八年级 数学 第一章 勾股定理单元测试题

合集下载

北师大八年级数学上《第1章勾股定理》单元检测试题(含答案)

北师大八年级数学上《第1章勾股定理》单元检测试题(含答案)

八年级数学上册第1章勾股定理单元检测试题班级:__________姓名:__________一、单选题(共10题;共30分)1.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 6,8,11C. 1,1,D. 5,12,22.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A. 25B. 14,C. 7D. 7或253.已知a、b、c是三角形的三边长,如果满足(a-6)2+=0,则三角形的形状是( )A. 底与腰不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形4.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5m,消防车的云梯最大升长为13m,则云梯可以达到该建筑物的最大高度是()A. 12mB. 13mC. 14mD. 15m5.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为()A. 60B. 30C. 24D. 126.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为()A. 1B. 2C. 3D. 47.一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是()A. 4B.C.D.8.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A. 12B. 14C. 16D. 189.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.10.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:2:3C. a2=c2﹣b2D. a:b:c=3:4:6二、填空题(共8题;共24分)11.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.12.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.13.一直角三角形的一条斜边和一直角边的长度分别是4和3,则它的另一直角边长是________.14.已知直角三角形的两边的长分别是3和4,则第三边长为________.15.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是________ .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________17.要在一个长方体中放入一细直木条,现知长方体的长为2,宽为,高为,则放入木盒的细木条最大长度为________ .18.如图,一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有________米.三、解答题(共66分)19.已知:如图,在△ABC 中,∠C=90°,D 是BC 的中点,AB=10,A C=6.求AD 的长度.20.求如图的Rt△ABC的面积.21.如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?23.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D 两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.24.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B 测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?25.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。

八年级数学勾股定理测试题

八年级数学勾股定理测试题

图6八年级数学勾股定理测试题(1)一、填空题(每小题5分,共25分):1.已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为_________________. 2..三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是_______. 3.△ABC 中,AB=10,BC=16,BC 边上的中线AD=6,则AC=___________.4.将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中(如图1),设筷子露在杯子外面的长度是为hcm ,则h 的取值范围是_____________.5.如图2所示,一个梯子AB 长2。

5米,顶端A 靠墙AC 上,这时梯子下端B 与墙角C 距离为1。

5米,梯子滑动后停在DE 上的位置上,如图3,测得DB 的长0.5米,则梯子顶端A 下落了________米.二、选择题(每小题5分,共25分):6.在下列长度的四组线段中,不能组成直角三角形的是( ). A .a=9 b=41 c=40 B .a=b=5 C=52C .a:b :c=3:4: 5D .a=11 b=12 c=157.若△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( ). A .14 B .4 C .14或4 D .以上都不对 8. 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图4所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2)(b a +的值为( ).A .13B .19C .25D .1699. 如图5,四边形ABCD 中,AB=3cm ,BC=4cm ,CD=12cm ,DA=13cm,且∠ABC=900,则四边形ABCD 的面积是( ).A .84B .30C .251D .无法确定 10.如图6,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,B C /交AD 于E ,AD=8,AB=4,则DE 的长为( ).A .3B .4C .5D .6 三、解答题(此大题满分50分):11.(7分)在ABC Rt ∆中,∠C=900.(1)已知15,25==b c ,求a ;(2)已知060,12=∠=A a ,求b 、c .12.(7分)阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足442222b a c b c a -=-,试判定△ABC 的形状.解:∵ 442222b a c b c a -=-, ①∴ ))(()(2222222b a b a b a c -+=-, ② ∴ 222b a c +=, ③∴ △ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号______;(2)错误的原因是___________________________;(3)本题正确的结论是_______________________________.13.(7分)细心观察图7,认真分析各式,然后解答问题: 21)1(2=+ 211=S 31)2(2=+ 222=S41)3(2=+ 233=S┉┉ ┉┉(1) 用含有n(n 是正整数)的等式表示上述变化规律;(2)推算出OA 10的长;(3)求出210232221S S S S ++++ 的值.图1图2图3图4图5图714.(7分)已知直角三角形的周长是62 ,斜边长2,求它的面积.15.(7分)小东拿着一根长竹杆进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果杆比城门高1米,当他把杆斜着时,两端刚好顶着城门的对角,问杆长多少米?16.(7分)小明向西南方向走40米后,又走了50米,再走30米回到原地.小明又走了50米后向哪个方向走的?再画出图形表示17.(8分)如图8,公路MN和公路PQ在点P处交汇,且∠QPN=300,点A处有一所中学,AP=160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否回受到噪声的影响?说明理由.如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?八年级数学(勾股定理)自测题(2)一、选择题(共4小题,每小题4分,共16分.在四个选项中,只有一项是符合题目要求的,请把符合要求一项的字母代号填在题后括号内。

八年级数学(上)第一章勾股定理单元练习题

八年级数学(上)第一章勾股定理单元练习题

八年级(上)数学第一章勾股定理单元练习题(1)一、填空题:1.在△ABC 中,∠C =90°,若 a =5,b =12,则 c =.2.如图,64、400分别为所在正方形的面积,则图中字母A 所代表的正方形面积是。

3.如图,直角三角形中未知边的长度x =。

4.在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则S Rt△AB c =.5.如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高度是。

6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

7.等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为,面积为.8.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.9.已知一个三角形的三边长分别是12cm ,16cm ,20cm ,则这个三角形的面积为 。

10.如图,小红欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达B 点200m ,结果他在水中实际游了520m ,则该河流的宽度AB 为。

二、选择题:11.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ) A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等腰三角形12.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .321,421,521 B .7,24,25 C .3,4,5 D .4,721,82113.一部电视机屏幕的长为58厘米,宽为46厘米,则这部电视机大小规格(实际测量误差忽略ABCD7cm AB C200m520m第10题512x不计)( )A.34英寸(87cm )B. 29英寸(74cm )C. 25英寸(64cm )D.21英寸(54cm ) 14.一块木板如图所示,已知AB =4,BC =3,DC =12, AD =13,∠B =90°,木板的面积为( ) A .60 B .30 C .24 D .1215.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为()A .8cmB .10cmC .12cmD .14cm16.适合下列条件的△ABC 中, 直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580;④;25,24,7===c b a ⑤.4,2,2===c b a A. 2个; B. 3个; C. 4个; D. 5个. 三、解答题17.如图,从电线杆离地面6 m 处向地面拉一条长10 m 的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?18.如图,一根旗杆在折断之前有24m ,旗杆顶部落在离旗杆底部12 m 处,你能求出旗杆在离底部什么位置断裂的吗?19.如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识 (1)求△ABC 的面积A DBC第14题A BC(1)判断△ABC 是什么形状? 并说明理由.20.在图3中,BC 长为3,AB 长为4,AF 长为12,求正方形的面积。

原创2023学年八年级数学勾股定理单元测试题

原创2023学年八年级数学勾股定理单元测试题

北师大版八年级数学上册第一章勾股定理单元测试题(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分)1.下列各组数是勾股数的是( )A .8,15,17B .1.5,2,2.5C .5,8,10 D.13,14,152.在△ABC 中,∠C =90°,AB =2,则AC 2+BC 2+AB 2的值是( )A .2B .4C .6D .83.若直角三角形的三边长分别为2,4,x ,则x 的可能值有( )A .1个B .2个C .3个D .4个4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10 cm ,正方形A 的边长为6 cm ,B 的边长为5 cm ,C 的边长为5 cm ,则正方形D 的面积为( )A .16 cm 2B .15 cm 2C .14 cm 2D .9 cm 2第4题图第6题图第7题图第9题图5.三角形三边长分别为6,8,10,那么它最短边上的高为( ) A.6 B.4.5 C.2.4D.86.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE =8,则阴影部分的面积是( )A.48 B.60 C.76D.807.如图,在Rt△ABC中,∠C=90°,AC=3.将其绕B点顺时针旋转一周,则分别以BA、BC为半径的圆形形成一圆环.该圆环的面积为( )A.πB.3πC.9πD.6π8.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是( )A.∠A+∠B=∠C B.∠A∶∠B∶∠C=1∶2∶3C.a2=c2-b2D.a∶b∶c=3∶4∶69.如图,是一扇高为2 m,宽为1.5 m的门框,李师傅有3块薄木板,尺寸如下:①号木板长3 m,宽2.7 m;②号木板长2.8 m,宽2.8 m;③号木板长4 m,宽2.4 m.可以从这扇门通过的木板是( )A.①号B.②号C.③号D.均不能通过10.如图,已知圆柱底面的周长为 6 dm,圆柱高为4 dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为( )A.10 dm B.15 dm C.20 dm D.25 dm二、填空题(每小题3分,共24分)11.如图阴影部分是一个正方形,如果正方形的面积为64 cm2,则x的长为cm.第11题图 第12题图 第14题图第15题图12.如图所示,小明将一张长为20 cm ,宽为15 cm 的长方形纸减去了一角,量得AB =3 cm ,CD =4 cm ,则剪去的直角三角形的斜边BC 的长为 .13.小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米回到检录处,则他开始是按 方向走的.(假设小明走的每段路线都是直的)14.假设电视机屏幕为矩形.“某个电视机屏幕大小是64 cm ”的含义是矩形对角线长为64 cm.如图,若该电视机屏幕ABCD 中,CD BC=0.6,则电视机屏幕的高CD 为 cm.(精确到1 cm)15.如图所示,一架长5米的梯子AB ,斜立在一竖直的墙上,这时梯子底端距墙底3米.如果梯子的顶端沿墙下滑1米,则梯子的底端在水平方向沿一条直线滑动 米.16.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为 .第16题图第17题图第18题图17.如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若AC=12,BC=10,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到图②所示的“数学风车”,若给这个“数学风车”的外围装饰彩带,则需要彩带的长度至少是____.18.如图所示,是一个三级台阶,它的每一级的长、宽、高分别为20 dm、3 dm、2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是.三、解答题(共66分)19.(10分)学完了勾股定理后,张老师给同学们布置了这样一道题:有两个形状、大小完全相同的香烟盒按照图①放置,从正前方看图①得到的图形如图②所示,你能运用这个图形证明勾股定理吗?赶紧试一试吧,相信你一定能行!(提示:连接AC、CF、AF)20.(10分)如图所示的一块草坪,已知AD=12 m,CD=9 m,∠ADC=90°,AB=39 m,BC=36 m,求这块草坪的面积.21.(10分)一圆柱形油罐,如图所示,要以A点环绕油罐建梯子,正好到A点的正上方B点,已知油罐的底面周长为12 m,高AB 为 5 m,问所建的梯子最短需多少米?22.(12分)如图,一根长度为50 cm的木棒的两端系着一根长度为70 cm的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?23.(12分)如图①,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.①②(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)如图②,在平面直角坐标系中,已知点M(0,2),N(12,3),根据(2)中的规律和结论构图在x轴上找一点P,使PM+PN最小,并求出PM+PN的最小值.24.(12分)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为________三角形;当△ABC三边长分别为6,8,11时,△ABC为________三角形;(2)猜想:当a2+b2________c2时,△ABC为锐角三角形;当a2+b2________c2时,△ABC为钝角三角形;(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.参考答案一、选择题(每小题3分,共30分)1.下列各组数是勾股数的是( A )A .8,15,17B .1.5,2,2.5C .5,8,10 D.13,14,152.在△ABC 中,∠C =90°,AB =2,则AC 2+BC 2+AB 2的值是( D )A .2B .4C .6D .83.若直角三角形的三边长分别为2,4,x ,则x 的可能值有( B )A .1个B .2个C .3个D .4个4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10 cm ,正方形A 的边长为6 cm ,B的边长为5 cm,C的边长为5 cm,则正方形D的面积为( C) A.16 cm2B.15 cm2C.14 cm2D.9 cm2第4题图第6题图第7题图第9题图5.三角形三边长分别为6,8,10,那么它最短边上的高为( D) A.6 B.4.5 C.2.4D.86.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE =8,则阴影部分的面积是( C )A.48 B.60 C.76D.807.如图,在Rt△ABC中,∠C=90°,AC=3.将其绕B点顺时针旋转一周,则分别以BA、BC为半径的圆形形成一圆环.该圆环的面积为( C )A.πB.3πC.9πD.6π8.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是( D)A.∠A+∠B=∠C B.∠A∶∠B∶∠C=1∶2∶3C.a2=c2-b2D.a∶b∶c=3∶4∶69.如图,是一扇高为2 m,宽为1.5 m的门框,李师傅有3块薄木板,尺寸如下:①号木板长3 m,宽2.7 m;②号木板长2.8 m,宽2.8 m;③号木板长4 m,宽2.4 m.可以从这扇门通过的木板是( C)A.①号B.②号C.③号D.均不能通过10.如图,已知圆柱底面的周长为 6 dm,圆柱高为4 dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为( A)A.10 dmB.15 dmC.20 dmD.25 dm二、填空题(每小题3分,共24分)11.如图阴影部分是一个正方形,如果正方形的面积为64 cm2,则x的长为 17 cm.第11题图第12题图第14题图第15题图12.如图所示,小明将一张长为20 cm,宽为15 cm的长方形纸减去了一角,量得AB=3 cm,CD=4 cm,则剪去的直角三角形的斜边BC的长为 20cm .13.小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米回到检录处,则他开始是按向南或向北方向走的.(假设小明走的每段路线都是直的)14.假设电视机屏幕为矩形.“某个电视机屏幕大小是64 cm”的含义是矩形对角线长为64 cm.如图,若该电视机屏幕ABCD中,CDBC=0.6,则电视机屏幕的高CD为 33 cm.(精确到1 cm) 15.如图所示,一架长5米的梯子AB,斜立在一竖直的墙上,这时梯子底端距墙底3米.如果梯子的顶端沿墙下滑1米,则梯子的底端在水平方向沿一条直线滑动 1 米.16.如图所示,有一块直角三角形纸片,∠C=90°,AC=4 cm,BC=3 cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E 处,折痕为AD,则CE的长为 1 cm .第16题图第17题图第18题图17.如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若AC=12,BC=10,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到图②所示的“数学风车”,若给这个“数学风车”的外围装饰彩带,则需要彩带的长度至少是__152__.18.如图所示,是一个三级台阶,它的每一级的长、宽、高分别为20 dm 、3 dm 、2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是 25dm .三、解答题(共66分)19.(10分)学完了勾股定理后,张老师给同学们布置了这样一道题:有两个形状、大小完全相同的香烟盒按照图①放置,从正前方看图①得到的图形如图②所示,你能运用这个图形证明勾股定理吗?赶紧试一试吧,相信你一定能行!(提示:连接AC 、CF 、AF )证明:连接AC 、CF 、AF .设AB =c ,BC =a ,AC =b .如图所示,我们根据梯形的面积公式可知,梯形ABEF 的面积=12(a +c )(a +c ). 从上图我们还发现梯形ABEF 的面积等于三个三角形的面积,即12(a +c )(a +c )=12ac +12ac +12b 2.化简可得a 2+c 2=b 2.20.(10分)如图所示的一块草坪,已知AD=12 m,CD=9 m,∠ADC=90°,AB=39 m,BC=36 m,求这块草坪的面积.解:连接AC,在Rt△ABC中,∠ADC=90°,AD=12 m,CD=9 m,由勾股定理得AC=15 m,又因为AB=39 m,BC=36 m,所以△ABC为直角三角形,则∠ACB=90°,所以草坪面积S=12× 15× 36-12× 9× 12=216(m2).21.(10分)一圆柱形油罐,如图所示,要以A点环绕油罐建梯子,正好到A点的正上方B点,已知油罐的底面周长为12 m,高AB 为 5 m,问所建的梯子最短需多少米?解:假设将圆柱体的侧面沿AB剪开,铺平得到如图所示的长方形AA′B′B,则AB =A ′B ′=5 m ,AA ′=BB ′=12 m ,∠BAA ′=∠A ′=∠AB ′ B =∠B =90°,因此沿AB ′建梯子最短.在△AA ′B ′中,由勾股定理,得AB ′ 2=AA ′ 2+A ′ B ′ 2=122+52=169,解得AB ′=13 m.所以梯子最短需13 m.22.(12分)如图,一根长度为50 cm 的木棒的两端系着一根长度为70 cm 的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?题图 答图解:如图①,当∠B =90°时,设BC =x cm ,则AC =(70-x ) cm.在Rt △ABC 中,AC 2=AB 2+BC 2,即(70-x )2=502+x 2,解之x =1207,则AC =(70-x )=3707,这时该点将绳子分成1207cm,3707cm两段.当∠A=90°时,该点将绳子分成1207cm,3207cm两段,如图②,当∠C=90°时,根据勾3股4弦5可知这两段为30 cm,40 cm.故这个点将绳子分成的两段各有30 cm,40 cm或3707cm,1207cm.23.(12分)如图①,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.①②(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)如图②,在平面直角坐标系中,已知点M(0,2),N(12,3),根据(2)中的规律和结论构图在x轴上找一点P,使PM+PN最小,并求出PM+PN的最小值.解:(1)∵BD= 8,CD=x,∴BC= (8-x),在Rt△ABC中,由勾股定理,得AC=(8-x)2+25,在Rt△CDE中,由勾股定理,得CE=x2+1,∴AC+CE=(8-x)2+25+x2+1.(2)根据两点之间线段最短可知,当A、C、E三点共线时,AC+CE的值最小.(3)如图,作点M关于x轴的对称点M′,连接M′N与x轴相交于点P,则点P为所找的点.构造直角三角形M′NN′,则PM+PN=M′N=(2+3)2+122=13.24.(12分)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为________三角形;当△ABC三边长分别为6,8,11时,△ABC为________三角形;(2)猜想:当a2+b2________c2时,△ABC为锐角三角形;当a2+b2________c2时,△ABC为钝角三角形;(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.解:(1)锐角钝角(2)> <(3)∵c为最长边,2+4= 6,∴4≤c< 6,a2+b2= 22+42= 20.①a2+b2>c2,即c2< 20,0<c< 25,∴当4≤c< 25时,这个三角形是锐角三角形;②a2+b2=c2,即c2= 20,c= 25,∴当c= 25时,这个三角形是直角三角形;③a2+b2<c2,即c2> 20,c> 25,∴当25<c< 6时,这个三角形是钝角三角形.。

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转度(< ≤)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A. B.0.5 C.1 D.2、勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A.40B.44C.84D.883、“用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形”这一事件是( )A.必然事件B.不可能事件C.随机事件D.以上都不是4、菱形的两条对角线的分别为60cm和80cm,那么边长是()A.100cmB.80cmC.60cmD.50cm5、三角形三边长分别是3,4,5,则它的最短边上的高为()A.3B.2.4C.4D.4.86、一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是()A.3尺B.4尺C.5尺D.6尺7、如图,正方形ABCD的对角线交于点O ,以AD为边向外作Rt△ADE ,∠AED=90°,连接OE , DE=6,OE=,则另一直角边AE的长为().A. B.2 C.8 D.108、如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米9、如图,由四个全等的直角三角形和一个小正方形拼成一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13.则小正方形的面积为()A.3B.4C.5D.610、如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的半径为()A.8B.10C.16D.2011、下列命题不成立的是A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数比为1::2的三角形是直角三角形C.三边长度比为1::的三角形是直角三角形D.三边长度之比为::2的三角形是直角三角形12、三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c =13∶5∶12B.a 2-b 2=c 2C.a 2=(b+c)(b-c) D.a:b:c=8∶16∶1713、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.14、如图,∠ACB=90°,CD是斜边上的高,AC=3,BC=4,则CD的长为()A.1.6B.2.4C.2D.2.115、下列长度的三条线段能组成直角三角形的是( )A.2,3,4B.4,6,8C.6,8,10D.5,11,12二、填空题(共10题,共计30分)16、将等腰直角△ABC按如图方法放置在数轴上,点A和C分别对应的数是﹣2和1.以点A为圆心,AB长为半径画弧,交数轴的正半轴于点D,则点D对应的实数为________.17、一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明________危险.(填有或无)18、如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC=6,BD=5,则点D的坐标是________.19、我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知,则的长度是________.20、菱形的面积为24,其中的一条对角线长为6,则此菱形的周长为________.21、已知菱形的周长为,两条对角线的和为6,则菱形的面积为________22、如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m223、已知a、b、c是△ABC三边的长,且满足关系式,则△ABC的形状为________24、如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需________元.25、如图,已知以点A(0,1)、C(1,0)为顶点的△ABC中,∠BAC=60°,∠ACB=90°,在坐标系内有一动点P(不与A重合),以P、B、C为顶点的三角形和△ABC全等,则P点坐标为________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、有一块直角三角形的绿地,量得两直角边长分别为6m和8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.28、小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度。

2022-2023学年北师大版八年级数学上册第1章勾股定理单元测试题含答案

2022-2023学年北师大版八年级数学上册第1章勾股定理单元测试题含答案

第1章勾股定理一.选择题(共8小题,满分32分)1.在△ABC中,∠A=25°,∠B=65°,则下列式子成立的是()A.AC2+AB2=BC2B.AB2+BC2=AC2C.AC2﹣BC2=AB2D.AC2+BC2=AB22.在△ABC中,AB=30,AC=25,高AD=24,则BC的长是()A.25B.18C.25或11D.25或183.如图,字母A所代表的正方形的面积是()A.12B.13C.25D.1944.在下列长度的各组线段中,能构成直角三角形的是()A.3,4,5B.7,8,10C.5,12,14D.1,1,25.如图,在△ABC中,∠C=90°,AB=10,BC=8,点P是边BC上的动点,则AP的长不可能为()A.5B.6C.7D.96.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为()A.4米B.8米C.9米D.7米7.勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是()A.①②B.①②③C.①②④D.①②③④8.如图,一个梯子斜靠在一竖直的墙AO上,测得AO=4m,若梯子的顶端沿墙下滑1m,这时梯子的底端也下滑1m,则梯子AB的长度为()A.5m B.6m C.3m D.7m二.填空题(共9小题,满分36分)9.△ABC中,AC=8,BC=6,在△ABE中,DE为AB边上的高,DE=12,S△ABE=60,则AB=,∠C=°.10.一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为cm.11.某住宅小区有一块草坪如图所示,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是米2.12.已知直角三角形斜边长为10cm,周长为22cm,则此直角三角形的面积为.13.如图,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2﹣MB2=.14.如图是一个三级台阶,它的每一级的长、宽、高分别为20分米,3分米和2分米,A和B是这个台阶的两个端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度为.15.如图,要在河边l上修建一个水泵站,分别向A村和B村送水,已知A村、B村到河边的距离分别为2km和7km,且AB两村庄相距13km,则铺设水管的最短长度是km.16.如图,将一根长为20cm的吸管,置于底面直径为5cm,高为12cm的圆柱形水杯中,设吸管露在杯子外面的长度是为hcm,则h的取值范围是.17.已知在△ABC中,AB=13cm,AC=15cm,高AD=12cm.则△ABC的周长为.三.解答题(共7小题,满分58分)18.如图,有两根长杆隔河相对,一杆高3m,另一杆高2m,两杆相距5m.两根长杆都与地面垂直,现两杆顶部各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮出一条小鱼,于是同时以同样的速度飞下来夺鱼,结果两只鱼鹰同时叼住小鱼.求两杆底部距小鱼的距离各是多少米.(假设小鱼在此过程中保持不动)19.如图是“赵爽弦图”,其中△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,根据这个图形的面积关系,可以证明勾股定理.设AD=c,AE=a,DE=b,取c =10,a﹣b=2.(1)正方形EFGH的面积为,四个直角三角形的面积和为;(2)求(a+b)2的值.20.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13.(1)求AB的长;(2)求∠BAD的度数.21.一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,求水的深度(AB)为多少米?22.如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,CD⊥AB于D,求:(1)斜边AB的长;(2)△ABC的面积;(3)高CD的长.23.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.24.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.参考答案一.选择题(共8小题,满分32分)1.解:在△ABC中,∠A=25°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=90°,∴△ABC是直角三角形,∴AC2+BC2=AB2,故选项D正确,选项A、B、C错误,故选:D.2.解:如图1,在Rt△ABD中,BD===18,在Rt△ADC中,CD===7,∴BC=BD+CD=18+7=25,如图2,BC=BD﹣CD=18﹣7=11,综上所述,BC的长为25或11,故选:C.3.解:由勾股定理得:字母A所代表的正方形的面积=169﹣144=25.故选:C.4.解:A、∵32+42=25,52=25,∴32+42=52,∴3,4,5能构成直角三角形,故A符合题意;B、∵72+82=113,102=100,∴72+82≠102,∴7,8,10不能构成直角三角形,故B不符合题意;C、∵52+122=169,142=196,∴52+122≠142,∴5,12,14不能构成直角三角形,故C不符合题意;D、∵1+1=2,∴1,1,2不能构成三角形,故D不符合题意;故选:A.5.解:∵AB=10,BC=8,∴AC==6,则6≤AP≤10,∴AP长不可能是5,故选:A.6.解:由勾股定理得:楼梯的水平宽度==4(米),∵地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7(米).故选:D.7.解:由图可得,a2+b2=c2=25,故①正确;∵小正方形面积为1,∴小正方形的边长为1,∴a﹣b=1,故②正确;∵大正方形面积为25,小正方形面积为1,∴ab=(25﹣1)÷4,解得ab=12,故③正确;∵a2+b2=25,ab=12,∴(a+b)2=a2+2ab+b2=49,∴a+b=7,故④正确;故选:D.8.解:设BO=xm,由题意得:AC=1m,BD=1m,AO=4m,在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=42+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(4﹣1)2+(x+1)2,∴42+x2=(4﹣1)2+(x+1)2,解得:x=3,∴AB===5(m),即梯子AB的长为5m,故选:A.二.填空题(共9小题,满分36分)9.解:∵S△ABE=60,∴AB•DE=60,即×AB×12=60,解得:AB=10,∵AC2+BC2=82+62=100,AB2=102=100,∴AC2+BC2=AB2,∴∠C=90°,故答案为:10,90.10.解:设斜边上的高为h,∵直角三角形的两条直角边为4cm,3cm,∴斜边的长==5cm,∴3×4=5h,解得h=.故答案为:.11.解:连接AC,如图,∵AB⊥BC,∴∠ABC=90°,∵AB=3米,BC=4米,∴AC=5米,∵CD=12米,DA=13米,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36米2.故答案为36.12.解:∵直角三角形斜边长为10cm,周长为22cm,∴设一条直角边为acm,另一条直角边为bcm,∴a+b=22﹣10=12(cm),a2+b2=102=100,∴(a+b)2=a2+b2+2ab=12×12=144,∴2ab=144﹣(a2+b2)=144﹣100=44,∴ab=11.∴此三角形的面积为11cm2.故答案为:11cm2.13.解:在Rt△ABD和Rt△ADC中,BD2=AB2﹣AD2,CD2=AC2﹣AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2﹣AD2+MD2,MC2=CD2+MD2=AC2﹣AD2+MD2,∴MC2﹣MB2=(AC2﹣AD2+MD2)﹣(AB2﹣AD2+MD2)=AC2﹣AB2=45.故答案为:45.14.解:三级台阶平面展开图为长方形,长为20分米,宽为(2+3)×3分米,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x分米,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.答:蚂蚁沿着台阶面爬到B点的最短路程是25分米.故答案为:25分米.15.解:作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置,此时,(P A+PB)的值最小,即所铺设水管最短;过B点作l的垂线,过A′作l的平行线,设这两线交于点C,过A作AE⊥BC于E,则四边形AA′CE和四边形AMNE是矩形,∴EN=AM=2,EC=AA′=2+2=4,A′C=AE,在Rt△ABE中,依题意得:BE=BN﹣EN=7﹣2=5,AB=13,根据勾股定理可得:AE==12,在Rt△B A′C中,BC=BE+EC=5+4=9,A′C=12,根据勾股定理可得:A′B===15,∵P A=P A′,∴P A+PB=A′B=15(km),故答案为:15.16.解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB==13,故h最短=20﹣13=7(cm);当吸管竖直插入水杯时,h最大,此时h最大=20﹣12=8(cm).故答案为:7≤h≤8.17.32cm或42cm解:分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===5,在Rt△ACD中,CD===9,∴BC=5+9=14,∴△ABC的周长为:15+13+14=42(cm);(2)当△ABC为钝角三角形时,BC=BD﹣CD=9﹣5=4.∴△ABC的周长为:15+13+4=32(cm);故答案为:42cm或32cm.三.解答题(共7小题,满分52分)18.解:由题意可得:AE=DE,则AB2+BE2=EC2+DC2,故22+BE2=(5﹣BE)2+32,解得:BE=3,则EC=5﹣3=2(m),答:两杆杆底到E处的水平距离分别是3m和2m.19.解:(1)∵HE=a﹣b=2,∴S正方形EFGH=HE2=4,∵AD=c=10,∴S正方形ABCD=AD2=100,∴四个直角三角形的面积和=S正方形ABCD﹣S正方形EFGH=100﹣4=96,故答案为:4;96;(2)由(1)可知四个直角三角形的面积和为96,∴4×ab=96,解得2ab=96,∵a2+b2=c2=100,∴(a+b)2=a2+b2+2ab=100+96=196.20.解:(1)∵在△ABC中,∠C=90°,∴AB2=CB2+AC2=42+32=52,∴AB=5;(2)在△ABD中,AB2+AD2=52+122=132,∴AB2+AD2=BD2,∴△ABD为直角三角形,∴∠BAD=90°.21.解:∵先设水深为x,则AB=x,BC=(x+2),∵AC=6米,在△ABC中,AB2+AC2=BC2,即62+x2=(x+2)2,解得x=8(米).答:水深AB为8米.22.解:(1)∵在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,∴AB==10cm;(2)△ABC的面积=AC•BC=×6×8=24cm2;(3)由(2)可知,AC•BC=CD•AB=24,∴CD=4.8(cm).23.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.24.解:(1)10﹣3=7(米)(2)如图:作AE⊥OM,BF⊥OM,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF即OE+OF=AE+BF=CD=17(m)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(m),∴2EO+EF=17,则2×EO=10,所以OE=5m,OF=12m,所以OM=OF+FM=15m(3))由勾股定理得OB=OA=ON=13,∴MN=15﹣13=2(m).答:玛丽在荡绳索过程中离地面的最低点的高度MN为2米。

第1章勾股定理 单元综合测试题 2022—2023学年北师大版数学八年级上册(含答案)

第1章勾股定理 单元综合测试题 2022—2023学年北师大版数学八年级上册(含答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.我国汉代的赵爽在注释《周髀算经》时给出了勾股定理的无字证明,人们称它为“赵爽弦图”,“赵爽弦图”指的是()A.B.C.D.2.下列各组数中,属于勾股数的是()A.1,1.7,2B.1.5,2,2.5C.6,8,10D.5,6,73.如图,以Rt△ABC的三边为直径分别向外作半圆,若斜边AB=3,则图中阴影部分的面积为()A.9πB.C.D.3π4.如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.95.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.5B.6C.4D.4.86.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米7.如图,一根长25m的梯子,斜立在一竖直的墙上,这时梯足距离底端7m.如果梯子的顶端下滑4m,那么梯足将滑动()A.7m B.8m C.9m D.10m8.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A.6cm B.8cm C.10cm D.12cm9.以下列各组数为边长,能构成直角三角形的是()A.3,4,5B.4,5,6C.1,2,3D.32,42,52 10.现有四块正方形纸片,面积分别是4,6,8,10,从中选取三块按如图的方式组成图案,若要使所围成的三角形是直角三角形,则要选取的三块纸片的面积分别是()A.4,6,8B.4,6,10C.4,8,10D.6,8,10二.填空题(共7小题,满分28分)11.直角三角形的两直角边长分别为6和8,则斜边中线的长是.12.直角三角形中,两边长为3,4,则第三边长的平方为.13.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.14.如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则∠ABC的度数为.15.观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:,第n组勾股数是.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.17.在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是.三.解答题(共6小题,满分52分)18.如图是单位长度为1的正方形网格.(1)在图1中画出一条长度的平方为10的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.。

2022-2023学年北师大版八年级数学上册第1章勾股定理 单元测试卷含答案

2022-2023学年北师大版八年级数学上册第1章勾股定理 单元测试卷含答案

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元测试题(附答案)一.选择题(共10小题,满分40分)1.判断下列四组数据,不可以作为直角三角形三条边的是()A.0.3,0.4,0.5B.4,3,5C.8,15,17D.1,2,32.下面四组数,其中是勾股数组的是()A.3,4,5B.0.3,0.4,0.5C.32,42,52D.6,7,83.直角三角形的三条边如果同时扩大3倍,则得到的三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.无法确定4.如图一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4≤a≤5B.3≤a≤4C.2≤a≤3D.1≤a≤25.下列条件中,不能判定△ABC为直角三角形的是()A.a:b:c=5:12:13B.∠A+∠B=∠CC.∠A:∠B:∠C=2:3:5D.a=6,b=12,c=106.如图,一棵大树(树干与地面垂直)在一次强台风中于离地面6米B处折断倒下,倒下后的树顶C与树根A的距离为8米,则这棵大树在折断前的高度为()A.10米B.12米C.14米D.16米7.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m8.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.72B.52C.80D.769.若一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是()A.直角三角形B.等腰直角三角形C.等腰三角形D.以上结论都不对10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=2,AC=3,则D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.50B.52C.54D.56二.填空题(共5小题,满分20分)11.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为.12.古代著作《九章算术》中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?如图,其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边,则水深尺.13.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,小正方形的面积为7,则大正方形的面积为.14.已知△ABC中,AB=15,AC=20,BC边上的高AD=12,则BC的长为.15.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.三.解答题(共8小题,满分60分)16.郑州市CBD如意湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.17.古埃及人曾用下面的方法得到直角,如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)仿照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)18.如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.19.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,求蚂蚁从外壁A处到达内壁B处的最短距离.20.一架云梯长25m,如图所示斜靠在一面墙上,梯子底端C离墙7m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底部在水平方向也是滑动了4m吗?21.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2解决问题:请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.22.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.23.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?参考答案一.选择题(共10小题,满分40分)1.解:A.∵0.32+0.42=0.52,∴能构成直角三角形,故本选项不符合题意;B.∵32+42=52,∴能构成直角三角形,故本选项不符合题意;C.∵82+152=172,∴能构成直角三角形,故本选项不符合题意;D.∵12+22≠32,∴不能构成直角三角形,故本选项符合题意.故选:D.2.解:A、32+42=52,能构成勾股数,故正确;B、0.3,0.4,0.5,不是正整数,所以不是勾股数,故错误;C、(32)2+(42)2≠(52)2,不能构成勾股数,故错误;D、62+72≠82,不能构成勾股数,故错误.故选:A.3.解:设原直角三角形的三边的长是a、b、c,则由勾股定理得a2+b2=c2,∴9a2+9b2=9c2,即(3a)2+(3b)2=(3c)2,∴将直角三角形的三条边长同时扩大3倍,得到的三角形还是直角三角形,故选:B.4.解:设b是圆柱形的高,当吸管底部在地面圆心时吸管在罐内部分b最短,此时b就是圆柱形的高,即b=12;∴a=16﹣12=4,当吸管底部在饮料罐的壁底时吸管在罐内部分b最长,b=13,∴此时a=3,所以3≤a≤4.故选:B.5.解:A、∵52+122=132,∴△ABC是直角三角形,故能判定△ABC是直角三角形;B、∵∠A+∠B=∠C,∴∠C=90°,故能判定△ABC是直角三角形;C、∵∠A:∠B:∠C=2:3:5,∴∠C=×180°=90°,故能判定△ABC是直角三角形;D、∵62+102≠122,∴△ABC不是直角三角形,故不能判定△ABC是直角三角形;故选:D.6.解:∵△ABC是直角三角形,AB=6m,AC=8m,∴BC=10(m),∴大树的高度=AB+BC=6+10=16(m).故选:D.7.解:∵△ABC是直角三角形,BC=3m,AC=5m∴AB=4m,∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故选:C.8.解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:D.9.解:∵(a+b)2﹣c2=2ab,∴a2+b2+2ab﹣c2=2ab,∴a2+b2=c2,∴这个三角形为直角三角形.故选:A.10.解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=2+3=5,所以,KL=2+5=7,LM=3+5=8,因此,矩形KLMJ的面积为7×8=56.故选:D.二.填空题(共5小题,满分20分)11.解:如图记图中三个正方形分别为P、Q、M.根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P,Q的面积的和是M的面积.即A、B、C、D的面积之和为M的面积.∵M的面积是82=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,∴x=30.故答案为:30.12.解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,∵B′E=10尺,∴B′C=5尺,在Rt△AB′C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,故答案为:12.13.解:由题意可知:中间小正方形的边长为:(a﹣b)2=7,∵(a+b)2=(a﹣b)2+4ab=7+4ab=21,∴2ab=7,∴大正方形的面积=a2+b2=(a+b)2﹣2ab=21﹣7=14.故答案为:14.14.解:分两种情况:①如图1,△ABC中,AB=15,AC=20,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD=9,在Rt△ADC中AC=20,AD=12,由勾股定理得:DC=16,∴BC的长为BD+DC=9+16=25.②如图2,同理得:BD=9,DC=16,∴BC=CD﹣BD=7.综上所述,BC的长为25或7.故答案为:25或7.15.解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB=10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:24三.解答题(共8小题,满分60分)16.解:(1)因为△ABC是直角三角形,所以由勾股定理,得AC2=BC2+AB2.因为AC=50米,BC=30米,所以AB2=502﹣302=1600.因为AB>0,所以AB=40米.即A,B两点间的距离是40米.(2)过点B作BD⊥AC于点D.因为S△ABC=AB•BC=AC•BD,所以AB•BC=AC•BD.所以BD==24(米),即点B到直线AC的距离是24米.17.解:(1)设相邻两个结点之间的距离为a,则此三角形三边的长分别为3a、4a、5a,∵(3a)2+(4a)2=(5a)2,∴以3a、4a、5a为边长的三角形是直角三角形;(2)如图所示:18.解:如图,连接AC.∵△ABC中,∠B=90°,AB=3,BC=4,∴AC=5.∵CD=12,AD=13,AC=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴S阴影=S△ACD﹣S△ABC=×5×12﹣×3×4=30﹣6=24.19.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=20(cm).答:蚂蚁从外壁A处到达内壁B处的最短距离是20cm.20.解:(1)在Rt△ABC中,∠ABC=90°,AC=25m,BC=7m,∴AB=24m.答:这个梯子的顶端A距地面24m.(2)梯子的底部在水平方向滑动了不止4m.在Rt△DBE中,BD=24﹣4=20m,DE=25m,∴BE=15m,∴CE=BE﹣BC=15﹣7=8m.答:如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了8m.21.证明:连接BD,过点B作DE边上的高BF,可得BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.22.解:(1)在Rt△ABC中AB=5由面积的两种算法可得:解得:CD=(2)在Rt△ABD中AD2=42﹣x2=16﹣x2在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2所以16﹣x2=﹣11+12x﹣x2解得=23.解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(3)当EC=260km,FC=260km时,正好影响C港口,∵ED=100(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.。

八年级数学上册第一章勾股定理单元测试卷(含答案)

八年级数学上册第一章勾股定理单元测试卷(含答案)

第一章勾股定理单元测试卷一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4C.2D.4(第1题) (第4题) (第5题) 2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:63.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+15.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,47.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里(第7题) (第9题) (第10题)8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.1011.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米(第11题) (第12题) 12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.(第13题) (第14题) (第15题)14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为cm.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.参考答案一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为()A.3B.4C.2D.4【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC 为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.http://www、czsx、com、cn4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+1【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,4【解答】解:A、12+12≠()2,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、52+102≠132,不能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项错误.故选B.7.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里【解答】解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故选:C.9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AB=,BC=2,∴AC==3,∴这个直角三角形的面积=AC•BC=3,故选A.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.10【解答】解:根据勾股定理可得a2+b2=17,四个直角三角形的面积是:ab×4=17﹣5=12,即:ab=6.故选:B.11.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【解答】解:由题意可知.BE=CD=1、5m,AE=AB﹣BE=4、5﹣1、5=3m,BD=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m【解答】解:在RT△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=0A+AB=20m,在RT△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD﹣OC=2m,故选:D.二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯 2 米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm.=24﹣12=12cm.【解答】解:当筷子与杯底垂直时h最大,h最大当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′==3,∠D′DA+∠ADC=90°由勾股定理得CD′==,∴BD=CD′=,故答案为:.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为 5 cm. 【解答】解:设矩形的相邻两边的长度分别为3acm,4acm,由题意3a+4a=7,a=1,所以矩形的相邻两边分别为3cm,4cm,所以对角线长==5cm,故答案为5.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴在Rt△ACB中,AC═==,∴在Rt△ACD中,AD===,在Rt△ADE中,AE===2.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.【解答】证明:∵如图,边BC的垂直平分线DE交AB于点E,∴CE=BE.∵在Rt△ABC中,∠A=90°,∴由勾股定理得到:CE2=AC2+AE2∴BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。

八年级上册第1章《勾股定理》单元试卷含答案(中考数学试题)

八年级上册第1章《勾股定理》单元试卷含答案(中考数学试题)

中考数学试题分类汇编:北师版数学八年级上册第1章《勾股定理》考点一:勾股定理1.(•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦的平方为32+42=25,弦长为5.故选:A.2.(•模拟)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.3.(•模拟)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.4.(•模拟)如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=()A.3B.4C.5D.6【分析】先判定△ABC为等腰三角形,利用等腰三角形的性质可求得BD,在Rt△ABD中利用勾股定理可求得AD的长.【解答】解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=3,在Rt△ABD中,AB=5,BD=3,∴AD=4,故选:B.考点二:勾股定理得证明1.(•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.2.(•期中)如图是著名的赵爽弦图,它是由四个全等的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,请你用它验证勾股定理.【分析】通过图中小正方形面积证明勾股定理.【解答】解:S小正方形=(b﹣a)2=b2﹣2ab+a2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab,即b2﹣2ab+a2=c2﹣2ab,∴a2+b2=c2.3.(•期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.【分析】由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.【解答】证明:∵∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD,∵∠ABC+∠DBE=90°,∴∠ABE=90°,三个Rt△其面积分别为12ab,12ab和12c2.直角梯形的面积为12(a+b)(a+b).由图形可知:12(a+b)(a+b)=12ab+12ab+12c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.4.(•模拟)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a),∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b﹣a),∴12ab+12b2+12ab=12ab+12c2+12a(b﹣a),∴a2+b2=c2.考点三:勾股定理的逆定理1.(•南通)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.2.(•模拟)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD2=AC2+CD2=25,CD=5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.3.(•期中)下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25【分析】只要验证两小边的平方和等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【解答】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选:A.4.(•期末)满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:15【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:A.b2﹣c2=a2,则b2=a2+c2,△ABC是直角三角形;B.a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;C.∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;D.∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.5.(•期中)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【分析】因为△ABC的三边分别是6,8,10,根据勾股定理的逆定理可求出此三角形为直角三角形,根据三角形面积公式可求出面积.【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.6.(•期中)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.7.(•期末)观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:.【分析】勾股定理和了解数的规律变化是解题关键.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.8.(•期中)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【分析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD2=AC2-AD2=225,CD=15,∴S△ABC=12BC•AD=12(BD+CD)•AD=12×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.考点四:勾股定理的应用1.(•期末)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.2.(•模拟)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC=4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.3.(•模拟)如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【解答】解:∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC﹣FC=32﹣25=7cm,在直角△ADF中,AD=24(cm).故选:C.4.(•湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.5.(•包头)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:8 56.(•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2=A′D2+BD2=400,A′B=20(cm).故答案为20.7.(•期中)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理可得x2+(102)2=(x+1)2,再解答即可.【解答】解;设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:水池深12尺,芦苇长13尺.故答案是:12尺;13尺.8.(•期中)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5.11/ 11。

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合练习题(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合练习题(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合练习题(附答案)一.选择题1.在△ABC中,已知AB=1,AC=2,要使∠B是直角,则BC的长度是()A.1B.C.D.2.在△ABC中,∠A所对的边为a,∠B所对的边为b,∠C所对的边为c,下列选项中不能判定△ABC为直角三角形的是()A.a2+b2=c2B.∠A+∠B=∠CC.a=6,b=8,c=10D.∠A:∠B:∠C=3:4:53.如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是()cm.A.14B.12C.10D.84.如图,在Rt△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1,S2,S3分别表示这三个正方形的面积,若S1=3,S2=11,则S3=()A.5B.8C.14D.165.如图,有一个正方体盒子,棱长为1cm,一只蚂蚁要从盒底点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是()A.cm B.3cm C.cm D.2cm6.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A.2B.4C.8D.167.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm8.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积是()A.48B.20C.24D.609.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23B.24C.25D.2610.有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上“生长”出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的形状图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了888次后形成的图形中所有的正方形的面积和是()A.445B.887C.888D.88911.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,如果大正方形的面积为16,直角三角形的面积为3,直角三角形的两直角边分别为a 和b,那么(a+b)2的值为()A.18B.22C.28D.3612.各组数中,是勾股数的是()A.9,16,25B.0.3,0.4,0.5C.1,,2D.8,15,1713.下列结论中,正确的有()①△ABC的三边长分别为a,b,c,若b2+c2=a2,则△ABC是直角三角形;②在Rt△ABC中,已知两边长分别为6和8,则第三边的长为10;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为1:2:,则该三角形是直角三角形.A.3个B.2个C.1个D.0个14.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为()A.1B.2C.3D.415.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm二.填空题16.如图,在Rt△ABC中,∠BCA=90°,AC=10,BC=24,分别以它的三边为直径作三个半圆,则阴影部分面积为.17.如图,△ABC的顶点在正方形网格的格点上,若每个小正方形的边长为1,则BC边上的高为.18.“赵爽弦图”是我国古代数学的骄傲,它巧妙利用面积关系证明了勾股定理.如图所示的“弦图”,是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较短直角边长为a,较长直角边长为b.若ab=6,小正方形的面积为9,则大正方形的面积为.19.直角三角形两直角边长分别为5和12,则它斜边上的高为.20.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=9,两正方形的面积和S1+S2=51,则图中阴影部分面积为.三.解答题21.如图,旗绳AC自由下垂时,比旗杆AB长2米,如果将旗绳斜拉直,下端在地面上,距旗杆底部的距离BC=6米,求旗杆AB的高度.22.如图,有一台环卫车沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,环卫车周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若环卫车的行驶速度为每分钟50米,环卫车噪声影响该学校持续的时间有多少分钟?23.我校要对如图所示的一块地进行绿化,已知AD=8米,CD=6米,AD⊥CD,AB=26米,BC=24米,求这块地的面积.24.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?26.(1)如图1,长方体的长为4cm、宽为3cm,高为12cm,现有一只蚂蚁从点A处沿长体表面爬到点G处,求它爬行的最短路程;(2)如图2,将题中长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处,求蚂蚁吃到饭粒需要爬行的最短路程是多少?27.做4个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,再做一个边长为c的正方形,把它们按如图的方式拼成正方形,请用这个图证明勾股定理.28.为了积极宣传防疫知识,某地政府采用了移动车进行广播.如图,小明家在一条笔直的公路MN的一侧点A处,且到公路MN的距离AB为600m.若广播车周围1000m以内都能听到广播宣传,则当广播车以250m/min的速度在公路MN上沿MN方向行驶时,在小明家是否能听到广播宣传?若能,请求出在小明家共能听到多长时间的广播宣传.29.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.30.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)参考答案一.选择题1.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC==.故选:D.2.解:A、∵a2+b2=c2,∴能判定△ABC为直角三角形,故A不符合题意;B、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴能判定△ABC为直角三角形,故B不符合题意;C、∵a2+b2=62+82=100,c2=102=100,∴a2+b2=c2,∴能判定△ABC为直角三角形,故C不符合题意;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=180°×=75°,∴不能判定△ABC为直角三角形,故D符合题意;故选:D.3.解:圆柱侧面展开图如图所示,∵圆柱的底面周长为12cm,∴AB=6cm.∵BD=8cm,在Rt△ABD中,AD2=AB2+BD2,∴AD==10(cm),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D的最短距离是10cm.故选:C.4.解:∵S1=3,S2=11,S1,S2,S3分别表示三个正方形的面积,∴BC2=3,AB2=11,∵∠ACB=90°,∴AC2+BC2=AB2,∴AC2=11﹣3=8,∴S3=AC2=8,故选:B.5.解:如图,将正方体展开,则线段AB即为最短的路线,∵这个正方体的棱长为1cm,∴AB==(cm),∴蚂蚁爬行的最短路程是cm.故选:A.6.解:第一个正方形的面积是64;第二个正方形的面积是32;第三个正方形的面积是16;…第n个正方形的面积是,∴正方形⑤的面积是4.故选:B.7.解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.8.解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π++﹣=24.故选:C.9.解:∵大正方形的面积是13,小正方形的面积是2,∴m2+n2=13,2mn=13﹣2=11,∴(m+n)2=13+11=24,故选:B.10.解:根据勾股定理以及正方形的面积公式,可以发现:经过n次生长后,所有正方形的面积和等于第一个正方形的面积的(n+1)倍,∴生长n次后,变成的图中所有正方形的面积S n=n+1,∴生长”了888次后形成的图形中所有的正方形的面积和是888+1=889,故选:D.11.解:大正方形的面积为16,得到它的边长为4,即得a2+b2=42=16,ab=3,由题意4×3+(a﹣b)2=16,ab=6,所以(a﹣b)2=4,所以(a+b)2=(a﹣b)2+4ab=4+4×6=28,故选:C.12.解:A、∵62+92≠252,不能组成直角三角形,故本选项不符合题意;B、∵0.32+0.42=0.52,能组成直角三角形,但0.3,0.4,0.5不是正整数,故本选项不符合题意;C、∵12+2=22,能组成直角三角形,但不是正整数,故本选项不符合题意;D、∵82+152=172,能组成直角三角形,故本选项符合题意;故选:D.13.解:①△ABC的三边长分别为a,b,c,若b2+c2=a2,则△ABC是直角三角形,选项说法正确;②在Rt△ABC中,已知两边长分别为6和8,则第三边的长为10或2,选项说法错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,选项说法正确;④若三角形的三边长之比为1:2:,则该三角形是直角三角形,选项说法正确;故选:A.14.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=52,∴(a﹣b)2=25﹣16=9,∵正方形的边长a﹣b>0,∴a﹣b=3,故选:C.15.解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.二.填空题16.解:∵∠ACB=90°.AC=10,BC=24,∴AB==26,∴S阴影=π×()2+π×()2+×BC×AC﹣π×()2=π×()2++×24×10﹣π()2=120,故答案为:120.17.解:设BC边上的高为h,由勾股定理得:BC==,∵S△ABC=BC•h=4×4﹣×4×3﹣×4×2﹣×2×1=5,∴h===2,即BC边上的高为2,故答案为:2.18.解:由题意可知:中间小正方形的边长为:b﹣a,∵每一个直角三角形的面积为:ab=×6=3,∴大正方形的面积为:4×ab+(b﹣a)2=12+9=21,故答案为:21.19.解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.20.解:设AC=m,CF=n,∵AB=9,∴m+n=9,又∵S1+S2=51,∴m2+n2=51,由完全平方公式可得,(m+n)2=m2+2mn+n2,∴92=51+2mn,∴mn=15,∴S阴影部分=mn=,即:阴影部分的面积为.故答案是:.三.解答题21.解:设旗杆的高度为xm,根据题意可得:(x+2)2=x2+62,解得:x=8.答:旗杆AB的高度为8米.22.解:(1)学校C会受噪声影响.理由:如图,过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵环卫车周围130m以内为受噪声影响区域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=100(m),∵环卫车的行驶速度为每分钟50米,∴100÷50=2(分钟),即环卫车噪声影响该学校持续的时间有2分钟.23.解:如右图所示,连接AC,∵∠D=90°,∴AC2=AD2+CD2,∴AC=10,又∵AC2+BC2=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=×(24×10﹣6×8)=96.答:这块地的面积是96平方米.24.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.25.解:(1)在直角△ABC中,已知AC=30米,AB=50米,且AB为斜边,则BC==40米.答:小汽车在2秒内行驶的距离BC为40米;(2)小汽车在2秒内行驶了40米,所以平均速度为20米/秒,20米/秒=72千米/时,因为72>70,所以这辆小汽车超速了.答:这辆小汽车的平均速度大于70千米/时,故这辆小汽车超速了.26.解:(1)分三种情况:把我们看到的左面与上面组成一个长方形,则蚂蚁吃到饭粒需要爬行的最短路程是AG==(cm);把我们所看到的前面和上面组成一个平面,则蚂蚁吃到饭粒需要爬行的最短路程是AG==(cm);把我们所看到的前面和右面组成一个长方形,则蚂蚁吃到饭粒需要爬行的最短路程是AG ==(cm);<,所以蚂蚁吃到饭粒需要爬行的最短路程是cm;(2)如图,将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+3=12(cm),A′B===13(cm).27.证明:根据题意得,(a+b)2=4×ab+c2整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.28.解:小明能听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米,∴小明能听到宣传;如图:假设当宣讲车行驶到P点开始小明听到广播,行驶到Q点小明听不到广播,则AP=AQ=1000米,AB=600米,∴BP=BQ==800(米),∴PQ=1600米,∴小明听到广播的时间为:1600÷250=6.4(分钟),∴他总共能听到6.4分钟的广播.29.解:(1)在Rt△ABC中,由勾股定理得:BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm.(2)由题意得:BP=tcm.①当∠APB为直角时,如图①,点P与点C重合,BP=BC=4cm,∴t=4;②当∠BAP为直角时,如图②,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即52+32+(t﹣4)2=t2,解得t=.答:当△ABP为直角三角形时,t=4或.30.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。

八年级数学上册勾股定理单元综合测试题(含答案解析)

八年级数学上册勾股定理单元综合测试题(含答案解析)

第1章勾股定理一、填空:(每空4分,共计28分)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方为__________.2.求如图中直角三角形中未知的长度:b=__________,c=__________.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为__________cm2.4.小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答:__________(填“能”、或“不能”)5.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为__________.6.如图,四边形ABCD中,CD∥AB,AD⊥DC,DC=5,CB=15,AB=17.则四边形ABCD的面积为__________.7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为__________dm.二、选择题(每题4分,共28分)8.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm9.观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )组.A.1 B.2 C.3 D.410.如图,正方形ABCD的边长为1,则正方形ACEF的面积为( )A.2 B.3 C.4 D.511.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米12.满足下列条件的△ABC中,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:513.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为( )A.12 cm B.10 cm C.8 cm D.6 cm14.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对三、解答题:(每题11分,共计44分)15.一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)16.小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?17.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;(1)求BD的长;(2)求四边形ABCD的面积.18.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.北师大新版八年级上册《第1章勾股定理》2015年单元测试卷(广东省深圳市观澜二中)一、填空:(每空4分,共计28分)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方为7或25.【考点】勾股定理.【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【解答】解:分两种情况:当3、4都为直角边时,第三边长的平方=32+42=25;当3为直角边,4为斜边时,第三边长的平方=42﹣32=7.故答案为:7或25.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.求如图中直角三角形中未知的长度:b=12,c=10.【考点】勾股定理.【分析】根据勾股定理进行计算即可.【解答】解:b==12;c==10,故答案为:12;10.【点评】本题考查的是勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.4.小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答:能(填“能”、或“不能”)【考点】勾股定理的应用.【分析】能,在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较即可.【解答】解:能,理由如下:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案为能.【点评】本题考查了勾股定理的应用,解题的关键是求出木箱内木棒的最大长度.5.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为2.4cm.【考点】勾股定理.【专题】计算题.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为3cm,4cm,∴斜边为=5cm,设斜边上的高为h,则直角三角形的面积为×3×4=×5h,h=2.4cm,这个直角三角形斜边上的高为2.4cm.故答案为:2.4cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.6.如图,四边形ABCD中,CD∥AB,AD⊥DC,DC=5,CB=15,AB=17.则四边形ABCD的面积为99.【考点】勾股定理;勾股定理的逆定理.【分析】作CE⊥AB于E,则四边形AECD是矩形,∠BEC=90°,得出AE=CD=5,BE=AB﹣AE=12,由勾股定理求出CE,即可求出四边形ABCD的面积.【解答】解:作CE⊥AB于E,如图所示:则四边形AECD是矩形,∠BEC=90°,∴AE=CD=5,∴BE=AB﹣AE=17﹣5=12,由勾股定理得:CE===9,∵CD∥AB,∴四边形ABCD的面积=(AB+CD)×CE=(17+5)×9=99;故答案为:99.【点评】本题考查了梯形的性质、勾股定理、矩形的判定与性质,熟练掌握梯形的性质,由勾股定理求出梯形的高是解决问题的关键.7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为25dm.【考点】平面展开-最短路径问题.【专题】计算题;压轴题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.二、选择题(每题4分,共28分)8.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm【考点】勾股定理;三角形中位线定理.【分析】利用勾股定理列式求出斜边,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【解答】解:∵Rt△ABC两直角边的长分别为6cm和8cm,∴斜边==10cm,∴连接这两条直角边中点的线段长为×10=5cm.故选D.【点评】本题考查了勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.9.观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )组.A.1 B.2 C.3 D.4【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:①82+152=172,根据勾股定理的逆定理是直角三角形,故正确;②72+122≠152,根据勾股定理的逆定理不是直角三角形,故错误;③122+152≠202,根据勾股定理的逆定理不是直角三角形,故错误;④72+242=252,根据勾股定理的逆定理是直角三角形,故正确.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.如图,正方形ABCD的边长为1,则正方形ACEF的面积为( )A.2 B.3 C.4 D.5【考点】算术平方根.【分析】根据勾股定理,可得AC的长,再根据乘方运算,可得答案.【解答】解:由勾股定理,得AC=,乘方,得()2=2,故选:A.【点评】本题考查了算术平方根,先求出AC的长,再求出正方形的面积.11.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】应用题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.12.满足下列条件的△ABC中,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】由勾股定理的逆定理得出A、C是直角三角形,D不是直角三角形;由三角形内角和定理得出B是直角三角形;即可得出结果.【解答】解:∵a:b:c=3:4:5,32+42=52,∴这个三角形是直角三角形,A是直角三角形;∵∠A:∠B:∠C=1:2:3,∴∠C=90°,B是直角三角形;∵a2:b2:c2=1:2:3,∴a2+b2=c2,∴三角形是直角三角形,C是直角三角形;∵a2:b2:c2=3:4:5,∴a2+b2≠c2,∴三角形不是直角三角形;故选:D【点评】本题考查了勾股定理的逆定理、三角形内角和定理;熟练掌握勾股定理的逆定理和三角形内角和定理,通过计算得出结果是解决问题的关键.13.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为( )A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出BD,然后在RT△ABD中,可根据勾股定理进行求解.【解答】解:如图:由题意得:AB=AC=10cm,BC=16cm,作AD⊥BC于点D,则有DB=BC=8cm,在Rt△ABD中,AD==6cm.故选D.【点评】本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理直角三角形的边长.14.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.三、解答题:(每题11分,共计44分)15.一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)【考点】勾股定理的应用.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.【解答】解:如图所示:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?【考点】勾股定理的应用.【分析】根据题意求出小东与哥哥各自行走的距离,根据勾股定理计算即可.【解答】解:由题意得,AC=6×=3km,BC=8×=4km,∠ACB=90°,则AB==5km.【点评】本题考查的是勾股定理的应用,正确构造直角三角形、灵活运用勾股定理是解题的关键.17.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;(1)求BD的长;(2)求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】(1)在Rt△ABD中,利用勾股定理可求出BD的长度;(2)利用勾股定理的逆定理判断出△BDC为直角三角形,根据S四边形ABCD=S△ABD+S△BDC,即可得出答案.【解答】解:(1)∵∠A=90°,∴△ABD为直角三角形,则BD2=AB2+AD2=25,解得:BD=5.(2)∵BC=13cm,CD=12cm,BD=5cm,∴BD2+CD2=BC2,∴BD⊥CD,故S四边形ABCD=S△ABD+S△BDC=AB×AD+BD×DC=6+30=36.【点评】本题考查了勾股定理及勾股定理的逆定理,在求不规则图形的面积时,我们可以利用分解法,将不规则图形的面积转化为几个规则图形的面积之和.18.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?【考点】翻折变换(折叠问题).【专题】应用题;操作型.【分析】由折叠的性质得到三角形BDC与三角形BDE全等,进而得到对应边相等,对应角相等,再由两直线平行内错角相等,等量代换及等角对等边得到FD=FB,设FD=FB=xcm,则AF=(8﹣x)cm,在直角三角形AFB中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出FD的长,进而求出三角形BDF面积.【解答】解:由折叠可得:△BDC≌△BDE,∴∠CBD=∠EBD,BC=BE=8cm,ED=DC=AB=6cm,∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴FD=FB,设FD=FB=xcm,则有AF=AD﹣FD=(8﹣x)cm,在Rt△ABF中,根据勾股定理得:x2=(8﹣x)2+62,解得:x=,即FD=cm,则S△BDF=FD•AB=cm2.【点评】此题考查了翻折变换(折叠问题),涉及的知识有:折叠的性质,全等三角形的性质,平行线的性质,等腰三角形的判定,以及勾股定理,熟练掌握性质及定理是解本题的关键.四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.【考点】勾股定理的应用;三角形的面积;勾股定理的逆定理.【专题】应用题.【分析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【解答】解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.【点评】解答此题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】(1)延长ED至点G,使得EG=DE,连接FG,CG,易证EF=FG和△BDE≌△CDG,可得BE=CG,∠DCG=∠DBE,即可求得∠FCG=90°,根据勾股定理即可解题;(2)连接AD,易证∠ADE=∠CDF,即可证明△ADE≌△CDF,可得AE=CF,BE=AF,S四边形AEDF=S△ABC,再根据△DEF的面积=S△ABC﹣S△AEF,即可解题.【解答】(1)证明:延长ED至点G,使得DG=DE,连接FG,CG,∵DE=DG,DF⊥DE,∴DF垂直平分DE,∴EF=FG,∵D是BC中点,∴BD=CD,在△BDE和△CDG中,,∴△BDE≌△CDG(SAS),∴BE=CG,∠DCG=∠DBE,∵∠ACB+∠DBE=90°,∴∠ACB+∠DCG=90°,即∠FCG=90°,∵CG2+CF2=FG2,∴BE2+CF2=EF2;(2)解:连接AD,∵AB=AC,D是BC中点,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,BE=AF,AB=AC=17,∴S四边形AEDF=S△ABC,∴S△AEF=×5×12=30,∴△DEF的面积=S△ABC﹣S△AEF=.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BDE≌△CDG和△ADE≌△CDF是解题的关键.7、我们各种习气中再没有一种象克服骄傲那麽难的了。

第一章 勾股定理单元测试卷(含答案与解析)

第一章 勾股定理单元测试卷(含答案与解析)

【新北师大版八年级数学(上)单元测试卷】第一章《勾股定理》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是()A.100 B.28 C.14 D.28或1002.下列说法不能得到直角三角形的()A.三个角度之比为1:2:3的三角形 B.三个边长之比为3:4:5的三角形C.三个边长之比为8:16:17的三角形 D.三个角度之比为1:1:2的三角形3.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25 C.斜边长为25 D.三角形的面积为204.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形5.若线段a,b,c组成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.4:6:7 D.7:24:256.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B.800米 C.1000米 D.不能确定7.已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm8.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()A.18 B.9 C.6 D.无法计算9.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是()A.a2+b2=c2 B.a2+c2=b2 C.b2+c2=a2 D.以上关系都有可能10.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.5111.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米 C.12米 D.14米12.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定二、填空题:(每小题3分,共12分)13.如图(1)、(2)中,(1)正方形A的面积为.(2)斜边x= .14.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有个直角三角形.15.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC= .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .三.解答题:(共52分)17.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;18.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,NC= m,BN=m,AC=4.5m,MC=6m,求MA的长.19.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.21.有一只蚂蚁要从一个圆柱形玻璃杯的点A爬到与A相对的点B处,如图,已知杯子高8cm,点B 距杯口3cm,杯子底面半径为4cm.蚂蚁从A点爬到B点的最短距离为多少?(π取3)22.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.23.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.含答案与解析一.选择题:(每小题3分,共36分)1.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是()A.100 B.28 C.14 D.28或100【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解即可.【解答】解:(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2,解得:x2=100;(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x2=28.故选:D.2.下列说法不能得到直角三角形的()A.三个角度之比为1:2:3的三角形B.三个边长之比为3:4:5的三角形C.三个边长之比为8:16:17的三角形D.三个角度之比为1:1:2的三角形【分析】A、根据角的比值求出各角的度数,便可判断出三角形的形状;B、根据比值并结合勾股定理的逆定理即可判断出三角形的形状;C、根据比值并结合勾股定理的逆定理即可判断出三角形的形状;D、根据角的比值求出各角的度数,便可判断出三角形的形状.【解答】解:A、最大角=180°×=90°,故为直角三角形;B、32+42=52,故为直角三角形;C、82+162≠172,故不为直角三角形;D、最大角=180°×=90°,故为直角三角形.故选:C.3.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25【分析】利用勾股定理求出后直接选取答案.【解答】解:两直角边长分别为3和4,∴斜边==5;故选A.4.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.5.若线段a,b,c组成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.4:6:7 D.7:24:25【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、因为22+32≠42,所以不能组成直角三角形,故选项错误;B、因为32+42≠62,所以不能组成直角三角形,故选项错误;C、因为42+62≠72,所以不能组成直角三角形,故选项错误;D、因为72+242=252,所以能组成直角三角形,故选项正确;故选D.6.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.不能确定【分析】两人的方向分别是东南方向和西南方向,因而两人的家所在点与学校的连线正好互相垂直,OA=40×20=800m.OB=40×15=600m.在直角△OAB中,AB=1000米.故选C.7.已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm【分析】设此直角三角形的斜边是c,根据勾股定理及已知不难求得斜边的长.【解答】解:设此直角三角形的斜边是c,根据勾股定理知,两条直角边的平方和等于斜边的平方.所以三边的平方和即2c2=1800,c=±30(负值舍去),取c=30.故选B.8.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()A.18 B.9 C.6 D.无法计算【分析】利用勾股定理将AB2+AC2转化为BC2,再求值.【解答】解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×32=18.故选A.9.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上关系都有可能【分析】根据勾股定理,分∠C是直角,∠B是直角,∠A是直角,三种情况讨论可得a,b,c之间的关系.【解答】解:在Rt△ABC中,a,b,c为△ABC三边长,∠C是直角,则有a2+b2=c2;∠A是直角,则有b2+c2=a2.故选:D.10.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.51【分析】根据勾股定理先求出直角边的长度,再根据长方形的面积公式求出带阴影的矩形面积.【解答】解:∵ =15厘米,∴带阴影的矩形面积=15×3=45平方厘米.故选C.11.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选B.12.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定【分析】先将图形展开,根据两点之间,线段最短,利用根据勾股定理即可得出结论.【解答】解:如图所示:沿AC将圆柱的侧面展开,∵底面半径为2cm,∴BC==2π≈6cm,在Rt△ABC中,∵AC=8cm,BC=6cm,∴AB===10cm.故选:B.二、填空题:(每小题3分,共12分)13.如图(1)、(2)中,(1)正方形A的面积为.(2)斜边x= .【分析】(1)由勾股定理可求出正方形A的边长的平方,而正方形的面积=边长×边长,正好为所求出的值.(2)由勾股定理可得:斜边的平方=两直角边的平方和,将两直角边代入即可求出x的值.【解答】解:(1)设A的边长为a,如图(1)所示:在该直角三角形中,由勾股定理可得:所以正方形A的面积为a2=36.(2)如图(2)所示:在该直角三角形中,由勾股定理可得:x2=52+122,所以,斜边x=13.14.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有个直角三角形.【分析】要组成三角形,由三角形的边长关系,两边之和大于第三边,两边之差小于第三边.根据直角三角形的性质,两个直角边的平方和等于斜边的平方,从四个数中可以得出5cm、12cm、13cm可以满足要求,其中5cm、12cm为直角边,13cm为斜边.【解答】解:∵四根小木棒的长分别为5cm,8cm,12cm,13cm,∴可以组成三角形的有:5cm、8cm、12cm;5cm、12cm、13cm;8cm、12cm、13cm.要组成直角三角形,根据勾股定理两边的平方和等于第三边的平方,则只有5cm、12cm、13cm的一组.∴有1个直角三角形.15.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC= 24 .【分析】直接利用勾股定理结合已知得出关于b的等式,进而求出答案.【解答】解:∵a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,∴a=14﹣b,则(14﹣b)2+b2=c2,故(14﹣b)2+b2=102,解得:b1=6,b2=8,则a1=8,a2=6,即S△ABC=ab=×6×8=24.故答案为:24.16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= 4 .【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三.解答题:(共52分)17.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?为什么?【分析】(1)在Rt△ABD和Rt△ACD中,先根据勾股定理求出AB和AC的长,继而即可求出△ABC 的周长;(2)根据勾股定理的逆定理,看△ABC的三边是否符合勾股定理,即可判断出△ABC是否是直角三角形.【解答】解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理得:AB2=AD2+BD2,AC2=AD2+CD2,又AD=12,BD=16,CD=5,∴AB=20,AC=13,△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.18.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,NC= m,BN=m,AC=4.5m,MC=6m,求MA的长.【分析】先根据勾股定理的逆定理判断出△BCN的形状,再由勾股定理即可得出结论.【解答】解:∵BC=1m,NC= m,BN=m,∴BC2=1,NC2=,BN2=,∴BC2+NC2=BN2,∴AC⊥MC.在Rt△ACM中,∵AC=4.5m,MC=6m,MA2=AC2+CM2=56.25,∴MA=7.5 m.19.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB的长,即旗杆的高.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.20.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.【分析】证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,化简整理得到勾股定理.【解答】解:由图可得:正方形ACFD的面积=四边形ABFE的面积=Rt△BAE和Rt△BFE的面积之和,即S正方形ACFD=S△BAE+S△BFE,∴b2=c2+,整理得:a2+b2=c2.21.有一只蚂蚁要从一个圆柱形玻璃杯的点A爬到与A相对的点B处,如图,已知杯子高8cm,点B 距杯口3cm,杯子底面半径为4cm.蚂蚁从A点爬到B点的最短距离为多少?(π取3)【分析】从点A处竖直向上剪开,此圆柱体的侧面展开图如图,其中AC为圆柱体的底面周长,再由勾股定理进行解答即可.【解答】解:从点A处竖直向上剪开,此圆柱体的侧面展开图如图,其中AC为圆柱体的底面周长,则AC=2πr≈2×3×4=24(cm),则E′B=E′D′=AC=×24=12(cm).又∵EA=8cm,EE′=3cm,∴AE′=EA﹣EE′=8﹣3=5(cm).在Rt△ABE′中,AB2=AE′2+E′B2=52+122=132,∴AB=13(cm),∵两点之间,线段最短,∴蚂蚁从A点爬到B点的最短距离为13cm.22.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【分析】(1)由图形翻折变换的性质可知,AD=AF=10,在Rt△ABF中利用勾股定理即可求解BF,再由BC=12厘米可得出FC的长度;(2)将CE的长设为x,得出DE=10﹣x=EF,在Rt△CEF中,根据勾股定理列出方程求解即可.【解答】解:(1)∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2∴82+BF2=102,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)设EC的长为xcm,则DE=(8﹣x)cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8﹣x)2,即16+x2=64﹣16x+x2,化简,得16x=48,∴x=3,故EC的长为3cm.23.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【分析】(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.【解答】解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×80=40m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD=30m,故BC=2×30=60米,即重型运输卡车在经过BC时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BC时需要60÷300=0.2(分钟)=12(秒).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.。

八年级数学-勾股定理-经典单元测试题(含答案)

八年级数学-勾股定理-经典单元测试题(含答案)

勾股定理单元测试题一、选择题1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,12:6,8,11 D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :55、等边三角形的边长为2,则该三角形的面积为( )A 、33、23、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6B 、7C 、8D 、9 7、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△ABE 的面积为( ) A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 二、填空题1、若一个三角形的三边满足222c a b -=,则这个三角形是 。

2、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。

(填“合格”或“不合格” )ABEFD第7题D CBA3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

4、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正 方形的边长为5,则正方形A ,B ,C ,D 的 面积的和为 。

5、如右图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落 在BC 边上F 处,已知CE=3,AB=8,则BF=___________。

(典型题)初中数学八年级数学上册第一单元《勾股定理》检测题(有答案解析)

(典型题)初中数学八年级数学上册第一单元《勾股定理》检测题(有答案解析)

一、选择题1.下列各组数中,是勾股数的一组是( ) A .4,5,6 B .5,7,2 C .10,24,26 D .12,13,15 2.已知一个直角三角形三边的平方和为800,则这个直角三角形的斜边长为( ) A .20B .40C .80D .1003.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是2,5,1,2.则最大的正方形E 的面积是( )A .10B .8C .6D .154.学习勾股定理后,老师布置的课后作业为“利用绳子(绳子足够长)和卷尺,测量学校教学楼的高度”,某数学兴趣小组的做法如下:①将绳子上端固定在教学楼顶部,绳子自由下垂,再垂直向外拉到离教学楼底部3m 远处,在绳子与地面的交点处将绳子打结;②将绳子继续往外拉,使打结处离教学楼的距离为6m ,此时测得绳结离地面的高度为 1m ,则学校教学楼的高度为( ) A .11 m B .13 m C .14 m D .15 m 5.下列各组数中,不能作为直角三角形的三边长的是( )A .1,2,3B .3,4,5C .5,12,13D .5,7,326.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .417.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列条件不能判断△ABC 是直角三角形的是( ) A .∠B =∠C +∠AB .a 2=(b +c )(b ﹣c )C .∠A :∠B :∠C =3:4:5D .a :b :c =3:4:58.如图,在ABC 中,90C ︒∠=,2AC =,点D 在BC 上,ADC 2B ∠=∠,5AD =BC 的长为( )A .31-B .31+C .51-D .51+ 9.下列各组数是勾股数的是( ) A .1,2,3 B .0.6,0.8,1 C .3,4,5 D .5,11,12 10.若ABC 的三边为下列四组数据,则能判断ABC 是直角三角形的是( ) A .1、2、2B .2、3、4C .6、7、8D .6、8、1011.若实数m 、n 满足340m n -+-=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ). A .5B .7C .5或7D .以上都不对12.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .169二、填空题13.如图,把一张宽为4(即4AB =)的矩形纸片ABCD 沿,EF GH 折叠(点,E H 在AD 边上,点,F G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点对称点为D '点.当PFG △为等腰三角形时,发现此时PFG △的面积为10,则矩形ABCD 的长BC =_____.14.如图,△ABC 中AD ⊥BC 于D ,AC =2, DC =1,BD =3, 则AB 的长为_____.15.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 16.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.17.如图,圆柱形容器中,高为1m ,底面周长为4m ,在容器内壁离容器底部0.4m 处的点B 处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为______m (容器厚度忽略不计).18.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.19.如图,在Rt △ABC 中,∠C =90°,AC =6、BC =8,CD ⊥AB ,则CD =___.20.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.三、解答题21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.22.如图,在△ABC 中,∠C =90°,将△ACE 沿着AE 折叠以后C 点正好落在AB 边上的点D 处.(1)当∠B =28°时,求∠CAE 的度数; (2)当AC =6,AB =10时,求线段DE 的长.23.定义:如果一个三角形中有两个内角α,β满足290αβ+=︒,那我们称这个三角形为“近直角三角形”.(1)若ABC 是“近直角三角形”,90B ∠>︒,50C ∠=︒,则A ∠=_____度; (2)如图,在Rt ABC △中,90BAC ∠=︒,3AB =,4AC =.若CD 是ACB ∠的平分线,①求证:BDC 是“近直角三角形”; ②求BD 的长.(3)在(2)的基础上,边AC 上是否存在点E ,使得BCE 也是“近直角三角形”?若存在,直接写出....CE 的长;若不存在,请说明理由. 24.阅读材料,并解决问题. 有趣的勾股数定义:勾股数又名毕氏三元数.凡是可以构成一个直角三角形三边长的一组正整数,称之为勾股数.一般地,若三角形三边长a ,b ,c 都是正整数,且满足222=a b c +,那么数组()a b c ,,称为勾股数.公元263年魏朝刘徽著《九章算术注》,文中除提到勾股数()3,4,5以外,还提到()5,12,13,()7,24,25,()8,15,17,()20,21,29等勾股数.数学小组的同学研究勾股数时发现:设m ,n 是两个正整数,且m n >,三角形三边长a ,b ,c 都是正整数.下表中的a ,b ,c 可以组成一些有规律的勾股数()a b c ,,.通过观察这个表格中的数据,小明发现勾股数a b c ,,可以写成()2222mn b m n -+,,.解答下列问题:(1)表中b 可以用m ,n 的代数式表示为_____________. (2)若4m =,2n =,则勾股数()a b c ,,为______________. (3)小明通过研究表中数据发现:若1c b -=,则勾股数的形式可表述为()211k b b ++,,(k 为正整数),请你通过计算求此时的b .(用含k 的代数式表示b )25.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?26.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、 B 、C 在小正方形的顶点上.(1)在图中画出与△ABC 关于直线l 成轴对称的△A′B′C′;(2)在直线l 上找一点P(在答题纸上图中标出),使PB+PC 的长最短,这个最短长度的平方值是___.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据勾股定理的逆定理逐项分析解题即可. 【详解】 解:A.2224564,5,6∴不是勾股数,故A 不符合题意; B.222257+≠5,7,2∴不是勾股数,故B 不符合题意;C. 222102426+=10,24,26∴是勾股数,故C 符合题意;D. 222121315+≠12,13,15∴不是勾股数,故D 不符合题意,故选:C . 【点睛】本题考查勾股定理的逆定理,是重要考点,难度较易,掌握相关知识是解题关键.2.A解析:A 【分析】直角三角形中两直角边的平方和等于斜边的平方,已知三边的平方和可以求出斜边的平方,根据斜边的平方可以求出斜边长. 【详解】解:∵在直角三角形中斜边的平方等于两直角边的平方和, 又∵已知三边的平方和为800,则斜边的平方为三边平方和的一半, 即斜边的平方为,800÷2=400, ∴斜边长=400=20, 故选:A . 【点睛】本题考查了勾股定理在直角三角形中的灵活应用,考查了勾股定理的定义,本题中正确计算斜边长的平方是解题的关键.3.A解析:A 【分析】设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,则由勾股定理可得222+=a b c 及正方形面积公式可得正方形F 的面积为7,同理可求解问题. 【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,由勾股定理可得222+=a b c ,∴由正方形的面积计算公式可得正方形F 的面积为2+5=7, 同理可得正方形H 的面积为1+2=3,正方形E 的面积为7+3=10; 故选A . 【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.4.C解析:C 【分析】根据题意画出示意图,设学校教学楼的高度为x ,可得AC AD x ==,()1AB x m =-,6BC m =,利用勾股定理可求出x . 【详解】 解:如图,设学校教学楼的高度为x ,则AD x =,()1AB x m =-,6BC m =, 左图,根据勾股定理得,绳长的平方223x =+, 右图,根据勾股定理得,绳长的平方()2216x =-+, ∴()2222316x x +=-+,解得:14x =. 故选:C . 【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.5.D解析:D 【分析】根据勾股定理的逆定理分别进行判断,即可得出结论. 【详解】解:A 、∵22213)42+==,∴1,23能作为直角三角形的三边长.故此选项不符合题意; B 、∵22234255+==,∴3,4,5能作为直角三角形的三边长.故此选项不符合题意; C 、∵22251216913+==,∴5,12,13能作为直角三角形的三边长.故此选项不符合题意; D 、∵225)7)12+=,23218=(),1218≠,∴5,7,32不能作为直角三角形的三边长.故此选项符合题意.故选:D . 【点睛】本题考查了勾股定理的逆定理的应用,掌握勾股定理逆定理用法是解题的关键.6.C解析:C 【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可. 【详解】解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.7.C解析:C 【分析】由三角形的内角和定理求解B 可判断,A 由勾股定理的逆定理可判断,B 由三角形的内角和定理求解 ,C ∠ 可判断,C 设()30,a k k =≠ 则4,5,b k c k == 利用勾股定理的逆定理可判断.D 【详解】 解:,180,B C A A B C ∠=∠+∠∠+∠+∠=︒2180B ∴∠=︒,90B ∴∠=︒,故A 不符合题意; ()()222,a b c b c b c =+-=-222,a c b ∴+=90B ∴∠=︒,故B 不符合题意;::3:4:5,A B C ∠∠∠=51807512C ∴∠=⨯︒=︒, ABC ∴不是直角三角形,故C 符合题意, ::3:4:5,a b c =设()30,a k k =≠ 则4,5,b k c k ==()()()222222234255,a b k k k k c ∴+=+===90C ∴∠=︒,故D 不符合题意, 故选:.C 【点睛】本题考查的是三角形的内角和定理,勾股定理的逆定理的应用,掌握以上知识是解题的关键.8.D解析:D 【分析】根据勾股定理求出CD ,根据三角形的外角的性质得到∠B =∠BAD ,求出BD ,计算即可. 【详解】∵∠C=90°,AC =3,AD =∴CD,∵∠ADC =2∠B ,∠ADC =∠B +∠BAD , ∴∠B =∠BAD , ∴DB =AD =∴BC =BD +CD 故选:D . 【点睛】本题考查的是勾股定理,三角形的外角的性质以及等腰三角形的判定定理,掌握如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2是解题的关键.9.C解析:C 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方. 【详解】解:A A 错误; B 、0.6,0.8,不是整数,故B 错误;C 、3,4,5是整数,且222345+=,故C 正确;D 、5,11,12是整数,但22251112+≠,故D 错误;故选:C .【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.10.D解析:D【分析】利用勾股定理的逆定理逐一判断各选项即可得到答案.【详解】解:2221+2=52≠,ABC ∴不是直角三角形,故A 不符合题意;22223134,+=≠ABC ∴不是直角三角形,故B 不符合题意;22267858,+=≠ABC ∴不是直角三角形,故C 不符合题意;2226810010,+==ABC ∴是直角三角形,故D 符合题意;故选:.D【点睛】本题考查的是勾股定理的逆定理,掌握利用勾股定理的逆定理判断直角三角形是解题的关键.11.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.12.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】解:由条件可得:2213 113124a baba b⎧+=⎪-⎪=⎨⎪>>⎪⎩,解之得:32ab=⎧⎨=⎩.所以2()25a b+=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.二、填空题13.【分析】根据勾股定理解答即可;【详解】由题可知∴作∵是等腰三角形∴∴由翻折可知∴∴;故答案是【点睛】本题主要考查了勾股定理的应用准确结合翻折的性质计算是解题的关键解析:589+【分析】根据勾股定理解答即可;【详解】由题可知△14102PFGS FG=⨯⨯=,∴5FG=,作PM FG⊥,∵PFG△是等腰三角形,∴52FM GM ==,∴2PF PG ===, 由翻折可知,BF PF PG CG ===,∴2BF CG ==, ∴5BC BF FG CF =++=+故答案是5【点睛】 本题主要考查了勾股定理的应用,准确结合翻折的性质计算是解题的关键.14.【分析】根据ACDC 解直角△ACD 可以求得AD 根据求得的AD 和BD 解直角△ABD 可以计算AB 【详解】∵AD ⊥BC 于D ∴△ACD △ABD 为直角三角形∴AC2=AD2+DC2∴AD ===∵△ABD 为直角解析:【分析】根据AC ,DC 解直角△ACD ,可以求得AD ,根据求得的AD 和BD 解直角△ABD ,可以计算AB .【详解】∵AD ⊥BC 于D ,∴△ACD 、△ABD 为直角三角形,∴AC 2=AD 2+DC 2,∴AD,∵△ABD 为直角三角形,∴AB 2=AD 2+BD 2,∴AB=故答案为:【点睛】本题考查了直角三角形中勾股定理的灵活运用,根据两直角边求斜边,根据斜边和一条直角边求另一条直角边.15.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形 解析:10或6分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键. 16.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.17.【分析】将容器侧面展开建立A 关于EC 的对称点A′根据两点之间线段最短可知A′B 的长度即为所求【详解】如图将容器侧面展开作A 关于EC 的对称点A′连接A′B 交EC 于F 则A ′B 即为最短距离∵高为1m 底面周解析:5将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,∴A′D=4=2(m),BD=1+0.6-0.4=1.2(m),2∴在直角△A′DB中,2222234A'D BD2 1.2+=+=,234.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.18.﹣1或5【分析】根据点M(24)与点N(x4)之间的距离是3可以得到|2-x|=3从而可以求得x的值【详解】解:∵点M(24)与点N(x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.19.8【分析】根据勾股定理求得AB 的长再根据三角形的面积公式得到关于CD 的方程解方程求得CD 即可【详解】解:∵在Rt △ABC 中∠C =90°AC =6BC =8∴AB =10∵S △ABC =×6×8=×10×CD解析:8【分析】根据勾股定理求得AB 的长,再根据三角形的面积公式得到关于CD 的方程,解方程求得CD 即可.【详解】解:∵在Rt △ABC 中,∠C =90°,AC =6,BC =8,∴AB =10,∵S △ABC =12×6×8=12×10×CD , ∴CD =4.8.故答案为:4.8.【点睛】本题考查了直角三角形中的面积的求解,解题的关键是熟知等面积法求线段的长度. 20.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴15BC ==同理6CD ===∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.三、解答题21.224cm .【分析】连接AC ,勾股定理计算AC=222234AD CD +=+,应用勾股定理的逆定理判定三角形ABC 是直角三角形,计算两个直角三角形的面积差即可.【详解】解:连接AC∵AD DC ⊥∴∠ADC=90°,在Rt △ADC 中,根据勾股定理,得 AC=222234AD CD +=+ =5,在△ABC 中,∴22222251213AC BC AB +=+==,△ABC 是直角三角形,∴=-ABC ACD ABCD S SS 四边形 =51234-22⨯⨯ =242m ().【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.22.(1)31°;(2)3.【分析】(1)在Rt △ABC 中,利用互余得到∠BAC =62°,再根据折叠的性质得∠CAE =12∠CAB =31°,然后根据互余可计算出∠AEC =59°;(2)Rt △ABC 中,利用勾股定理即可得到BC 的长;设DE =x ,则EB =BC ﹣CE =8﹣x ,依据勾股定理可得,Rt △BDE 中DE 2+BD 2=BE 2,再解方程即可得到DE 的长.【详解】解:(1)在Rt △ABC 中,∠ABC =90°,∠B =28°,∴∠BAC =90°﹣28°=62°,∵△ACE 沿着AE 折叠以后C 点正好落在点D 处,∴∠CAE =12∠CAB =12×62°=31°; (2)在Rt △ABC 中,AC =6,AB =10,∴BC 8,∵△ACE 沿着AE 折叠以后C 点正好落在点D 处,∴AD =AC =6,CE =DE ,∴BD =AB ﹣AD =4,设DE =x ,则EB =BC ﹣CE =8﹣x ,∵Rt △BDE 中,DE 2+BD 2=BE 2,∴x 2+42=(8﹣x )2,解得x =3.即DE 的长为3.【点睛】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.23.(1)20︒,(2)①见解析;②53BD =;(3)52CE =或74=CE . 【分析】(1)先判断出B 不可能是α或β,再根据条件计算即可;(2)①根据DC 平分ACB ∠,得到2ACB BCD ∠=∠,再根据90BAC ∠=︒,即可得到结果;②作DH BC ⊥交于点H ,根据勾股定理得到5AC =,证明ADC HDC △≌△,再根据勾股定理计算即可;(3)根据点E 存在的两种情况分类讨论即可;【详解】(1)B 不可能是α或β,当A α∠=时,50C β∠==︒,290αβ+=︒,不成立;故A β∠=,C α∠=,290αβ+=︒,则20β=︒,(2)①∵DC 平分ACB ∠,∴2ACB BCD ∠=∠,∵90BAC ∠=︒,∴90B ACB ∠+∠=︒,即290B BCD ∠+∠=︒.∴BCD △是“近直角三角形”.②作DH BC ⊥交于点H ,∵3AB =,4AC =,∴5AC =(勾股定理).在ADC 和HDC △中,DAC DHC ∠=∠,ACD HCD ∠=∠,DC DC =,∴ADC HDC △≌△,∴DH DA =,4AC HC ==,∴1BH =.设BD x =,则3DH x =-,在Rt BDH △中,()22231x x =-+, 得53x =,即53BD =. (3)52CE =或74=CE .如图所示,点E 在ABC ∠的角平分线上,作EF BC ⊥,设EC x =,则4AE x =-,则4EF x =-, 根据已知条件可得:3AB BF ==, ∴532FC =-=,在Rt △EFC 中, ()22242x x -+=,52x =;在AC 上面找一点E ,连接BE ,使得ABE C ∠=∠,延长EA 至G ,使得AE=AG , 根据条件可得:△△ABG ABE ≅,∴GBA EBA C ∠=∠=∠,∵90GBA G ∠+∠=︒,∴90C G ∠+∠=︒,∴90CBG ∠=︒,设EC x =,则4AE AG x ==-, ∴()()222224385BG x x =-+=--,74x =; ∴97444CE AC AE =-=-=; ∴边AC 上存在点E ,使得BCE 也是“近直角三角形”,此时52CE =或74=CE . 【点睛】 本题主要考查了勾股定理和全等三角形的判定与性质,准确计算是解题的关键. 24.(1)2b mn =;(2)(12,16,20);(3)222b k k =+【分析】(1)根据表格中提供的数据可得答案;(2)把4m =,2n =代入()22222m n mn m n -+,,即可求解;(3)根据勾股定理求解即可;【详解】(1)∵4=2×2×1,12=2×3×2,8=2×4×1,24=2×4×3,…,∴2b mn =,故答案为:2b mn =;(2)当4m =,2n =时, a=m 2-n 2=42-22=12,2b mn ==2×4×2=16,c=m 2+n 2=42+22=20,∴勾股数()a b c ,,为(12,16,20),故答案为:(12,16,20);(3)根据题意,得222(21)(1)k b b ++=+,∴22244121k k b b b +++=++,解得222b k k =+.【点睛】本题考查了数字类规律探究,以及勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.25.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键. 26.(1)见解析;(2)图见解析,13【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用轴对称求最短路线求法得出P 点位置.【详解】(1)分别找到各点的对称点,顺次连接可得△A ′B ′C ′.(2)连接B 'C ,则B 'C 与l 的交点即是点P 的位置,求出PB +PC 的值即可.【解答】解:(1)如图所示:(2)如图所示:连接B′C,与直线l交于点P,此时PB+PC最短,PB+PC=PB'+PC=B'C221323则这个最短长度的平方值是13.【点睛】本题考查了轴对称作图及最短路线问题,以及勾股定理,解答本题的关键是掌握轴对称的性质,难度一般.。

初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)

初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)

第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(答案解析)

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(答案解析)

一、选择题1.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是( )A .12B .13C .15D .242.如图,在Rt △ABC 中,∠BCA =90°,点D 是BC 上一点,AD =BD ,若AB =8,BD =5,则CD =( )A .2.1B .1.4C .3.2D .2.43.如图,图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若6,5AC BC ==,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是( )A .24B .52C .61D .764.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A ,沿着纸盒的外部表面爬行至另一个顶点B ,则蚂蚁爬行的最短距离是( )A .3B .2C .5D .21+5.如图,直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别为3和4,则b 的面积为( )A .3B .4C .5D .7 6.下列各组数中是勾股数的是( )A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .1,3,27.如图,在ABC 中,点D 是BC 上一点,连结AD ,将ACD △沿AD 翻折,得到AED ,AE 交BD 于点F .若2BD DC =,AB AD =,2AF EF =,2CD =,DFE △的面积为1,则点D 到AE 的距离为( )A .1B .65C 5D 28.我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是( )A .413B .810C .41312+D .81012+ 9.若ABC 的三边为下列四组数据,则能判断ABC 是直角三角形的是( ) A .1、2、2B .2、3、4C .6、7、8D .6、8、1010.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2011.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .10812.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .6二、填空题13.如图,在直线l 上依次摆放着7个正方形,斜放置的三个正方形的面积分别是4,6,8,正放置的四个正方形的面积分别是1234,,,S S S S ,则1234S S S S +++=__________.14.如图,△ABC 中AD ⊥BC 于D ,AC =2, DC =1,BD =3, 则AB 的长为_____.15.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.16.如图,在ABC 中,90C =∠,AB 的中垂线DE 交AB 于E ,交BC 于D ,若5AB =,3AC =,则ACD △的周长为__________.17.如图,已知点C 在点A 的北偏东19°,在点B 的北偏西71°,若CB=9,AC=12,则AB=_____.18.已知等边三角形的边长为2,则其面积等于__________.19.如图,在Rt △ABC 中,∠C =90°,AC =6、BC =8,CD ⊥AB ,则CD =___.20.如图所示,BDC '是将长方形纸牌ABCD 沿着BD 折叠得到的,若AB =4,BC =6,则OD 的长为_____.三、解答题21.已知:如图,Rt △ABC 中,∠C=90°,AC=32+,BC=32-,求(1)Rt △ABC 的面积; (2)斜边AB 的长.22.如图,在△ABC 中,AD ⊥BC 于点D ,且AC +AD =32,BD =5,CD =16,试确定AB 的长.23.正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图1中,画一个三角形,使它的三边长分别是3,4,5; (2)在图2中,画一个正方形,使它的面积为5;(3)在图3中,画一个三角形,使它的三边长分别为22,4,22.24.(1)问题:如图①,在Rt ABC ∆中,AB AC =,D 为BC 边上一点(不与点,B C重合),将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为___________;(2)探索:如图②,在Rt ABC ∆与Rt ADE ∆中,AB AC =,AD AE =,将ADE ∆绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明结论;(3)应用:如图3,在四边形ABCD 中,45ABC ACB ADC ∠=∠=∠=︒.若12BD =,4CD =,求AD 的长.25.教材呈现:下图是华师版八年级上册数学教材111页的部分内容.()1请根据教材内容,结合图①,写出完整的解题过程.()2拓展:如图②,在图①的ABC 的边AB 上取一点D ,连接CD ,将ABC 沿CD 翻折,使点B 的对称点E 落在边AC 上. ①求AE 的长. ②DE 的长 .26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5,利用勾股定理即可解答. 【详解】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5m , 在Rt ABC 中,222AC BC AB +=()22251x x ∴+=+解得:12x = 故选:A . 【点睛】本题考查了勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,利用勾股定理与方程的结合解决实际问题.2.B解析:B 【分析】设CD=x ,在Rt △ACD 和Rt △ABC 中,利用勾股定理列式表示出AC 2,然后解方程即可. 【详解】解:设CD=x ,则BC=5+x , 在Rt △ACD 中,AC 2=AD 2-CD 2=25-x 2, 在Rt △ABC 中,AC 2=AB 2-BC 2=64-(5+x )2, 所以,25-x 2=64-(5+x )2, 解得x=1.4, 即CD=1.4. 故答案为:B . 【点睛】本题考查了勾股定理,熟记定理并在两个三角形列出等式表示出AC 2,然后列出方程是解题的关键.3.D解析:D【分析】由题意∠ACB为直角,AD=6,利用勾股定理求得BD的长,进一步求得风车的外围周长.【详解】解:依题意∠ACB为直角,AD=6,∴CD=6+6=12,由勾股定理得,BD2=BC2+CD2,∴BD2=122+52=169,所以BD=13,所以“数学风车”的周长是:(13+6)×4=76.故选:D.【点睛】本题是勾股定理在实际情况中应用,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.4.C解析:C【分析】从正方体外部可分三类走法直接走AB对角线,先走折线AD-DB,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC中,由勾股定理AB=2222AC+BC=2+1=5;方法二:走一面折线AD-BD,由勾股定理221+1=22+1;方法三折线AE-ED-DB即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9,∴53<,∵2>1,∴21>,∴222>,∴22+32+3>,∴()2>,2+15∴2+15>,蚂蚁爬行的最短距离是5.故选择:C.【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.5.D解析:D【分析】根据“AAS”可得到△ABC≌△CDE,由勾股定理可得到b的面积=a的面积+c的面积.【详解】解:如图∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC,∵∠ABC=∠CDE,AC=CE,∴△ABC≌△CDE,∴BC=DE,∵AC2=AB2+BC2,∴AC2=AB2+DE2,∴b的面积=a的面积+c的面积=3+4=7.故答案为:D.【点睛】本题考查了全等三角形的判定与性质,勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.6.C解析:C 【分析】根据勾股数的定义判断即可. 【详解】解:A 、42+52≠62,不是勾股数,故此选项不合题意; B 、1.5, 2.5不是正整数,不是勾股数,故此选项不合题意; C 、112+602=612,三个数都是正整数,是勾股数,故此选项符合题意; D 、3不是正整数,不是勾股数,故此选项不合题意; 故选:C . 【点睛】此题主要考查了勾股数,关键是掌握满足a 2+b 2=c 2的三个正整数,称为勾股数.7.B解析:B 【分析】过A 作AG BC ⊥于点G ,根据2AF EF =可得3ADE ACD S S ∆∆==,再由勾股定理求得5AE AC ==,最后由三角形面积公式可求出点D 到AE 的距离. 【详解】解:过A 作AG BC ⊥于点G∵1DFE S ∆=,2AF EF = ∴2ADF S ∆= ∴3ADE ACD S S ∆∆== ∵12ADC S CD AG ∆=⋅⋅ ∴3AG =∵AB AD =,AG BC ⊥∴2BD GB =由2BD CD =得,2GD CD ==∴224GC GD DC =+=+=在Rt AGC ∆中,225AC AG GC =+= ∴5AE AC == ∴236255ADE S h AE ∆⨯=⋅== 故选:B .【点睛】 本题考查了折叠问题,勾股定理定理,等腰三角形的性质以及三角形面积公式的应用,熟练运用这些性质进行推理是本题的关键.8.D解析:D【分析】将CB 延长至点D ,使CB BD =,利用勾股定理求出AD 的长,即可求出结果.【详解】解:如图,将CB 延长至点D ,使CB BD =,∵2AC =,26CD BC ==,∴22436210AD AC CD =+=+=,2103AD BD +=+,一共有4个这样的长度,∴这个风车的外围周长是:()4210381012⨯+=+.故选:D .【点睛】本题考查勾股定理,解题的关键是利用勾股定理求直角三角形边长.9.D解析:D【分析】利用勾股定理的逆定理逐一判断各选项即可得到答案.【详解】解:2221+2=52≠,ABC ∴不是直角三角形,故A 不符合题意;22223134,+=≠ABC ∴不是直角三角形,故B 不符合题意;22267858,+=≠ABC ∴不是直角三角形,故C 不符合题意;2226810010,+==ABC ∴是直角三角形,故D 符合题意;故选:.D【点睛】本题考查的是勾股定理的逆定理,掌握利用勾股定理的逆定理判断直角三角形是解题的关键.10.D解析:D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键. 11.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C .【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键. 12.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.二、填空题13.12【分析】如图易证△CDE ≌△ABC 得AB2+DE2=DE2+CD2=CE2同理FG2+LK2=HL2S1+S2+S3+S4=4+8=12【详解】解:如图∵∴∵在△CDE 和△ABC 中∴△CDE ≌△解析:12【分析】如图,易证△CDE ≌△ABC ,得AB 2+DE 2=DE 2+CD 2=CE 2,同理FG 2+LK 2=HL 2,S 1+S 2+S 3+S 4=4+8=12.【详解】解:如图,∵EDC CBA ACE 90∠∠∠===︒,EC CA =,ECD ACB ACB CAB 90∠∠∠∠+=+=︒,∴ECD ACB ∠∠=, ∵在△CDE 和△ABC 中,EDC CBA ECD CAB EC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△ABC (AAS ),∴AB=CD ,BC=DE ,∴AB 2+DE 2=DE 2+CD 2=CE 2=8,同理可证FG 2+LK 2=HL 2=4,∴S 1+S 2+S 3+S 4=CE 2+HL 2=4+8=12.故答案为:12.【点睛】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB 2+DE 2=DE 2+CD 2=CE 2是解题的关键.14.【分析】根据ACDC 解直角△ACD 可以求得AD 根据求得的AD 和BD 解直角△ABD 可以计算AB 【详解】∵AD ⊥BC 于D ∴△ACD △ABD 为直角三角形∴AC2=AD2+DC2∴AD ===∵△ABD 为直角解析:【分析】根据AC ,DC 解直角△ACD ,可以求得AD ,根据求得的AD 和BD 解直角△ABD ,可以计算AB .【详解】∵AD ⊥BC 于D ,∴△ACD 、△ABD 为直角三角形,∴AC 2=AD 2+DC 2,∴AD,∵△ABD 为直角三角形,∴AB 2=AD 2+BD 2,∴AB=故答案为:【点睛】本题考查了直角三角形中勾股定理的灵活运用,根据两直角边求斜边,根据斜边和一条直角边求另一条直角边.15.11cm12cm 【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大当筷子与杯底及杯高构成直角三角形时h 最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h 最大h 最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h最大,当筷子与杯底及杯高构成直角三角形时h最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,此时,在杯子内的长度=13(cm),故h=24﹣13=11(cm).故h的取值范围是11≤h≤12cm.故答案为:11cm;12cm.【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键.16.7【分析】先根据勾股定理求出BC的长再由线段垂直平分线的性质得出AD=BD即AD+CD=BC再由AC=6即可求出答案【详解】解:∵△ABC中∠C=90°AB=5AC=3∴BC==4∵DE是线段AB的解析:7【分析】先根据勾股定理求出BC的长,再由线段垂直平分线的性质得出AD=BD,即AD+CD=BC,再由AC=6即可求出答案.【详解】解:∵△ABC中,∠C=90°,AB=5,AC=3,∴=4,∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=3+4=7.故答案为:7.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是解题的关键.17.15【分析】根据点C在点A的北偏东19°在点B的北偏西71°得出∠ACB=90°即得出△ABC是直角三角形根据勾股定理解答即可【详解】如图:∵点C在点A的北偏东19°在点B的北偏西71°∴∠ACD=解析:15【分析】根据点C在点A的北偏东19°,在点B的北偏西71°得出∠ACB=90°,即得出△ABC是直角三角形,根据勾股定理解答即可.【详解】如图:∵点C在点A的北偏东19°,在点B的北偏西71°,∴∠ACD=19°,∠BCD=71°,∴∠ACB=19°+71°=90°,∴AC2+CB2=AB2,∵CB=9,AC=12,∴122+92=AB2,∴AB=15,故答案为:15.【点睛】本题考查了方位角和勾股定理,解题的关键是根据题意得出直角三角形,再勾股定理求AB 的值.18.【分析】根据等边三角形三线合一的性质可得D为BC的中点即BD=CD在直角三角形ABD中已知ABBD根据勾股定理即可求得AD的长即可求三角形ABC的面积即可解题【详解】等边三角形三线合一即D为BC的中解析:3【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】等边三角形三线合一,即D为BC的中点,∴BD=DC=1,在Rt△ABD中,AB=2,BD=1,∴AD==3,∴△ABC的面积为BC•AD=333.19.8【分析】根据勾股定理求得AB的长再根据三角形的面积公式得到关于CD 的方程解方程求得CD即可【详解】解:∵在Rt△ABC中∠C=90°AC=6BC=8∴AB=10∵S△ABC=×6×8=×10×CD解析:8【分析】根据勾股定理求得AB的长,再根据三角形的面积公式得到关于CD的方程,解方程求得CD即可.【详解】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10,∵S△ABC=12×6×8=12×10×CD,∴CD=4.8.故答案为:4.8.【点睛】本题考查了直角三角形中的面积的求解,解题的关键是熟知等面积法求线段的长度.20.【分析】设AO=x则BO=DO=6﹣x在直角△ABO中利用勾股定理即可列方程求得x的值则可求出OD的长【详解】解:∵△BDC′是将长方形纸牌ABCD 沿着BD折叠得到的∴∠CBD=∠CBD∵长方形AB解析:13 3【分析】设AO=x,则BO=DO=6﹣x,在直角△ABO中利用勾股定理即可列方程求得x的值,则可求出OD的长.【详解】解:∵△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,∴∠C'BD=∠CBD,∵长方形ABCD中,AD∥BC,∴∠ODB=∠CBD,∴∠ODB=∠C'BD,∴BO=DO,设AO=x,则BO=DO=6﹣x,在直角△ABO中,AB2+AO2=BO2,即42+x2=(6﹣x)2,解得:x=53,则AO=53,∴OD=6﹣53=133,故答案为:133. 【点睛】 本题考查直角三角形轴对称变换及勾股定理和方程思想方法的综合应用,熟练掌握直角三角形轴对称变换的性质及方程思想方法的应用是解题关键.三、解答题21.(1)12;(2 【分析】(1)根据三角形面积公式可求Rt △ABC 的面积;(2)根据勾股定理可求斜边AB 的长.【详解】(1)Rt △ABC 的面积=12AC×BC=12×)=12;(2)斜边AB 的长.答:斜边AB【点睛】此题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了三角形面积公式.22.13【分析】设AD =x ,则AC =32﹣x ,根据勾股定理可求出x 的值,在直角三角形ABD 中,再利用勾股定理即可求出AB 的长.【详解】解:设AD =x ,则AC =32﹣x ,∵AD ⊥BC 于点D ,∴△ADC 和△ADB 是直角三角形,∵CD =16,∴x 2+162=(32﹣x )2,解得:x =12,∴AD =12,在直角三角形ABD 中,AB =13.【点睛】本题考查了勾股定理解直角三角形,解题的关键是设出未知数,利用勾股定理列出方程求解.23.(1)图见解析;(2)图见解析;(3)图见解析.【分析】(1)根据勾股定理可知:以3,4,5为三边所构成的三角形为直角三角形,故以3和4为两直角边作直角三角形即可;(2)由正方形的面积为5,可知:正方形的边长为5,12⨯的长方形方格的对角线长是5,从而作出面积为5的正方形;(3)根据22⨯的对角线为22,由此即可作出变长为22,4,22的三角形.【详解】解:(1)如图1;图中直角三角形为所求,两直角边分别为3,4,斜边为5;(2)如图2,作边长为5的正方形;图中正方形面积为5;(3)如图3,图中直角等腰三角形为所求,两直角边分别为22,22,斜边为4.【点睛】本题主要考查了勾股定理在作图中的应用.解决本题的关键是掌握勾股定理,利用网格准确画图.24.(1)BC=DC+EC;(2) BD2+CD2=2AD2,见解析;(3)8【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=12,根据勾股定理计算即可.【详解】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)探索 BD2+CD2=2AD2,理由如下:连接CE,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即,在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)应用作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE ,在△BAD 与△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ),∴BD =CE =12,∵∠ADC =45°,∠EDA =45°,∴∠EDC =90°,∴22222124128DE CE CD =-=-=∵∠DAE =90°,∠EDA =45°,∴BD 2+CD 2=EC 2=2AD 2=128∴AD =8【点睛】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)10cm ;(2)①4cm ;②3cm【分析】(1)设AB=xcm ,AC=(x+2)cm ,运用勾股定理可列出方程,求出方程的解可得AB 的值,从而可得结论;(2)①由折叠的性质可得EC=BC=6cm ,根据AE=AC-EC 可得结论;②设DE=xcm ,在Rt △ADE 中运用勾股定理列方程求解即可.【详解】解:(1)设AB=xcm ,则AC=(x+2)cm ,根据勾股定理得,222AC AB BC =+∴222(+2)6x x =+解得,x=8∴AB=8cm ,∴AC=8+2=10cm;(2)①由翻折的性质得:EC=BC=6cm∴AE=AC-EC=10-6=4cm②由翻折的性质得:∠DEC=∠DBC=90°,DE=DB ,∴∠AED=90°设DE=DB=x ,则AD=AB-BD=8-x在Rt △ADE 中,222AD AE DE =+∴222(8)4x x -=+解得,x=3∴DE=3cm .故答案为:3cm .【点睛】此题主要考查了勾股定理与折叠问题,运用勾股定理解直角三角形,熟练掌握运用勾股定理是解答此题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

第一章-勾股定理单元测试卷

第一章-勾股定理单元测试卷

ABC 图4第一章 勾股定理单元试卷(时间100分钟 满分100分)一、选择题:(每小题4分,共计20分)1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是( ) A.10米 B.6米 C.5米 D.4米 .图12.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13 米C.14米D.15米.3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ) A.5cm B . 5.4cm C. 6.1cm D. 7cm .4.一个木工师傅测量了一个等腰三角形木版的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组A. 13,12,12B. 12,12,8C. 13,10,12D. 5,8,4. 5.如图3, 一个高米,宽米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( ) A. 米 B. 米 C. 4米 D. 米二、填空题(每小题4分,共计32分) 6.小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______.7.李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了______米.8.如图5,小明将一张长为20cm ,宽为15cm 的长方形纸剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图2图3图5 图6 图79.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图6所示,撑脚长AB 、DC 为3m ,两撑脚间的距离BC 为4m ,则AC=____m 就符合要求.10.如图7,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图8,是一长方形公园,如果某人从景点A 走到景点C ,则至少要走_____米.图8 图9 图1012.在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A 处,另一只猴子爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树______米. 13.如图10是一个三级台阶,它的每一级长、宽、高分别是2米、米、米,A 、B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点最短路程是______米.三、解答题(本题共计48分)14.(本题满分5分)如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C 偏离了想要达到的B 点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB 处的宽度.D B A15.(本题满分5分)我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10尺).16.(本题满分6分)如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm , 在无风的天气里,彩旗自然下垂,如图. 求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm ).17.(本题满分6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?12090 AB 小河东北牧童 小屋18.(本题满分7分)如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?19. (本题满分6分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽米,请问这辆送家具的卡车能否通过这个通道.2.6m4m20.(本题满分6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.21. (本题满分7分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走,遇到障碍后又往西走2km ,再转向北走到处往东一拐,仅走就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?图1图2答案:一、选择题:(每小题4分,共计20分)1.解析:坡面距离就是斜坡的长. 沿山坡走了10米,高度上升了6米, 则其水平距离为8(米);设斜坡上相邻两棵树之间的坡面距离是x 米, 则由题意知1084x=,所以x=5. 答案:C .2.解析:13米长的梯子可以达到建筑物的高度可设为x 米,因梯子的底端离建筑物5米,由勾股定理得: x 2=132-52,x=12米. 答案:A .3.解析:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=22(24)137++=; (2) 展开前面上面由勾股定理得AB2=22(14)229++=; (3)展开左面上面由勾股定理得AB2=22(21)425++=; 所以最短路径的长为5cm . 答案:A .4.解析:等腰三角形的高把等腰三角形分成两个直角三角形, 腰为斜边,高和底边长一半为直角边,因此由三角形三边关系及勾股定理可知A. 132≠122+62, B. 122≠82+62 ,2=122+52 ,2≠42+42. 答案:C .5.解析:如图,此题可运用勾股定理解决,设这条木板的长度为x 米,由勾股定理得:x 2=1.522,解得. 答案: B .二、填空题(每小题4分,共计32分)6.解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大.因此可设放入长方体盒子中的最大长度是x ㎝, 根据题意,得x 2 =502+40 2 +302=5000.702 =4900, 因为4900<5000,所以能放进去.A BC图4 答案:能.7.解析:如图4,把实际问题转化为数学模型,由题意可知AB=1200,AC=2000, 由勾股定理得:BC 2=AC2-AB2= 20002-12002=16002 , 所以BC=1600.李明向正东方向走了1600米. 答案:1600.8.解析:延长AB 、DC 构成直角三角形,运用勾股定理得BC 2=(15-3)2+(20-4)2=122+162=400,所以BC=20. 答案:20cm .图5 图6 图7 9.解析:由题意可知AB 、DC 为3m ,BC 为4m ,由勾股定理得:AC 2=AB 2+BC 2=32+42=25=52,所以AC=5. 答案:5.10.解析:由题意可知梯子的长是不变的,由云梯长10米 ,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时, 梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8-6=2(米). 答案:2.11.解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x 米,由勾股定理得:x 2=1202+3502,解得x=370. 答案:370.D B A图8 图9 图1012.解析:如图9,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.设树的高度为x 米, 因两只猴子所经过的距离相等都为30米.由勾股定理得:x 2+202=[30-(x-10)]2,解得x=15. 答案:15.13.解析:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x ,由勾股定理得:x 2=22+[(0.2+0.3)×3]22 ,x =. 答案:.三、解答题(本题共计48分)14.解析:如图,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决. 答案:在Rt △ABC 中,AB 2+BC 2=AC 2,所以AB 2+1402=5002,解得AB=480. 答:该河AB 处的宽度为480米.15.解析:本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按图的方法,转化为平面图形来解决.如图13,线段AB 的长就是古藤的长. 答案:如图13,在Rt △ABC 中,由勾股定理得 AB 2=BC 2+AC 2.因为BC=20,AC=3×7=21, 所以AB 2=202+212=841. 所以AB=29.所以这根藤条有29尺. 答:这根藤条有29尺.16.解析:如图14,彩旗下垂时最低处离地面的最小高度h 也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角线长为150,所以h=320-150=170cm.答案:彩旗下垂时最低处离地面的最小高度h 为170cm.. 17.解析:找最短路程,只需要找到A 点关于河岸的对称点和点B的距离就可以,借助勾股定理可以求出来. 答案:如图,作出A 点关于MN 的对称点A′,连接A′B 交MN 于点P ,则A′B 就是最短路线. 在Rt △A′DB 中,由勾股定理求得A′B=17km.ABDPNA ′M120902.6m4m18.解析:本题关键是能将红莲移动后的图画出, 红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长.答案:设水深为h 尺.如图,Rt △ABC 中,AB=h ,AC=h+3,BC=6,由勾股定理得:AC 2=AB 2+BC 2,即(h+3)2=h 2+62.∴h 2+6h+9=h 2+36,解得:h=4.5. 答:水深尺.19. 解析:如图,卡车能否通过,关键是车高4米与AC 的比较,BC 为米,只需求AB ,在直角三角形OAB 中,半径OA 为2米,车宽的一半为DC = OB =米,运用勾股定理求出AB 即可. 答案:过直径的中点O ,作直径的垂线交下底边于点D , 如图所示,在Rt △ABO 中,由题意知OA=2,, 所以2222 1.4 2.04AB =-=. 因为4-2.6=1.4,21.41.96=,2.04>1.96,所以卡车可以通过.答:卡车可以通过,但要小心.20. 解析:①只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:1232⨯⨯=3;②画面积为5的四边形,我们可画边长的平方为5的正方形即可. 答案:如图1和图2.ABD C21. 解析:本题需要把实际问题转化为数学模型,构造直角三角形,利用勾股定理完成.答案:如图,过点B 作BC ⊥AD 于C ,则,BC=6, 由勾股定理求得AB=6.5(km) .所以登陆点A 与宝藏埋藏点B 之间的距离是.图2图1。

八年级上册数学: 勾股定理 单元练习

八年级上册数学:  勾股定理  单元练习

第1章勾股定理一.选择题1.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.2.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.3.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ+cosθ)2=()A.B.C.D.4.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.645.若△ABC满足下列条件,则能判断其为直角三角形的选项有()个.(1)∠A=∠B﹣∠C.(2)∠A:∠B:∠C=1:1:2.(3)a:b:c=1:1:2.(4)b2=a2﹣c2A.1B.2C.3D.46.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB 为半径画弧,交最上方的网格线于点D,则CD的长为()A.B.0.8C.3﹣D.7.下列说法正确的是()A.在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形B.在直角△ABC中,一边长为3,另一边长为4,则第三边长一定为5C.在△ABC中,若∠A=∠B﹣∠C,则△ABC是直角三角形D.三边长分别为1,,的三角形不是直角三角形8.下列说法正确的是()A.11,40,41是勾股数B.一个直角三角形的两边分别是3和4,则斜边长为5C.±=±7D.的平方根是±49.如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l10.如图,一个底面直径为cm,高为20cm的糖罐子,一只蚂蚁从A处沿着糖罐的表面爬行到B处,则蚂蚁爬行的最短距离是()A.24cm B.10cm C.25cm D.30cm二.填空题11.等腰三角形的腰长为17,底长为16,则其底边上的高为.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长的直角边长为a,较短的直角边长为b,若ab=8,小正方形的面积为9,则大正方形的边长为.13.如图,已知四边形ABCD中,AD=6,AB=8,BC=24,CD=26,∠A=90°,计算四边形ABCD的面积为.14.若两组勾股数从小到大依次是3,4,a和5,b,13,则a+b的值是.15.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为cm.三.解答题16.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.17.如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.18.已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.(1)求证:CD⊥AB;(2)求该三角形的腰的长度.19.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.20.如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.参考答案一.选择题1.B.2.B.3.A.4.D.5.C.6.C.7.C.8.C.9.A.10.C.二.填空题11.15.12.5.13.144.14.17.15.2.三.解答题16.解:(2)因为S△ABC=S△ABI+S△BIC+S△AIC =cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.17.(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BH,CM为△ABC的高,∴∠BMC=∠CHB=90°.∴∠ABC+∠BCM=90°,∠ACB+∠CBH=90°.∴∠BCM=∠CBH.∴PB=PC.(2)解:∵PB=PC,PB=5,∴PC=5.∵PH=3,∠CHB=90°,∴CH=4.设AB=x,则AH=x﹣4.在Rt△ABH中,∵AH2+BH2=AB2,∴(x﹣4)2+(5+3)2=x2.∴x=10.即AB=10.18.解:(1)∵BC=20cm,CD=16cm,BD=12cm,∴满足BD2+CD2=BC2,∴根据勾股定理逆定理可知,∠BDC=90°,即CD⊥AB;(2)设腰长为x,则AD=x﹣12,由(1)可知AD2+CD2=AC2,即:(x﹣12)2+162=x2,解得x=,∴腰长为cm.19.解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米20.解:设AE=x,则BE=20﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=82+x2,在Rt△BCE中,CE2=BC2+BE2=142+(20﹣x)2,由题意可知:DE=CE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距A点13.3km.。

第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)

第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)

第一章勾股定理单元测试(能力提升)一、单选题1.下列各组数中,不能作直角三角形三边长的是()A.3、4、5B.5、12 、13C.7、24、25D.7、9、13【答案】D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:选项A:∵3²+4²=5²,∴能构成直角三角形三边,故选项A不符合题意;选项B:∵5²+12²=13²,∴能构成直角三角形三边,故选项B不符合题意;选项C:∵7²+24²=25²,∴能构成直角三角形三边,故选项C不符合题意;选项D:∵7²+9²=49+81=130≠13²,∴不能构成直角三角形三边,故选项D符合题意;故选:D【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.如图,在中,D,E分别是边BC,AC的中点,已知,,,则AB 的长为().A.B.C.10D.【答案】A设,,在和中,利用勾股定理可证得,在Rt△ABC中,利用即可求解.设,,在中,,①在中,,②①+②,,∴,在Rt△ABC中,,故选A.【点睛】本题考查了勾股定理,借助中点的定义,灵活运用勾股定理是解答的关键.3.如图正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为( )A.B.5C.D.【答案】D把此正方体的点所在的面展开,然后在平面内,利用勾股定理求点和点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2,另一条直角边长等于3,利用勾股定理可求得.解:如图示,将正方体展开,连接、,根据两点之间线段最短,.答:蚂蚁从点爬行到点的最短距离为.故选:D.【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.4.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c 三个正方形的面积之和为()A.11B.15C.10D.22【答案】B【解析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a的面积等于1号的面积加上2号的面积,b的面积等于2号的面积加上3号的面积,c的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.利用勾股定理可得:,,∴故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.5.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以【答案】A【解析】直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.6.下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④【答案】C【解析】分别利用勾股数的定义、勾股定理以及等腰直角三角形的边的关系分别判断得出即可.解:①如果a,b,c 为一组勾股数,那么4a,4b,4c仍是勾股数,是真命题;②如果三角形的三个内角的度数比是3:4:5,则这三角形的三个内角度数为:45°,60°,75°,因此这个三角形不是直角三角形,原命题是假命题;③如果一个三角形的三边是12、25、21,因为,故此三角形不是直角三角形,故原命题是假命题;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1,是真命题;故选:C.【点睛】此题主要考查了命题与定理,熟练掌握勾股定理以及等腰直角三角形的性质是解题关键.7.如图,在中,是边上的高线,是边上的中线,于点,.若,则的面积是()A.B.C.D.【答案】D【解析】连接DE,证明DE=DC=5,推出AB=10,AD=6,进而求出的面积即可得出结果.如图,连接,作于F点,是边上的高线,在中,根据“斜中半”定理可知,,,,为等腰三角形,且由勾股定理知:,,,是边上的中线,,,得,,,在中,由“三线合一”性质,知G为CE的中点,,故选:D.【点睛】本题考查了直角三角形斜边中线的性质,解直角三角形,三角形的面积等知识点,解决问题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为( )A.10m B.11m C.12m D.13m【答案】B【解析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,在Rt△ABC 中利用勾股定理可求出x.设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,根据勾股定理得,绳长的平方=x2+22,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11,故选:B.【点睛】此题考查勾股定理,题中有两种拉绳子的方式,故可以构建两个直角三角形,形状不同大小不同但都是直角三角形且绳子的长度是不变的,因此根据绳子建立勾股定理的等式,由此解答问题.9.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则BD的长为()A.B.C.D.【答案】A【解析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD 即可.解:由折叠得,,∠BAF=∠EAF,在△BAF和△EAF中,∴△BAF≌△EAF(SAS)∴BF=EF∴AF⊥BE又∵AF=4,AB=5,∴在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴即∵,∴∴∴∴在Rt△BDF中,,,∴故选:A【点睛】本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题.10.如图,在中,点D是边上的中点,连接,将沿着翻折,得到,与交于点F,连接.若,则点C到的距离为()A.B.C.D.【答案】C【解析】连接BE,延长CD交BE于G点,过C作CH⊥AB于H,由折叠的性质及中点性质,可得△AEB是直角三角形,且G点是BE的中点,从而CG⊥BE,由勾股定理可求得BE的长,则根据△ABC的面积相等一方面可表示为,另一方面其面积为△BCD与△ACD面积的和,从而可求得CH的长.连接BE,延长CD 交BE于G点,过C作CH⊥AB于H,如图所示由折叠的性质,得:BD=ED,CB=CE∴CG是线段BE的垂直平分线∴BG=BE∵D点是AB的中点∴BD=AD,∴AD=ED∴∠DAE=∠DEA∵BD=ED∴∠DEB=∠DBE∵∠DAE+∠BEA+∠DBE=180°即∠DAE+∠DEA+∠DEB+∠DBE=180°∴2∠DEA+2∠DEB=180°∴∠DEA+∠DEB=90°即∠AEB=90°在Rt△AEB中,由勾股定理得:∴∵∴∴故选:C.【点睛】本题考查了直角三角形的判定、勾股定理、线段垂直平分线的判定,利用面积相等求线段的长,关键是得出CG⊥BE,从而可求得△BCD的面积也即△ABC的面积.二、填空题11.如图,已知OA=AB,数轴上点C表示的实数是_____________,点E表示的实数是____________.【答案】【解析】利用勾股定理求出OB,即可得到点C表示的实数;利用勾股定理求出OD可得到点E表示的实数.解:由题意得:,∴,即点C表示的实数是,∴,∴,即点E表示的实数是,故答案为:,.【点睛】本题考查了勾股定理与无理数,熟练应用勾股定理是解题关键.12.如图,在△ABC中,∠A=30°,∠B=90°,BC=6, 一个边长为2的正方形DEFH沿边CA方向向下平移,平移开始时点F与点C重合,当正方形DEFH的平移距离为__________时,有DC2=AE2+BC2成立,【答案】【解析】连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,由∠A=30°,∠B=90°,BC=6,得到AC=12,AE=12-2-x=10-x,再根据DC2=AE2+BC2列出方程即可求解.连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,∵∠A=30°,∠B=90°,BC=6,∴AC=12,AE=12-2-x=10-x,∴AE2+BC2=(10-x)2+62,∵DC2=AE2+BC2∴22+(x+2)2=(10-x)2+62,解得x=【点睛】此题主要考查勾股定理的应用,解题的关键是构造直角三角形,利用勾股定理进行求解.13.若直角三角形的三边分别为a、a+b、a+2b,则的值为___【答案】3或-5【解析】若b是正数,则a、a+b、a+2b中a+2b最大,即a+2b是斜边,由勾股定理可得(a+2b) 2=a2+(a+b) 2,化简得a2-2ab-3b2=0 ,所以(a+b)(a-3b)=0 ,又a+b是一条直角边,因此a+b>0,所以a=3b>0,即=3 ;若b是负数,则a、a+b、a+2b中a最大,即a是斜边,由勾股定理可得a2=(a+b) 2+(a+2b) 2,化简得a2+6ab+5b2=0 ,即(a+b)(a+5b)=0 ,同上a+b>0,所以a=-5b,即=-5.所以的值为3或-5.点睛:本题考查了勾股定理的应用,正确分类讨论是解决本题的关键.14.如图,在中于点D,点P是线段AD上一个动点,过点P作于点E,连接PB,则的最小值为________.【解析】根据题意点B与点C关于AD对称,所以过点C作AB的垂线,与AD的交点即点P,求出CE即可得到答案∵∴点B与点C关于AD对称过点C作CE⊥AB于一点即为点P,此时最小∵∴BD=2在Rt△ABC中,∵S△ABC=∴得故此题填【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=_____.【答案】21【解析】在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,先证明△ADC≌△AEC,得出AE=AD=9,CE=CD=BC=10的长度,再设EF=BF=x,在Rt△CFB和Rt△CFA中,由勾股定理求出x,再根据AB=AE+EF+FB求得AB的长度.如图所示,在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∴△ADC≌△AEC(SAS),∴AE=AD=9,CE=CD=BC =10,又∵CF⊥AB,∴EF=BF,设EF=BF=x.∵在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=102-x2,∵在Rt△CFA中,∠CFA=90°,∴CF2=AC2-AF2=172-(9+x)2,即102-x2=172-(9+x)2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.17.定义:如图,点、点把线段分割成和,若以为边的三角形是一个直角三角形,则称点、点是线段的勾股分割点.已知点点是线段的勾股分割点,,则_____.【答案】或【解析】①当MN为最长线段时,由勾股定理求出BN;②当BN为最长线段时,由勾股定理求出BN即可.解:当为最长线段时,点是线段的勾股分割点,;当为最长线段时,点是线段的勾股分割点,.综上所述:或.故答案为:或.【点睛】本题考查了勾股定理,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,注意分类思想的应用.18.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B与船C之间的距离为__________海里.【答案】【解析】根据题目中的已知角度,求出,再利用勾股定理列方程计算.由题意知,,在中,,,则,解得:故答案为:15【点睛】本题考查了勾股定理的应用,突破口在于找到直接三角形.19.如图,长方体的底面边长分别为1cm 和4cm,高为6cm.如果用一根细线从点A 开始经过4 个侧面缠绕n 圈到达点B,那么所用细线最短需要_______________cm.(结果用含n 的代数式表示)【答案】2【解析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短结合勾股定理解答.解:将长方体展开,连接A、B.从点A开始经过4个侧面缠绕n圈到达点B,相当于两条直角边分别是10n和6,根据两点之间线段最短,则AB==2cm.故填:2.【点睛】本题主要考查平面展开−最短路径问题,解题的关键是得到两条直角边分别是10n和6,根据两点之间线段最短,运用勾股定理进行解答.20.如图,已知,过作,且;再过作且;又过作且;又过作且;……,按照这种方法依次作下去得到一组直角三角形,,,,……,它们的面积分别为,,,,……,那么______.【答案】.【解析】利用勾股定理解直角三角形,然后利用三角形面积公式计算三角形面积,从而发现规律.解:由题意可得在中,∴同理可得:…∴故答案为:【点睛】本题考查勾股定理解直角三角形及数字的规律探索,准确利用勾股定理及三角形面积公式进行计算是解题关键.21.如图,四边形ABCD中,点E在CD上,交AC于点F,,若,,则__________.【答案】7【解析】证明△ABF≌△DCA可得AD=AF,AC=BF,过点D作DG垂直于AC于点G,可得DG=GC=3,GF=GC-FC=1,在△ADG中利用勾股定理即可求得AD,从而求得AC.解:∵BE∥AD,∴∠AFB=∠CAD,∵,∴△ABF≌△DCA(AAS),∴AD=AF,AC=BF,过点D作DG垂直于AC于点G,∠ACD=45°,,∴DG=GC=3,∴GF=GC-FC=3-2=1,设AD=AF=x,则AG=x-1,由勾股定理得32+(x-1)2=x2,解得x=5,∴AD=5,BF=AC=AF+CF=5+2=7,故答案为:7.【点睛】此题考查勾股定理以及全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.22.如图,中,,的角平分线,相交于点P,过P作交的延长线于点F,交于点H,则下列结论:①;②;③;④平分;其中正确的结论是___________.(填正确结论的序号)【答案】①②③【解析】由三角形的角平分线的含义结合三角形的内角和定理可判断①,先证明△ABP≌△FBP(ASA)与△APH≌△FPD(ASA),结合可判断②,由△ABP≌△FBP,△APH≌△FPD,可得S△APB=S△FPB,S△APH=S△FPD,再证明HD∥EP,可判断③,若DH平分∠CDE,推导DE∥AB,这个显然与条件矛盾,可判断④;解:在△ABC中,∵∠ACB=90°,∴,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE= ,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,,故②正确,∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故③正确,若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故④错误;故答案为:①②③.【点睛】本题考查了三角形的角平分线的性质,三角形全等的判定方法,三角形内角和定理,三角形的面积,勾股定理的应用等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题23.如图,已知与有一个公共点C,其中,若,,,,.求证:.【答案】见详解.【解析】先利用勾股定理求出AC2和CE2的值,再根据勾股定理的逆定理证明△ACE为直角三角形.证明:∵,∴在中,根据勾股定理同理可求.在中∵..∴.∴为直角三角形.【点睛】本题考查勾股定理和勾股定理逆定理的综合运用,如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形为直角三角形,本题依次可证.24.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB = 90°,求证:a2+b2=c2.【答案】证明见解析.【解析】根据即可得证.如图,过点D作,交BC延长线于点F,连接BD,则,由全等三角形的性质得:,,,,即,整理得:.【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.25.如图,某小区对位于小路AC同侧的两个喷泉A,B的管道进行铺设.供水点M在小路AC上,喷泉A,B的距离是400米,供水点M到AB的距离MN是150m,BM=250m.(1)供水点M到A,B两个喷泉铺设的管道总长是多少米?(2)改变供水M的在AC上的位置,若使管道BM最短,求出此时供水点M到A,B两个喷泉铺设的管道总长是多少米?.【答案】(1)500m;(2)560m【解析】(1)根据勾股定理依次求出BN和AM,供水管道总长即为AM+BM;(2)根据垂线段的性质可画出对应图,再根据勾股定理分别在Rt△BM M '和Rt△BAM '中表示,列出方程求解即可求得MM ',由此可求得和AM '即可求解.解:(1)由题意可得:MN⊥AB,∴∠MNA=∠MNB=90°,在Rt△MNB中,∠MNB=90°,BN=,∵AB=400,∴AN=AB﹣BN=200,在Rt△AMN中,∠MNA=90°,AM=,∴供水点M到喷泉A,B需要铺设的管道总长=250+250=500m;(2)由题意可得:BM '⊥AC,AM=BM=250,AB=400,∴∠BM 'M=90°,设MM '=x,则AM '=x+250,在Rt△BM M ' 中,∠BM 'M=90°,,在Rt△BAM ' 中,∠BM 'M=90°,,∴,∴,∴,∴,∴供水点M ' 到喷泉A,B需要铺设的管道总长=320+240=560m.【点睛】本题考查勾股定理的应用,线段垂线段的性质.(2)中能正确作出图形,并熟练掌握方程思想是解题关键.26.如图1,在中,,,是的高,且.(1)求的长;(2)是边上的一点,作射线,分别过点,作于点,于点,如图2,若,求与的和.【答案】(1)3;(2).【解析】(1)根据勾股定理可求AD,再根据勾股定理可求CD,根据BC=BD+CD即可求解;(2)根据三角形面积公式可求AF与CG的和.(1)在Rt△ABD中,ADB=90,由勾股定理得:AD=,在Rt△ACD中,ADC=90,由勾股定理得:CD=,∴BC=BD+CD=1+2=3,∴BC的长为3;(2)∵AF⊥BE,CG⊥BE,BE=,∴,=,=,而=,∴=,即AF与CG的和为.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键.27.如图,某城市接到台风警报,在该市正南方向的处有一台风中心,沿方向以的速度移动,已知城市到的距离.(1)台风中心经过多长时间从移动到点?(2)已知在距台风中心的圆形区域内都会受到不同程度的影响,若在点的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?【答案】(1)台风中心经过16小时时间从B移动到D点;(2)他们要在20时到24时时间段内做预防工作【解析】(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解:(1)在Rt△ABD中,根据勾股定理,得BD==240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD-DE=240-30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.【点睛】本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.28.如图,在中,过点A作,BE平分交AC于点E.(1)如图1,已知,,,求BD的长;(2)如图2,点F在线段BC上,连接EF、ED,若,,,求证:.【答案】(1)BD=5;(2)证明见解析【解析】(1)利用勾股定理运算即可;(2)利用角平分线的性质可得到,证出得到,,再通过角的等量代换证出,取的中点,连接,即可证出,从而得到结论.解:(1)∵∴∴∴(2)∵平分∴又∵,∴∴,∴∴∵∴取的中点,连接,如图2所示:则∴∵∴∴∴∴∴【点睛】本题主要考查了勾股定理,全等三角形的性质及判定等,合理做出辅助线灵活证明全等是解题的关键.29.(1)探索:请你利用图(1)验证勾股定理.(2)应用:如图(2),已知在中,,,分别以AC,BC为直径作半圆,半圆的面积分别记为,,则______.(请直接写出结果).(3)拓展:如图(3),MN表示一条铁路,A,B是两个城市,它们到铁路所在直线MN的垂直距离分别为千米,千米,且千米.现要在CD之间建一个中转站O,求O应建在离C点多少千米处,才能使它到A,B两个城市的距离相等.【答案】(1)见解析;(2);(3)O应建在离C点52.5千米处.【解析】(1)此直角梯形的面积由三部分组成,利用直角梯形的面积等于三个直角三角形的面积之和列出方程并整理即可;(2)根据半圆面积公式以及勾股定理,知S1+S2等于以斜边为直径的半圆面积;(3)设CO=xkm,则OD=(80-x)km,在Rt△AOC和Rt△BOD中,利用勾股定理分别表示出AO和BO的长,根据AO=BO列出方程,求解即可.(1)由面积相等可得,∴,∴,∴.(2),,∴.故答案为:(3)设千米,则千米.∵到A,B两个城市的距离相等,∴,即,由勾股定理,得,解得.即O应建在离C点52.5千米处.【点睛】本题考查了勾股定理的证明和勾股定理的应用,运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解是解题的关键.30.阅读下面的材料,并解决问题:数学家与勾股数组定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边的长都是正整数,且满足,那么数组称为一组勾股数.每一组勾股数都能确定一个边长都为正整数的直角三角形,研究勾股数对研究直角三角形具有重要意义,历史上很多数学家都对勾股数进行了研究:1.我国西周数学家商高在公元前年发现了“勾三,股四,弦五”,数组是世界上发现最早的一组勾股数.2.毕达哥拉斯学派提出勾股数公式为,其中为正整数.(说明:根据这个公式不能写出所有勾股数)3.柏拉图提出的勾股数公式为,其中为大于的整数.(说明:根据这个公式不能写出所有勾股数)4.世界上第一次给出勾股数通解公式的是《九章算术》,其勾股数公式为,其中是互质的奇数.(注:的相同倍数组成的一组数也是勾股数) 5.国外最先给出勾股数通解公式的是希腊的丢番图,其公式为,其中是互质且为一奇一偶的任意正整数.问题解答:通过观察柏拉图提出的勾股数公式特点,可知_;直接写出一组勾股数,且这组数不能由柏拉图提出的勾股数公式得出;通过阅读可知,一组勾股数中至少有一个数是偶数,请写出一组勾股数,使其中含有数字.【答案】(1)-2;(2)答案不唯一,例如;(3)答案不唯一,例如【解析】(1)直接令b-c即可求解;(2)根据题意即可写出勾股数;(3)根据题意即可写出勾股数.解:(1)∵∴b-c=故答案为:-2.答案不唯一,例如答案不唯一,例如.【点睛】本题考查的是勾股定理的逆定理,掌握完全平方公式、满足a2+b2=c2的三个正整数,称为勾股数是解题的关键.31.问题发现:(1)如图1,已知C为线段AB上一点,分别以线段AC、BC为直角边作等腰直角三角形,∠ACD=90°,CA=CD,CB=CE,连接AE、BD,则AE、BD之间的数量关系为___;位置关系为.拓展探究:(2)如图2,把Rt△ACD绕点C逆时针旋转,线段AE、BD交于点F,则AE与BD 之间的关系是否仍然成立请说明理由.拓展延伸:(3)如图3,已知AC=CD,BC=CE,∠ACD=∠BCE=90°,连接AB、AE、AD,把线段AB 绕点A旋转,若AB=5,AC=3,请直接写出旋转过程中线段AE的最大值.【答案】(1),;(2)成立,理由见解析;(3).【解析】(1)问题发现,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠BDC=∠EAC,可证AE⊥BD;(2)拓展探究,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠AEC=∠DBC,可证AE⊥BD;(3)解决问题,由由“SAS”可证△ACE≌△DCB,可得AE=BD,由三角形的三边关系可求解.解:(1)问题发现如图①,延长BD交AE于H,∵CB=CE,∠ACD=∠BCD=90°,CA=CD,∴△ACE≌△DCB(SAS),∴AE=BD,∠BDC=∠EAC,∵∠CBD+∠CDB=90°,∴∠CBD+∠EAC=90°,∴∠AHB=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD;拓展探究:(2)成立.理由:如图2,设与BD相交于点G.∵,∴.又∵,,∴,∴,.∵,,∴,∴,∴.拓展延伸:(3)AE的最大值为.如图3,连接BD.∵,∴,又∵,,∴,∴,∵,,∴,,∴,当点在线段DA的延长线时等号成立,故AE的最大值为.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,勾股定理,三角形的三边关系,证明△ACE≌△DCB是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级 数学 第一章 勾股定理单元测试题
一、选择题(共12小题,每题4分,共40分)
1.以下列各组数据为三角形三边,能构成直角三角形的是( )
(A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm
(C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm
2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( )
(A )12cm (B )10cm (C )12.5cm (D )10.5cm
3.Rt ∆ABC 的两边长分别为3和4,则第三边长的平方是( )
(A )25 (B )7 (C )12 (D )25或7
4.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,用其中的三根首尾连接可搭成直角三角形的个数为 ( )
(A )1个 (B )2个 (C )3个 (D )4个
5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( )
(A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( )
(A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠
(C )B C A ∠+∠<∠ (D )以上都不对
7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )
(A )2m (B )2.5cm (C )2.25m (D )3m
8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )
(A )直角三角形 B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对
9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( )
(A )150cm (B )90cm
(C )80cm (D )40cm 10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( )
(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对
二、填空题(共6小题,每题4分,共24分)
11.写四组勾股数组._____________,___________,______________,____________.
12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。

13.有一个长为l2cm ,宽为4cm ,高为3cm 的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔
最长是 cm
14.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为________。

15.如图1,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种地毯每平 方米售价20元,主楼梯宽2米。

则购地毯至少需要 元.
三、解答题(共6小题,共56分) 17.(10分)如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计
)
18.(10分)如图,折叠长方形的一边AD ,使点
D 落在
BC 边上的点F 处,BC =10 cm ,AB =8cm ,
求:(1)FC 的长;(2)EF 的长.
19.(10分)一块钢板形状如图所示,量得AB =3,BC =4,AC =5,CD =12,AD =13,请你计算一
下这块钢板的面积.
20.(10分)“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上的行驶速度不得超过70千米/时,如图5,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪问的距离变为50米。

这辆小汽车超速了吗?
21.(8分)学校校内有一块如图6所示的三角形空地ABC ,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?
22.(8分)如图,长方体ABCD-A′B′C′D′中,AB=BB′=2,AD=3,一只蚂蚁从点出发,沿长方体表面爬到C′点,求蚂蚁走的最短路程是多少?
答案
1.D
2.A
3.D
4.B
5.A
6.B
7.A
8.A
9.C
10.A
11.3,4,5; 5,12,13; 7,24,25; 9,40,41
12.24
13.280
14.13
15.132
16.10
17.12.8米
18.(1)4;(2)5
19.36
20.小汽车超速了
21.2520元
22.29。

相关文档
最新文档