滤波算法几种
几种滤波算法
一.十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
十大滤波算法
十大滤波算法滤波算法是数字图像处理中最基本的算法之一,它可以改善图像质量,抑制噪声,提取有用信息和抵消图像插值错误等。
滤波也是一个让人了解图像处理的过程的重要组成部分。
滤波的主要作用是改进图像质量,去除噪声,提取有用信息以及抵消图像插值错误。
这里有十种常用的滤波算法,可以帮助你更好地理解滤波算法,它们分别是:1.单均值(Simple Average):这种滤波器可以帮助抵消噪声,它将图像中每个像素周围的像素值求平均,将其设置为该像素的新值。
2. 中值(Median):它将像素点周围的像素值做排序,然后将其中值设置为该像素的新值,从而抑制噪声。
3.角(Dark Corner):它用于消除图像中的角点。
它将图像中每个像素周围的像素值做排序,然后取最小值来替代暗角处的像素值,从而去除暗角。
4.斯滤波(Gaussian Filtering):它是根据高斯函数提取图像的有用信息的一种简单的滤波器,它的基本原理是将图像中每个像素的像素值替换为该像素周围像素点的加权平均值,并压制高频噪声。
5.方图均衡(Histogram Equalization):它是一种将暗部或亮部像素值增强的方法,可以有效改善图像对比度和色彩质量。
6.邻均值(Neighborhood Average):它是一种用来抑制噪声,突出图像边缘和细节的滤波器,它将图像中每个像素值替换为其附近像素点的加权平均值。
7.量平滑(Energy Smoothing):它是一种抑制噪声的滤波算法,它将图像中每个像素值替换为它附近像素点的加权和,也就是说加权求和的目标函数的最小值。
8.数函数平均(Exponential Average):它也是一种抑制噪声的滤波算法,它将图像中每个像素值替换为它附近像素点的指数函数的加权平均值。
9.值抖动滤波(Mean Shaking Filter):它是一种高效的抑制噪声的滤波算法,它将图像中每个像素值替换为其附近像素点均值加上权重噪声值的加权平均值。
单片机中常用滤波算法
单片机中常用滤波算法在单片机中,滤波算法是非常常用的技术,用于去除信号中的噪声或干扰,提取出真正的有效信号。
滤波算法的选择取决于不同的应用场景和信号类型,下面将介绍几种常用的滤波算法。
1.均值滤波均值滤波是最简单且常用的滤波算法之一、它通过计算一定数量数据点的平均值来平滑信号。
具体实现上,可以使用一个滑动窗口,每次将最新的数据点加入窗口并去除最旧的数据点,然后计算窗口内数据点的平均值作为滤波后的输出值。
均值滤波对于去除高频噪声效果较好,但对于快速变化的信号可能会引入较大的延迟。
2.中值滤波中值滤波也是常用的滤波算法,它对信号的一组数据点进行排序,然后选择中间值作为滤波后的输出值。
与均值滤波不同,中值滤波可以有效去除椒盐噪声和脉冲噪声等突变噪声,但可能对于连续变化的信号引入较大的误差。
3.最大值/最小值滤波最大值/最小值滤波是一种简单有效的滤波算法,它通过选取一组数据点中的最大值或最小值作为滤波后的输出值。
最大值滤波可以用于检测异常峰值或波动,最小值滤波则可用于检测异常低谷或衰减。
4.加权移动平均滤波加权移动平均滤波是对均值滤波的改进,它引入权重因子对数据点进行加权平均,以更好地适应信号的动态变化。
常见的权重分配方式有线性加权和指数加权,可以根据实际需求进行调整。
5.卡尔曼滤波卡尔曼滤波是一种最优滤波算法,其主要应用于估计系统状态,包含两个步骤:预测和更新。
预测步骤用于根据上一时刻的状态和系统模型,预测当前时刻的状态;更新步骤通过测量值对预测值进行修正,得到最终的估计值。
卡尔曼滤波具有较好的估计精度和实时性,但对于复杂系统,可能涉及较高的计算量。
除了上述常见的滤波算法,还有一些针对特定应用的滤波算法值得一提,如带通滤波、带阻滤波、滑动平均滤波等。
在实际工程应用中,滤波算法的选择需要根据具体应用场景和信号特点进行权衡,寻找最适合的算法以获得满意的滤波效果。
十大滤波算法
十大滤波算法滤波是一种常用的数据处理技术,用于有效构建和改善信号的质量,优化信号的性能。
通过滤波,可以有效地抑制信号中的噪声,从而提高信号的清晰度,改善信号的性能。
现在,在许多应用及其他领域中,滤波算法已经成为一个重要的研究课题。
首先,我们应该了解滤波算法有哪些,其中主要有十类滤波算法:低通滤波、带通滤波、带阻滤波、高通滤波、椭圆滤波、阶跃滤波、时间延迟滤波、均值滤波、中值滤波、振荡器滤波。
下面,我们来详细介绍这十类滤波算法。
1. 低通滤波:它是将所有高频成分从信号中滤除,保留低频成分的一种滤波器。
它可以有效地抑制信号中的噪声,提高信号的清晰度,同时改善信号的性能。
2.通滤波:它是一种仅保留低频和高频成分的滤波器,可以有效地去除中间频率的干扰成分,提高系统的鲁棒性。
3.阻滤波:它是滤除一定范围内的频率成分,保留高频成分和低频成分的一种滤波器。
它可以有效地利用低频成分进行模型适应,以解决信号的噪声问题。
4.通滤波:它是一种仅保留高频成分的滤波器,可以有效地滤除信号中的低频成分,增强信号的清晰度。
5.圆滤波:它是在低通滤波器和带通滤波器之间的一种滤波器,可以有效地去除信号中的噪声,提高信号的清晰度。
6.跃滤波:它是一种仅保留高频成分和低频成分的滤波器,可以有效地滤除信号中的中频成分,以消除信号中的干扰。
7.间延迟滤波:它是一种仅保留低频成分的滤波器,可以有效地抑制信号中的高频成分,提高信号的清晰度。
8.值滤波:它是一种仅保留低频成分的滤波器,可以有效地抑制信号中的噪声,提高信号的清晰度。
9. 中值滤波:它是一种仅保留低频成分的滤波器,可以有效地抑制信号中的噪声,提高信号的清晰度。
10.荡器滤波:它是一种放大和抑制信号中特定频率成分的滤波器,可以有效地改善信号的性能。
以上便是十大滤波算法,它们可以有效地分离信号中的高频、低频成分,抑制信号中的噪声,提高信号的清晰度,改善信号的性能。
因此,滤波算法在现代信号处理领域的应用也越来越广泛,并且取得了很好的效果。
十大滤波算法
十大滤波算法滤波算法是信号处理中一种重要的算法,它可以有效地去除信号中的噪声,提高信号的质量。
在现在的技术发展中,滤波算法的应用越来越广泛,它可以用于多媒体信号处理、数据通信、图像处理等领域。
目前,最常用的滤波算法有十种。
首先,最基本的滤波算法就是低通滤波(Low Pass Filter,LPF),它的主要作用是抑制高频信号,使低频信号得以保留。
低通滤波是最常用的滤波算法之一,用于去除信号中的高频噪声。
其次,高通滤波(High Pass Filter,HPF)是低通滤波的反向过程,它的主要作用是抑制低频信号,使高频信号得以保留。
高通滤波也是常用的滤波算法之一,用于去除信号中的低频噪声。
再次,带通滤波(Band Pass Filter,BPF)是低通滤波和高通滤波的结合,它的主要作用是筛选出特定的频率段,使特定频率段的信号得以保留。
带通滤波可以用于信号提取,电路增强或其他应用。
第四,带阻滤波(Band Stop Filter,BSF)是带通滤波的反向过程,它的主要作用是抑制特定的频率段,使特定频率段的信号得以抑制。
它可以用于信号抑制,抑制特定频率段的噪声。
第五,振荡器滤波(Oscillator Filter,OF)是一种由振荡器组成的滤波算法,它的主要作用是产生稳定的低频信号,用于抑制高频噪声。
振荡器滤波器是在电路中比较常用的滤波算法,它用于去除信号中的高频噪声。
第六,改正型滤波(Adaptive Filter,AF)是一种根据输入信号的变化而调整滤波系数的滤波算法,它的主要作用是根据实时输入信号的变化而调整滤波系数,实现鲁棒性滤波。
改正型滤波是一种比较高级的滤波算法,它可以有效地抑制噪声,提高信号的质量。
第七,采样滤波(Sampling Filter,SF)是一种用于数字信号处理的滤波算法,它的主要作用是抑制采样频率之外的频率,使采样频率内的信号得以保留。
采样滤波是在数字信号处理中常用的滤波算法,它可以有效地抑制采样频率外的噪声,提高信号的质量。
数据处理中的几种常用数字滤波算法
数据处理中的几种常用数字滤波算法
在数据处理中,常用的数字滤波算法有以下几种:
1. 移动平均滤波(Moving Average Filter):将一组连续的数据取
平均值作为滤波结果。
该算法简单易实现,可以有效消除噪声,但会引入
一定的延迟。
2. 中值滤波(Median Filter):将一组连续的数据排序,并取中间
值作为滤波结果。
该算法适用于去除周期性干扰或脉冲噪声,但对于快速
变化的信号可能无法有效滤除。
3. 加权移动平均滤波(Weighted Moving Average Filter):给予
不同的数据点不同的权重,并将加权平均值作为滤波结果。
该算法可以根
据需要调整不同数据点的权重,适用于对不同频率成分有不同抑制要求的
情况。
4. 递推平滑滤波(Recursive Smoothing Filter):根据当前输入
数据与上一次滤波结果的关系,通过递推公式计算得到滤波结果。
递推平
滑滤波可以实现实时滤波,但对于快速变化的信号可能会引入较大的误差。
5. 卡尔曼滤波(Kalman Filter):适用于估计具有线性动力学特性
的系统状态,并结合观测值进行滤波。
卡尔曼滤波算法综合考虑了系统模
型和观测模型的不确定性,因此能够提供较好的估计结果。
这些数字滤波算法在实际应用中可以根据需求进行选择和组合,以实
现对信号的有效滤波和噪声抑制。
个嵌入式滤波算法
个嵌入式滤波算法嵌入式滤波算法是应用于嵌入式系统中的滤波算法,用于对信号进行处理和去噪。
下面介绍11个常用的嵌入式滤波算法。
1. FIR滤波器:FIR(Finite impulse response)滤波器是一种非递归线性有限冲激响应滤波器,通过对输入信号的线性组合来得到滤波结果。
2. IIR滤波器:IIR(Infinite impulse response)滤波器是一种递归滤波器,通过将输出信号与输入信号之间的关系表示为差分方程来实现滤波。
3.卡尔曼滤波器:卡尔曼滤波器是一种递归滤波器,通过使用观测和系统模型之间的信息来对状态进行估计,具有优秀的估计性能。
4.自适应滤波器:自适应滤波器是一种能够自动调整滤波参数的滤波器,通过不断更新滤波器的权值来适应输入信号的变化。
5.中值滤波器:中值滤波器是一种非线性滤波器,通过将窗口中的数据排序找到中间值来进行滤波,适用于去除信号中的椒盐噪声。
6.小波变换:小波变换是一种基于多尺度分析的滤波方法,通过将信号进行不同尺度的分解和重构来实现滤波。
7.无迹卡尔曼滤波器:无迹卡尔曼滤波器是卡尔曼滤波器的改进版,通过使用无迹变换来估计系统状态,提高了对非线性系统的适应能力。
8.均值滤波器:均值滤波器是一种简单的滤波方法,通过取窗口内数据的平均值来实现滤波,适用于平滑信号。
9.高斯滤波器:高斯滤波器是一种基于高斯函数的滤波方法,通过对窗口内的数据进行加权平均来实现滤波,适用于平滑信号。
10.自适应中值滤波器:自适应中值滤波器是一种改进的中值滤波器,通过动态调整窗口大小和计算信号局部方差来实现滤波,适用于去除椒盐噪声。
11.一阶滞后滤波器:一阶滞后滤波器是一种简单的滤波方法,通过对当前输入信号与上一时刻滤波结果进行加权平均来实现滤波,适用于平滑信号。
这些嵌入式滤波算法在嵌入式系统中广泛应用,对信号的处理和去噪起到了重要的作用。
根据实际应用需求,选择合适的滤波算法可以提高系统的性能和可靠性。
数据滤波算法
数据滤波算法一、引言数据滤波是信号处理中的一个重要步骤,通过滤波算法可以去除信号中的噪声和干扰,使得信号更加清晰、准确。
在工业控制、医学诊断、图像处理等领域都有广泛应用。
本文将介绍常见的数据滤波算法及其原理。
二、低通滤波算法1. 概述低通滤波器是一种能够通过去除高频成分来平滑信号的滤波器。
在信号处理中,低通滤波器被广泛应用于去除噪声和平滑信号。
2. 原理低通滤波器可以看做是一个带通滤波器加上一个带阻滤波器的组合。
它通过截止频率将高频成分去除,使得信号变得平缓。
3. 常见算法(1)移动平均法:将连续n个数据求平均值作为当前数据的值,其中n为窗口大小。
(2)指数平均法:根据当前数据和前一次计算结果进行加权平均计算,权重由α决定。
4. 应用场景低通滤波器适用于需要保留较慢变化的信号,例如温度、压力等传感器信号。
三、高通滤波算法1. 概述高通滤波器是一种能够通过去除低频成分来突出高频成分的滤波器。
在信号处理中,高通滤波器被广泛应用于去除直流分量和平滑信号。
2. 原理高通滤波器可以看做是一个带阻滤波器加上一个带通滤波器的组合。
它通过截止频率将低频成分去除,使得信号变得尖锐。
3. 常见算法(1)一阶差分法:将当前数据与前一次数据进行差分计算。
(2)二阶差分法:将当前数据与前两次数据进行差分计算。
4. 应用场景高通滤波器适用于需要突出较快变化的信号,例如震动、声音等传感器信号。
四、带通/带阻滤波算法1. 概述带通/带阻滤波器是一种能够选择性地通过或者拒绝某些频率范围内的信号的滤波器。
在信号处理中,带通/带阻滤波器被广泛应用于去除特定频率范围内的噪声和干扰。
2. 原理带通/带阻滤波器可以看做是一个低通滤波器和高通滤波器的组合。
它通过选择特定的截止频率来选择性地通过或者拒绝某些频率范围内的信号。
3. 常见算法(1)巴特沃斯滤波法:采用极点归一化方法来设计数字滤波器,可实现带通、带阻、低通、高通等多种滤波器类型。
(2)切比雪夫滤波法:采用等纹图方法来设计数字滤波器,可实现带通、带阻、低通、高通等多种滤波器类型。
图像处理中的滤波算法
图像处理中的滤波算法近年来,随着图像处理技术的日益成熟,滤波算法也逐渐变得越来越重要。
滤波算法是一种利用滤波器来处理数字图像的技术,其主要目的是去除图像中的噪声或增强图像的细节,进而提高图像质量。
本文将介绍图像处理中的滤波算法及其应用。
一、滤波算法的分类在图像处理领域中,滤波算法可以分为频域滤波和时域滤波两种。
频域滤波是利用图像在频域上的特性进行处理,常见的算法有傅里叶变换、小波变换等;时域滤波则是利用图像在时域上的特性进行处理,常见的算法有均值滤波、中值滤波等。
二、均值滤波均值滤波是一种简单而常用的滤波算法。
其基本思路是将待处理的图像分成若干个小区域(例如3x3、5x5等),计算每个小区域内像素的平均值,并用该平均值替代该小区域内的所有像素值,从而达到平滑图像的目的。
均值滤波存在的主要问题是会丢失图像中的细节信息,对于边缘部分也会产生模糊效果。
三、中值滤波中值滤波是一种去除噪声的有效算法。
其基本思路是将待处理的图像按照一定窗口大小进行分割,然后对每个小区域内的像素进行排序,选择其中位数作为该区域的像素值,达到去除噪声的目的。
与均值滤波不同,中值滤波能够有效地保留图像的细节信息,但是对于边缘部分仍然会产生模糊效果。
四、高斯滤波高斯滤波是一种利用高斯函数进行图像平滑的算法。
其基本思路是将待处理的图像与一个高斯核进行卷积,从而使图像中每个像素值变为其周围像素值的加权平均,进一步达到去除噪声的效果。
高斯滤波不只能去除噪声,还能有效地保留图像的细节信息,因此常常被应用到计算机视觉以及模式识别等领域。
五、总结以上介绍了图像处理中的几种常见滤波算法。
不同的滤波算法有不同的优劣性,因此在实际应用中需根据具体的场景选择最适合的算法。
值得注意的是,滤波算法虽然可以有效地去除噪声,但是却可能产生一些副作用,如引入毛刺、变形等问题。
因此在实际应用中需要根据具体情况进行调整,以达到最佳效果。
C语言十大滤波算法
C语言十大滤波算法C语言是一种广泛应用于嵌入式系统、图形界面、游戏开发等领域的编程语言。
在信号处理和图像处理等领域,滤波算法是一种重要的处理方式。
滤波算法可以对信号进行去噪、平滑、边缘检测等操作,从而提高信号的质量和准确度。
在C语言中,有许多优秀的滤波算法被广泛应用。
下面将介绍C语言中的十大滤波算法,并讨论它们的原理和应用领域。
1.均值滤波算法:均值滤波是一种简单有效的滤波算法,通过计算像素周围若干个邻域像素的平均值作为滤波结果。
均值滤波适用于去除高频噪声,但会造成图像细节的模糊。
2.中值滤波算法:中值滤波算法通过计算像素周围若干个邻域像素的中值作为滤波结果。
中值滤波可以有效去除椒盐噪声,但不能处理高斯噪声。
3.高斯滤波算法:高斯滤波算法利用高斯函数对图像进行滤波,以平滑图像并去除噪声。
高斯滤波在保持图像边缘信息的同时,能够有效降低噪声。
4.自适应中值滤波算法:自适应中值滤波算法根据像素邻域内像素的不同情况选择中值滤波器的大小,对不同噪声情况进行适应性处理。
5.双边滤波算法:双边滤波算法是一种非线性滤波算法,通过同时考虑空间信息和灰度差异信息,可在去噪的同时保持图像的边缘信息。
6.快速傅里叶变换(FFT)滤波算法:FFT滤波是一种频域滤波算法,通过将信号从时域转换到频域,对频谱进行滤波后再进行逆变换,能够有效去除周期性噪声。
7.小波变换滤波算法:小波变换是一种时频联合分析方法,将信号分解为不同频率的子带,通过阈值处理可以实现去噪。
8.自适应滤波算法:自适应滤波算法根据图像中的纹理复杂度自动选择合适的滤波器,能够在保持图像细节的同时去除噪声。
9.协同滤波算法:协同滤波算法是一种基于用户行为数据的推荐算法,通过分析用户的历史数据和相似用户群体的数据,对用户进行个性化推荐。
10.卡尔曼滤波算法:卡尔曼滤波算法是一种利用动态模型对状态进行推断的滤波算法,适用于系统状态估计、信号恢复等应用。
以上是C语言中的十大滤波算法,它们在不同领域的应用有所差异,但都能够有效地处理信号和数据,提高数据质量和准确度。
定位 滤波算法
定位滤波算法
在定位中常使用到的滤波算法有:均值滤波、递推平均滤波、中值滤波、狄克逊检验法滤波和高斯滤波。
其特点如下:
- 均值滤波:通过计算节点的多个RSSI值的算术平均值作为测试结果,该方法简单易实现,且样本容量越大,精度越高。
但当RSSI受干扰比较大时,其波动比较大,会导致精度降低。
- 递推平均滤波:将连续收到的N个RSSI值看作一个队列,队列长度固定为N,每收到一个新RSSI值后将其放于队尾,并扔掉原来队首的RSSI值,最后对队列中的N个RSSI值取算术平均值作为测试结果。
该方法对周期性干扰抑制能力强,但不适合脉冲性干扰和随机性干扰大的场合。
- 中值滤波:采集N(N为奇数)个RSSI值后,将这些RSSI值按大小顺序排列,取中间的RSSI值作为滤波输出。
该方法对偶然性干扰有良好的抑制效果,但在容量不多且脉冲干扰较强的情况下,滤波效果不理想。
- 狄克逊检验法滤波:通过极差比判定和剔除异常数据。
该方法认为异常数据应该是最大和最小数据,因此将数据按大小排列,检验最大和最小数据是否是异常数据。
该方法能够有效地去除样本中的异常值,但需要查表,通常与其他的滤波算法混合滤波,复杂度较高。
- 高斯滤波:在多个RSSI值中,由于各种干扰,必然存在由误差引起的小概率事件,通过高斯模型选取高概率发生区的RSSI值作为有效
值,再求其几何平均值,能够有效地减少小概率、大干扰对整体测量数据的影响,提高定位的准确性。
10种简单的数字滤波C语言源程序算法
10种简单的数字滤波C语言源程序算法(2009-11-09 10:25:08)假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
几种经典的滤波算法
几种经典的滤波算法软件滤波算法这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,可能会造成不小的麻烦啊,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
十一种通用软件滤波算法
十一种通用软件滤波算法滤波算法是一种常用的信号处理算法,用于去除信号中的噪声、干扰或者其他不需要的成分,以提高信号质量。
通用软件滤波算法主要用于数字信号处理,以下是十一种常见的通用软件滤波算法:1. 均值滤波算法(Mean Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的平均值。
它适用于消除高频噪声。
2. 中值滤波算法(Median Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的中值。
它适用于去除椒盐噪声。
3. 加权平均滤波算法(Weighted Mean Filtering):在均值滤波算法基础上,引入权值对周围样本进行加权平均,以便更好地保留原始信号的特征。
4. 自适应均值滤波算法(Adaptive Mean Filtering):根据信号的每个采样与周围样本的灰度差异,调整均值滤波算法的滤波参数,以提高滤波效果。
5. 高斯滤波算法(Gaussian Filtering):通过计算输入信号的每个采样与其周围邻域内各个样本之间的高斯核函数权重的加权平均来滤波信号。
6. 卡尔曼滤波算法(Kalman Filtering):根据系统状态特性和测量信息,结合时间和测量的线性状态方程,通过最小化预测误差方差来估计和滤波信号。
7. 二阶无限脉冲响应滤波器算法(IIR Filtering):基于差分方程和递归方式运算的滤波算法,具有较好的频率响应,但容易产生数值不稳定和计算复杂度高的问题。
8. 有限脉冲响应滤波器算法(FIR Filtering):基于加权线性组合的方式来滤波信号,具有稳定性好、易于实现的特点。
9. 最小均方滤波算法(Least Mean Square Filtering):通过最小化滤波器的均方误差来更新滤波器权值,以逼近滤波器的最优解。
10. 快速傅里叶变换滤波算法(FFT Filtering):利用快速傅里叶变换将信号从时域转换为频域,并利用频域上的特性进行滤波。
十大滤波算法范文
十大滤波算法范文滤波算法是信号处理中常用的一种技术,用于去除噪声、平滑数据、提取频率成分等。
以下是十大常用的滤波算法:1. 均值滤波算法(Mean Filter):计算邻域像素的平均值来代替当前像素值,适用于去除随机噪声。
2. 中值滤波算法(Median Filter):用邻域像素的中值来代替当前像素值,适用于去除脉冲噪声。
3. 高斯滤波算法(Gaussian Filter):按照高斯函数计算权重,对邻域像素进行加权平均,适用于光滑数据且保留边缘细节。
4. 锐化滤波算法(Sharpening Filter):增强图像的边缘和细节,通过将原始图像与低通滤波器生成的图像相减得到。
5. 无限脉冲响应滤波算法(Infinite Impulse Response Filter,IIR Filter):使用递归差分方程计算输出,具有较低的计算复杂度和较好的频率响应。
6. 有限脉冲响应滤波算法(Finite Impulse Response Filter,FIR Filter):使用有限长度的冲激响应作为滤波器的权重系数,适用于数字滤波器设计。
7. 快速傅里叶变换滤波算法(Fast Fourier Transform Filter,FFT Filter):将时域信号转换为频域信号进行滤波,适用于频域处理。
8. 卡尔曼滤波算法(Kalman Filter):通过将测量值与模型预测值进行加权平均,适用于估计系统状态和减少噪声。
9. 维纳滤波算法(Wiener Filter):通过最小均方误差准则对输入信号进行估计,适用于信号恢复和去噪。
10. 自适应滤波算法(Adaptive Filter):根据输入信号的特性调整滤波器的参数,适用于未知统计特性的信号处理。
以上是十大常用的滤波算法,它们都有各自的适用场景和优劣势。
在实际应用中,选择合适的滤波算法对于信号处理的效果至关重要。
常用滤波算法的原理及应用
常用滤波算法的原理及应用滤波算法的概述滤波算法是数字信号处理中常用的一种技术,它的主要目的是通过去除或者抑制信号中的噪声,使得信号更加平滑和清晰。
滤波算法可以应用于各个领域,例如音频处理、图像处理、通信系统等。
本文将介绍几种常用的滤波算法的原理及其应用。
1. 均值滤波算法1.1 原理均值滤波算法是一种简单的滤波算法,它的原理是将当前像素点的值替换为周围像素点的平均值。
具体步骤如下: 1. 确定滤波窗口的大小。
2. 将滤波窗口内的所有像素点的值求平均。
3. 用平均值替换当前像素点的值。
1.2 应用均值滤波算法常用于图像处理领域,在图像去噪、平滑处理中表现良好。
同时,均值滤波算法也可以用于数字信号处理领域,去除信号中的噪声,并保持信号的平滑性。
2. 中值滤波算法2.1 原理中值滤波算法是一种非线性滤波算法,它的原理是将当前像素点的值替换为滤波窗口内像素点的中值。
具体步骤如下: 1. 确定滤波窗口的大小。
2. 将滤波窗口内的所有像素点的值排序。
3. 取排序后的中间值作为当前像素点的值。
2.2 应用中值滤波算法适用于去除椒盐噪声或者其他噪声类型的图像处理。
它的优势在于在滤波过程中能够有效地保留图像的边缘和细节信息。
3. 高斯滤波算法3.1 原理高斯滤波算法是一种线性平滑滤波算法,它的原理是通过对滤波窗口内的像素点进行加权平均来获得当前像素点的值。
具体步骤如下: 1. 确定滤波窗口的大小。
2. 计算滤波窗口内每个像素点的权重。
3. 将滤波窗口内的所有像素点的值乘以对应的权重并求和。
4. 用求和值作为当前像素点的值。
3.2 应用高斯滤波算法在图像处理领域中经常用于去噪、平滑处理,特别是对于高斯分布的噪声效果更好。
此外,高斯滤波算法也可以应用于音频处理、通信系统等领域。
4. 快速傅里叶变换滤波算法4.1 原理快速傅里叶变换(FFT)是一种快速计算傅里叶变换的算法,它将时域信号转换为频域信号。
在滤波算法中,FFT可以用于频域滤波,即将信号转换到频域进行滤波处理。
(完整版)11种通用的滤波算法
一.十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
常用的八种数字滤波算法
常用的8种数字滤波算法摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。
ﻫ关1引言ﻫ在微键词:数字滤波;控制系统;随机干扰;数字滤波算法ﻫ机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。
为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。
噪声有2大类:一类为周期性的,其典型代表为50 Hz的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。
所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。
数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点:ﻫ(1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。
(2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。
(3)数字滤波器可以对频率很低(如0.01Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。
(4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。
2 常用数字滤波算法ﻫ数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。
设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为:ﻫ其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也可以是计算机的输出信号。
具有上述关系的数字滤波器的当前输出与现在的和过去的输入、过去的输出有关。
由这样的差分方程式组成的滤波器称为递归型数字滤波器。
如果将上述差分方程式中bK取0,则可得:ﻫﻫ说明输出只和现在的输入和过去的输入有关。
单片机程序中常用滤波算法的时间常数计算解析
单片机程序中常用滤波算法的时间常数计算解析在单片机程序中,滤波算法广泛应用于数据处理和信号处理任务。
滤波算法的目标是去除噪声,平滑信号或提取感兴趣的频率成分。
滤波算法的性能通常通过时间常数来评估,时间常数是指滤波器对输入信号的响应速度。
时间常数取决于滤波器类型和设计参数。
下面我们将详细解析几种常用的滤波算法及其时间常数计算方法。
1. 一阶滞后滤波器(First-order Lag Filter)一阶滞后滤波器是一种简单的低通滤波器,用于平滑信号并去除高频噪声。
它的传递函数形式为:H(z)=(1-α)/(1-z^(-1)*α)其中α是滞后系数,取值范围在0和1之间(通常取0.9以上)。
时间常数τ定义为输出信号达到输入信号的63.2%时的时间间隔。
可以使用以下公式计算时间常数:τ = -T / ln(1 - α)其中T是采样周期。
时间常数的取值越小,滤波器响应的速度越快,但会对信号的高频部分造成更大的抑制。
2. 一阶平均滤波器(First-order Moving Average Filter)一阶平均滤波器是一种简单的线性滤波器,用于平滑信号并去除噪声。
它的传递函数形式为:H(z)=α/(1-z^(-1))其中α是平均系数,取值范围在0和1之间。
时间常数τ定义为输出信号达到输入信号的63.2%时的时间间隔。
可以使用以下公式计算时间常数:τ=T/(1-α)时间常数的取值越小,滤波器响应的速度越快,但会对信号的高频部分造成更大的抑制。
3. 二阶滞后滤波器(Second-order Lag Filter)二阶滞后滤波器是一种更复杂的低通滤波器,用于平滑信号并去除高频噪声。
它的传递函数形式为:H(z)=(1-2*α*z^(-1)+α^2)/(1-z^(-1)*α)其中α是滞后系数,取值范围在0和1之间。
类似于一阶滞后滤波器,时间常数τ定义为输出信号达到输入信号的63.2%时的时间间隔。
可以使用以下公式计算时间常数:τ = -T / (ln(1 - α) + ln(α - 1))时间常数的取值越小,滤波器响应的速度越快,但会对信号的高频部分造成更大的抑制。
种常见的AD滤波算法
种常见的AD滤波算法AD滤波算法是一种数字信号处理技术,用于处理采样信号中的噪声和干扰。
以下介绍了11种常见的AD滤波算法。
1.均值滤波:将每个采样点的邻近采样点的平均值作为滤波结果。
适用于高斯白噪声。
2.中值滤波:取邻近采样点的中间值作为滤波结果。
可有效滤除脉冲噪声。
3.加权平均滤波:给不同位置的采样点赋予不同的权重,再对它们进行加权平均。
适用于有时域变化的信号。
4.限幅平均滤波:在加权平均滤波的基础上增加一个限幅器,将那些超出一定范围的采样点排除在外。
适用于包含异常值的信号。
5.自适应滤波:根据信号的特征和噪声的统计特性动态调整滤波算法。
适用于环境噪声变化较大的情况。
6.卡尔曼滤波:基于状态估计的滤波方法,通过观测数据和系统模型对信号进行估计,适用于具有时间连续性的信号。
7.滑动平均滤波:将前N个采样点的平均值作为当前采样点的滤波结果,适用于有周期性变化的信号。
8.指数平滑滤波:对当前采样点和前一次的滤波结果按比例加权求和得到新的滤波结果。
适用于有趋势性变化的信号。
9.自适应中值滤波:根据邻近采样点的特性和当前采样点的特性动态调整中值滤波算法的窗口大小。
适用于噪声幅度可变的信号。
10.自适应混合滤波:根据观测数据和噪声特性动态调整不同滤波算法的权重,混合多个滤波算法。
适用于多种噪声同时存在的信号。
11.小波变换滤波:通过小波变换将信号分解成不同频率的小波系数,去除低频小波系数后再进行逆变换得到滤波后的信号。
适用于同时存在高频和低频噪声的信号。
这些AD滤波算法都有各自适用的场景和优缺点,选择适合的滤波算法需要根据具体的信号特性和噪声情况进行判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-6-11
几种经典的滤波算法(转) 平淡
Page 4 of 7
{ char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value;
/blog/index.php?file=viewlog&uid=1451&id=997
2010-6-11
几种经典的滤波算法(转) 平淡
Page 3 of 7
9、消抖滤波法 A、方法: 设置一个滤波计数器 将每次采样值与当前有效值比较: 如果采样值=当前有效值,则计数器清零 如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出) 如果计数器溢出,则将本次值替换当前有效值,并清计数器 B、优点: 对于变化缓慢的被测参数有较好的滤波效果, 可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动 C、缺点: 对于快速变化的参数不宜 如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值
char count=0; char new_value; new_value = get_ad(); while (value !=new_value); {
count++; if (count>=N) return new_value;
delay(); new_value = get_ad(); } return value; }
4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统
/blog/index.php?file=viewlog&uid=1451&id=997
2010-6-11
几种经典的滤波算法(转) 平淡
char value_buf[N]; char i=0;
char filter()
{
char count;
int sum=0;
(n-2) + ... + bk*X(n-k)
B. 优点:高通,低通,带通,带阻任意。设计简单(用matlab) C. 缺点:运算量大。
//---------------------------------------------------------------------
软件滤波的C程序样例
10种软件滤波方法的示例程序
/blog/index.php?file=viewlog&uid=1451&id=997
2010-6-11
几种经典的滤波算法(转) 平淡
Page 2 of 7
C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM
}
3、算术平均滤波法 /* */
#define N 12
char filter() {
int sum = 0; for ( count=0;count {
sum + = get_ad(); delay(); } return (char)(sum/N); }
4、递推平均滤波法(又称滑动平均滤波法) /* */ #define N 12
6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM
7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点: 相位滞后,灵敏度低 滞后程度取决于a值大小 不能消除滤波频率高于采样频率的1/2的干扰信号
{
temp = value_buf;
value_buf = value_buf[i+1];
value_buf[i+1] = temp;
}
}
}
for(count=1;count
sum += value[count];
return (char)(sum/(N-2));
}
6、限幅平均滤波法 /* */ 略 参考子程序1、3
}
for (j=0;j {
for (i=0;i
{
if ( value_buf>value_buf[i+1] )
{
temp = value_buf;
value_buf = value_buf[i+1];
value_buf[i+1] = temp;
}
}
}
return value_buf[(N-1)/2];
}
2、中位值滤波法 /* N值可根据实际情况调整
排序采用冒泡法*/ #define N 11
char filter()
{
char value_buf[N];
char count,i,j,temp;
for ( count=0;count {
value_buf[count] = get_ad();
delay();
8、加权递推平均滤波法 A、方法: 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权 通常是,越接近现时刻的数据,权取得越大。 给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低 B、优点: 适用于有较大纯滞后时间常数的对象 和采样周期较短的系统 C、缺点: 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号 不能迅速反应系统当前所受干扰的严重程度,滤波效果差
char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12}; char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
char count;
char value_buf[N];
int sum=0;
for (count=0,count {
几种经典的滤波算法(转) 平淡
登陆 | 注册 /blog/?uid=1451
平淡
Page 1 of 7
请输入关键字
搜索
返回首页 不是我
我的日志
访客留言
我的图片 浏览日志 几种经典的滤波算法(转)
登录 注册
博客访问量:371895 次 称呼:nfg OICQ:414664275 MSN:asdnfgjj@ 邮箱:nfgao@ 性别:男 状态:坐观垂钓者,徒有羡鱼情!
日志分类
¡ 影视明星 ¡ 经济金融 ¡ 其它东东 ¡ 分形知识 ¡ 概念相关 ¡ 评论文摘 ¡ 奖项颁发 ¡ 软件应用 ¡ 随笔随心 ¡ 数学史话 ¡ 数学工具 ¡ 序列方法
1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差
几种经典的滤波算法(转) 平淡
Page 6 of 7
{ char new_value; new_value = get_ad(); return (100-a)*value + a*new_value;
}
8、加权递推平均滤波法 /* coe数组为加权系数表,存在程序存储区。*/
#define N 12
value_buf[i++] = get_ad();
if ( i == N ) i = 0;
for ( count=0;count
sum = value_buf[count];
return (char)(sum/N);
}
5、中位值平均滤波法(又称防脉冲干扰平均滤波法) /* */ #define N 12
假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();
1、限副滤波 /* A值可根据实际情况调整
value为有效值,new_value为当前采样值 滤波程序返回有效的实际值 */ #define A 10
char value;
char filter()
/blog/index.php?file=viewlog&uid=1451&id=997
导入系统
10、限幅消抖滤波法 A、方法: 相当于“限幅滤波法”+“消抖滤波法” 先限幅,后消抖 B、优点: 继承了“限幅”和“消抖”的优点 改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统 C、缺点: 对于快速变化的参数不宜
第11种方法:IIR 数字滤波器
A. 方法: 确定信号带宽, 滤之。 Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X