流体力学考试重点
流体力学复习要点
流体力学复习要点流体力学复习要点第一章绪论1.1流体的主要物理力学性质1、流体的主要物理力学性质包括哪几部分?2、水的密度为1000kg/m33、牛顿内摩擦定律4、牛顿内摩擦定律表明内摩擦力的大小与流体的角变形速率成正比5、流体的黏度,运动黏性系数与动力黏性系数的关系;液体的μ随温度的升高而减小,气体的μ随温度的升高而增大1.2作用在流体上的力1、按作用方式的不同分为:表面力和质量力2、单位质量力是作用在单位质量流体上的质量力1.3流体的力学模型1、常用的物理力学模型:连续介质模型、理想流体、不可压缩流体。
2、连续介质模型是指的流体是一种毫无空隙的充满其所占空间的连续体的假定。
流体质点指的是大小同一切流体空间相比微不足道,又含有大量分子具有一定质量的流体微元。
3、理想流体是指假定流体没有黏性4、不可压缩流体是指假定流体的密度是一个常数第一章流体静力学2.1静止流体中压强的特征1、静压强的定义2、静止流体中压强的特征:(1)静止流体只能承受压应力,压强的方向垂直指向作用面(受力面的内法线方向)(2)流体内同一点的静压强的大小在各个方向均相等2.2流体平衡微分方程1、等压面:压强相等的空间点构成的面2、对于仅受重力作用的联通的同一均质流体,等压面为水平面。
2.3重力作用下流体静压强的分布规律1、p z C gρ+= 当质量力仅为重力时,静止流体内部任一点的p z gρ+是常数 2、0p p g ρ=+h 3、压强的度量:相对压强、绝对压强、真空度。
4、静压强分布图的绘制2.4压强的测量一般采用仪器测得都是相对压强2.5流体的相对平衡1、等加速直线运动的流体的等压面:倾斜面2、等角速旋转运动的流体的等压面:旋转抛物面2.6液体作用在平面上的总压力1、解析法c F p A= c c c +D I y y y A=(注意一下:y D 代表的是什么) 2、图解法F=bS 2.6作用在曲面上的液体压力1、压力体的组成有3个面,分别是:2、压力体的绘制第二章流体运动理论与动力学基础3.1流体运动的描述方法欧拉法中加速度由两部分组成:位变加速度、时变加速度(或者说迁移加速度和当地加速度)3.2流场的基本概念(分类)1、按照运动要素是否随时间发生变化,分为:恒定流和非恒定流2、按照运动要素与坐标变量之间的关系分为:一元流、二元流和三元流。
(完整版)流体力学重点概念总结
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学 大学考试复习资料 知识点总结
第一章流体及流场的基本特性1、流体定义——受任何微小剪切力作用都会连续变形的物质。
2、流体的特性——流动性、连续性3、流体的主要物理性质【惯性:密度(单位体积流体内所具有的质量)、比容(单位质量的流体所占有的体积)、重度(单位体积的流体所具有的重量)、关系(流体的密度与比体积之间互为倒数)、密度影响因素(流体种类、温度、压力)】【压缩性(流体的体积随压力增大而缩小的性质)、膨胀性(流体的体积随温度升高而增大的性质)、不可压缩流体(当压力与温度变化时,体积变化不大,密度可以看作是常数的流体)】【粘性定义(流体流动时在流体层与层之间产生内摩擦力的特性)、影响因素(流体的种类、温度、压力)、粘度(动力黏度,运动黏度)、理想流体粘性】(理想流体——假想的没有黏性的流体、实际流体——自然界中存在的具有黏性的流体)(表面张力——液体自由表面存在的力、毛细现象——表面张力可以引起相当显著的液面上升或下降,形成上凸或下凹的曲面)4、水力要素(有效截面面积、湿周——有效截面上液体与固体壁接触线的长度、水力半径——有效截面面积与断面湿周的比值、当量直径——在非圆形的有效截面中,水力半径的四倍)(工程圆管——原因:1.在有效截面面积相等的条件下,湿周愈小,流体与管壁的接触线长度愈小,所引起的流动阻力损失也愈小。
2.节省材料.)5、运动要素(动压力——作用在运动液体内部单位面积上的压力、流速——该质点在空间中移动的速度、流量——单位时间内通过有效截面的流体数量、平均流速——假设在有效截面上的各点均以相同的假象速度流过时,通过的流量与实际力量相等,那么这个假想的流速为平均流速.)第二章流体静力学1、作用在流体上的力表面力:作用在流体表面上的力,与面积成正比。
(包括:压力、内摩擦力)质量力:作用在流体质点上的力,与质量成正比。
(包括:重力、惯性力、离心力)2、静压力概念:静压力(作用在质点上,流体力学)平均静压力(作用在面上,物理学)3、静压力特性:①静压力方向总是垂直并且指向作用面。
流体力学考试题库
流体力学考试题库第一题:静力学基础1. 结合静力学的基本原理,解释什么是平衡状态,并推导出平衡状态的条件。
2. 画一剖面图,标明各物体的重力以及各处支持力的方向,并利用物体的平衡条件求解未知力。
3. 在一个封闭的液体容器中,液体表面受到一个压强,推导出液体内各点的压力与深度的关系。
4. 一个高度为H的圆柱形液体容器,其上方有一个可以测量压力的装置,利用加权法求解液体的密度。
5. 两个连接在同一液体容器中的水池,在不同位置(水位高度不同)处测量液面的压力。
应用压强传递原理,计算出液体的密度。
第二题:运动学1. 从基本原理出发,推导出Bernoulli方程,并给出各项物理量的含义和单位。
2. 根据相似性原理和尺度分析,列出三个具有相似性质的物理量与尺度的比例关系,并解释它们在流体力学中的应用。
3. 分析绕流体柱的流体流动,推导出液体流动速度的分布公式,并根据该公式解释为什么流体分子在柱面上停留的时间较长。
4. 利用欧拉方程和伯努利方程,推导出Pitot静压管的原理,并解释为何可以利用Pitot静压管测量飞机的空速。
5. 画出流速与管道横截面半径的关系图,并解释为什么在管道中我们可以忽略黏性的影响。
第三题:动力学1. 从基本方程出发,推导出一维不可压缩稳态流体的动力学方程,并解释方程中各项的物理意义。
2. 两种流体在Y型管汇流处相遇,从基本方程出发,推导出经典的迎风相遇问题,并解释为什么会出现分离区域。
3. 利用雷诺运动方程推导出流体粘滞性的表达式,并解释为什么流体的粘滞性与流体速度呈正比。
4. 从基本方程出发,推导出涡量的守恒方程,并解释该方程对流体流动的意义。
5. 画出截面积与液体速度关系的曲线,并解释为什么在压缩过程中,液体的速度增大而密度增大。
总结:通过本次流体力学考试题库,我们对静力学、运动学和动力学等方面的理论和应用有了更深入的了解。
通过解答这些题目,我们巩固了对流体力学基本原理和公式的理解,并且学会了如何应用这些原理和公式解决实际问题。
《流体力学考》考点重点知识归纳(最全)
《流体力学考》考点重点知识归纳1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。
流体元可看做大量流体质点构成的微小单元。
2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律)(1)流体质点无线尺度,只做平移运动(2)流体质点不做随即热运动,只有在外力的作用下作宏观运动;(3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。
4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。
5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:6.牛顿流体:动力粘度为常数的流体称为牛顿流体。
7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。
液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。
、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。
8.温度对粘度的影响:温度对流体的粘度影响很大。
液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。
压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。
9.描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。
它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。
流体力学重点
1. 质量力是作用于每一流体质点(或微团)上的力。
最常见的质量力包括重力和惯性力。
2. 质量力的的大小通常以单位质量力f 来表示。
单位质量力在直角坐标系三个坐标方向上的投影分别以X 、Y 、Z 表示。
3. 表面力:表面力是作用在所考虑的流体表面上的力,且与流体的表面积大小成正比。
4. 流体的压缩性:流体受压,体积减小,密度增大的性质、称为流体的压缩性。
体积压缩系数为dpd dp dV V p 11 ,流体的体积弹性模量p E 1 5. 对于一般的液体平衡和运动问题,可按不可压缩流体处理。
6. 流体的热胀性:流体受热,体积增大,密度减小的性质,称为流体的热胀性。
体积热胀系数为dTdV V v 1 7.流体黏性:当流体内部的质点间或流层间发生相对运动时,产生切向阻力(摩擦力)抵抗其相对运动的特性,称为流体的黏性。
8.牛顿内摩擦定律:内摩擦力dydu A F ,单位面积上的内摩擦力称为称为切应力dy du ,dydu 法相速度梯度,两流体层的速度差比上两层之间的铅直距离 9.运动黏度u ,黏度与流体温度压强以及种类有关。
液体的黏度随温度升高而减小,气体的黏度随温度升高而增大。
10.流体的力学模型:方便列出流体运动规律的数学方程式。
连续介质模型:在研究流体宏观运动时,可以忽略分子间的间隙,而认为流体是连续介质。
不可压缩流体模型:液体,不可压缩流体;气体,可压缩流体。
理想流体模型第2章 流体静力学1.流体静压强基本特性:流体静压强的方向垂直指向受压面或沿作用面内的内法线方向;平衡流体中任意一点流体静压强的大小与作用面的方位无关,只与点的空间位置有关。
2.单位质量流体所受质量力在x 轴上投影xp X 1 流体平衡微分方程:)(),,(Zdz Ydy Xdx dz zp dy y p dx x p z y x dp dp , 3.等压面特性:①在平衡流体中,通过任意一点的等压面,必与该点所受的质量力相互垂直;②当两种互不相溶的液体处于平衡状态时,分界面必定是等压面。
流体力学考试题及答案
流体力学考试题及答案一、选择题(每题2分,共20分)1. 流体力学中,流体的基本假设是什么?A. 流体是不可压缩的B. 流体是完全弹性体C. 流体是完全塑性体D. 流体是连续介质答案:D2. 流体静力学中,压力的分布规律是什么?A. 与深度成正比B. 与深度成反比C. 与深度无关D. 与深度的平方成正比答案:A3. 流体的粘性是由什么决定的?A. 温度B. 压力C. 密度D. 以上都是答案:A4. 伯努利方程描述了什么?A. 流体的静压和动压关系B. 流体的压缩性C. 流体的粘性D. 流体的热力学性质答案:A5. 流体的雷诺数是用来描述什么的?A. 流体的密度B. 流体的粘性C. 流体的惯性力与粘性力的比值D. 流体的压缩性答案:C6. 什么是流体的不可压缩性条件?A. 密度不变B. 温度不变C. 压力不变D. 速度不变答案:A7. 流体的连续性方程描述了什么?A. 流体的动量守恒B. 流体的动能守恒C. 流体的质量守恒D. 流体的热能守恒答案:C8. 流体的湍流与层流的区别是什么?A. 湍流有粘性,层流没有B. 湍流是有序的流动,层流是无序的C. 湍流是无序的流动,层流是有序的D. 湍流和层流都是有序的流动答案:C9. 流体的边界层厚度与什么有关?A. 流体的密度B. 流体的速度C. 流体的粘性D. 流体的压缩性答案:C10. 什么是流体的临界雷诺数?A. 流体开始流动的雷诺数B. 流体从层流转变为湍流的雷诺数C. 流体达到最大速度的雷诺数D. 流体达到最大压力的雷诺数答案:B二、简答题(每题10分,共30分)1. 简述流体力学中的纳维-斯托克斯方程及其物理意义。
答案:纳维-斯托克斯方程是描述流体运动的基本方程,它将流体的动量守恒定律与流体的粘性联系起来。
方程表明,流体的加速度不仅与压力梯度有关,还与粘性力有关。
物理意义上,它描述了流体内部的动量传递过程。
2. 描述流体的粘性对流动的影响。
答案:流体的粘性对流动有显著影响。
《工程流体力学》考试大纲
《工程流体力学》考试大纲课程名称:工程流体力学适用专业:化工过程机械(学术硕士)、动力工程(专业硕士、化工过程机械方向)参考书目:《工程流体力学》,石油工业出版社,袁恩熙主编,2014(修订)考试内容要求一、流体及其主要物理性质1.1 HYPERLINK ""\o "流体的概念"\t "_blank"流体的概念1.2 HYPERLINK ""\o "流体的主要物理性质"\t "_blank"流体的主要物理性质1.3 HYPERLINK ""\o "作用在流体上的力"\t "_blank"作用在流体上的力二、流体静力学2.1 流体静压力及其特性2.2 流体平衡微分方程式2.3 HYPERLINK ""\o "重力作用下的流体平衡"\t "_blank"重力作用下的流体平衡2.4 HYPERLINK ""\o "几种质量力作用下的流体平衡"\t "_blank"几种质量力作用下的流体平衡2.5 静止流体作用在平面上的总压力2.6 静止流体作用在曲面上的总压力三、流体运动学与动力学基础3.1研究述流体运动的方法3.2流体流动的基本概念3.3 连续性方程3.4 HYPERLINK ""\o "理想流体运动微分方程及伯努利方程"\t"_blank"理想流体运动微分方程及伯努利方程3.5 HYPERLINK ""\o "实际流体总流的伯努利方程"\t "_blank"实际流体总流的伯努利方程3.6 HYPERLINK ""\o "稳定流的动量方程与动量矩方程"\t "_blank"稳定流的动量方程与动量矩方程四、流体阻力与水头损失4.1 HYPERLINK ""\o "管路中流动阻力产生的原因和分类"\t "_blank"管路中流动阻力产生的原因和分类4.2 HYPERLINK ""\o "两种流态及转化标准"\t "_blank"两种流态及转化标准4.3 HYPERLINK ""\o "实际流体运动微分方程式—NS方程"\t "_blank"实际流体运动微分方程式—NS方程4.4 HYPERLINK ""\o "因次分析和相似原理"\t "_blank"因次分析和相似原理4.5 HYPERLINK ""\o "圆管与平板层流"\t "_blank"圆管层流4.6 HYPERLINK ""\o "圆管湍流沿程水力摩阻的实验分析"\t "_blank"圆管湍流沿程水力摩阻的实验分析4.7 HYPERLINK ""\o "局部水力摩阻"\t "_blank"局部水力摩阻五、压力管路的水力计算5.1 HYPERLINK ""\o "管路特性曲线"\t "_blank"管路特性曲线5.2 HYPERLINK ""\o "长管的水力计算"\t "_blank"长管的水力计算5.3 HYPERLINK ""\o "短管的水力计算"\t "_blank"短管的水力计算5.4 HYPERLINK ""\o "孔口和管嘴泄流"\t "_blank"孔口和管嘴泄流六、一元不稳定流6.1 HYPERLINK ""\o "一元不稳定流基本方程"\t "_blank"一元不稳定流基本方程6.2 HYPERLINK ""\o "水击现象"\t "_blank"水击现象6.3 HYPERLINK ""\o "水击压力的计算"\t "_blank"水击压力的计算6.4 HYPERLINK ""\o "水击基本方程"\t "_blank"水击基本方程七、理想流体二元不可压缩流动7.1 HYPERLINK ""\o "流体微团运动的分析"\t "_blank"流体微团运动的分析7.2 HYPERLINK ""\o "平面势流"\t "_blank"平面势流7.3 HYPERLINK ""\o "势流的叠加原理"\t "_blank"势流的叠加原理7.4 HYPERLINK ""\o "绕流的升力和阻力"\t "_blank"绕流的升力和阻力。
流体力学考试重点
1流体质点.是很多个流体分子的集合体,在宏观上足够小微观上足够大,流体可以看作是一个个流体质点组成的。
2动力粘度.由牛顿粘性定律,流体的内摩擦切应力与速度梯度成正比,其比例系数就是表征流体黏性特点的系数,称为动力粘度。
3运动粘度.动力粘度和密度的比值。
4质量力.即体积力,作用在所研究的流体质点中心,与质量成正比,包括重力和惯性力5流线.是速度场的矢量线,他是表示某一确定时刻流体各点流动趋势的曲线,该曲线上任意质点在该时刻的速度矢量与曲线相切。
6紊流.流体各层或各微小流束上的质点形成涡体彼此混掺,从每个质点的运动轨迹看都是曲折错综的没有确定规律的流动。
.7层流.流体质点无横向脉动,质点互不混杂、层次分明、稳定的流动状态。
8水力粗糙管.如果紊流中层流层的厚度小于管道的绝对粗糙度称之为水力粗糙管。
9急变流.流线之间的夹角很大或流线的曲率半径很小的流动10水力长管.管道的沿程损失远远大于管道的局部损失和速度水头的管道。
11沿程损失.由沿程阻力造成流体流动过程中的能量损失12真空度.真空度是绝对压强不足一个大气压的不足部分,其值不能为负。
13连续介质.假定流体是由无穷多个、无穷小的紧密毗连连绵不断的流体质点组成的绝无间隙的流体介质。
14定常流动.如果流场空间任意一点所描述流体质点的运动参数仅仅是坐标的函数而与时间无15黏温特性.流体的粘度随温度的变化而变化的性质。
液体的粘度随温度的上升而减小。
16流体的粘性.物体运动时其内部质点沿接触面相对运动产生内摩擦力以抗组流体变形的性质17雷诺数.是由流速管径动力粘度和流体密度归结的一个无因次数,作为判别流动状态的准则18缓变流断面.在该过流断面上,经过各质点的流线接近于直线,流线的曲率半径很大,各质点的直线加速度和向心加速度均很小,断面的压力分布规律符合重力场流体静力学基本规律。
19水力半径.过流断面面积除以湿周称为水力半径20相对压强.又称表压,以大气压为基准测得的液体的压强。
《流体力学考》考点重点知识归纳(最全)
《流体力学考》考点重点知识归纳1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。
流体元可看做大量流体质点构成的微小单元。
2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律)(1)流体质点无线尺度,只做平移运动(2)流体质点不做随即热运动,只有在外力的作用下作宏观运动;(3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。
4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。
5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:6.牛顿流体:动力粘度为常数的流体称为牛顿流体。
7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。
液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。
、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。
8.温度对粘度的影响:温度对流体的粘度影响很大。
液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。
压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。
9.描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。
它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。
流体力学考试复习资料考点
一、流体力学及其研究对象流体:液体和气体的总称。
流体力学:是研究流体的科学,即根据理论力学的普遍原理,借助大量的实际资料,运用数学和实验方法来研究流体的平衡和运动规律及其实际应用的一门科学。
流体力学研究的对象:液体和气体流二、流体的力学特性1、流体与固体的区别主要在于受剪应力后的表现有很大的差异。
固体--能承受剪应力、压应力、张应力,没有流动性。
流体--只能承受压应力,不能承受拉力和剪力,否则就会变形流动,即流体具有流动性。
2、液体与气体的主要差别在于受压后的表现上的差异。
液体:受压后体积变化很小,常称不可压缩流体;液体的形状随容器的形状而变,但其体积不变。
气体:受压后体积变化很大,常称可压缩流体;气体的形状和体积都随容器而变。
注:气体的体积变化小于原体积的20%时,可近似看作不可压缩流体。
1.1.1流体的密度1、流体密度的定义及计算定义:单位体积流体的质量,以ρ表示,单位为kg/m3(1)均质流体:标态(2)混合流体:混合气体:混合液体:2、流体的密度与温度、压力的关系(1)液体:工程上,液体的密度看作与温度、压力无关。
(2)气体:与温度和压力有关。
理想气体:或工业窑炉:P=P0分析:t↑ρ↓;t↓ρ↑1.1.2流体的连续性流体的连续性:流体看成是由大量的一个一个的连续近质点组成的连续的介质,每个质点是一个含有大量分子的集团,质点之间没有空隙。
质点尺寸:大于分子平均自由程的100倍。
连续性假设带来的方便:(1)它使我们不考虑复杂的微观分子运动,只考虑在外力作用下的宏观机械运动。
(2)能运用数学分析的连续函数工具。
【例题】已知烟气的体积组成百分组成为:H2O12%,CO218%,N270%,求此烟气标态在及200℃的密度。
【解】200℃时的烟气密度:【例题】将密度为1600㎏/m3糖浆按1:1的质量比用清水稀释,求稀释后糖浆溶液的密度。
【解】按题意,糖浆和水各占50%,据公式:1.1.3流体的压缩性和膨胀性1.1.3.1流体的压缩性1、压缩性的定义流体在外力作用下改变自身容积的特性。
《流体力学》各章节复习要点
《流体力学》各章节复习要点第一章:流体力学基本概念1.流体力学的研究对象是流体运动的性质、规律和力学行为。
2.流体和固体的区别,流体的分类和性质。
3.流体的基本力学性质,包括压强、密度和粘度等。
4.流体的运动描述,包括质点、流线、流管和速度场等概念。
5.流体的变形和应力,包括剪切应力、正应力、黏性和流变性等。
第二章:流体静力学1.流体静压力的基本特征,流体静力学方程和压强的传递规律。
2.流体的浮力,浸没体和浮力的计算方法。
3.子液面、大气压和液体柱的压强和压力计的应用。
4.流体的液面,压强分布和压力容器。
第三章:流体动力学基本方程1.流体运动描述的方法,包括拉格朗日方法和欧拉方法。
2.质点、质点流函数和速度场等的关系。
3.流体的基本方程,包括连续性方程、动量方程和能量方程。
4.流体的不可压缩性和可压缩性假设。
第四章:定常流动和流动的形态1.定常流动和非定常流动的概念和特点。
2.流体流动的形态,包括层流和紊流。
3.流体的压强分布和速度分布。
4.流体的速度分布和速度云。
第五章:流体的动能和势能1.流体的动能、动能方程和功率。
2.流体的势能、势能方程和能率。
3.流体的势能和扬程。
第六章:粘性流体力学基本方程1.粘性流体的三个基本性质,包括黏性、切变应力和流变规律。
2.线性流体的黏性流动,包括牛顿黏性流体模型和黏性损失。
3.非线性流体的黏性流动,包括非牛顿流体和粘弹性流体。
第七章:边界层流动1.边界层的概念和特点。
2.压强分布和速度分布的边界层。
3.边界层和物体间的摩擦阻力。
第八章:维持边界层流动的力1.维持边界层流动的作用力,包括压力梯度、粘性力和凸面力。
2.维持边界层流动的条件和影响因素。
第九章:相似定律和模型试验1.流体力学中的相似原理和相似定律。
2.物理模型和模型试验的概念和应用。
第十章:流体力学的应用1.流体力学在水利工程中的应用,包括水力学、河流动力学和波动力学等。
2.流体力学在能源领域中的应用,包括风力发电和水力发电等。
流体力学考试复习资料
一、填 空 题1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。
2.在现实生活中可视为牛顿流体的有水 和空气 等。
3.流体静压力和流体静压强都是压力的一种量度。
它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。
4.均匀流过流断面上压强分布服从于水静力学规律。
5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。
6.空气在温度为290K ,压强为760mmHg 时的密度和容重分别为 1.2a ρ= kg/m 3和11.77a γ=N/m 3。
7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。
8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示9.1工程大气压等于98.07千帕,等于10m 水柱高,等于735.6毫米汞柱高。
10.静止流体任一边界上压强的变化,将等值地传到其他各点(只要静止不被破坏),这就是水静压强等值传递的帕斯卡定律。
11.流体静压强的方向必然是沿着作用面的内法线方向。
12.液体静压强分布规律只适用于静止、同种、连续液体。
13.静止非均质流体的水平面是等压面,等密面和等温面。
14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。
15.在微压计测量气体压强时,其倾角为︒=30α,测得20l =cm 则h=10cm 。
16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。
17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。
18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。
19.静压、动压和位压之和以z p 表示,称为总压。
20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。
流体力学考试复习资料
第二讲流体动力学基础【内容提要】流体运动的基本概念:恒定总流的连续性方程,恒定总流的能量方程【重点、难点】恒定总流的连续性方程和能量方程的运用。
【内容讲解】一、流体运动的基本概念(一)流线和迹线流线是在流场中画出的这样一条曲线:同一瞬时,线上各流体质点的速度矢量都与该曲线相切,这条曲线就称为该瞬时的一条流线。
由它确定该瞬时不同流体质点的流速方向。
流线的特征是在同一瞬时的不同流线一般情况下不能相交;流线也不能转折,只能是光滑的曲线。
迹线是某一流体质点在一段时间内运动的轨迹,迹线上各点的切线表示同一质点在不同时刻的速度方向。
(二)元流和总流在流场中任取一微小封闭曲线,通过曲线上的每一点均可作出一根流线,这些流线形成一管状封闭曲面称流管。
由于速度与流线相切,所以穿过流管侧表面的流体流动是不可能的。
这就是说位于流管中的流体有如被刚性的薄壁所限制。
流管中的液(气)流就是元流,元流的极限是一条流线。
总流是无限多元流的总和。
因此,在分析总流前,先分析元流流动,再将元流积分就可推广到总流。
与元流或总流的流线相垂直的截面称过流断面,用符号A表示其断面面积。
在流线平行时,过流断面为平面,流线不平行则过流断面为曲面。
(三)流量和断面平均流速(四)流动分类1.按流动是否随时间变化将流动分为恒定流和非恒定流。
若所有的运动要素(流速、压强等)均不随时间而改变称为恒定流。
反之,则为非恒定流。
恒定流中流线不随时间改变;流线与迹线相重合。
在本节中,我们只讨论恒定流。
2.按流动是否随空间变化将流动分为均匀流和非均匀流。
流线为平行直线的流动称为均匀流。
如等直径长管中的水流,其任一点的流速的大小和方向沿流线不变。
反之,流线不相平行或不是直线的流动称为非均匀流。
即任一点流速的大小或方向沿流线有变化。
在非均匀流中,当流线接近于平行直线,即各流线的曲率很小,而且流线间的夹角也很小的流动称为渐变流。
否则,就称为急变流。
渐变流和急变流没有明确的界限,往往由工程需要的精度来决定。
流体力学期末复习重点
第1章 绪论
二、 基本公式 流体的体积压缩率
δV V k δp
流体的体积模量
1 δp K k δV V
第1章 绪论
二、基本公式 体膨胀系数
δV V v δT
牛顿粘性应力公式
运动粘度
dvx dy
第2章 流体静力学
一、基本概念 正压流体 绝对压强 计示压强 真空 等压面 等势面 流体的相对平衡 流体的压力中心 浮力
二、基本公式 1 2 声速 c d
d p
完全气体的声速
马赫数 速度系数
c RT
v Ma c
v M ccr
第7章 流体运动学和动力学基础
一、基本概念 有旋流动 无旋流动 涡线 涡管 涡束 涡通量 速度环量 斯托克斯定理 汤姆孙定理 亥姆霍兹第一定理 亥姆霍兹第二定理(涡管守恒定理) 亥姆霍兹第三定理(涡管强度守恒定理) 速度势 有势流动 流函数 流网
2 1 2 2 2 1 2 2
第4章 相似原理和量纲分析
一、基本概念 流体力学相似 几何相似 运动相似 动力相似 牛顿数Ne 牛顿(动力)相似准则 弗劳德数Fr 重力相似准则 雷诺数Re 粘滞力相似准则 欧拉数Eu 压力相似准则
第4章 相似原理和量纲分析
一、基本概念 柯西数Ca 弹性力相似准则 量纲 基本量纲 导出量纲 无量纲量 物理方程的量纲一致性原则
pe p pa gh
第2章 流体静力学
二、基本公式 静止液体作用在平面上的总压力
总压力的大小
FP dFP ghc A
A
总压力的作用点
xD xC ICy xC A
流体力学常考知识点
1.粘滞性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质。
牛顿内摩擦定律:流体的内摩擦力大小与流体性质有关,与流体速度变化梯度和接触面积成正比。
非牛顿流体。
2.液体的动力粘滞系数随温度升高而减小,气体的动力粘滞系数随温度升高而增大。
通常的压强对流体的动力粘滞系数影响不大,高压下流体的动力粘滞系数随压强的升高而增大。
3.连续介质:将流体认为是充满其所占据空间无任何空隙的质点所组成的连续体。
无黏性流体:不考虑黏性作用的流体。
不可压缩流体:不计压缩性和热膨胀性对流体物理性质简化。
4.理想流体:不考虑黏性作用的流体。
5.实际流体:考虑黏性流体作用的实际流体。
6.流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线。
7.由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。
8.在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。
满足等压面的三个条件是同种液体连续液体静止液体。
9.阿基米德原理:无论是潜体或浮体的压力体均为物体的体积,也就是物体排开液体的体积。
10.重力大于浮力,物体下沉至底。
重力等于浮力,物体在任一水深维持平衡。
重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。
11.(1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。
12.绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。
相对压强:当地同高程的大气压强ap为零点起算的压强。
压力表的度数是相对压强,通常说的也是相对压强。
1atm=101325pa=10.33mH2O=760mmHg.13.和大气相通的表面叫自由表面。
14.流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。
区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。
流体力学知识点及考核要求
流体力学期末复习第一章绪论基本知识点:1.连续介质的概念。
2.流体的主要物理力学性质—实际流体模型:实际流体是由质点组成的连续体,具有易流动性、粘滞性、不可压缩性、不计表面张力的性质。
3.牛顿内摩擦定律。
4.理想流体模型:不考虑粘滞性。
5.物理量的基本量纲,M、L、T6.作用在液体上的力:质量力、表面力。
考核要求:1.理解连续介质和理想流体的概念及其在流体力学研究中的意义。
2.理解流体的主要物理力学性质,重点掌握流体粘滞性、牛顿内摩擦定律及其适用条件。
3.掌握物理量的基本量纲、基本单位及导出量的单位。
4.理解质量力、表面力的定义,掌握其表示方法。
如判断某说法的对错:流体的质量力是作用在所考虑的流体表面上的力。
单位质量力X、Y、Z第二章流体静力学基本知识点:1.静压强及其两个特性,等压面概念。
2.静压强基本公式及其物理意义。
3.相对压强、绝对压强、真空压强的概念。
4.测压管水头的概念。
—位能(位置水头)—压能(压强水头、测压管高度)—总势能(测压管水头)5.点压强的计算。
①找已知点压强、②找等压面、③利用静压强基本方程推求点压强6.相对静压强分布图的绘制。
7.作用于平面上静水总压力的计算。
(1)解析法静水总压力的大小:静水总压力的作用点:(2)(图解法)8.作用在曲面上静水总压力的计算。
水平方向的分力:铅垂方向的分力:总压力:总压力作用线(与水平面的夹角)9.压力体图。
考核要求:1.理解静压强的两个特性和等压面的概念。
如判断某说法的对错:静止的液体和气体接触的自由面,它既是等压面,也是水平面。
2.掌握静压强基本公式,理解该公式表达的物理意义。
3.理解绝对压强和相对压强,以及绝对压强、相对压强、真空压强之间的相互关系,理解位置水头、压强水头、测压管水头的概念。
4.掌握点压强的计算。
5.掌握静压强(相对压强)分布图的绘制。
6.掌握作用在矩形平面上静水总压力的计算,包括图解法和解析法。
7.掌握压力体图的绘制和作用在曲面上的静水总压力的计算方法。
流体力学简答题(知识要点)
流体力学简答题(知识要点)为什么圆管进口段靠近管壁的流速逐渐减小?而中心点的流速是逐渐增大的?进口附近断面上的流速分布较均匀,流速梯度主要表现在管壁处,故近壁处切应力很大,流动所受的阻力也很大,至使流速渐减。
管中心处流速梯度很小,t小,阻力很小,使流速增大。
直至形成一定的流速梯度及切应力,使各部分流体的能耗与能量补充平衡。
紊流研究中为什么要引入时均概念?紊流时,恒定流与非恒定流如何定义?把紊流运动要素时均化后,紊流运动就简化为没有脉动的时均流动,可对时均流动和脉冲分别加以研究。
紊流中只要时均化的要素不随时间变化而变化的流动,就称恒定流。
紊流的切应力有哪两种形式?它们各与哪些因素有关?各主要作用在哪些部位?粘性切应力主要与流体粘度和液层间的密度梯度有关。
主要在近壁处。
附加切应力主要与流体的脉动程度和流体的密度有关,主要作用在紊流核心出脉动程度较大地方。
紊流中为什么存在粘性底层?其厚度与哪些因素有关?其厚度对紊流分析有何意义?紊流时断面上流层的分区和流态分区有何区别?粘性底层,紊流核心:粘性、流速分布与梯度;层流、紊流:雷诺数紊流为什么存在粘性底层?其厚度与哪些因素有关,其厚度对紊流分析有何意义?在近壁处,因液体质点受到壁面的限制,不能产生横向运动,没有混掺现象,流速梯度du/dy很大,粘滞切应力t仍然起主要作用。
粘性底层很薄,但对能量损失很大。
圆管紊流的流速如何分布?粘性底层:线性分布,紊流核心处:对数或指数管径突变的管道,当其他条件相同时,若改变流向,在突变处所产生的局部水头损失是否相等?为什么?不等,固体边界不同,如突扩与突缩局部阻力系数与哪些因素有关?选用时应该注意什么?固体边界的突变情况、流速;局部阻力系数应与所选取的流速相对应。
如何减小局部水头损失?让固体边界趋于流线型边界层内是否一定是层流?影响边界层内流态的主要因素有哪些?否,有层流、紊流边界层;粘性、流速、距离边界层分离是如何形成的?如何减小尾流的区域?因压强沿流动方向增高,以及阻力的存在,使得边界层内动量减小,形成边界层的分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1流体:能够流动的物质叫流体在任何微小的剪切力的作用下都能够发生连续变形
的物质称为流体。
包括---气体、液体。
2连续介质模型:将流体作为由无穷多稠密、没有间隙的流体质点构成的连续介质。
3流体质点:包含有足够多流体分子的微团,在宏观上流体微团的尺度和流动所涉及的
物体的特征长度相比充分的小,小到在数学上可以作为一个点来处理。
而在微观上,微团的尺度和分子的平均自由行程相比又要足够大。
4密度(density):单位体积内流体所具有的质量,表征流体在空间的密集程度。
5比重(specific weight):单位体积流体的重量
6流体的压缩性(compressibility)在一定的温度下,单位压强增量引起的体积变化率定义为流体的压缩性系数,其值越大,流体越容易压缩,反之,不容易压缩
体积弹性模量其值越大,流体越不容易压缩,反之,就容易压缩。
7流体的膨胀性(expansibility) 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用温度膨胀系数来表示。
8可压缩性:流体体积随压力和温度的改变而发生变化的性质。
气体和液体都是可压缩的,通常将气体时为可压缩流体,液体视为不可压缩流体。
水下爆炸:水也要视为可压缩流体;当气体流速比较低时也可以视为不可压缩流体。
9流体的粘性流体流动时产生内摩擦力的性质程为流体的黏性。
10牛顿粘性定律指出:粘性切应力由相邻两层流体之间的速度梯度决定,而不是由速度决定.粘性切应力由流体元的角变形速率决定,而不是由变形量决定. 流体粘性只能影响流动的快慢,却不能停止流动。
11粘度一般仅随温度变化,液体温度升高粘度增大,气体温度升高粘度减小。
12实际流体(粘性流体)具有粘性的流体(μ≠0)
13理想流体假想没有黏性的流体(μ=0)
14牛顿流体: 剪应力和变形速率满足线性关系。
图中A所示。
15非牛顿流体:剪切应力和变形速率之间不满足线性关系的流体
16表面张力σ(N/m) 液体表面由于分子引力大于斥力而在表层沿表面方向产生的拉力, 单位长度上的这种拉力称为表面张力。
17表面力:外界通过接触传递的力,用应力来表示。
18质量力(体积力):质量力是某种力场作用在全部流体质点上的力,其大小和流体的
质量或体积成正比,故称为质量力或体积力。
19流体静压强的两个特性
特性一:流体静压强的作用方向沿作用面的内法线方向。
特性二:静压强与作用面在空间的方位无关,只是坐标点的连续可微函数。
20欧拉平衡微分方程
即流体在平衡条件下,质量力与表面力所满足的关系式。
根据流体平衡的充要条件,静止流体受的所有力在各个坐标轴方向的投影和都为零。
意义:在静止流体内的任一点上,作用在单位质量流体上的质量力与静压强的合力相平衡。
21绝对压强:以完全真空为基准计量的压强
22计示压强:以当地大气压强为基准计量的压强
23真空:当被测流体的绝对压强低于大气压强时,测得的计示压强为负值,此时,流体
处于真空状态
24迹线——流体质点的运动轨迹线。
属拉格朗日法的研究内容。
25流线——速度场的矢量线。
26迹线和流线的差别:
迹线是同一流体质点在不同时刻的位移曲线,与Lagrange观点对应;
流线是同一时刻、不同流体质点速度向量的包络线,与Euler观点对应。
27流管——在流场中作一不是流线的封闭周线C,过该周线上的所有流线组成的管状表
面。
28流束——充满流管的一束流体。
29微元流束——截面积无穷小的流束。
微元流束的极限是流线。
30总流——截面积有限大的流束。
如河流、水渠、水管中的水流及风管中的气流都是总
流。
31缓变流——流束内流线的夹角很小、流线的曲率半径很大,近乎平行直线的流动。
否则即为急变流。
32流体在直管道内的流动为缓变流,在管道截面积变化剧烈、流动方向发生改变的地方,如突扩管、突缩管、弯管、阀门等处的流动为急变流。
33有效截面——在流束或者总流中,与所有流线都垂直的截面。
34流量——在单位时间内流过有效截面积的流体的量。
35湿周——在总流的有效截面上,流体与固体壁面的接触长度。
36水力半径——总流的有效截面积A和湿周之比
37. 系统(system)——由确定的流体质点组成的流体团,流体体积V(t)。
系统边界面S(t)在流体的运动过程中不断发生变化。
38控制体(control volume)——相对于坐标系固定不变的空间体积V 。
是为了研究问题
方便而取定的。
边界面S 称为控制面。
39输运公式的具体含义:
任一瞬时系统内物理量N (如质量、动量和能量等)随时间的变化率等于该瞬时其控制体内物理量的变化率与通过控制体表面的净通量之和。
40能量守恒定律:流体系统中能量随时间的变化率等于作用于控制体上的表面力、系统内流体受到的质量力对系统内流体所作的功和外界与系统交换的热量之和。
41努利方程的适用条件:理想不可压缩的重力流体作一维定常流动时的一条流线或者一个微元流管上。
42方程的物理意义:理想不可压缩的重力流体作一维定常流动时,在同一流线的不同点上或者同一微元流束的不同截面上,单位重量流体的动能、位置势能和压强势能之和等于常数。
43方程的几何意义:理想不可压缩的重力流体作一维定常流动时,沿任意流线或者微元流束,单位重量流体的速度水头、位置水头、压强水头之和为常数,即总水头线为平行于基准面的水平线。
1 Strouhal 相似准数Sr=l/vt
表示时变惯性力和位变惯性力之比,反映了流体运动随时间变化的情况
2 Froude 相似准数Fr=v2/gl
表示惯性力和重力之比,反映了流体流动中重力所起的影响程度
3 Euler 相似准数Eu=p/ v2
表示压力和惯性力的比值
4 Renolds 相似准数Re=vl/ = vl/
表示惯性力和粘性力之比
5 Mach 相似准数Ma=v/c
表示弹性力和惯性力之比,c为声速,反映了流动的压缩程度
Weber相似准数
表示弹性力和表面张力之比
44相似流动必然满足以下条件:1.任何相似的流动都是属于同一类的流动,相似流场对应点上的各种物理量,都应为相同的微分方程所描述;
2.相似流场对应点上的各种物理量都有唯一确定的解,即流动满足单值条件;
3.由单值条件中的物理量所确定的相似准则数相等是流动相似也必须满足的条件。
45模型实验主要解决的问题:1.根据物理量所组成的相似准则数相等的原则去设计模型,选择流动介质;
2.在实验过程中应测定各相似准则数中包含的一切物理量;
3.用数学方法找出相似准则数之间的函数关系,即准则方程式。
该方程式便可推广应用到原型及其他相似流动中去。
46在工程实际中的模型试验,好多只能满足部分相似准则,即称之为局部相似。
47量纲即物理量的单位种类,又称因次
基本量纲是具有独立性的量纲,在流体力学领域中有三个基本量纲:长度量纲L 时间量纲T 质量量纲M
48量纲一致性原则:量纲和谐性原理又被称为量纲一致性原理,也叫量纲齐次性原理,指一个物理现象或一个物理过程用一个物理方程表示时,方程中每项的量纲应该是和谐的、一致的、齐次的。
49沿程损失:发生在缓变流整个流程中的能量损失,是由流体的粘滞力造成的损失。
50局部损失:发生在流动状态急剧变化的急变流中,流体质点间产生剧烈的能量交换而产生损失。
机理: 速度分布变化附加摩擦碰撞漩涡
管壁粗糙凸出部分的平均高度叫做管壁的绝对粗糙度(ε),ε/d 称为相对粗糙度。
51水击现象:以一定压强流动的水由于受阻流速突然降低,压强突然升高。
突然升高的压强迅速向上游传播,并在一定条件下反射回来,产生往复波动而引起管道振动,甚至形成轰轰的振动声。