.110)158.1(--⨯=∆∴=∆-3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。

继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276.10=n 。

试求注入气室内气体的折射率。

0008229.10005469.0000276.1301028.6562525)(600=+=⨯⨯=-=-∆-n n n n n l λ4。

垂直入射的平面波通过折射率为n 的玻璃板,透射光经透镜会聚到焦点上。

玻璃板的厚度沿着C 点且垂直于图面的直线发生光波波长量级的突变d,问d 为多少时焦点光强是玻璃板无突变时光强的一半。

大学物理答案第14章

大学物理答案第14章

第十四章 波 动 光 学14-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏 上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B ).题14-1 图14-2 如图所示,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题14-2 图 分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ).14-3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题14-3图 分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )14-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为( )(A ) 3 个 (B ) 4 个 (C ) 5 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B ).14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b ×10-4cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为()82.1/2dsin max =≤λπk 即只能看到第1 级明纹,正确答案为(D ).14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为( )(A ) 3I 0/16 (B ) 3I 0/8 (C ) 3I 0/32 (D ) 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为(C ).14-7 自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为( )(A ) 完全线偏振光,且折射角是30°(B ) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°(C ) 部分偏振光,但须知两种介质的折射率才能确定折射角(D ) 部分偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为部分偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.故选(D ).14-8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ. 此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第 5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么),故mm 97822.=∆x . 解1 屏上暗纹的位置()212λ+'=k d d x ,把m 102782243-⨯==.,x k 以及d 、d ′值代入,可得λ= nm ,为红光.解2 屏上相邻暗纹(或明纹)间距'd x d λ∆=,把322.7810m 9x -∆=⨯,以及d 、d ′值代入,可得λ= nm .14-9 在双缝干涉实验中,用波长λ= nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =×10-3m双缝间距: d =d ′λ/Δx = ×10-4 m14-10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ??,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图 解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd()d k D D D h 412sin tan -=≈≈λθθ取k =1 时,得dD h 4min λ=. 14-11 如图所示,将一折射率为的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为.试问该膜的正面呈现什么颜色分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ= nm ,L = ×10-2m ,测得30 条条纹的总宽度为 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ= 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对 nm 激光的折射率为)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n210λ= ×10-6m . 14-15 折射率为的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600 nm 的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n = 的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小Δl =0.5 mm ,那么劈尖角θ 应是多少分析 劈尖干涉中相邻条纹的间距l ≈θλn 2,其中θ 为劈尖角,n 是劈尖内介质折射率.由于前后两次劈形膜内介质不同,因而l 不同.则利用l ≈θλn 2和题给条件可求出θ.解 劈形膜内为空气时,θλ2=空l 劈形膜内为液体时,θλn l 2=液 则由θλθλn l l l 22-=-=∆液空,得 ()rad 107112114-⨯=∆-=./l n λθ14-16 如图(a)所示的干涉膨胀仪,已知样品的平均高度为 ×10-2m ,用λ= nm 的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少题14-16 图分析 温度升高ΔT =T 2 -T 1 后,样品因受热膨胀,其高度l 的增加量Δl =lαΔT .由于样品表面上移,使在倾角θ 不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k 级条纹从a 移至a′处,如图(b )所示,移过某一固定观察点的条纹数目N 与Δl 的关系为2λN l =∆,由上述关系可得出热膨胀系数α.解 由题意知,移动的条纹数N =20,从分析可得 T l N ∆=αλ2则热膨胀系数 5105112-⨯=∆=.Tl Nλα K 1- 14-17 在利用牛顿环测未知单色光波长的实验中,当用已知波长为 nm 的钠黄光垂直照射时,测得第一和第四暗环的距离为Δr = ×10-3 m ;当用波长未知的单色光垂直照射时,测得第一和第四暗环的距离为Δr ′= ×10-3 m ,求该单色光的波长.分析 牛顿环装置产生的干涉暗环半径λkR r =,其中k =0,1,2…,k =0,对应牛顿环中心的暗斑,k =1 和k =4 则对应第一和第四暗环,由它们之间的间距λR r r r =-=∆14,可知λ∝∆r ,据此可按题中的测量方法求出未知波长λ′.解 根据分析有λλ'=∆'∆r r 故未知光波长 λ′=546 nm14 -18 如图所示,折射率n 2 = 的油滴落在n 3 = 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m = μm,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环 (2) 整个油膜可看到几个完整的暗环题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.14-19 把折射率n = 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.解 插入厚度为d 的介质片后,两相干光光程差的改变量为2(n -1)d ,从而引起N 条条纹的移动,根据劈尖干涉加强的条件,有2(n -1)d =Nλ,得()m 101545126-⨯=-=.n N d λ 14-20 如图所示,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有一与狭缝平行的屏放置在透镜焦平面处.若以波长为600 nm 的单色平行光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言,狭缝的波阵面可作半波带的数目.分析 单缝衍射中的明纹条件为()212sin λϕ+±=k b ,在观察点P 位置确定(即衍射角φ确定)以及波长λ确定后,条纹的级数k 也就确定了.而狭缝处的波阵面对明条纹可以划分的半波带数目为(2k +1)条.解 (1) 设透镜到屏的距离为d ,由于d >>b ,对点P 而言,有dx =≈ϕϕtan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx 将b 、d (d ≈f )、x , λ的值代入,可得k =3(2) 由分析可知,半波带数目为7.题14-20 图14-21 一单色平行光垂直照射于一单缝,若其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比较法来确定波长.对应于同一观察点,两次衍射的光程差相同,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长已知的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得()nm 642812121221.=++=k k λλ 14-22 已知单缝宽度b = ×10-4 m ,透镜焦距f =0.50 m ,用λ1 =400 nm 和λ2 =760 nm 的单色平行光分别垂直照射,求这两种光的第一级明纹离屏中心的距离,以及这两条明纹之间的距离.若用每厘米刻有1000条刻线的光栅代替这个单缝,则这两种单色光的第一级明纹分别距屏中心多远 这两条明纹之间的距离又是多少分析 用含有两种不同波长的混合光照射单缝或光栅,每种波长可在屏上独立地产生自己的一组衍射条纹,屏上最终显示出两组衍射条纹的混合图样.因而本题可根据单缝(或光栅)衍射公式分别计算两种波长的k 级条纹的位置x 1和x 2 ,并算出其条纹间距Δx =x 2 -x 1 .通过计算可以发现,使用光栅后,条纹将远离屏中心,条纹间距也变大,这是光栅的特点之一.解 (1) 当光垂直照射单缝时,屏上第k 级明纹的位置()f b k x 212λ+= 当λ1 =400 nm 和k =1 时, x 1 = ×10-3m 当λ2 =760 nm 和k =1 时, x 2 = ×10-3 m其条纹间距 Δx =x 2 -x 1 = ×10-3m(2) 当光垂直照射光栅时,屏上第k 级明纹的位置为 f dk x λ=' 而光栅常数 m 10m 1010532--==d 当λ1 =400 nm 和k =1 时, x 1 = ×10-2m当λ2 =760 nm 和k =1 时, x 2 = ×10-2 m 其条纹间距 m 1081212-⨯='-'='∆.x x x14-23 老鹰眼睛的瞳孔直径约为6 mm ,问其最多飞翔多高时可看清地面上身长为5cm 的小鼠 设光在空气中的波长为600 nm .分析 两物体能否被分辨,取决于两物对光学仪器通光孔(包括鹰眼)的张角θ 和光学仪器的最小分辨角θ0 的关系.当θ≥θ0 时能分辨,其中θ=θ0 为恰能分辨.在本题中D λθ2210.=为一定值,这里D 是鹰的瞳孔直径.而h L /=θ,其中L 为小鼠的身长,h 为老鹰飞翔的高度.恰好看清时θ=θ0.解 由分析可知 L /h =λ/D ,得飞翔高度h =LD /(λ) =409.8 m .14-24 一束平行光垂直入射到某个光栅上,该光束中包含有两种波长的光:λ1 =440 nm 和λ2 =660 nm .实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数.分析 根据光栅衍射方程λϕk d ±=sin ,两种不同波长的谱线,除k =0 中央明纹外,同级明纹在屏上位置是不同的,如果重合,应是它们对应不同级次的明纹在相同衍射角方向上重合.故由d sin φ=k λ =k ′λ2 可求解本题.解 由分析可知21sin λλϕk k d '==, 得得 2312///=='λλk k上式表明第一次重合是λ1 的第3 级明纹与λ2 的第2级明纹重合,第二次重合是λ1 的第6 级明纹与λ2 的第4级明纹重合.此时,k =6,k ′=4,φ=60°,则光栅常数μm 05.3m 1005.3/sin 61=⨯==-ϕλk d*14-25 波长为600 nm 的单色光垂直入射在一光栅上,其透光和不透光部分的宽度比为1:3,第二级主极大出现在200sin .=ϕ处.试问(1) 光栅上相邻两缝的间距是多少(2) 光栅上狭缝的宽度有多大 (3) 在-90°<φ<90°范围内,呈现全部明条纹的级数为哪些.分析 (1) 利用光栅方程()λϕϕk b b d ±='+=sin sin ,即可由题给条件求出光栅常数b b d '+=(即两相邻缝的间距).这里b 和b '是光栅上相邻两缝透光(狭缝)和不透光部分的宽度,在已知两者之比时可求得狭缝的宽度(2) 要求屏上呈现的全部级数,除了要求最大级次k 以外,还必须知道光栅缺级情况.光栅衍射是多缝干涉的结果,也同时可看成是光透过许多平行的单缝衍射的结果.缺级就是按光栅方程计算屏上某些应出现明纹的位置,按各个单缝衍射计算恰是出现暗纹的位置.因此可以利用光栅方程()λϕϕk b b d ='+=sin sin 和单缝衍射暗纹公式'sin b k ϕλ=可以计算屏上缺级的情况,从而求出屏上条纹总数.解 (1)光栅常数 μm 6m 106sin 6=⨯==-ϕk λd (2) 由 ⎪⎩⎪⎨⎧='='+=31μm 6b b b b d 得狭缝的宽度b = μm .(3) 利用缺级条件()()()⎩⎨⎧±=''=±=='+,...1,0sin ,...1,0sin k k b k k b b λϕλϕ 则(b +b ′)/b =k /k ′=4,则在k =4k ′,即±4, ±8, ±12,…级缺级.又由光栅方程()λϕk b b ±='+sin ,可知屏上呈现条纹最高级次应满足()10='+<λ/b b k ,即k =9,考虑到缺级,实际屏上呈现的级数为:0, ±1, ±2, ±3,±5, ±6, ±7, ±9,共15 条.*14-26 以波长为 nm 的X 射线照射岩盐晶体,实验测得X 射线与晶面夹角为°时获得第一级反射极大.(1) 岩盐晶体原子平面之间的间距d 为多大 (2) 如以另一束待测X 射线照射,测得X 射线与晶面夹角为°时获得第一级反射光极大,求该X 射线的波长.分析 X 射线入射到晶体上时,干涉加强条件为2d sin θ =k λ(k =0,1,2,…)式中d 为晶格常数,即晶体内原子平面之间的间距(如图).解 (1) 由布拉格公式(),...,,210sin 2==k k d λθ第一级反射极大,即k =1.因此,得 nm 276.0sin 211==θλd(2) 同理,由2d sin θ2 =kλ2 ,取k =1,得nm 166.0sin 222==θλd题14-26图14-27 测得一池静水的表面反射出来的太阳光是线偏振光,求此时太阳处在地平线的多大仰角处 (水的折射率为)题14-27 图分析 设太阳光(自然光)以入射角i 入射到水面,则所求仰角i θ-=2π.当反射光起偏时,根据布儒斯特定律,有120arctann n i i ==(其中n 1 为空气的折射率,n 2 为水的折射率).解 根据以上分析,有 120arctan 2πn n θi i =-== 则 o 129.36arctan 2π=-=n n θ 14-28 一束光是自然光和线偏振光的混合,当它通过一偏振片时,发现透射光的强度取决于偏振片的取向,其强度可以变化5 倍,求入射光中两种光的强度各占总入射光强度的几分之几.分析 偏振片的旋转,仅对入射的混合光中的线偏振光部分有影响,在偏振片旋转一周的过程中,当偏振光的振动方向平行于偏振片的偏振化方向时,透射光强最大;而相互垂直时,透射光强最小.分别计算最大透射光强I max 和最小透射光强I min ,按题意用相比的方法即能求解.解 设入射混合光强为I ,其中线偏振光强为xI ,自然光强为(1-x )I .按题意旋转偏振片,则有最大透射光强 ()I x x I ⎥⎦⎤⎢⎣⎡+-=121max 最小透射光强 ()I x I ⎥⎦⎤⎢⎣⎡-=121min 按题意5min max =I I /,则有 ()()x x x -⨯=+-1215121 解得 x =2/3即线偏振光占总入射光强的2/3,自然光占1/3.。

大学物理-第十四章-波动光学

大学物理-第十四章-波动光学
其投射到介面上的A点的光线,
一部分反射回原介质即光线a1, 另一部分折入另一介质,其中一 部分又在C点反射到B点然后又 折回原介质,即光线a2。因a1,a2是
从同一光线S1A分出的两束,故
满足相干条件。
S
S1
a
a1
iD
e
A
B
C
a2
n1
n2
n1
31
2 薄膜干涉的光程差
n2 n1
CDAD
sin i n2
跃迁 基态
自发辐射
原子能级及发光跃迁
E h
普通光源发光特 点: 原子发光是断续
的,每次发光形成一
长度有限的波列, 各 原子各次发光相互独
立,各波列互不相干.
10
3.相干光的获得:
①原则:将同一光源同一点发出的光波列,即某个原子某次 发出的光波列分成两束,使其经历不同的路程之后相遇叠加。
S2
r2
P
20
为计算方便,引入光程和光程差的概念。
2、光程
光在真空中的速度 光在介质中的速度
c 1 00
u 1
u1 cn
介质的 折射率
真空
u n c

介质中的波长
n


n

n n
21
介质中的波长
n


n
s1 *
r1
P
波程差 r r2 r1
k 0,1,2,
x

d
'
d
(2k

1)

k 0,1,2,
暗纹
d
2
k=0,谓之中央明纹,其它各级明(暗)纹相对0点对称分布

十四和十五章光学习题解和分析

十四和十五章光学习题解和分析

十四章 几何光学习题与解答14-1.如题图14-1所示,一束平行光线以入射角θ射入折射率为n ,置于空气中的透明圆柱棒的端面.试求光线在圆柱棒内发生全反射时,折射率n 应满足的条件. 分析:一次折射,一次反射;利用端面折射角与内侧面入射角互余及全反射条件即可求解。

解:设光线在圆柱棒端面的折射角为γ,在内侧面的入射角为'θ,根据折射定律,有'sin 'cos sin sin 222θθγθn n n n -===光线在界面上发生全反射的条件为1'sin ≥θn∴发生全反射时,n 必须满足θ2sin 1+≥n14-2.远处有一物点发出的平行光束,投射到一个空气中的实心玻璃球上.设玻璃的折射率为50.1=n ,球的半径为cm r 4=.求像的位置.分析:利用逐步成像法,对玻璃球的前后两个球面逐一成像,即可求得最后像的位置.用高斯成像公式时,应注意两个球面的顶点位置是不同的.cm r r cm r r 4,421-=-===.解:cm cm r n n f 12)415.15.1(1'11=⨯-=-=cm cm f n f 8)5.112('111-=-=-=cm f p p p f p f 12'',,1''1111111==∞==+ 或用-∞====-=-1111111111,1,5.1','''p n n n r n n p n p ncm p p 12',415.11'5.111=-=∞-- 对玻璃球前表面所成的像,对后表面而言是物,所以cm cm r p p 4)812(2'212=-=+=cm cm r n f 8)]4(5.111[11'22=-⨯-=-=cm cm nf f 12)85.1('22-=⨯-=-=题图14-1cm cm f p f p p p f p f 2)12484('',1''222222222=+⨯=-==+ 或用1',5.1,'''222222222===-=-n n n r n n p n p ncm p p 2',45.1145.1'122=--=-像在球的右侧,离球的右边2cm 处.14-3.如题图14-3所示的一凹球面镜,曲率半径为40cm ,一小物体放在离镜面顶点10cm 处.试作图表示像的位置、虚实和正倒,并计算出像的位置和垂轴放大率.分析:利用凹面镜的半径可确定焦距,以知物距,由球面镜的物像公式和横向放大率公式可求解。

大学物理第十四章波动光学课后习题答案及复习内容

大学物理第十四章波动光学课后习题答案及复习内容

第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。

2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。

3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。

4. 掌握光栅衍射公式。

会确定光栅衍射谱线的位置。

会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 了解自然光和线偏振光。

理解布儒斯特定律和马吕斯定律。

理解线偏振光的获得方法和检验方法。

6. 了解双折射现象。

二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。

相应的光源称为相干光源。

获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。

2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。

nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。

即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。

4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。

其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。

大学物理第十四章习题解答和评分标准

大学物理第十四章习题解答和评分标准

第十四章光学习题及解答和评分标准1.题号:分值:10分在杨氏双缝干涉实验中,用波长= nm 的纳灯作光源,屏幕距双缝的距离d’=800 nm ,问:(1)当双缝间距1mm 时,两相邻明条纹中心间距是多少(2)假设双缝间距10 mm ,两相邻明条纹中心间距又是多少解答及评分标准:(1) d =1 mm 时mm d d x 47.0'==∆λ (5分)(2) d =10 mm 时mm dd x 047.0'==∆λ (5分) 2.题号:分值:10分洛埃镜干涉如图所示光源波长m 7102.7-⨯=λ,试求镜的右边缘到第一条明纹的距离。

解答及评分标准: λdd x '21⋅=∆ (6分) m m x 57105.4102.722.0302021--⨯=⨯⨯⨯+⨯=∆∴(4分)3.题号:3分值:10分在双缝干涉实验中,用波长=的单色光照射,屏幕距双缝的距离d’=300 mm ,测得中央明纹两恻的两个第五级明纹的间距为, 求两缝间的距离。

解答及评分标准:λd d x '=∆ (4分) mm N x 22.1102.122.12==∆=∆Θ (4分) mm x d d 134.01022.1101.54610300'393=⨯⨯⨯⨯=∆=∴---λ (2分) 4. 题号:分值:10分在双缝干涉实验中,两缝间的距离,用单色光垂直照射双缝, 屏与缝之间的距离为,测得中央明纹两恻的两个第五级暗纹的间距为, 求所用光的波长。

解答及评分标准:λdd x '=∆ (4分) 531.2978.2278.22==∆=∆N x Θ (4分) nm d xd 8.6321020.130.0531.2'3=⨯⨯=∆=∴λ (2分)5.题号:分值:10分单色光照射到相距为的双缝上,双缝与屏幕的垂直距离为1m ,求:(1)从第一级明纹到同侧的第四级明纹间的距离为,求单色光的波长;(2)若入射光的波长为600nm ,求相邻两明纹间的距离。

《光学》试卷库参考答案及评分标准

《光学》试卷库参考答案及评分标准

《光学》试题(一)标准答案及评分标准一、选择题(每小题2.5分,共25分)1、D2、A3、C4、B5、B6、D7、A8、C9、B 10、C二、填空题(每小题2分,共20分)① 6.00×10-4② 2(n-1)h ③ 0.458 ④ 120 ⑤ 250 ⑥ 3:1 ⑦ 8.3% ⑧ 2I 0/3 ⑨ 1.22λ/D ⑩ 56.1%三、试用作图法找像的位置和大小(5分)四、论述题(10分)(1) 同频率(2)两光波相遇是有固定的位相差 (3)两光波相遇点相同的振动分量(4)两光波相遇光程差不能太大,要小于光源的相干长度。

(5)两光波相遇点所产生的振动后的振幅不能太悬殊。

评分标准:每小题各占据2分。

如没有论述,则酌情扣分。

五.1.(a )→x=-20mm 180mm =′=′xf f x S'=60-180=120mm (实像) (5分)(b )x=20mm x'=-180mm (5分)S'=60-180=240mm (虚像)2.由于右边321n n n ,故没有额外程差,而左边3221,n n n n 发生额外程差对于右边 λj Rr n h n j 222=2λ)5+(=25+2j Rr n j 两式相减,可求得波长 ΟA Rr n j 6480=5)r -(=2j 25+2λ对于左j 级亮纹满足m mr n R r j n R r j R r n j j j j 24.4=18=62.1×210×10×6480×10+4×4=2+=)21+(==21-37-222222左左左λλλλ3.设光栅常数为d ,可见光谱两面三刀端波长所对应的光栅方程为760•=θsin 400•=sin 2211K d K d θ如果发生重叠是400nm 的二级与760nm 的一级:1221/760=sin /800=/400•2=sin θθθθ d d d所以不发生重叠。

工程光学习题参考答案第十四章 光的偏振和晶体光学

工程光学习题参考答案第十四章 光的偏振和晶体光学

第十四章 光的偏振和晶体光学1. 一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率 1.54n =,试计算(1)反射光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。

解:光由玻璃到空气,354.50sin 1sin ,30,1,54.11212121=⎪⎪⎭⎫ ⎝⎛-====θθθn n n n o①()()()()06305.0tan 1tan ,3528.0sin 1sin 212212-=+-==+--=θθθθθθθθp s r r002222min max min max 8.93=+-=+-=ps ps r r r r I I I I P ②oB n n 3354.11tan tan1121=⎪⎭⎫ ⎝⎛==--θ ③()()4067.0sin 1sin ,0,5790212021=+--===-==θθθθθθθθs p B B r r 时,0298364.018364.011,8364.01=+-===-=P T r T p s s注:若221122,,cos cos p p s s t T t T n n ηηθθη===)(cos ,21222220min 0max θθ-=+-===ps sp s p s p T T t t t t P I T I I T I 或故 2. 自然光以布儒斯特角入射到由10片玻璃片叠成的玻片堆上,试计算透射光的偏振度。

解:每片玻璃两次反射,故10片玻璃透射率()2022010.83640.028s s T r =-==而1p T =,令m m I I in axτ=,则m m m m I I 110.026890.94761I I 10.02689ax in ax in p ττ---====+++3. 选用折射率为2.38的硫化锌和折射率为1.38的氟化镁作镀膜材料,制作用于氟氖激光(632.8nm λ=)的偏振分光镜。

大学物理第十四章波动光学习题+答案

大学物理第十四章波动光学习题+答案

D k 0,1, 2 明纹中心位置
暗纹中心位置
k 1, 2,3
D 相邻两明纹(或暗纹)中心间距离: Δx d
3、薄膜等厚干涉 劈尖干涉
垂直入射: 2ne

2
相邻明纹(暗纹)间的厚度差: e

C R
2n 相邻明纹(暗纹)中心间距离: l 2n
牛顿环
r 2Re
(2) 屏幕上主极大位置由光栅公式决定
(a b)sin k
(3) 缺级现象 (a b)sin k
k 0,1, 2, 3 ——主极大
k 1, 2, 3
k 1, 2, 3
干涉明纹 衍射暗纹
a sin k
ab k k k 1, 2, 3 a (4) 重级现象 k11 k2 2
波 动 光 学 习 题 课
一、基本概念
1、相干光的获得 把由光源上同一点发出的光设法分成两部分,再叠 加起来。
分波阵面法
分振幅法
2、光程与光程差
n2 r2 n1r1
3、半波损失
2 2 (n2 r2 n1r1 )
当光从光疏媒质射向光密媒质时,反射光有位相 的突变,相当于 的附加光程差,叫半波损失。
x tan 5 103 f
a sin 0.2 5 10 mm 1000 nm 4 2
3

a

x
f
暗纹,4个半波带
4-5 某元素的特征光谱中含有波长分别为1=450nm 和2=750nm的光谱线。在光栅光谱中,这两种波长的 谱线有重叠现象,重叠处2的谱线的级数将是 (A) 2,3,4,5…… (C) 2,4,6,8……

光学练习题及其参考答案

光学练习题及其参考答案

1、(10分)在折射率n 1=1.52的镜头上涂有一层折射率n 2=1.38的MgF 2增反膜,如果此膜适合波长λ解:光程差满足:2n 2d= k λ,2n 2d λk =,当k=1 时,d 取最小值:m A μλ22.0217438.126000n 2d 2min ≈=⨯==2、(10分)一衍射双缝,缝距d=0.12mm,缝宽a=0.02mm ,用波长为4000A 的平行单色光垂直入射双缝,双缝后置一焦距为50cm 的透镜。

试求:(1)透镜焦平面上单缝衍射中央明纹的半角宽度和线宽度;(2)透镜焦平面上单缝衍射中央明纹包迹内有多少条干涉主极大?解:(1)单缝第1级暗条纹出现在 λθ=1asin 02.01002.0104000/sin 3101=⨯⨯==--a λθ半角宽度为02.0sin 11=≈θθ线宽度为:cm 15002.0f 1=⨯=θ(2)满足干涉主极大的条件为 λθk dsin = 因为610400002.01012.0dsin 10-3-1=⨯⨯⨯=λθ 所以当k=6时与单缝的第1级暗条纹重合,出现了缺级, 在),(1sin 0θ范围内有5个干涉主极大, 因此单缝衍射中央明纹包迹内有10条干涉主极大3、(10分)一束光强为I 0偏振光,相继通过两个偏振片 P 1、P 2后出射的光强为I 0 /4,而且其偏振方向与入射光的偏振方向垂直。

如果入射光偏 振方向与P 1的夹角为α1,P 1 P 2之间的夹角 为α2,求α1和α2。

解:依题意可令α1和 α2为锐角因为101cos A A α= 210212c o s c o s c o s A A αααA == 所以 4/cos cos I 0221202I I ==αα, 可得21cos cos 21=αα 另外,依题意可知221παα=+21sin cos 11=αα,412sin 1=α 01-1741sin 21≈=α, 0283=α4、(12分)如图所示,两个振幅频率都相同的相干波源S 1S 2的坐标分别为λ85±,S 2比S 1超前π/2,它们以同样的波速相向而行时,在S 1S 2之间形成相干图象。

光学 课后习题答案

光学 课后习题答案

光学课后习题答案光学课后习题答案光学是一门研究光的传播、反射、折射、干涉和衍射等现象的学科。

在学习光学的过程中,习题是提高理解和应用能力的重要练习。

下面将为大家提供一些光学课后习题的答案,希望对大家的学习有所帮助。

1. 什么是光的折射?折射定律是什么?光的折射是指光线从一种介质进入另一种介质时改变传播方向的现象。

折射定律是描述光线在两种介质交界面上折射规律的定律。

根据折射定律,入射光线、折射光线和法线所在平面三者的夹角满足正弦定律,即入射角的正弦与折射角的正弦成比例。

2. 什么是光的干涉?什么是光的相长干涉和相消干涉?光的干涉是指两束或多束光线相互叠加产生干涉条纹的现象。

光的相长干涉是指两束光线的相位差为整数倍波长,叠加后互相增强,形成明纹。

光的相消干涉是指两束光线的相位差为半整数倍波长,叠加后互相抵消,形成暗纹。

3. 什么是光的衍射?什么是夫琅禾费衍射?光的衍射是指光通过一个或多个孔或者绕过障碍物后发生偏离传播方向的现象。

夫琅禾费衍射是指光通过一个狭缝时产生的衍射现象。

夫琅禾费衍射的特点是,衍射图样中有一中央亮纹,两侧逐渐变暗,且衍射角度越大,衍射图样越宽。

4. 什么是光的反射?反射定律是什么?光的反射是指光线从一个介质射入另一个介质时,部分或全部光线从交界面上反射回原介质的现象。

反射定律是描述光线在交界面上反射规律的定律。

根据反射定律,入射光线、反射光线和法线所在平面三者的夹角相等。

5. 什么是光的色散?为什么光会产生色散?光的色散是指光通过透明介质时,不同波长的光线发生不同程度的偏折,从而使光分离成不同颜色的现象。

光会产生色散的原因是不同波长的光在介质中传播速度不同,导致折射角度不同,从而产生色散效应。

6. 什么是光的偏振?什么是偏振光?光的偏振是指光波中的电矢量只在一个特定方向上振动的现象。

偏振光是指只在一个方向上振动的光波。

偏振光可以通过偏振片来实现,偏振片能够选择性地透过或者吸收特定方向上的光振动。

大学物理第十四章习题解答和评分标准

大学物理第十四章习题解答和评分标准

大学物理第十四章习题解答和评分标准-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十四章光学习题及解答和评分标准1.题号:50341001分值:10分 在杨氏双缝干涉实验中,用波长=589.3 nm 的纳灯作光源,屏幕距双缝的距离d’=800 nm ,问:(1)当双缝间距1mm 时,两相邻明条纹中心间距是多少(2)假设双缝间距10 mm ,两相邻明条纹中心间距又是多少?解答及评分标准:(1) d =1 mm 时mm d d x 47.0'==∆λ (5分)(2) d =10 mm 时mm dd x 047.0'==∆λ (5分) 2.题号:50341002分值:10分洛埃镜干涉如图所示光源波长m 7102.7-⨯=λ,试求镜的右边缘到第一条明纹的距离。

解答及评分标准:λdd x '21⋅=∆ (6分) m m x 57105.4102.722.0302021--⨯=⨯⨯⨯+⨯=∆∴(4分) 3.题号:450342003分值:10分在双缝干涉实验中,用波长λ=546.1nm 的单色光照射,屏幕距双缝的距离d’=300 mm ,测得中央明纹两恻的两个第五级明纹的间距为12.2mm, 求两缝间的距离。

解答及评分标准:λdd x '=∆ (4分) mm N x 22.1102.122.12==∆=∆ (4分) mm x d d 134.01022.1101.54610300'393=⨯⨯⨯⨯=∆=∴---λ (2分) 4. 题号:50342004分值:10分在双缝干涉实验中,两缝间的距离0.30mm ,用单色光垂直照射双缝, 屏与缝之间的距离为1.20m ,测得中央明纹两恻的两个第五级暗纹的间距为22.78mm, 求所用光的波长。

解答及评分标准:λdd x '=∆ (4分) 531.2978.2278.22==∆=∆N x (4分) nm d xd 8.6321020.130.0531.2'3=⨯⨯=∆=∴λ (2分)5.题号:50342005分值:10分单色光照射到相距为0.2mm 的双缝上,双缝与屏幕的垂直距离为1m ,求:(1)从第一级明纹到同侧的第四级明纹间的距离为7.5mm ,求单色光的波长;(2)若入射光的波长为600nm ,求相邻两明纹间的距离。

工程光学习题参考答案第十四章-光的偏振和晶体光学

工程光学习题参考答案第十四章-光的偏振和晶体光学

第十四章 光的偏振和晶体光学1. 一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率 1.54n =,试计算(1)反射光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。

解:光由玻璃到空气,354.50sin 1sin ,30,1,54.11212121=⎪⎪⎭⎫ ⎝⎛-====θθθn n n n o①()()()()06305.0tan 1tan ,3528.0sin 1sin 212212-=+-==+--=θθθθθθθθp s r r002222min max min max 8.93=+-=+-=ps ps r r r r I I I I P ②oB n n 3354.11tan tan1121=⎪⎭⎫ ⎝⎛==--θ ③()()4067.0sin 1sin ,0,5790212021=+--===-==θθθθθθθθs p B B r r 时,0298364.018364.011,8364.01=+-===-=P T r T p s s注:若221122,,cos cos p p s s t T t T n n ηηθθη===)(cos ,21222220min 0max θθ-=+-===ps s ps p s p T T t t t t P I T I I T I 或故 2. 自然光以布儒斯特角入射到由10片玻璃片叠成的玻片堆上,试计算透射光的偏振度。

解:每片玻璃两次反射,故10片玻璃透射率()2022010.83640.028s s T r =-==而1p T =,令m m I I in axτ=,则m m m m I I 110.026890.94761I I 10.02689ax in ax in p ττ---====+++3. 选用折射率为2.38的硫化锌和折射率为1.38的氟化镁作镀膜材料,制作用于氟氖激光(632.8nm λ=)的偏振分光镜。

大学物理第十四章习题解答和评分标准.doc

大学物理第十四章习题解答和评分标准.doc

(5分)(4分)第十四章光学习题及解答和评分标准1.题号:50341001分值:10分在杨氏双缝干涉实验中,用波长2=589.3 nm 的纳灯作光源,屏幕距双缝的距离/=800 nm,问:⑴当双缝间距1mm 时,两相邻明条纹中心间距是多少?⑵假设双缝间距10 mm, 两相邻明条纹中心间距又是多少?解答及评分标准:d'(1) <7=1 mm 时 Ax = —2 = QAlmm d(2) d=10 mm 时 = — X = 0.047/77/77 d 2.题号:50341002分值:10分洛埃镜干涉如图所示光源波长2 = 7.2x 10" m, 试求镜的右边缘到第一条明纹的距离。

解答及评分标准: •山十役 x7.2xl0f=4.5xl0f (4 分)3. 题号:450342003分值:10分在双缝十■涉实验屮,用波长2=546.Inm 的单色光照射,屏幕距双缝的距离6?'=300 mm, 测得中央明纹两恻的两个第五级明纹的间距为12.2mm,求两缝间的距离。

解答及评分标准:._d'Ax — — A dKN 12.27o~ =1.22mm£2 Ax300x1()7 x 546.1x10-91.22x10 3=0.134mm(4分)(2Ar = 22.78AN22.789=2.531Axd _ 2.531 x 0.30d' ~ 1.20 xlO3=632.8nm(4分)(4分)4.题号:50342004分值:10分在双缝干涉实验中,两缝间的距离0.30mm,用单色光垂直照射双缝,屏与缝之间的距离为1.20m,测得中央明纹两恻的两个第五级暗纹的间距为22.78mm,求所用光的波长。

解答及评分标准:5.题号:50342005分值:10分单色光照射到相距为0.2mm的双缝上,双缝与屏幕的垂直距离为lm,求:(1)从第一级明纹到同侧的第四级明纹间的距离为7.5mm,求单色光的波长;(2)若入射光的波长为600nm,求相邻两明纹间的距离。

光学参考答案

光学参考答案

第十四章光学参考答案一、选择题1.(A );2.(A );3.(C );4.(B );5.(B );6.(B );7.(D );8.(C );9.(E );10.(B );11.(D );12.(A );13.(A );14.(B );15.(B );16.(A );17.( B );18.(B );19.(B );20.(B );21.(D );22.( B );23.(D );24.( B );25.(E );26.(C );27.(B );28.(D );29.(B );30.(B )二、填空题1. 1)频率相同;2)位相差恒定;3)光矢量振动方向平行,)r r (c212-=πνϕ∆。

2. 0I 4, 0 。

3. 0.134 mm 。

4. (A) 条纹变宽 ;(B)屏幕移近: 条纹变窄 ;(C)波长变长:条纹变宽 ;(D):看到的明条纹亮度暗一些,与杨氏双缝干涉相比较,明暗条纹相反;(E) 条纹上移 。

5. 变小6. 紫 ; 不能7. n=1.368. 22/n e λ=9. 2/22λ+d n 10. n=1.4 11. 900 nm 12. 变密13. _子波_, 子波相干叠加_14. __4_, P 点将是_1_级__暗__纹,半波带数_增加_,面积_减小,明纹亮度__减弱_ 15. L D a /2λ= 16. m 1μ17. 条纹收缩,条纹间距变窄 。

__ 水中___的波长。

18.位相差为π2,P 点应为___暗点___ 19. 爱里斑 ,最小分辨角D /22.1λδϕ=20.最小分辨角是D /22.1λδϕ=。

离开 8.93m 恰能分辨。

21. 平最大级次 4 ,对应衍射角 70o22. 30φ=︒。

23.缺2,4,k =±±级。

如果b=2a ,缺3,6,k =±±级24. m 6100.5-⨯25. 1 级和第 3 级谱线26.I 0为入射 线偏振光__的强度; _振动方向_和检偏器__偏振化_方向之间的夹角 27.2/0I , __0 _28. _部分偏振光__,夹角为2/π。

《新编基础物理学》第14章习题解答和分析

《新编基础物理学》第14章习题解答和分析

第14章 波动光学14-1.在双缝干涉实验中,两缝的间距为0.6mm,照亮狭缝S 的光源是汞弧灯加上绿色滤光片.在2.5m 远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为2.27mm .试计算入射光的波长,如果所用仪器只能测量5mm x ∆≥的距离,则对此双缝的间距d 有何要求?分析:由杨氏双缝干涉明纹位置公式求解。

解:在屏幕上取坐标轴Ox ,坐标原点位于关于双缝的对称中心。

屏幕上第k 级明纹中心的距坐标原点距离:λdD kx ±= 可知dD d D k d D k x x x k k λλλ=-+=-=∆+)1(1 代入已知数据,得545nm xd Dλ∆== 对于所用仪器只能测量5mm x ∆≥的距离时0.27mm D d x λ≤=∆14-2.在杨氏双缝实验中,设两缝之间的距离为0.2mm .在距双缝1m 远的屏上观察干涉条纹,若入射光是波长为400nm 至760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?(91nm=10m -)分析:由双缝干涉屏上明纹位置公式,求k 取整数时对应的可见光的波长。

解:已知:d =0.2mm ,D =1m ,x =20mm 依公式λk d D x =∴ 4000n m dxk Dλ== 故k =10 λ1=400nmk =9 λ2=444.4nm k =8 λ3=500nm k =7 λ4=571.4nm k =6 λ5=666.7nm这五种波长的光在所给的观察点最大限度地加强.14-3.如题图14-3所示,在杨氏双缝干涉实验中,若3/1212λ=-=-r r P S P S ,求P 点的强度I 与干涉加强时最大强度Imax 的比值.分析:已知光程差,求出相位差.利用频率相同、振动方向相同的两列波叠加的合振幅公式求出P 点合振幅。

杨氏双缝干涉最大合振幅为2A 。

解:设S 1、S 2分别在P 点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以2max 4A I ∝ , 因为λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后题图14-3()3π23π2π212=⋅=-=∆λλλϕr r P 点合振动振幅的平方为:22223π2cos2A A A A =++ 因为2I A ∝ 所以22m a x 1==44IA I A14-4. 在双缝干涉实验中,波长550nm λ=的单色平行光, 垂直入射到缝间距4210m d -=⨯的双缝上,屏到双缝的距离2m D =.求:(1) 中央明纹两侧的两条第10级明纹中心的间距; (2) 用一厚度为66.610m e -=⨯、折射率为 1.58n =的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?分析:(1)双缝干涉相邻两条纹的间距为 ∆x =D λ / d ,中央明纹两侧的两条第10级明纹中心的间距为20∆x .(2)不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,中央明纹对于O 点的光程差0δ=,其余条纹相对O 点对称分布.插入介质片后,两相干光在两介质薄片中的几何路程相等,但光程不等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章光学习题及解答和评分标准1
1.题号:50341001
分值:10分
在杨氏双缝干涉实验中,用波长λ=589.3 nm 的纳灯作光源,屏幕距双缝的距离d’=800 nm ,问:(1)当双缝间距1mm 时,两相邻明条纹中心间距是多少?(2)假设双缝间距10 mm ,两相邻明条纹中心间距又是多少? 解答及评分标准:
(1) d =1 mm 时mm d
d x 47.0'==
∆λ (5分) (2) d =10 mm 时mm d d x 047.0'==∆λ (5分) 2.题号:50341002
分值:10分
洛埃镜干涉如图所示光源波长m 7
102.7-⨯=λ,
试求镜的右边缘到第一条明纹的距离。

解答及评分标准: λd
d x '21⋅=
∆ (6分) m m x 57105.4102.722.0302021--⨯=⨯⨯⨯+⨯=∆∴(4分) 3.题号:450342003
分值:10分
在双缝干涉实验中,用波长λ=546.1nm 的单色光照射,屏幕距双缝的距离d’=300 mm ,测得中央明纹两恻的两个第五级明纹的间距为12.2mm, 求两缝间的距离。

解答及评分标准:
λd
d x '=
∆ (4分) mm N x 22.1102.122.12==∆=∆ (4分) mm x d d 134.010
22.1101.54610300'39
3=⨯⨯⨯⨯=∆=∴---λ (2分) 4. 题号:50342004
分值:10分
在双缝干涉实验中,两缝间的距离0.30mm ,用单色光垂直照射双缝, 屏与缝之间的距离为1.20m ,测得中央明纹两恻的两个第五级暗纹的间距为22.78mm, 求所用光的波长。

解答及评分标准:
λd
d x '=
∆ (4分) 531.29
78.2278.22==∆=∆N x (4分) nm d xd 8.6321020.130.0531.2'3=⨯⨯=∆=∴λ (2分) 5.题号:50342005
分值:10分
单色光照射到相距为0.2mm 的双缝上,双缝与屏幕的垂直距离为1m ,求:(1)从第一级明纹到同侧的第四级明纹间的距离为7.5mm ,求单色光的波长;(2)若入射光的波长为600nm ,求相邻两明纹间的距离。

解答及评分标准:
(1)λ)(141414k k d
d x x x -'=-=∆; (4分) nm k k d x d 5001
414=-'∆=∴λ (3分) (2)nm d
d x 0.3='=∆λ (3分) 6. 题号:50344011
分值:10分
用一束8.632=λnm 激光垂直照射一双缝, 在缝后2.0m 处的墙上观察到中央明纹和第一级明纹的间隔为14cm. 求(1)两缝的间距;(2)在中央明纹以上还能看到几条明纹?
解答及评分标准: (1)m x d d 69
100.914
.0108.6320.2--⨯=⨯⨯=∆'=λ (5分) (2)由于2π
θ<, 按2
πθ=计算, 则 3.14/'/sin =∆==x d d k λθ 应取14即看到14条明纹. (5分)
7. 题号:50441001
分值:10分
一透镜的折射率n c =1.60,为使垂直入射的波长λ=500nm 的光尽可能少反射,在透镜表面镀了一层折射率n f =1.38的透明薄膜,求镀膜的最小厚度t 。

解答及评分标准: 反射干涉相消得:22λ
δ=⋅=t n f (6分)
f n t 4λ
=∴
(2分)
m nm 81006.938.14
500-⨯=⨯=
(2分) 8. 题号:50441001
分值:10分
一透镜的折射率n c =1.60,为使垂直入射的波长λ=500nm 的光尽可能少反射,在透镜表面镀了一层折射率n f =1.38的透明薄膜,求镀膜的最小厚度t 。

解答及评分标准: 反射干涉相消得:22λ
δ=⋅=t n f (6分)
f n t 4λ
=∴
(2分) m nm 81006.938.14
500-⨯=⨯=
(2分) 9. 题号:50441002
分值:10分
用钠灯(nm 3.589=λ)观察牛顿环,看到第k 条暗环的半径为mm 4=r ,第5+k 条暗环半径mm 6=r ,求所用平凸透镜的曲率半径R 。

解答及评分标准:
由牛顿环暗环公式 r=λkR (3分)
据题意有 r=mm kR 4=λ; r=mm R k 65=+λ)( (3分)
所以:k=4,代入上式,可得:R=6.79m (4分)
10.题号:50442003
分值:10分
一块厚μm 2.1的折射率为50.1的透明膜片。

设以波长介于nm 700~400的可见光.垂直入射,求反射光中哪些波长的光最强?
解答及评分标准:
由反射干涉相长公式有
)3,2,1(22 ==+
k k ne λλ (3分)

nm k k k ne 1
272001212005.14124-=-⨯⨯=-=λ (3分) nm k nm k 554,7;655,
6====λλ (2分) nm k nm k 424,9;480,8====λλ (2分)
11.题号:50442004
分值:10分
白光垂直照射到空气中一厚度为nm h 380=的肥皂膜上,肥皂膜的折射率为n=1.33,在可见光范围内(400nm-760nm ),哪些波长的光在反射中增强?
解答及评分标准:
反射光干涉相长条件
λλk nh =+2
2 (4分)
32≤≤k (4分)
则k=2时,nm 9.673=λ
k=3时,nm 3.404=λ (2分)
12.题号:50442005
分值:10分
两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10-9 m)
解答及评分标准:
设空气膜最大厚度为e , )3,2,1(22 ==+k k e λλ
(4分)
5.1622=+

λe k (4分) ∴ 明纹数为16. (2分)
13.题号:50443006
分值:10分
当牛顿环干涉仪中透镜与玻璃之间充以某种介质时,第十条明纹的直径由0.0140m 变为0.0127。

求液体的折射率。

解答及评分标准:
λR k r d k k )2
1(22-== (4分)
充液体后 n
R k r d kn kn λ)21(22-== (4分) 22.127.140.1222=⎪⎭
⎫ ⎝⎛==n d d kn k (2分)。

相关文档
最新文档