遥感图处理

合集下载

遥感图像分类后处理

遥感图像分类后处理

一、实验目的与要求监视分类和决策树分类等分类方法得到的普通是初步结果,难于到达最终的应用目的。

因此,需要对初步的分类结果发展一些处理,才干得到满足需求的分类结果,这些处理过程就通常称为分类后处理。

常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理〔类后处理〕、栅矢转换等操作。

本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。

二、实验内容与方法1. 小斑块去除Majority 和 Minority 分析聚类处理〔Clump〕过滤处理〔Sieve〕2. 分类统计3. 分类叠加4. 分类结果转矢量5. ENVI Classic 分类后处理浏览结果局部修改更改类别颜色6. 精度评价在中,分类后处理的工具主要位于 Toolbo*/Classification/Post Classification/;三、实验设备与材料装有的计算机以 ENVI 自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。

数据位于"...\13数据\"。

其他数据描述:•can_tmr.img ——原始数据•can_tmr_验证.roi ——精度评价时用到的验证 ROI四、实验步骤应用监视分类或者非监视分类以及决策树分类,分类结果中不可防止地会产生一些面积很小的图斑。

无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑发展剔除或者重新分类,目前常用的方法有 Majority/Minority 分析、聚类处理〔clump〕和过滤处理〔Sieve〕。

Majority/Minority 分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,主要分析〔Majority Analysis〕用变换核中占主要地位〔像元数最多〕的像元类别代替中心像元的类别。

如果使用次要分析〔Minority Analysis〕,将用变换核中占次要地位的像元的类别代替中心像元的类别。

遥感图像处理ppt课件

遥感图像处理ppt课件
10
三,其他光学图像处理
对遥感影像母片作不同的曝光处理可制成影像密度 各不相同的正、负模片(拷贝)。同一地区可以有不同遥 感器,不同波段以及不同时间等各种模片。对不同组 合的相关模片进行处理可获得不同增强效果的新图像。 上述彩色合成即是其中最常用的方法。此外,还常采用 以下几种处理方法。
1 反差增强: 通常是利用高反差的感光材料和冲 洗液作反复拷贝,来扩大原模片中的影像密度差异。 它有利于增强一些低反差的地物影像,突出大的轮廓, 也可使彩色合成获得更丰富的层次,但同时会丢失部分 细节,故处理时要适可而止。
5
假彩色等密度分割:即通过光电仪器将胶片上 不同的密度等级以色彩的变化显示成彩色的图像。这 种仪器通常称彩色等密度分割仪,一般将胶片的影像 密度分割为8、12、24、32,64等级,不同密度级的 色别可在64色内任意选调变换,并在数秒钟内显示在 彩色监视器的屏幕上,通过反复调节变换色彩,选择 最佳的处理结果。
光学处理的仪器和技术手段: 摄影处理、光电处 理和相干光处理等等。
处理方法: 密度分割、彩色合成、边缘增强、反 差增强、光学图像比值、光学变换、光学编码等,其中 最常用的是假彩色等密度分割和假彩色合成。
2
一、光学等密度分割处理
(一)影像密度的概念: 对于黑白胶片,影像密度通常 以胶片透光率(T)倒数的对数表示。
密度分割:任何一幅遥感图像都可以看作是地物电 磁波辐射强度的二维分布函数。对于胶片影像。可用影 像密度值的二维分布来表征,对于像片,则为灰度值的 二维分布。与地形图的等高线相仿,照例可按一幅图像
中密度(或灰度)值的变化 范围,将其划分为若干个 等级,以等值面对影像密 度(或灰度)函数进行分层, 用等值线图来表示图像各 部分的密度(灰度)差异变 化。在遥感图像处理中称 此为密度分割,或密度分 割技术。

遥感图像处理

遥感图像处理

遥感图像处理1. 简介遥感图像处理是指利用遥感技术获取的卫星或无人机等遥感图像数据进行处理和分析的过程。

遥感图像处理可以应用于多个领域,包括地理信息系统(GIS)、环境监测、农业、城市规划等。

本文将介绍遥感图像处理的基本概念、常用方法和应用案例。

2. 遥感图像处理的基本概念遥感图像处理涉及多个概念和技术,以下是一些常用的基本概念:2.1 遥感图像遥感图像是通过遥感设备获取的图像数据,可以是卫星图像、航空摄影图像或无人机图像等。

遥感图像通常包含多个波段,每个波段代表不同的光谱信息。

2.2 遥感图像预处理遥感图像预处理是指对原始遥感图像数据进行校正、矫正和增强的过程。

预处理的目的是提高图像质量、减少噪声和伪影,并使得图像更适合进行后续处理和分析。

2.3 遥感图像分类遥感图像分类是指将遥感图像根据像素的特征或属性进行划分和分类的过程。

常见的遥感图像分类方法包括基于统计学的分类、基于机器学习的分类和基于深度学习的分类。

2.4 遥感图像变化检测遥感图像变化检测是指对多个时间点的遥感图像进行比较,以检测地物、景观或环境发生的变化。

遥感图像变化检测可以用于监测自然灾害、环境变化等。

2.5 遥感图像分析遥感图像分析是指对遥感图像进行解译和分析,提取图像中的有用信息和特征。

遥感图像分析可以用于土地利用/覆盖分类、植被指数计算等应用。

3. 遥感图像处理的常用方法遥感图像处理常用的方法包括图像增强、图像配准、图像融合和目标检测等。

3.1 图像增强图像增强是指通过对图像进行滤波、对比度拉伸、直方图均衡化等处理,以增强图像的可视化效果和信息提取能力。

常用的图像增强方法包括直方图均衡化、滤波(如中值滤波、高斯滤波)和锐化等。

3.2 图像配准图像配准是指将两幅或多幅遥感图像在坐标系、旋转、尺度和形变等方面进行校正和匹配的过程。

常用的图像配准方法包括特征点匹配、地物匹配和基于控制点的配准方法。

3.3 图像融合图像融合是指将多幅具有不同光谱或分辨率的遥感图像融合成一幅多光谱和高分辨率的遥感图像。

遥感图像处理ppt课件

遥感图像处理ppt课件

02
人工智能在遥感图像处理中可以应用 于地物分类、目标检测、变化检测等 方面。通过训练人工智能算法,使其 能够自动识别和分类地物,提高遥感 数据的利用价值和精度。同时,人工 智能算法还可以对遥感数据进行自动 化分析和处理,提高数据处理效率。
03
人工智能在遥感图像处理中需要解决 的关键问题包括数据标注、模型训练 和优化等。同时,还需要考虑人工智 能算法的可解释性和可靠性,以确保 其在实际应用中的效果和安全性。随 着技术的不断发展,人工智能在遥感 图像处理中的应用将进一步提高遥感 数据的利用价值和精度。
详细描述
遥感图像存储与处理是遥感技术应用的核心环节之一。 在这个过程中,原始数据会经过一系列的预处理、增强 和分类等操作,以提高图像质量和提取更多有用的信息 。例如,辐射定标、大气校正、几何校正等预处理操作 可以提高图像的精度和可靠性;图像增强技术如对比度 拉伸、滤波等可以提高图像的可视化效果和特征提取能 力;分类和目标检测等技术则可以对图像进行语义化表 达和信息提取,以满足不同应用的需求。
遥感图像处理涉及的技术包括辐 射校正、几何校正、图像增强、 信息提取等。
遥感图像处理的重要性
遥感图像处理是遥感技术应用的关键 环节,能够提高遥感数据的精度和可 靠性,为各领域提供更准确、更全面 的信息。
通过遥感图像处理,可以提取出更多 有用的信息,为决策提供科学依据, 促进各行业的智能化发展。
遥感图像处理的应用领域
图像预处理技术
01
02
03
04
去噪
消除图像中的噪声,提高图像 的清晰度。
校正
纠正图像的几何畸变和辐射畸 变,使图像更接近真实场景。
配准
将不同来源的图像进行坐标对 齐,以便于后续的图像分析和

第4章遥感图像数字处理的基础知识

第4章遥感图像数字处理的基础知识
第四章 遥感图像数字处理的基础知识
河北联合大学
内容提纲
➢ 图像的表示形式 ➢ 遥感数字图像的存贮 ➢ 遥感数字图像处理系统 ➢ 彩色的基本原理
4.1 图像的表示形式
❖遥感图像的表示形式:遥感传感器记录地物 电磁波的形式
▪ 光学图像:胶片或其它光学成像载体形式 ▪ 数字图像:数字形式
1.光学图像
❖ BMP文件的图像深度可选lbit、4bit、8bit及24bit。 BMP文件存储数据时,图像的扫描方式是按从左到右、 从下到上的顺序。
文件头 调色板 图像数据
TIFF
❖ 标签化图象文件格式,Taggen-Image File Format (TIFF)
❖ 由Aldus公司与Microsoft公司共同开发设计的图像文 件格式。TIFF格式可以存储多幅图像,TIFF图像数 据可分割成几个部分分别存档,还能够提供多种不同 的压缩数据的方法。
透射光栅
反射光栅
4.3.1 可见光与色彩
1. 人眼的视觉
(1)人眼的结构
➢ 视锥细胞:明视觉,感觉颜色; ➢ 视杆细胞:暗视觉,感觉光线明暗。
(2)人眼对颜色的分辨能力
在光亮的条件下,能分辨各种颜色,在亮度降到一定 程度,呈现明暗不同的灰阶带。
正常人眼可分辨的颜色种类可达几十万种以上。对于 灰度图像,一般人眼能分辨的灰度级仅为15~25种。
4.3.1 可见光与色彩
2.色彩概念
❖ 色调(H:Hue):色彩相互区分的特性。 ❖ 明度(L:Lightness):光作用于人眼时引起的明亮程度
的感觉,范围为从黑到白。 ❖ 亮度(V:Value或I:Intensity):颜色的相对明暗程度,
范围为灰色部分,小于明度的范围。 ❖ 饱和度(S:Saturation):彩色浓淡的程度,即渗白程度。

61-实验三遥感图像预处理(波段合成、裁剪与拼接)

61-实验三遥感图像预处理(波段合成、裁剪与拼接)

实验三遥感图像预处理(波段合成、裁剪与拼接)一、 实验目的通过实验了解整个图像的预处理过程,从而加深对遥感图像计算机处理的内容及概念的理解。

二、 实验内容1.自定义坐标系2.波段合成(图像融合)3.图像镶嵌(图像拼接)4.图像裁剪三、 实验数据1. TM-30m.img2. bldr_sp.img3. Mosaic1.img4. Mosaic2.img5. bhtmsat.img6. can_tmr.img7. qb_boulder_msi.img8. qb_boulder_pan.img四、 实验操作原理及步骤遥感图像预处理主要包括图像几何校正、图像融合、图像镶嵌、图像裁剪等过程,其处理顺序一般如下图所示。

图 1一般图像预处理流程1.自定义坐标系一般国外商业软件坐标系都分为标准坐标系和自定义坐标系两种。

我国情况较为特殊,往往需要自定义坐标系。

所以,在ENVI第一次使用时,需要对系统自定义北京54坐标系西安80坐标系。

1.1添加参考椭球体找到ENVI系统自定义坐标文件夹—C:\Program Files\ITT\IDL708\products\envi46\map_proj。

根据每台电脑安装的路径以及版本不同而略有不同。

以记事本形式打开ellipse.txt,将“Krasovsky,6378245.0,6356863.0”和“IAG-75,6378140.0,6356755.3”加入文本末端。

(这里主要是为了修改克拉索夫斯基因音译而产生的错误,以便让其他软件识别;另外中间的逗号必须是英文半角。

)1.2添加基准面以记事本格式打开datum.txt,将“Beijing-54, Krasovsky, -12, -113, -41”和“Xi'an-80,IAG-75,0,0,0”加入文本末端。

1.3定义坐标定义完椭球参数和基准面后就可以在ENVI中以我们定义的投影参数新建一个投影信息(Customize Map Projections),在编辑栏里分别定义投影类型、投影基准面、中央子午线、缩放系数等,最后添加为新的投影信息并保存。

遥感数字图像处理

遥感数字图像处理

遥感数字图像处理1. 概述遥感数字图像处理是指利用遥感技术获取的各种遥感数据,如航空影像、卫星影像等,进行数字化处理和分析的过程。

遥感数字图像处理在地理信息系统(GIS)领域有着广泛的应用,能够提取出地表覆盖类型、地形和植被等丰富的地理信息,为环境监测、资源管理、农业和城市规划等领域提供重要的数据支持。

2. 遥感数字图像处理的步骤遥感数字图像处理主要包括以下几个步骤:2.1 数据获取数据获取是遥感数字图像处理的第一步,通过卫星、航拍等遥感设备获取地理信息数据。

这些数据以数字图像的形式存在,包括多光谱、高光谱、雷达和激光雷达等数据。

2.2 数据预处理数据预处理是为了消除图像中的噪声和伪影,以及纠正图像的几何和辐射畸变。

常见的数据预处理方法包括辐射校正、几何校正、大气校正等。

2.3 图像增强图像增强是为了使图像更加清晰,突出地物的特征。

常用的图像增强方法包括直方图均衡化、滤波、锐化等。

2.4 特征提取特征提取是为了从图像中提取出具有区别性的特征,以便进行后续的分类和识别。

常见的特征提取方法包括纹理特征、形状特征、频域特征等。

2.5 图像分类图像分类是将图像中的像素划分为不同的类别。

常用的图像分类方法包括基于像元的分类、基于对象的分类、基于深度学习的分类等。

2.6 图像分割图像分割是将图像划分为不同的区域或对象。

常用的图像分割方法包括阈值分割、边缘分割、区域生长等。

2.7 地物提取地物提取是从图像中提取出感兴趣的地物或地物属性。

常见的地物提取方法包括目标检测、目标识别、地物面积计算等。

2.8 结果评价结果评价是对处理结果进行准确性和可靠性的评估。

常用的结果评价方法包括混淆矩阵、精度评定、误差矩阵等。

3. 遥感数字图像处理的应用遥感数字图像处理在各个领域都有广泛的应用,主要包括以下几个方面:3.1 环境监测遥感数字图像处理可以用于环境监测,如水质监测、土壤污染监测等。

通过遥感图像,可以获取水体和土地的信息,分析水质和土壤的污染程度。

遥感数字图像处理:遥感数字图像处理(62页)

遥感数字图像处理:遥感数字图像处理(62页)
■ 传感器的波段选择必须考虑目标的光谱特征值, 才能取得好效果。
不同波谱分辨率对水铝 反射光谱的获取
时间分辨率
■ 时间分辨率指对同一地点进行遥感来样的时间间隔, 即采样的时间频率,也称重访周期。
■ 遥感的时间分辨率范围较大。以卫星遥感来说,静止 气象卫星(地球同步气象卫星)的时间分辨率为 1次 /0.5小时;太阳同步气象卫星的时间分辨率 2次/天; Landsat为1次/16天;中巴(西)合作的CBERS为1次 /26天等。还有更长周期甚至不定周期的。
微波遥感与成像
在电磁波谱中,波长在1mm~
1m的波段范围称微波。该 范围内又可再分为毫米波、 厘米波和分米波。在微波 技术上,还可将厘米波分 成更窄的波段范围,并用 特定的字母表示
谱带名称
Ka K
Ku X
微波遥感是指通过微波传
C
感器获取从目标地物发射 或反射的微波辐射,经过 判读处理来识别地物的技
几种遥感图像处理系统简介
■ PCI ■ ERDAS ■ ENVI
PCI简介
■ PCI是加拿大PCI公司的产品,可进行遥感图像的处 理,也可应用于地球物理数据图像、医学图像、雷 达数据图像、光学图像的处理,并能够进行分 析 、制图等工作。它的应用领域非常广泛。
■ PCI拥有最齐全的功能模块:常规处理模块、几 何校正、大气校正、多光谱分析、高光谱分析、 摄影测量、雷达成像系统、雷达分析、极化雷达 分析、干涉雷达分析、地形地貌分析、矢量应用、 神经网络分析、区域分析、GIS联接、正射影像 图生成及DEM提取(航片、光学卫星、雷达卫 星)、三维图像生成、丰富的可供二次开发调用 的函数库、制图、数据输入/输出等四百多个软 件包。
多波段数字图像的数据格式
■BIP方式(band interleaved by pixel) 在一行中,每个像元按光谱波段次序进 行排列,然后对该行的全部像元进行这 种波段次序排列,最后对各行进行重复。

遥感图像处理的常见问题及解决方法

遥感图像处理的常见问题及解决方法

遥感图像处理的常见问题及解决方法引言:遥感图像处理是一项涉及到观测、获取、处理和解释遥感数据的复杂任务。

随着遥感技术的发展和应用的广泛性,人们对于遥感图像处理中的一些常见问题的解决方法也变得越来越关注。

本文将探讨几个常见的问题,并提供相应的解决方法。

一、图像去噪问题在遥感图像处理中,图像中常常存在各种噪声,如椒盐噪声、高斯噪声等,这些噪声会对图像的质量和解译结果产生负面影响。

为了解决这个问题,可以采用以下方法:1. 统计滤波:采用均值、中值或高斯滤波器进行图像去噪。

2. 自适应滤波:根据图像的局部统计特性,采用自适应的滤波方法进行噪声抑制。

3. 小波变换去噪:利用小波变换的多尺度分析特性,可以实现对图像的去噪处理。

二、图像配准问题在遥感图像处理中,由于不同图像在获取时所处的视角、光照等条件的差异,图像之间存在一定的几何变换关系,这会导致图像配准问题。

为了解决这个问题,可以采用以下方法:1. 特征点匹配:通过提取图像中的特征点,并利用特征点之间的几何关系进行图像配准。

2. 条带纠正:针对由于卫星的扫描方式导致的条带状偏移问题,可以采用多模板方法或频域匹配方法进行纠正。

3. 控制点匹配:通过选择一些具有高精度地面坐标的控制点,进行图像间的控制点匹配实现图像配准。

三、图像分类问题在遥感图像处理中,图像分类是一项重要的任务,它涉及到对遥感图像的地物进行分类和分割。

为了解决这个问题,可以采用以下方法:1. 监督分类方法:通过事先获取训练样本,并利用这些样本进行分类器的训练和分类。

2. 无监督分类方法:根据图像中像素的统计特性,利用聚类等方法对图像进行自动分类。

3. 半监督分类方法:结合监督和无监督分类方法的特点,通过一定比例的训练样本和未标记样本进行分类。

四、信息提取问题在遥感图像处理中,信息提取是指从遥感图像中获取感兴趣的地物的特征和属性信息。

常见的信息提取问题包括目标检测、边界提取、变化检测等。

为了解决这个问题,可以采用以下方法:1. 特征提取:通过选择适当的特征,如纹理特征、形状特征等,对图像进行特征提取从而实现目标检测和边界提取。

《遥感图像预处理》课件

《遥感图像预处理》课件
傅里叶变换
通过线性或非线性变换来调整像素强度范围,增强图像的对比度。
对比度拉伸
通过增强高频分量来增强图像的边缘和细节信息。
锐化滤波
通过将图像的低频和高频分量分离并分别处理,增强图像的对比度和细节信息。
同态滤波
02
01
03
04
05
遥感图像的融合处理
06
图像融合是将多源信道所采集到的关于同一目标的图像,通过一定的图像处理和信息融合技术,提取各自信道的信息并最终复合在一起,形成高质量、全面、准确的图像。
THANKS
几何校正的方法
遥感图像的噪声去除
04
VS
噪声去除是遥感图像预处理中的重要步骤,旨在减少或消除图像中的噪声,提高图像质量。
意义
噪声是影响遥感图像质量的主要因素之一,去除噪声有助于提高图像的视觉效果、降低后续分析的误差,为遥感应用提供更准确、可靠的数据基础。
定义
基于图像的统计特性,通过滤波、变换等技术手段,将噪声与图像信号分离,从而达到去除噪声的目的。
意义
原理
基于图像的数学模型和物理模型,通过一定的算法和技术,对图像的像素值进行变换和处理,以达到增强图像的目的。
方法
直方图均衡化、对比度拉伸、锐化滤波、同态滤波、傅里叶变换等。
通过拉伸像素强度分布范围来增强图像的对比度。
直方图均衡化
将图像从空间域变换到频率域,通过增强高频分量或抑制低频分量来增强图像的3
几何校正的定义
几何校正是指将原始的遥感图像经过一系列的变换,使其与标准地图或参考地图在几何位置上对齐的过程。
几何校正的意义
几何校正是遥感图像预处理的重要步骤,它能够纠正图像中由于传感器、地球曲率、地球自转等因素导致的几何畸变,提高遥感图像的精度和可靠性,为后续的图像分析和应用提供准确的基础数据。

遥感影像处理步骤

遥感影像处理步骤

一.预处理1.降噪处理由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进展消除或减弱方可使用。

〔1〕除周期性噪声和锋利性噪声周期性噪声一般重叠在原图像上,成为周期性的干预图形,具有不同的幅度、频率、和相位。

它形成一系列的尖峰或者亮斑,代表在*些空间频率位置最为突出。

一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进展滤波处理的方法比拟方便。

〔2〕除坏线和条带去除遥感图像中的坏线。

遥感图像常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。

一般采用傅里叶变换和低通滤波进展消除或减弱。

2.薄云处理由于天气原因,对于有些遥感图形中出现的薄云可以进展减弱处理。

3.阴影处理由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进展消除。

二.几何纠正通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进展几何精纠正,在地形起伏较区,还必须对其进展正射纠正。

特殊情况下还须对遥感图像进展大气纠正,此处不做阐述。

1.图像配准为同一地区的两种数据源能在同一个地理坐标系中进展叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。

〔1〕影像对栅格图像的配准将一幅遥感影像配准到一样地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。

〔2〕影像对矢量图形的配准将一幅遥感影像配准到一样地区一幅矢量图形中,使其在空间位置上能进展重合叠加显示。

2.几何粗纠正这种校正是针对引起几何畸变的原因进展的,地面接收站在提供应用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进展了校正.3.几何精纠正为准确对遥感数据进展地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。

遥感数字图像处理教学ppt

遥感数字图像处理教学ppt

80%
数字图像格式
常见的数字图像格式包括BMP、 JPEG、TIFF、PNG等。
遥感数字图像特点
01
02
03
04
大数据量
遥感图像通常覆盖较大的地理 区域,包含丰富的地物信息, 数据量较大。
多源性
遥感图像可以来自不同的传感 器和平台,具有多源性。
多尺度性
遥感图像可以反映不同空间尺 度的地物信息,具有多尺度性 。
遥感数字图像处理教学

CONTENCT

• 遥感数字图像基础 • 遥感数字图像获取与处理 • 遥感数字图像增强技术 • 遥感数字图像分割与分类 • 遥感数字图像应用实例分析 • 遥感数字图像处理软件介绍及使用
指南
01
遥感数字图像基础
遥感技术概述
遥感定义
遥感是一种利用传感器对地球表面及大气层中的目 标进行远距离、非接触式探测的技术。
时序性
遥感图像可以反映同一地区不 同时间的地物信息变化,具有 时序性。
02
遥感数字图像获取与处理
遥感平台与传感器
遥感平台类型
遥感平台与传感器的选择
包括卫星、飞机、无人机等,不同平 台具有不同的空间分辨率、时间分辨 率和光谱分辨率。
针对特定的应用需求,选择合适的遥 感平台和传感器,以获取高质量的遥 感数据。
利用支持向量机(SVM)算法在高 维空间中寻找最优超平面,实现对遥 感图像的分类。
基于集成学习的分类器
通过集成多个弱分类器构建一个强分 类器,提高遥感图像分类的准确性和 稳定性。
05
遥感数字图像应用实例分析
农业领域应用
作物类型识别
利用遥感图像数据,结合图像处 理技术,可以实现对不同作物类 型的自动识别和分类,为精准农

遥感图像裁剪与拼接

遥感图像裁剪与拼接

遥感图像裁剪与拼接在遥感领域中,遥感图像裁剪与拼接是常见的处理操作。

通过将多个遥感图像进行裁剪和拼接,可以获得更大范围、更高分辨率的图像,进而满足不同应用需求。

本文将介绍遥感图像裁剪与拼接的基本原理、方法和应用场景。

一、遥感图像裁剪遥感图像裁剪是指将原始的遥感图像按照感兴趣区域进行切割,只保留所需部分。

裁剪可以有效减少图像数据量,同时也能够提高分析效率。

以下是常见的遥感图像裁剪方法:1. 矩形裁剪矩形裁剪是最常用的一种裁剪方式,通过指定感兴趣区域的左上角和右下角坐标,可以实现对图像的矩形裁剪。

2. 多边形裁剪在某些情况下,感兴趣区域可能呈现复杂的形状,无法用矩形进行准确裁剪。

此时,可以利用多边形裁剪方法实现更精确的裁剪。

3. 边界缓冲裁剪边界缓冲裁剪是指在感兴趣区域周围增加一定的缓冲边界,以避免实际野外边界与图像边界不对齐的问题。

这种裁剪方法常用于遥感监测和精确测绘等应用领域。

二、遥感图像拼接遥感图像拼接是将多幅遥感图像按照一定的拼接规则进行合并,生成一张大尺寸的合成图像。

拼接可以扩展观测范围,提高图像分辨率,以及实现更全面的遥感分析。

以下是常用的遥感图像拼接方法:1. 无重叠拼接无重叠拼接是最简单的一种拼接方式,将多幅遥感图像按照顺序直接拼接在一起。

这种方法适用于目标分割、土地利用等需要完整观测范围的应用场景。

2. 重叠拼接重叠拼接是指在图像拼接过程中,采取重叠部分图像像素的平均值或加权平均值作为拼接结果。

这种方法可以减少图像拼接处的明显接缝,提高整体的视觉质量。

3. 特征点匹配拼接特征点匹配拼接是通过提取图像中的特征点,在不同图像上进行匹配,确定拼接关系,然后进行图像变形和融合。

这种方法对于复杂场景和大范围拼接效果较好。

三、应用场景遥感图像裁剪与拼接在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 土地利用规划通过裁剪与拼接遥感图像,可以获取更大范围、更高分辨率的土地利用信息。

这对于城市规划、农业管理等具有重要意义。

遥感图像处理

遥感图像处理
• 将彩色涂料的三色叠加时,由于光线依次通过减红、 减绿、减蓝层就成黑色。只有当涂料浓度不够,减色 不彻底时才会出现灰白色,但这仍是减色法而不是加 色法。
用白光由红、绿、蓝三色组成这种理想模型来理解,可以认为黄 色,是减去蓝色的的红绿组合;同样地,品红色是减去绿色的红 蓝组合,青色是减去红色的蓝绿组合。这样,黄、品红、青便是 减色法的三原色。
3、减色法
实际生活中,除了利用颜色相加原理形成颜色 的混合外,还常常利用颜色的减法混合。例如遥 感里常用的色彩摄影、彩色印刷等都是颜色法的 原理。
自己发光的设备生成的色彩,例如:电视机和 计算机的监视器,是通过把三种基本颜色:RGB 混合在一起,产生色彩,但印刷品和漆品,通过 吸收一定波长的光,反射其它的光来形成色彩。
–分层曝光法:利用彩色胶片具有的三层乳剂,使每一 层乳剂依次曝光的方法。
加色法(一)
合成仪法:
将不同波段的黑白透明片 分别放入有红、绿、蓝滤 光片的光学投影通道中精 确配准和重叠,生成彩色 影像的方法。
加色法(二)
分层曝光法: 利用彩色胶片具有的三层 乳剂,使每一层乳剂依次 曝光的方法。 采用单通道投影仪或放大机, 每次放入一个波段的透明片, 依次使用红、绿、蓝滤光片, 分三次或更多次对胶片或相 纸曝光,使感红层、感绿层 和感蓝层依次曝光,最后冲 洗成彩色片。
–利用减色法原理使白光经过多种乳剂(染料或滤色片) 而放射或透射出来的合成彩色,主要有染印法、印刷 法、重氮法。
彩色负片和彩色正片生成过程示意图
4.1.2、光学增强处理
• 相关掩模处理方法:将几何位置完全配准的、具有不 同密度和不同反差的正片和负片(膜片),通过不同 叠加方案改变原有影像显示效果,以达信息增强的目 的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.图像空间增强
3.辐射增强处理:
4.光谱增强处理
六、非监督分类
1.图像分类简介(Introduction to classification)
2 非监督分类(Unsupervised Classification)
七、监督分类
1.定义分类模板(Define Signature Using signature Editor)
(1)图像格式 DLL——提供对多种图像格式文件无需转换的直接访问,从而提高易用性
和节省磁盘空间。支持的图像格式包括: IMAGINE、 GRID、LAN/G1S、 TIFF (GeoTIFF)、
GIF、JFIF(JPEG)、FIT和原始二进制格式。
IMAGINE Essentials、IMAGINE Advantage,IMAGINE Professional 的形式为用户提供了低、
中、高三档产品架构,并有丰富的功能扩展模块供用户选择,使产品模块的组合具有极大的
灵活性。
1.1 IMAGINE Essentials 级
是一个花费极少的,包括有制图和可视化核心功能的图像工具软件。借助 IMAGINE
·ERDAS IMAGINE 功能体系(Function System)
1. ERDAS IMAAGINE 软件概述(Introduction )
ERDAS IMAGINE 是美国 ERDAS 公司开发的专业遥感图像处理与地理信息系统软件。
(3)Developer's Toolkit 模块——ERDAS IMAGINE的 C 语言开发工具包,包含了几百个函
数,是 ERDAS IMAGINE 客户化的基础。
1.2 IMAGINE Advantage 级
是建立在 IMAGINE Essential 级基础之上的,增加了更丰富的栅格图像 GIS分析和单张
2、在程序菜单中选择ERDAS IMAGINE 8.4 启动
在程序菜单中选择ERDAS IMAGINE 8.4,ERDAS IMAGINE 开始启动运行, 图标面板(ICON
Panel)自动打开,并在你的屏幕上显示如下:
ERDAS IMAGINE的图标面板包括菜单条:Session, Main, Tools, Utilities, Help 和工具
边缘提取等功能:
(2)OrthoMAX 模块——全功能、高性能的数字航测软件,依据立体象对进行正射校正、
自动 DEM 提取、立体地形显示及浮动光标方式的 DEM 交互编辑等:
(3)OrthoBase 模块——区域数字摄影测量模块,用于航空影象的空三测量和正射校正:
ERDAS IMAGINE
(5)SterEOSAR DEM 模块——采用类似于立体测量的方法,从雷达图像数据中提取 DEM:
(6)IFSAR DEM 模块——采用干涉方法,以像对为基础从雷这图像数据中提取 DEM:
(7)ATCOR模块——用于大气因子校正和雾曦消除。
条两部分。
ERDAS IMAGINE的图标面板包括菜单条中的5项下拉菜单都由一系列命令或选择项组成,这些
命令及其功能如表1.1所示。
4
----------------------- Page 5-----------------------
2.评价分类模板(Evaluating Signatures )
3.执行监督分类(Perform Supervised Classification)
4.评价分类结果(Evaluate classification)
5.分类后处理(Post-Classification Process)
Help Menu:帮助菜单 启动关于图标面板的联机帮助,ERDAS IMAGINE 联机文
档查看、动态连接库浏览等
.
一.ERDAS Imagine 软件简介
1.ERDAS IMAAGINE 软件概述(Introduction )
2.在程序菜单中选择 ERDAS IMAGINE 8.4 启动
3.ERDAS IMAGINE 功能体系(Function System)
二、图像显示
----------------------- Page 2-----------------------
ERDAS IMAGINE
目 录
2
----------------------- Page 3-----------------------
ERDAS IMAGINE
----------------------- Page 1-----------------------
陕西师范大学旅游与环境学院
遥感图像处理练习
-----利用 ERDAS IMAGINE 软件
Session Menu:综合菜单 完成系统设置、面板布局、日志管理,启动命令工具、
批处理过程、实用功能、联机帮助等
Main Menu:主菜单 启动ERDAS图标面板中包括的所有功能模块
ERDAS IMAGINE
表 1.1 ERDASIMAGINE 图标面板菜单条
菜单命令 菜单功能
陕西师范大学旅游与环境学院
地理信息系统实验室
2003. 9. 10
- 1 -
1.图像显示视窗(Viewer)
2.图像显示
三、数据输入
1.单波段二进制图像数据输入
2.组合多波段数据
四、数据预处理
1.图象几何校正
2.图象拼接处理
3.图象分幅裁剪
五、图像增强处理
1.图像解译功能简介(Introduction of Image Interpreter)
(4)OrthoRadar 模块——可对 Radarsat,ERS 雷达图像进行地理编码,正射校正等处理
3
----------------------- Page 4-----------------------
ERDAS IMAGINE 是以模块化的方式提供给用户的,可使用户根据自己的应用要求、资
金情况合理地选择不同功能模块及其不同组合,对系统进行剪裁,充分利用软硬件资源,并
最大限度地满足用户的专业应用要求。
ERDAS IMAGINE 面向不同需求的用户,对于系统的扩展功能采用开放的体系结构,以
Tools Menu:工具菜单 完成文本编辑,矢量及栅格数据属性编辑,图形图像文
件坐标变换,注记及字体管理,三维动画制作
Utility Menu:实用菜单 完成多种栅格数据格式的设置与转换,图像的比较
航片下正射校工等强大功能的软件。IMAGINE Advantage 为用户提供了灵活可靠的用于栅
格分析、正射校正、地形编辑及图像拼接工具。简而言之,IMAGINE Advantage 是一个完整
的图像地理信息系统(Imaging G1S)。
可扩充模块:
(1)Radar模块——完成雷达图像的基本处理,包括亮度调整、斑点噪声消除、纹理分析、
Essentials 可以完成二维/三维显示、数据输入、排序与管理、地图配准、专题制图以及
简单的分析。可以集成使用多种数据类型,并在保持相同的易于使用和易于剪裁的界面下升
级到其它的 ERDAS 产品。
可扩充的模块:
(1)Vector模块——直接采用 GIS工业界领袖 ESRI 的ArcInfo 数据结构Coverage,可以建
立、显示、编辑和查询 Coverage,完成拓朴关系的建立和修改,实现及矢量图形和栅格图像
的双向转换等;
(2)Virtual GIS 模块——功能强大的三维可视化分析工具, 可以完成实时 3D 飞行模拟,
建立虚拟世界进行空间视域分析,矢量与栅格的三堆叠加,空间 GIS分析等;
(2)地形模型 DLL——提供新类型的校正和定标(calibration),从而支持基于传感器平
台的校正模型和用户剪栽的模型。这部分模型包括:Affine、 polynomial、 Rubber
sheeting、TM、SPOT、Single frame Camera 等。
一、ERDAS Imagine 软件简介

.实习目的:了解 ERDAS Imagine 软件模块构成、功能
.内 容:
·ERDAS IMAGINE 软件概述(Introduction)
·ERDAS IMAGINE 目标面板(Function System)
1.3 IMAGINE Professional 级
是面向从事复杂分析,需要最新和最全面处理工具,经验丰富的专业用户。
Professional 是功能完整丰富的图像地理信息系统。除了 Essentia1s 和Advantage 中包含
的功能以外,IMAG1NE Professional 还提供轻松易用的空间建模工具(使用简单的图形化
界面),高级的参数/非参数分类器,知识工程师和专家分类器,分类优化和精度评定,以
及雷达图像分析工具。
可扩充模块:
(1)Subpixel Classifier 模块—— 子象元分类器利用先进的算法对多光谱图像进行信
息提取,可达到提取混合象元中占 20%以上物质的目标;
1.4 IMAGINE动态连接库
ERDAS IMAGINE 中支持动态连接库(DLL)的体系结构。它支持目标共享技术和面向
目标的设计开发、提供一种无需对系统进行重新编译和连接而向系统加入新功能的手段,并
允许在特定的项目中裁剪这些扩充的功能。
动态连接库:
相关文档
最新文档