模糊聚类分析
模糊聚类分析
模糊聚类分析模糊聚类分析,也被称为模糊聚类或者软聚类,是一种数据分析的方法。
与传统的硬聚类不同,模糊聚类可以将每个观测对象划分到不同的聚类中心,从而更好地反映对象与聚类中心之间的相似性。
模糊聚类的思想源于模糊集理论,该理论引入了概率的概念,使得划定边界变得模糊化。
在传统的硬聚类方法中,每个对象只能属于一个聚类,而在模糊聚类中,每个对象的隶属度被划分为一个实数,表示对象属于每个聚类的程度。
模糊聚类的基本原理是通过最小化目标函数来优化聚类结果。
常见的目标函数包括模糊熵和模糊轮廓系数。
模糊熵用于衡量聚类的混乱程度,值越小表示聚类更好。
模糊轮廓系数则用于评价每个对象的聚类紧密度和分离度,系数范围为[-1, 1],越接近1表示聚类结果越好。
模糊聚类的算法有多种,其中最常用的是模糊C均值(FCM)算法。
FCM算法首先随机初始化聚类中心,然后迭代更新对象的隶属度和聚类中心,直到满足终止条件。
在更新过程中,对象的隶属度和聚类中心根据距离度量进行调整。
模糊聚类在各个应用领域都有广泛的应用。
例如,在市场细分中,模糊聚类可以根据消费者的购买偏好将其划分为不同的细分市场,有助于制定更准确的营销策略。
在医学影像分析中,模糊聚类可以帮助医生根据患者的病情将其归类为不同的疾病类型,有助于做出更准确的诊断。
当然,模糊聚类也存在一些问题和挑战。
首先,模糊聚类的计算复杂度高,特别是在处理大规模数据时。
其次,模糊聚类对初始参数的敏感性较高,不同的初始化可能导致不同的聚类结果。
此外,模糊聚类的结果通常难以解释和理解,需要结合领域知识进行进一步分析。
为了克服这些问题,研究者们一直在不断改进模糊聚类算法。
例如,一些研究探索了基于深度学习的模糊聚类方法,利用神经网络来提高聚类的准确性和效率。
此外,还有一些研究致力于开发新的目标函数和距离度量方法,以更好地满足实际问题的需求。
综上所述,模糊聚类是一种基于模糊集理论的数据分析方法,可以更好地刻画对象之间的相似性。
模糊聚类的分析
模糊聚类的分析模糊聚类分析是一种在统计分析领域中的方法。
它的主要思想是将客观数据更好地分类和分析。
模糊聚类是一种简单的数据挖掘技术,它可以从客观数据中挖掘出有价值的信息,以帮助我们分析和探索数据。
模糊聚类分析的本质是根据相似度度量算法来确定数据点之间的相似性,并将它们聚类为一个或多个类别。
它可以用于更好地加深对数据挖掘结果的理解,分析和发现数据中的结构和关系。
模糊聚类的优点1、可以更好地发现数据挖掘的结果和有价值的信息。
2、可以用于分析和发现客观数据中的结构和关系。
3、可以很好地分析大数据集。
4、可以使数据分类更有效率。
模糊聚类的应用1、金融领域:模糊聚类可用于金融分析,如风险识别、客户分析、金融监管等,可以显著提高对金融市场的了解,并帮助金融市场制定更有效的策略。
2、医学领域:模糊聚类可以更好地理解大量的临床资料,并为医生提供更有效的诊断建议。
它还可以应用于医疗和病理图像分析,以有效管理和指导患者的治疗过程。
3、气象领域:模糊聚类可以有效地识别气象 sensor卫星数据中的关键结构和特征,并用于气象研究和气象预报中。
4、人工智能:模糊聚类可以作为机器学习算法的基础,用于建模不同环境和情景。
它还可以用于自然语言处理,提供更有意义的信息,例如情感分析。
模糊聚类的局限性1、模糊聚类的结果很大程度上取决于人为干预,且模糊聚类的结果可能会受到相似度测量的影响,这可能会导致结果的不稳定性。
2、除此之外,由于模糊聚类是基于数据预处理后的假设来实施的,所以对数据预处理的要求较高,对数据准备质量和格式有较高的要求,这也是模糊聚类的一大局限性。
模糊聚类的发展前景模糊聚类分析技术在各个领域的应用及其发展前景均越来越广泛。
模糊聚类技术在人工智能、机器学习、大数据和自动化领域等方面都有广泛的应用,而且随着 AI 、Bigdata术的发展,模糊聚类在预测建模、数据挖掘和自然语言处理等方面也都有了重要的应用。
此外,模糊聚类技术还可以应用于声学识别、计算机视觉和实时处理等领域,进一步拓展模糊聚类技术的应用前景。
模糊聚类的分析
模糊聚类的分析
模糊聚类是一种聚类分析的算法,它采用模糊的方法将数据点归类到不同的类别中,以减少聚类的误差。
模糊聚类是机器学习领域的一种流行的算法,它利用每个数据点的模糊属性来衡量其分布在不同类别中的相似度,使得它能够更加准确的进行聚类分析。
模糊聚类的基本原理是把数据点归类到不同的类别中,每个类别都有一系列模糊属性,每个数据点在不同类别中的分布由它们在每个属性上的值来决定。
模糊聚类的最终目标是找到类别与数据点之间的最佳拟合,从而得到最佳聚类结果。
模糊聚类的实现是通过计算每个数据点与每个类别的模糊相似
度来完成的,模糊相似度是基于数据点和每个类别的模糊属性,通过计算每个数据点与每个类别的模糊相似度,可以找到一个最佳的类别,把每个数据点归入该类别,这样就可以得到最优聚类结果。
模糊聚类方法可以用来解决多维数据集聚类分析的问题,它能够更准确的表示多维数据的特征,这使得它能够更准确的对数据进行聚类分析。
此外,模糊聚类方法还能够处理非均匀分布的数据,它能够有效的处理因类别数量和混乱的环境而难以聚类的数据。
模糊聚类的缺点主要在于它的计算速度较慢,因为它需要计算每个数据点与每个类别的模糊相似度,而这需要大量的计算,模糊聚类也无法用于对超大型数据集进行聚类分析,因为它的计算效率较低。
因此,模糊聚类是一种聚类分析算法,它利用模糊性来更准确的表示数据的特征,能够有效的处理多维和复杂的数据。
但是它的计算
效率较低,也不能用于对超大型数据集进行聚类分析,因此,在使用模糊聚类进行聚类分析时,需要考虑其效率和应用限制。
模糊聚类分析
1 2 m
x11 x21 xm1
x12 x22 xm 2
x1n x2 n xmn
2 .模糊聚类分析的一般步骤
实际问题中,不同的数据可能有不同的量 纲。为了使不同量纲的数据也能进行比较,需 要对数据进行适当的变换。根据模糊矩阵的要 求将数据压缩到区间 【0,1】。通常使用平移极差标准化: xik min{xik } 1im xik (k 1,2,, n) max{xik } min{xik }
取=0.8,得 :
~ R0.8 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
X分为4类:{X1,,X3},{X2},{X4 }, { X5 }。
2 .模糊聚类分析的一般步骤
取=0.5,得 :
~ R0.5 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1
3 .应用实例
通过聚类分析,该矿决定在房柱法的基础 上增加采矿费用的投入,采用无底柱上向干式 充填采矿法。
谢
谢!
模糊聚类分析步骤可以分为:数据标准化、建立 模糊相似矩阵、聚类
2 .模糊聚类分析的一般步骤
2.1 数据标准化 设论域 X {x , x ,, x } 为被分类的对象,每个对像 又由n个指标表示其性状,即:xi (xi1, xi2 ,, xin ) (i 1,2,, m) 于是,得到原始数据矩阵为:
rij
m in (x
k 1
n
ik
, x jk )
1 2
(x
k 1
n
ik
模糊聚类分析
模糊聚类分析是根据客观事物的特征、亲和度和相似度建立模糊相似关系,对客观事物进行聚类的一种分析方法。
当涉及到事物之间的模糊边界时,根据一定的要求对事物进行分类的一种数学方法。
聚类分析是数理统计中的一种多元分析方法,它利用数学方法定量地确定样本之间的亲和力,从而客观地对类型进行分类。
一些事物之间的界限是精确的,而另一些则是模糊的。
人与人之间脸部相似的界限是模糊的,天气之间的界限也是模糊的。
当聚类涉及到事物之间的模糊边界时,应使用模糊聚类分析方法。
模糊聚类分析在天气预报、地质、农业、林业等领域有着广泛的应用。
通常,聚类物称为样本,一组聚类物称为样本集。
模糊聚类分析的基本方法有两种:系统聚类法和逐步聚类法。
概述。
在数据分类中,常用的分类方法包括多元统计中的系统聚类、模糊聚类分析等;在模糊聚类分析中,首先要计算模糊相似矩阵,不同的模糊相似矩阵会产生不同的分类结果;即使使用相同的模糊相似矩阵,不同的阈值也会产生不同的分类结果。
“如何确定这些分类的有效性”成为模糊聚类的关键点。
这是识别研究中的一个重要问题。
在文献中,不能令人满意的有效性归因于数据集的几何结构不令人满意。
但笔者认为,不同的几何结构反映了实际需要。
我们不能排除实际需要,追求所谓的“理想几何结构”。
分类不理想不能归因于数据集的几何结构。
对于相同的模糊相似矩阵,文献建立了一种判断模糊聚类有效性的方法。
在有固定显著性水平的情况下,在不同分类中选择F统一测量临界值与F检验临界值之间的最大差值是一种有效的分类方法。
但是,当显著性水平发生变化时,该方法的结果也会发生变化。
文献引入模糊划分办公室来评价模糊聚类的有效性,并人为规定当两个类别的办公室大于1时,两个类别可以合并,最终通过逐次合并得到有效的分类。
这种方法有较多的人为干预,当指定的数量不同时,会得到不同的结果。
系统聚类法。
系统聚类法是一种基于模糊等价关系的模糊聚类分析方法。
在经典的聚类分析方法中,样本集可以通过经典的等价关系进行聚类。
模糊聚类分析
模糊聚类。
FCM(Fuzzy C-Means)算法是一种模糊聚类算法,属于软聚类,即一个样本点可以属于多个类。
与层次聚类、均值聚类和密度聚类不同,一个样本只能属于一个类,也可以不属于一个类。
模糊聚类引入了隶属度值的概念,即每个样本使用[0,1](相似概率或概率值)的隶属度值来确定其对每个聚类的隶属程度。
当您的成员资格值仅设置为0或1时,它实际上是K均值聚类。
同时,模糊聚类有一个约束条件,即每个聚类样本的隶属度值之和等于1。
聚类的思想是,一个簇中样本点之间的差异越小,簇之间的差异就越大。
模糊聚类中的C与K-Means中的K的含义相同,K指的是聚类的数量。
除了这个C之外,在模糊聚类中还有一个参数M。
其中,C用来控制聚类数,参数M用来控制算法的灵活性,这会影响聚类的准确性。
如果M太小,采样点的分布会分散,会产生很大的噪声(离群值)影响。
如果取值过大,样本点会密集分布,对主流偏斜度的样本点控制程度较弱。
通常,m的值是2(r中的默认值是2)。
模糊聚类算法通过迭代计算目标函数的最小值来判断算法的运行情况。
算法大致如下:1.随机生成c个聚类中心(或随机生成一些隶属度值);
2.计算隶属度矩阵(或计算聚类中心);
3.利用隶属度矩阵(或聚类中心)重新计算聚类中心(或隶属度矩阵);
4.计算目标函数;
5.如果判断目标函数达到最小值或趋于不再有较大波动,则停止操作,确定最终聚类结果;否则,将重新计算隶属度矩阵(或聚类中心)。
聚类分析-模糊聚类分析解析
模糊方阵的幂
定义:若A为 n 阶方阵,定义A2 = A ° A,A3 = A2 ° A,…,Ak = Ak-1 ° A.
0.1 0.4
0.3
3
0.3
0.7 0.4
0.3 0.7
0.1 0.4
00..73
0.3 0.4
模糊矩阵间的关系及并、交、余运算
设A=(aij)m×n,B=(bij)m×n都是模糊矩阵,定义 相等:A = B aij = bij; 包含:A≤B aij≤bij; 并:A∪B = (aij∨bij)m×n; 交:A∩B = (aij∧bij)m×n; 余:Ac = (1- aij)m×n.
模糊关系的矩阵表示
对于有限论域 X = {x1, x2, … , xm}和Y = { y1, y2, … , yn},则X 到Y 模糊关系R可用m×n 阶模糊 矩阵表示,即
R = (rij)m×n, 其中rij = R (xi , yj )∈[0, 1]表示(xi , yj )关于模糊关 系R 的相关程度.
R2≤R ( ∨{(rik∧rkj) | 1≤k≤n} ≤ rij) .
当<时, R的分类是R分类的加细.当由1变
ቤተ መጻሕፍቲ ባይዱ到0时, R的分类由细变粗,由模糊等价关系R确定 的分类所含元素由少变多,逐步归并,最后成一类, 这个过程形成一个动态聚类图,称之为模糊分类.
00..73
模糊矩阵的转置
定义 设A = (aij)m×n, 称AT = (aijT )n×m为A的转置 矩阵,其中aijT = aji.
转置运算的性质:
性质1:( AT )T = A; 性质2:( A∪B )T = AT∪BT,
模糊聚类方法
模糊聚类方法模糊聚类是一种基于模糊集合理论的聚类算法,它在数据分析和模式识别中得到广泛应用。
与传统的硬聚类方法相比,模糊聚类能够更好地处理数据中的不确定性和模糊性,能够给出每个数据点属于不同聚类的概率,从而更全面地描述数据的特征。
一、模糊聚类的基本原理模糊聚类的基本原理是根据数据点之间的相似性将它们分成不同的聚类。
与传统的硬聚类方法不同,模糊聚类允许数据点属于多个聚类,且给出每个数据点属于不同聚类的权重。
通过引入隶属度函数,模糊聚类能够更好地处理数据的模糊性,给出更丰富的聚类结果。
二、模糊聚类的算法步骤模糊聚类的算法步骤一般包括以下几个方面:1. 初始化隶属度矩阵:隶属度矩阵用于描述每个数据点属于每个聚类的概率,一般通过随机初始化或者根据先验信息进行初始化。
2. 计算聚类中心:根据隶属度矩阵计算每个聚类的中心点,一般采用加权平均的方式计算。
3. 更新隶属度矩阵:根据当前的聚类中心,更新隶属度矩阵,使得每个数据点更准确地属于不同聚类。
4. 判断停止条件:根据一定的准则(如隶属度矩阵的变化程度或者目标函数的收敛性)判断是否达到停止条件,如果未达到,则返回第2步继续迭代。
5. 输出聚类结果:根据最终的隶属度矩阵,确定每个数据点最可能属于的聚类,输出聚类结果。
三、模糊聚类的优势相比传统的硬聚类方法,模糊聚类具有以下优势:1. 能够更好地处理数据的模糊性和不确定性。
在现实世界的数据中,往往存在一些边界模糊或者属于多个类别的情况,传统的硬聚类无法很好地处理这种情况,而模糊聚类能够给出每个数据点属于不同聚类的概率。
2. 能够更全面地描述数据的特征。
传统的硬聚类方法只能将数据点划分为一个聚类,而模糊聚类能够给出每个数据点属于不同聚类的权重,从而更全面地描述数据的特征。
3. 能够适应不同的聚类形状和大小。
传统的硬聚类方法通常假设聚类的形状是凸的,并且假设聚类的大小相等,但在实际应用中,聚类的形状和大小往往是不确定的,而模糊聚类能够更好地适应不同的聚类形状和大小。
模糊数学2模糊聚类分析方法模糊综合评判方法
❖ (1)单层次模糊综合评判模型 设X={x1,x2…xn}是综合评判因素所组成集合,
Y={y1,y2…yn}是评语所组成的集合。
R:X→Y rij=µR(xi,yj) 元素rij表示xi符合yj标准的程度。
A=(a1,a2…an)是各评判因素的权重分配,
则评判结果 B=A◦R.
例
我们对于某学校的校园网络一期建设情况进行评判,设包括三个因 素,即硬件建设,软件建设、人员培训,用论域U表示为:
0.38 0.8 0.67
0.49 1375 931源自0.380.80.67
0.93
0.95 0.67 0.94
0.9
0.94 0.67 0.95
1
0.99
0.99 0.45 0.55
0.99
1
0.99 0.45 0.55
0.99
0.45 0.55
0.99
0.45 0.55
1
0.45 0.55
0.45 1
0.49137 5931
0.93
0.9
1 0.67 0.94 0.38
0.38
0.38 0.95 0.94
0.67 1 0.67
0.94 0.67 1
0.8 0.67
0.8 0.67
0.8 0.67
0.67 0.94 0.67 0.95
0.49137 5931
0.38 0.8 0.67
0.49137 5931
较好
40% 30% 10%
可以
10% 20% 30%
不好
0 10% 60%
0.2 R ~
0.7
0.1
0
上表就构成模糊矩阵 R= 0
0.4 0.5 0.1
模糊聚类分析的理论(17页)
模糊聚类分析的理论模糊聚类分析是一种基于模糊数学理论的聚类方法,它允许数据点属于多个类别,并且每个类别都有一个模糊度。
这种方法在处理现实世界中的问题时非常有效,因为现实世界中的数据往往不是完全确定的,而是具有模糊性的。
模糊聚类分析的基本思想是将数据点分为若干个类别,使得每个数据点属于各个类别的程度不同。
这种程度可以用一个介于0和1之间的数来表示,0表示不属于该类别,1表示完全属于该类别。
这种模糊性使得模糊聚类分析能够更好地处理现实世界中的不确定性。
模糊聚类分析的理论基础是模糊集合论。
模糊集合论是一种扩展了传统集合论的数学理论,它允许集合的元素具有模糊性。
在模糊集合论中,一个元素属于一个集合的程度可以用一个隶属度函数来表示。
隶属度函数是一个介于0和1之间的数,它表示元素属于集合的程度。
模糊聚类分析的理论方法有很多种,其中最著名的是模糊C均值(FCM)算法。
FCM算法是一种基于目标函数的迭代算法,它通过最小化目标函数来得到最优的聚类结果。
目标函数通常是一个关于隶属度函数和聚类中心之间的距离的函数。
模糊聚类分析的理论应用非常广泛,它可以在很多领域中使用,例如图像处理、模式识别、数据挖掘等。
在图像处理中,模糊聚类分析可以用于图像分割、图像压缩等任务;在模式识别中,模糊聚类分析可以用于特征提取、分类等任务;在数据挖掘中,模糊聚类分析可以用于发现数据中的隐含规律、预测未来趋势等任务。
模糊聚类分析的理论还有很多需要进一步研究和发展的地方。
例如,如何提高模糊聚类分析的效率和准确性,如何处理大规模数据集,如何将模糊聚类分析与其他方法相结合等。
这些问题都需要进一步的研究和探索。
模糊聚类分析的理论是一种强大的聚类方法,它能够处理现实世界中的不确定性,并且具有广泛的应用前景。
通过不断的研究和发展,模糊聚类分析的理论将会更加完善,并且将会在更多的领域中得到应用。
模糊聚类分析的理论模糊聚类分析是一种基于模糊数学理论的聚类方法,它允许数据点属于多个类别,并且每个类别都有一个模糊度。
模糊聚类分析
查德 1965 年给出的定义:
定义:从论域 U 到闭区间0, 1 的任意一个映射:A :U 0, 1 ,对 任意u U ,u A Au , Au 0, 1 ,那么A 叫做 U 的一个模糊
子集, Au 叫做 u 的隶属函数,也记做A u 。
简单地可表达为:
设U是论域,称映射 A(x):U→[0,1]
39 C 以上的一人,x1 ;
如 果 规 定 37.5 C 以 下 的 不 算 发 烧 , 问 有 多 少 发 烧 病 人 ? 医 生 就 可 以 回 答 :
x1, x3, x4 , x5 ,但所谓“发烧”实际上是一个模糊概念,它存在程度上的不同,也就是
说要用隶属函数来描述。如果根据医师的经验规定,对“发烧”来说:
(1) AB AB; (2) ≤ A A; (3) (A∪B)= A∪B,(A∩B)= A∩B.
4、隶属函数的确定
1. 模糊统计方法 与概率统计类似,但有区别:若把概率
统计比喻为“变动的点”是否落在“不动的 圈”内,则把模糊统计比喻为“变动的圈” 是否盖住“不动的点”.
2. 指派方法 一种主观方法,一般给出隶属函数的解
一、模糊集及模糊关系
1、模糊问题的提出
在自然科学或社会科学研究中,存在着许多定义 不很严格或者说具有模糊性的概念。这里所谓的模 糊性,主要是指客观事物的差异在中间过渡中的不 分明性,如某一生态条件对某种害虫、某种作物的 存活或适应性可以评价为“有利、比较有利、不那 么有利、不利”;灾害性霜冻气候对农业产量的影 响程度为“较重、严重、很严重”,等等。这些通 常是本来就属于模糊的概念,为处理分析这些“模 糊”概念的数据,便产生了模糊集合论。
体温39 C 以上的隶属函数 x 1 ; 体温38.5 C 以上不到39 C 的隶属函数 x 0.9 ; 体温38 C 以上不到38.5 C 的隶属函数 x 0.7 ; 体温37.5 C 以上不到38 C 的隶属函数 x 0.4 ; 体温37.5 C 以下的隶属函数 x 0 ;
模糊聚类分析
模糊聚类分析----96845308-7160-11ec-a68e-7cb59b590d7d聚类分析就是将一个没有类别标记的样本集按照某种准则划分成若干个子集(类),使相似的样本尽可能归为一类,而不相似的样本尽可能划分到不同的类中。
由于在对样本集进行聚类的过程中,没有任何关于类别的先验知识,所以聚类分析属于无监督分类的范畴。
传统的聚类分析是一种硬划分,它严格地将每个待识别对象划分为一个类。
阶级划分的界限是明确的,具有非此即彼的性质。
在现实世界中,无论是一组对象根据其亲和力和相似性形成一个组,还是一个对象是否属于一个类别,其边界往往是不明确的,并且具有“这个和那个”的性质。
对于这种具有不确定性的聚类问题,模糊聚类分析提供了一种强有力的分析工具。
模糊聚类分析能够建立样本对于类别的不确定性描述,表达样本类属的中介性,已经成为聚类分析研究的主流。
粗略来讲,模糊聚类分析方法可分为两类:基于模糊等价关系的聚类方法和基于目标函数的聚类方法。
有时,这两类方法也结合起来使用。
一、数据预处理在模糊聚类分析中,我们称待分类的对象为样本。
要对样本进行合理的分类,首先应考虑样本的各种特性指标(观测数据)。
设有n个被分类对象,即样本集为x={x1,x2,…,xn}每一个xi有m个特性指标,即xi可表示为特性指标向量xi={xi1,xi2,…,xim}其中xij表示第i个样本的第j个特性指标。
于是,n个样本的特性指标矩阵为⎜⎜x21⎜M⎜⎜十、⎜n1x12lx1m⎜x22lx2m⎜xn2lxnm⎜⎜通常,我们也将样本集记为特性指标矩阵的形式,即x=(xij)n×m。
如果M个特征指标的维度和数量级不同,在运行过程中可能会突出一些大数量级特征指标的作用,而一些小数量级特征指标的作用可能会减少甚至被排除,导致每个特征指标的分类缺乏统一的尺度。
因此,为了消除不同特征指标单位和数量级的影响,当特征指标的维度和数量级不同时,通常会提前对各种指标值进行数据标准化(归一化),使每个指标值统一在一个共同的数值特征范围内。
模糊聚类的概念
模糊聚类的概念模糊聚类是一种基于模糊理论的聚类分析方法,它用于将具有相似特征的对象分成若干个不相交的类别,并且允许某个对象同时属于多个类别。
相比于传统的硬聚类方法,模糊聚类更能够灵活地处理数据的不确定性和模糊性。
模糊聚类的核心思想是通过计算每个数据点与聚类中心的相似度来决定其属于某个类别的程度。
相似度通常通过某种距离度量来衡量,常用的度量方法包括欧氏距离、曼哈顿距离和余弦相似度等。
通过不断迭代调整聚类中心,使得每个数据点与聚类中心的相似度不断增加,从而找到最优的聚类划分。
与传统的硬聚类方法相比,模糊聚类有以下几个优势。
首先,模糊聚类能够给出每个数据点属于每个类别的程度,而不仅仅是给出一个确定的类别。
这样的结果更符合实际情况,因为有些数据点可能具有多个属性,属于多个类别,而传统的硬聚类无法处理这种情况。
其次,模糊聚类能够更好地处理数据的噪声和不确定性。
对于存在噪声的数据,传统的硬聚类可能会将其归为一个错误的类别,而模糊聚类可以通过计算相似度的程度来减小这种错误的影响。
最后,模糊聚类能够自动确定聚类个数。
传统的硬聚类需要事先确定聚类个数,而模糊聚类能够根据数据的特性自动调整聚类中心的个数。
模糊聚类的算法主要分为以下几个步骤。
首先,选择合适的距离度量方法和定义模糊相似度的方法。
常用的距离度量方法有欧氏距离和曼哈顿距离,而模糊相似度的定义方法有模糊C均值和模糊谱聚类等。
其次,初始化聚类中心。
可以随机选择一些数据点作为初始聚类中心,或者按照某种规则选择一些样本作为初始聚类中心。
然后,计算每个数据点与聚类中心的相似度,并根据相似度重新调整每个数据点的隶属度。
随后,根据新的隶属度计算新的聚类中心,并判断是否满足停止准则。
如果满足停止准则,则停止迭代,算法结束;否则,返回第三步继续迭代。
迭代的停止准则通常是根据聚类中心的变化情况来确定的。
模糊聚类的应用非常广泛。
例如,模糊聚类可以用于图像分割,将图像中相似的像素分到同一个类别中,从而实现图像的分割和识别。
模糊聚类分析
模糊聚类分析
模糊聚类分析可以分析各种因素对一事件的影响度。
它通过建立模糊矩阵来计算出一个最终矩阵数值。
之后将这些数值进行对比,从而达到分析因素的影响的大小。
步骤:
第一步选择统计指标。
根据实际问题,选择那些具有明确意义,有较强分辨力和代表性特征的,作为分类食物的统计指标。
统计指标选择的如何,对分类效果有直接的影响。
第二步数据标准化。
把代表事物各特征的统计指标的数据进行处理,使之便于分析和比较,数据
标准化方法很多,通常采用。
式中,是指指标的原始数据;
和分别为指标的最大值与最小值;为指标的标准化数据。
第三步建立模糊相似关系。
设为待分类的全体,其中每一待分类对象由一组数据表征如下:建立和
之间的相似关系,表示相似矩阵。
可任选下面方法求和的相似关系。
(1)数量积法。
其
显然若??中出现负值,也可以采用下面的方法把压缩到[0,1]上:令,则。
(2)相关系数法。
其中,
(3)最大最小法。
(4)算术平均数法。
(5)几何平均最小法。
第四步改造相似矩阵关系为等价关系进行聚类。
由第三步得到的矩阵R一般只满足自反性和对称性,即R是相似矩阵,需将它改造成模糊等价矩阵.为此,采用平方法求出R的传递闭包, 便是所求模糊等
价矩阵.由作出动态聚类图,取适当,由截距阵得出所需的分类,便可以对U进行分类。
模糊聚类分析方法
第二节 模糊聚类分析方法在科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。
例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。
对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。
由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。
一、模糊聚类分析的一般步骤1、第一步:数据标准化[9](1) 数据矩阵设论域12{,,,}n U x x x =为被分类对象,每个对象又有m 个指标表示其性状,即12{,,,}i i i im x x x x = (1,2,,)i n =,于是,得到原始数据矩阵为111212122212m m n n nm x x x x x x x x x ⎛⎫⎪ ⎪ ⎪⎪⎝⎭。
其中nm x 表示第n 个分类对象的第m 个指标的原始数据。
(2) 数据标准化在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。
但是,即使这样,得到的数据也不一定在区间[0,1]上。
因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。
通常有以下几种变换: ① 平移·标准差变换i k kikkx x x s -'= (1,2,,;1,2,i n k m ==其中 11n k i k i x x n ==∑,k s = 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。
但是,再用得到的ikx '还不一定在区间[0,1]上。
② 平移·极差变换111m i n {}m a x {}m i n {}i k i k i nikik iki ni nx x x x x ≤≤≤≤≤≤''-''=''-,(1,2,,)k m =显然有01ikx ''≤≤,而且也消除了量纲的影响。
模糊聚类分析
模糊聚类法:把模糊数学方法引入聚类分析即产生了模糊聚类分析方法。
模糊聚类分析方法大致可分为两种:一是基于模糊关系上的模糊聚类法.并称为系统聚类分析法。
另一种称为非系统聚类法,它是先把样品粗略地分一下,然后按其最优原则进行分类,经过多次迭代直到分类比较合理为止,这种方法也称为逐步聚类法。
我们通常讲的模糊聚类分析是指将模糊数学的原理应用到系统聚类分析的方法。
模糊聚类分析的步骤:(1)确定聚类单元全集U;(2)确定聚类准则和聚类因子;(3)根据聚类准则及因子进行数据的调查与整理;(4)将统计数据进行元量纲处理.称为正规化。
模糊聚类分析:模糊聚类分析是一种采用模糊数学语言对事物按一定的要求进行描述和分类的数学方法。
模糊聚类分析一般是指根据研究对象本身的属性来构造模糊矩阵,并在此基础上根据一定的隶属度来确定聚类关系,即用模糊数学的方法把样本之间的模糊关系定量的确定,从而客观且准确地进行聚类。
聚类就是将数据集分成多个类或簇,使得各个类之间的数据差别应尽可能大,类内之间的数据差别应尽可能小,即为“最小化类间相似性,最大化类内相似性”原则。
主要内容:模糊聚类分析是涉及事物之间的模糊界限时按一定要求对事物进行分类的数学方法。
聚类分析是数理统计中的一种多元分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地划分类型。
事物之间的界限,有些是确切的,有些则是模糊的。
例人群中的面貌相像程度之间的界限是模糊的,天气阴、晴之间的界限也是模糊的。
当聚类涉及事物之间的模糊界限时,需运用模糊聚类分析方法。
模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面。
通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。
模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。
应用实例:在进行证券交易时,可能会获得较高的投资收益,但同时也存在着较大的证券投资风险。
证券市场是一个风险无时不在的市场,所以投资者应当充分深入的了解证券市场蕴含的各项风险并谨慎行事,从各个方面,综合考虑投资的利弊,理性投资。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊聚类分析是一种数学方法,它使用模糊数学语言根据某些要求对事物进行描述和分类。
模糊聚类分析通常是指根据研究对象的属性构造模糊矩阵,并在此基础上根据一定隶属度确定聚类关系,即样本之间的模糊关系由样本的数量来确定。
模糊数学方法,以客观,准确地聚类。
聚类是将数据集划分为多个类或群集,以便每个类之间的数据差异应尽可能大,并且该类内的数据差异应尽可能小
基本覆盖
当涉及事物之间的模糊边界时,模糊聚类分析是一种根据某些要求对事物进行分类的数学方法。
聚类分析是数学统计中的一种多元分析
方法是利用数学方法定量确定样品之间的关系,从而客观地分类类型。
事物之间的某些界限是精确的,而其他界限则是模糊的。
人群中人脸的相似度之间的界限是模糊的,多云和晴天之间的界限也是模糊的。
当聚类涉及事物之间的模糊界限时,应使用模糊聚类分析方法。
模糊聚类分析广泛应用于气象预报,地质,农业,林业等领域。
通常,聚类的事物称为样本,一组事物称为样本集。
模糊聚类分析有两种基本方法:系统聚类和逐步聚类。
基本方法
基本流程
(1)通过计算样本或变量之间的相似系数,建立模糊相似矩阵;
(2)通过对模糊矩阵进行一系列综合变换,生成模糊等效矩阵。
(3)最后,根据不同的截获水平λ对模糊等效矩阵进行分类
系统聚类方法
系统聚类方法是一种基于模糊等价关系的模糊聚类分析方法。
在经典聚类分析方法中,经典等价关系可用于对样本集X进行聚类。
令R为X上的经典等价关系。
对于X中的两个元素x和Y,如果XRY或(x,y)∈R ,然后x
和y,否则X和y不属于同一类。
[3]
使用这种方法,分类的结果与α的值有关。
α的值越大,划分的类别越多。
当α小于某个值时,X中的所有样本将被归为一类。
该方法的优点是可以根据实际需要选择α值,以获得正确的分类。
系统聚类的步骤如下:
①用数字描述样品的特性。
设要聚类的样本为x = {x1,xn}。
每个样本具有p个特征,记录为Xi =(Xi1,xip);i = 1,2,…,N;XIP是描述样本Xi的第p个特征的编号。
②相似系数Rij(0≤Rij≤1; I,j = 1,n)。
Rij描述了样本Xi与XJ之间的差异或相似程度。
Rij越接近1,样本Xi和XJ之间的差异就越小;Rij越接近0,Xi和XJ之间的差异就越大。
Rij 可以主观或集体评估
也可以通过公式计算,例如夹角的余弦法,最小最大值法和算术平均最小值法。
由于RII = 1(Xi与自身之间没有差异),Rij = rji(Xi与XJ之间的差异等于XJ与XI之间的差异),可以获得X上的模糊相似关系。
通常,R不是传递的,因此r不一定是X上的模糊等价关系。
③通过使用合成操作r = R⋅R(或r = R⋅R等)获得最接近相似关系R的模糊等效关系s = R (或R等)。
如果R已经是模糊等价关系,则s =R。
④选择适当的水平α(0≤α≤1),获得X的聚类。