2014-2015(2)概率论与数理统计复习题8

合集下载

概率论与数理统计复习参考题

概率论与数理统计复习参考题

概率论与数理统计复习参考题随机事件与概率1.已知事件、A B 满足)()(B A P AB P I =且p A P =)(,求= 1)(B P −p 。

2.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。

则第二次取出的是次品的概率为 1/6 。

3.设10件产品中有4件是不合格品,从中任取两件,已知所取两件中有一件是不合格品,则另一件也是不合格品的概率为 1/5 。

4.从数1,2,3,4中任取一数,记为X ,再从1X ~中任取一数,记为Y ,则==}2{Y P 13/48 。

5.设一批产品中一、二、三等品各占60%、30%、10%,从中任取一件,结果不是三等品,则取到的是一等品的概率为 2/3 。

6.设两两相互独立的三个事件满足条件:C B A ,,2/1)()()(<==C P B P A P ,φ=ABC ,且已知,则16/9)(=C B A P U U =)(A P 1/4 。

7.设两个相互独立的事件都不发生的概率为1/9,A 发生B A 和B 不发生的概率与B 发生不发生的概率相等,则A =)(A P 2/3 。

8.设是两个事件, B A ,4.0)(=A P ,5.0)(=B P , )|()|(B A P B A P =,则=)(B A P 0.2 。

9.设和A B 是任意两个概率不为零的不相容事件,则下列结论肯定正确的是 []。

D (A )A 与B 不相容 (B )A 与B 相容 (C ))()()(B P A P AB P = (D ))()(A P B A P =−10.对于任意二事件和A B ,与B B A =U 不等价的是 [ ]D ()A B A ⊂ (B )A B ⊂ (C )φ=B A ()D φ=B A11.设和A B 为任意两个事件,且A B ⊂,P B ()>0,则必有 [ B ](A ) ()|()(B A P A P <B )P A P A B ()(|)≤(C ) (D )P A P A B ()(|)>P A P A B ()(|)≥12.对于任意二事件和A B()若A φ≠AB ,则、A B 一定独立。

概率论与数理统计复习题及参考答案

概率论与数理统计复习题及参考答案

, 概率论与数理统计习题一、单项选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=1 2.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( ) A .P (A ) B .P (AB ) C .P (A|B ) D .13.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=( )A .P{3.5<X<4.5}B .P{1.5<X<2.5}C .P{2.5<X<3.5}D .P{4.5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于( )A .-1B .21-C .21D .1 5则P{X=Y}=( )A .0.3B .0.5C .0.7D .0.86.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5 D .E (X )=2,D (X )=47.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( )A .-13B .15C .19D .238.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=( ) A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率10.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( ) A .x 2 B .x C .2x D .x211A2.D3.C4.D5.A6.A7.C8.B9.C 10.B二、填空题11.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=____________.12.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为____________. 13.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____________.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为____________.15.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<____________.16.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=____________.17.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E (X )=1,则x=____________. 18.设随机变量X 的分布律为则D (X )=____________. 19.设随机变量X 服从参数为3的指数分布,则D (2X+1)=____________. 20.设二维随机变量(X ,Y )的概率密度为f (x, y)=⎩⎨⎧≤≤≤≤,,0;10,10,1其他y x则P{X ≤21}=____________. 21.设二维随机变量(X ,Y )的概率密度为 ⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x则当y>0时,(X ,Y )关于Y 的边缘概率密度f Y (y )= ____________.25.设总体X~N (μ,σ2),x 1,x 2,x 3为来自X 的样本,则当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 11. 0.5 12.3518 13.0.7 14. 0.9 15. 3 16.3231 17.710 18.1 19.94 20.21 21. ye - 25. 41三、计算题26.设二维随机变量(X 试问:X 与Y因为对一切i,j 有}{}P{},P{j i j i Y Y P X X Y Y X X =⋅==== 所以X ,Y 独立。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。

2.已知A,B互相对立,则A与B的关系是互相对立。

,B为随机事件,则P(AB)?。

P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。

,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。

36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。

7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。

8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。

339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。

5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。

12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。

319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。

15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。

??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。

217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计复习题(1)一. 填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

2014-2015第2学期概率论与数理统计期末试题(含答案)

2014-2015第2学期概率论与数理统计期末试题(含答案)
2.设随机变量 X 的分布律为
X -1 0
1
2
P 0.1 0.2 0.3 0.4
则 P{x<1)=______.
3.设随机变量 X 服从区间[1,5]上的均匀分布,则 P{0 X 3}
.
4.设随机变量X服从参数为5的指数分布,则P{X=5}=_________.
5. 设随机变量 X~B(n, p),已知 E(X)=0.8,D(X)=0.48,则 n,p 的值分别是 , .
P( AB) P( A)P(B)3分
所以 A 与 B 相互独立。
6
必要性:
P( AB) P( A)P(B)
P( AB) P( AB)P( A) P( A)P(B) P( A)P( AB)
P( AB) P( AB) P(B) P( AB)
P( A) P( A)
i 1
i 1
d
ln L( p) dp

1 p
n i 1
xi
1 1 p
(n
n i 1
xi )

0 ……………………………………………8

只有一个驻点
p x p ,必为 L(p)的最大值点。P 的极大似然估计是 x …………………………10 分
4.解:选择 U

X
0
i1
Xi

150


200 P i1

X i 160 32

150 160
32



200 P i1
Xi
160

1.77
32



1 ( 5 2 ) 4

《概率论与数理统计》复习题(含答案)

《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。

(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。

(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。

(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。

(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。

(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。

另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。

(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。

概率论与数理统计期末复习参考试题

概率论与数理统计期末复习参考试题

<概率论与数理统计>期末复习参考试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件 1〕A 、B 、C 至少有一个发生 2〕A 、B 、C 中恰有一个发生 3〕A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

那么P(B )A =3.假设事件A 和事件B 互相独立, P()=,A αP(B)=0.3,P(AB)=0.7,那么α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅那么A=______________7. 随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,那么a =________b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,那么{0}P x <= _________ 9. 一射手对同一目的独立地进展四次射击,假设至少命中一次的概率为8081,那么该射手的命中率为_________10.假设随机变量ξ在〔1,6〕上服从均匀分布,那么方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,那么{max{,}0}P X Y ≥= 12.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{a b,c}X Y ≤≤<= 13.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,那么〔x,y 〕关于X 的边缘概率密度在x = 1 处的值为 15.)4.0,2(~2-N X ,那么2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 互相独立,那么(3)D X Y -=17.设X的概率密度为2()x f x -=,那么()D X =18.设随机变量X 1,X 2,X 3互相独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N 〔0,22〕,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,那么D 〔Y 〕=19.设()()25,36,0.4xy D X D Y ρ===,那么()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或~ 。

概率论与数理统计试题共九套有答案

概率论与数理统计试题共九套有答案

概率论与数理统计试题(2)1.已知P(A)= 0.4,P(B)= 0.3,则(1)当A、B互不相容时,P(A∪B)= ;P(AB)= 。

(2)当A、B相互独立时,P(A∪B)= ;P(AB)= 。

2.三个人独立破译密码,他们能够单独译出的概率分别是则此密码被译出的概率是。

3.已知P(A)=0.5,P(B)=0.6,P(B|A)=0.8,则P(A∪B)= 。

4.掷两枚骰子,其点数之和为8的概率为。

5.X为一随机变量,若存在非负可积函数 f (x) (-∞<x <+∞),使得对任意实数x,都有F(x) = ,则称X为,称f (x)为X的。

6.泊松分布的概率分布是P(X = k)= ,它的数学期望E( X )= ,方差D(X) = 。

均匀分布的概率密度函数是f (x) = ,它的数学期望E( X ) = ,方差D(X) = 。

7.设随机变量X的概率密度函度为则A= ;P{| X |<= 。

8.设随机变量X服从二项分布B(4,),则P{ X = 1 }= 。

9.设X~N(100,σ2),且P{X≥110}=0.16,Φ(1)=0.84,则σ=。

二.选择题:(每小题2分,共10分)1.设A、B为任意两个事件,且AB,P(B)>0,则下列选项必然成立的是()。

(A)P(A)<P(A | B)(B)P(A)≤P(A | B)(C)P(A)>P(A | B)(D)P(A)≥P(A | B)2.设X~N(0,),则服从自由度为n-1的t分布的随机变量是()。

(A)(B)(C)(D)3.掷两枚均匀硬币,出现“一正一反”的概率是()。

(A)(B)(C)(D)4.设总体X~N(),其中已知,未知,是取自总体的一个样本,则非统计量是()。

(A)( B )(C)max() ( D )()5.在假设检验中,原假设H0,备择假设H1,则称()为犯第二类错误。

A、H0为真,接受H1B、H0不真,接受H0C、H0为真,拒绝H1D、H0不真,拒绝H0三.(10分) 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。

概率论与数理统计习题解答(第8章)

概率论与数理统计习题解答(第8章)

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差2= ,随机抽取6件,记录其长度(毫米)分别为,,,,,在显著性水平 = 下,能否认为这批零件的平均长度为32.50毫米 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α>查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。

EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:、54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平 = 下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i ix x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ()9(025.0t t >可知,t 落入拒绝域中,故在的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

概率论与数理统计习题及答案第八章

概率论与数理统计习题及答案第八章

习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。

《概率论与数理统计(二)》复习题

《概率论与数理统计(二)》复习题

《概率论与数理统计(二)》复习题一、单项选择题1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A BD.A B2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x ) B.1-Φ(x ) C.Φx μσ-⎛⎫⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~A.211(,)N μσB.221()N μσC.212(,)N μσD.222(,)N μσ4.设随机事件A 与B 互不相容,且()0P A >,()0P B >,则A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B =D. ()1P AB =5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则A. n =4, p =0.6B. n =6, p =0.4C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为 A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1ni i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设A,B 为B 为随机事件,且A B ⊂,则AB 等于A.ABB.BC.AD.A10.设A ,B 为随机事件,则()P A B -=A.()()P A P B -B.()()P A P AB -C.()()()P A P B P AB -+D.()()()P A P B P AB +-11.设随机变量X 的概率密度为1,3<x<6,()30,f x ⎧⎪=⎨⎪⎩其他,则{}3<4=P X ≤A.{}1<2P X ≤B.{}4<5P X ≤C.{}3<5P X ≤D.{}2<7P X ≤12.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为A.e ,0,()0, 0.x x F x x λλ-⎧>=⎨≤⎩B.1e ,0,()0, 0.x x F x x λλ-⎧->=⎨≤⎩C.1e ,0,()0, 0.x x F x x λ-⎧->=⎨≤⎩D.1e ,0,()0, 0.x x F x x λ-⎧+>=⎨≤⎩13.设随机变量X 的分布函数为F(x),则A.()1F -∞=B.(0)0F =C.()0F +∞=D.()1F +∞=14.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为 A.[]1()()2X Y f x f y + B.()()X Y f x f y +C.1()()2X Y f x f y D.()()X Y f x f y15.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为 A.4和0.6 B.6和0.4 C.8和0.3D.3和0.816.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ= A.1- B.0 C.1 D.2二、填空题1. 一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是____________.2. 设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A )=______________.3. 设A,B,C 为三个随机事件,P(A)=P(B)=P(C)=41,P(AB)=P(AC)=P(BC)=61,P(ABC)=0,则P(A B C)=___________. 4. 设X 为连续随机变量,c 为一个常数,则P {X =c }=_____________.5. 已知连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<=.2,1;20),1(31;0,31)(≥≤x x x x e x F x设X 的概率密度为f(x),则当x<0,f(x)= _______________.6. 已知随机变量X 的分布函数为F X (x),则随机变量Y=3X+2的分布函F Y (y)=_________.7. 设随机变量X ~N (2,4),则P {X≤2}=____________.8. 设随机变量X 的概率密度为f(x)=+∞<<-∞-x ex ,2122π,则E(X+1)=___________.9. 设随机变量X 与Y 相互独立,且X ~N (0,5),Y ~X 2(5),则随机变量YX Z =服从自由度为5的_______________分布。

《概率论与数理统计(二)》 复习题

《概率论与数理统计(二)》 复习题

概率论与数理统计(二)复习题之一一、单项选择题1. 设A ,B 是互不相容事件,则=+)(B A P【 】A. )(1A P -B. )(1B P -C. )()(1B P A P --D. )()(B P A P ⋅2. 某种规格的电子元件正常使用200小时的概率是0.8,正常使用250小时的概率为0.6,现有一个该种元件已经正常使用了200小时,则能够使用250小时的概率为【 】A. 0.48B. 0.6C. 0.8D. 0.753. 设随机变量ξ的分布律为22()0123!kP k k e k ξ===⋅⋅⋅⋅,,,,,,则(2)D ξ=【 】A. 2B. 4C. 6D. 84. 设12n X X X ⋅⋅⋅,,,是取自总体2~X N μσ(,)的样本,则对任意0>ε,下列各式成立的是【 】A. {}22n P X n σμεε-<≥B. {}221P X n σμεε--≥≥C. {}22P X n σμεε-≥≤D. {}22P X n n σμεε-≥≤5. 设随机变量X Y (,)的联合分布为则X Y (,)的协方差covX Y =(,)【 】A. 0B. 1C.81D. 81-6. 设随机变量X Y ,同分布,概率密度为 2120()0x x f x θθ⎧<<⎪⎪=⎨⎪⎪⎩其他,, 若[]1(2)E C X Y θ+=,则C 的值为【 】A.21B.31 C. 221θD. θ327. 123X X X ,,都服从[02],上的均匀分布,则123(32)E X X X -+=【 】A. 1B. 3C. 4D. 28. 随机变量Y X +=ξ与Y X -=η不相关的充分必要条件为【 】A. ()()E X E Y =B. 2222()()()()E X E X E Y E Y -=-C. 22()()E X E Y =D. 2222()()()()E X E X E Y E Y +=+9. 某生产线的产品合格率为0.85,使用某种仪器作产品的抽样检测,仪器检查结果的正确率为0.90,现任取一件产品经仪器检查为合格,而该件产品确实合格的概率为 【 】A. 0.85B. 1C. 0.98D. 0.9410. 设总体2~X N μσ(,),统计假设为0H :0μμ=对1H :0μμ≠,若用t 检验法,则在显著水平α的拒绝域为【 】A. 12(1)t tn α--< B. 12(1)t tn α-≥-C. 1(1)t t n α-≥-D. 1(1)t t n α---< 二、填空题11. 将3人以相同的概率分配到4间房的每一间中,则恰好3间房中各有1人的概率是________。

概率论与数理统计课后习题及答案 (8)

概率论与数理统计课后习题及答案 (8)

习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25.【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,20.005).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n 2=200,y =0.57kg, s 2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F <<所以接受H 0,拒绝H 1.9. 在π的前800位小数的数字中,0,1,…,9相应的出现了74,92,83,79,80,73,77,75,76,91次.试用2χ检验法检验假设H 0:P(X=0)=P(X=1)=P(X=2)=…=P(X=9)=110, 其中X 为π的小数中所出现的数字,α=0.10.解:假设古典概型,设有未知参数,1ˆ(),80010iP P x i n ====22221021ˆ()(7480)(9280)(9180) 5.125ˆ808080i ii i f nP nP χ=----==+++=∑在检验水平α=0.10下,查自由度m=10-0-1=9的2χ分布表,得到临界值20.10(9)14.684χ=.因为2χ=5.125<14.684不能拒绝原假设.10. 在一副扑克牌(52张)中任意抽3张,记录3张牌中含红桃的张数,放回,然后再任抽3张,如此重复64次,得到如表8-10所示的结果,试在水平α=0.01下检验.表8-10H 0:Y 服从二项分布,3313(),0,1,2,3.44iii P Y i C i -⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭解:假设Y ~B (3,14),没有未知参数. 313ˆ()44iii i P P Y i C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭n=64. 2421ˆ() 3.926ˆi ii i f nP nP χ=-=≈∑在检验水平α=0.01下,查自由度m=4-0-1=3的2χ分布表,20.01(3)11.345χ=,因为2χ=3.926<11.345,所以不能拒绝原假设.11. 在某公路上,50min 之间,观察每15s 内过路的汽车的辆数,得到频数分布如表8-11所示,问这个分布能否认为是泊松分布(α=0.10)?表8-11解:假设H 0:总体X 服从泊松分布.P{x=i}=!ie i λλ-,i=0,1,2,,,…,这里H 0中参数λ未知,用最大似然估计法得到:0921682283114150ˆ0.805200λ⨯+⨯+⨯+⨯+⨯+⨯==若H 0为真,P{X=i}的估计为ˆiP =0.8051ˆ{(1)}(0.805),200,(1)!i e P X i n i --=-==-2621ˆ() 2.115ˆi ii i f nP nP χ=-=≈∑在检验水平0.10下,查自由度m=6-1-1=4的2χ分布表,得20.10(4)7.779χ=,由于2χ=2.115<7.779,所以接受假设H 0,即是泊松分布.12. 测得300只电子管的寿命(以h 计)如表8-12所示,试取水平α=0.05下的检验假设: H 0:寿命X 服从指数分布,其密度为2001,0,()2000,.te tf t -⎧>⎪=⎨⎪⎩其他解:10001100200200201{0100}10.39200t t P t e dt e e ---<≤==-=-≈⎰2001001200120020021001{100200}0.24200tt P t e dt e e e ----<≤==-=-≈⎰3002003300120020022001{200300}0.14200t t P t e dt ee e----<≤==-=-≈⎰3000300200020033221{300}1{300}12001110.22tt P t P t e dte e e ---->=-≤=-⎛⎫=-- ⎪ ⎪⎝⎭⎛⎫=--=≈ ⎪⎝⎭⎰没有未知参数,n=300,所以222(1213000.39)(583000.22)3000.397000.221.631.χ-⨯-⨯=++⨯⨯≈ 在检验水平α=0.05下查自由度m=4-0-1=3的2χ分布表,得到临界值20.05(3)7.815χ=.因=1.631<7.815,所以不能拒绝原假设. 为2。

考研数学一概率论与数理统计-试卷8_真题(含答案与解析)-交互

考研数学一概率论与数理统计-试卷8_真题(含答案与解析)-交互

考研数学一(概率论与数理统计)-试卷8(总分58, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为( ) SSS_SINGLE_SELA “甲种产品滞销,乙种产品畅销”。

B “甲、乙两种产品均畅销”。

C “甲种产品滞销”。

D “甲种产品滞销或乙种产品畅销”。

该题您未回答:х该问题分值: 2答案:D解析:设A1 ={甲种产品畅销},A2={乙种产品滞销},则A=A1A2。

由德摩根定律得即为“甲种产品滞销或乙种产品畅销”,故选项D正确。

选项A,B中的事件与事件A都是互斥但非对立(互逆)的;选项C中事件的逆事件显然包含事件A,故选项A,B,C都不正确。

2.对于任意两事件A和B,若P(AB)=0,则( )SSS_SINGLE_SELAB AB≠C P(A)P(B)=0。

D P(A-B)=P(A)。

该题您未回答:х该问题分值: 2答案:D解析:因为P(A-B)=P(A)-P(AB)=P(A)。

故应选D。

不难证明选项A、B、C不成立。

设X~N(0,1),A={X<0},B={X>0},则P(AB)=0,P(A)P(B)≠0且,从而A项和C项不成立。

若A和B互为对立事件,则为对立事件,,故选项B也不成立。

3.将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是( ) SSS_SINGLE_SELA A与B独立。

B B与C独立。

C A与C独立。

D B∪C与A独立。

该题您未回答:х该问题分值: 2答案:B解析:试验的样本空间有8个样本点,即Ω={(正,正,正),(正,反,反),…,(反,反,反)}。

显然B与C为对立事件,且依古典型概率公式有P(BC)==0,P(B∪C)=P(Ω)=1。

由于P(A)P(B)=,即P(AB)=P(A)P(B)。

概率论与数理统计第8章假设检验习题及答案

概率论与数理统计第8章假设检验习题及答案

62第8章 假设检验一、填空题1、 对正态总体的数学期望m 进行假设检验,如果在显著性水平0.05下,接受假设00:m m =H ,那么在显著性水平0.01下,必然接受0H 。

2、在对总体参数的假设检验中,若给定显著性水平为a ,则犯第一类错误的概率是a 。

3、设总体),(N ~X 2s m ,样本n 21X ,X ,X ,2s未知,则00:H m =m ,01:H m <m 的拒绝域为 )}1(/{0--<-n t nS X a m ,其中显著性水平为a 。

4、设n 21X ,X ,X 是来自正态总体),(N 2s m 的简单随机样本,其中2,sm 未知,记å==n1i i X n 1X ,则假设0:H 0=m 的t 检验使用统计量=T Qn n X )1(-.二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2s m N X05.016==a n 4252==S X(1)检验假设250:0=m H 250:1¹m H , 因为2s 未知,在0H 成立下,)15(~/250t nS X T -=拒绝域为)}15(|{|025.0tT >,查表得1315.2)5(025.0=¹t由样本值算得1315.22<=T ,故接受0H (2)检验假设9:20=s H9:201>s H因为m 未知,选统计量 222)1(s S n x -=在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=´=x 拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=s 小时正态分布, 试在显著性水平0.05下确定这批产品是否合格. 解:设元件寿命),(~2s m N X ,2s 已知10002=s,05.0,950,25===a X n检验假设1000:0=m H1000:1<m H在2s 已知条件下,设统计量)1,0(~/1000N nX s m -=拒绝域为}{05.0mm<,查表得645.195.005.0-=-=m m而645.15.2205025/1001000950-<-=-=-=m拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对 显 著 水 平 a , 检 验假 设 H 0 ; m = m 0, H 1 ; m ¹ m 0, 问当 m 0, m , a 一定 时 , 增大样本量 n 必 能 使 犯 第 二 类 错 误 概 率 b减 少 对 吗 ?并 说 明 理 由 。

考研数学二(概率论与数理统计)模拟试卷8(题后含答案及解析)

考研数学二(概率论与数理统计)模拟试卷8(题后含答案及解析)

考研数学二(概率论与数理统计)模拟试卷8(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设总体X和Y相互独立,且都服从N(μ,σ2),分别为总体X与Y的样本容量为n的样本均值,则当n固定时,概率P{||>σ}的值随σ的增大而( )A.单调增大.B.保持不变.C.单调减少.D.增减不定.正确答案:B解析:故应选B.知识模块:概率论与数理统计2.设总体X服从N(μ,σ2),分别是取自总体X的样本容量分别为10和15的两个样本均值,记p1=,则有( )A.p1<p2.B.p1=p2.C.p1>p2;D.p1=μ,p2=6.正确答案:C解析:所以p1>p2,应选C.知识模块:概率论与数理统计3.设总体X服从N(μ,σ2),与S2分别为样本均值和样本方差,n为样本容量,则下面结论不成立的是( )A.B.C.D.正确答案:D解析:故(A)、(B)、(C)选项结论都是正确的,只有(D)是不成立的.知识模块:概率论与数理统计4.设一批零件的长度服从正态分布N(μ,σ2),其中μ,σ2未知.现从中随机抽取16个零件,测得样本均值=20 cm,样本方差S2=1 cm2,则μ的置信水平为0.90的置信区间是( )A.B.C.D.正确答案:C解析:正态总体、方差未知的情况下,μ的置信区间为由已知条件,S=1,=20,n=16,α=0.10,故应选C.知识模块:概率论与数理统计5.设总体X服从N(μ,σ2),其中σ2未知,假设检验H0:μ≤1,H1:μ>1.当显著性水平α=0.05时,拒绝域为( )A.B.C.D.正确答案:B解析:本题是单边检验问题,由于σ2未知,选取的检验统计量为t=服从t0.05(n一1),所以拒绝域为t>t0.05(n一1),即.知识模块:概率论与数理统计6.在假设检验中,记H0为原假设,H1为备择假设,则犯第二类错误是指( )A.如果H0为真,接受H0B.如果H0为真,拒绝H0.C.如果H0不真,接受H0.D.如果H0不真,拒绝H0.正确答案:C解析:第二类错误是指“取伪错误”,即H0不真,但却接受了原假设H0,故应选C.知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(概率论与数理统计)历年真题试卷汇编8(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编8(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编8(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2016年)设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=( )A.6。

B.8。

C.14。

D.15。

正确答案:C解析:利用方差和期望的关系公式计算,即D(X)=E(X2)-[E(X)]2。

根据方差和期望之间的关系D(XY)=E(X2Y2)-[E(XY)]2,E(XY)=E(X)E(Y)=1,E(X2Y2)=E(X2)E(Y2)=3×5=15,则D(XY)=14。

故选C。

2.(2001年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于( )A.-1。

B.0。

C.D.1。

正确答案:A解析:掷硬币结果不是正面向上就是反面向上,所以X+Y=n,从而Y=n-X。

由方差的定义:D(X)=E(X2)-[E(X)]2,所以D(Y)=D(n-X)=E(n-X)2-[E(n-X)]2=E(n2-2nX+X2)-(n-E(X))2=n2-2nE(X)+E(X2)-n2 +2nE(X)-[E(X)]2=E(X2)-[E(X)]2=D(X)。

由协方差的性质:Cov(X,c)=0(c为常数);Cov(aX,bY)=abCov(X,Y);Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y),所以Cov(X,Y)=Cov(X,n-X)=Cov(X,n)-Cov(X,X)=0-D(X)=-D(X),由相关系数的定义,得3.(2008年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则( )A.P{Y=-2X-1}=1。

B.P{Y=2X-1}=1。

C.P{Y=-2X+1}=1。

D.P{Y=2X+1}=1。

正确答案:D解析:由ρXY=1可知,存在实数a(a>0),b,使得Y=aX+b,则可排除A、C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择填空题1. A 、B 是两个随机事件,P( A ) = 0.6,P( B ) = 0.5,且A 与B 互不相容,则()P A B = ;(A) 1 (B) 0.9 (C) 0.8 (D) 0.72. A 、B 是两个随机事件,P( A ) = 0.6,P( B ) = 0.5,且A 与B 相互独立, 则()P A B ;(A) 0.7 (B) 0.8 (C) 0.9 (D) 13. 已知A,B 是两个随机事件,P( A | B ) = 0.5,P( AB ) = 0.3,则()P B A -= ;(A) 0.2 (B) 0.3 (C) 0.4 (D) 0.54. 事件A 发生的概率为1/10,如果试验10次,则该事件A ;(A) 至少会发生1次 (B) 发生的次数是不确定的(C) 一定会发生1次 (D) 一定会发生10次5.已知离散型随机变量X 分布律为1)(+==i p i X P ,1 ,0=i ,则p 的值为 ;(A) 12 (B) 12-± (C) 12+ (D) 12-+ 6.袋中有2只白球, 3只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为: ;(A) 12/25 (B) 6/25 (C) 3/5 (D) 1/27袋中有3只白球, 2只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为: ;(A) 12/25 (B) 6/25 (C) 3/5 (D) 1/28.在区间(0,1)上任取两个数,则这两个数之和小于2/3的概率为 ;(A) 2/3 (B) 4/9 (C) 2/9 (D) 1/99. 三个人独立破译一个密码,他们单独破译的概率分别为1/2,1/3,1/4,则此密码能被破译的概率为 。

(A) 13/60 (B) 24/60 (C) 36/60 (D) 47/6010. 三间工厂生产某种元件,假设三间工厂生产元件的份额之比为3:4:3,第一间厂生产的元件的次品率为1%,第二间厂生产的元件的次品率为2%,第一间厂生产的元件的次品率为3%,请问:抽查这三间厂生产的一个元件,该元件为合格品的概率为 .(A) 96% (B) 97% (C) 98% (D) 99%11.某公司业务员平均每见三个客户可以谈成一笔生意,他一天见了8个客户,设他谈成的生意为X 笔,则X 服从的分布为 ;(A) B (1,1/3) (B) N(8,1/3) (C) B(8,1/3) (D) E(8)12.假设某市公安交警支队每天接到的122报警电话次数X 可以用泊松(Poisson)分布()P λ来描述.已知{20}{21}.P X P X ===则该市公安交警支队每天接到的122报警电话次数为 .(A) 19 (B) 20 (C) 21 (D) 2213.指数分布又称为寿命分布,经常用来描述电子器件的寿命。

设某款电器的寿命(单位:小时)的密度函数为则这种电器的寿命为 小时.(A) 500 (B) 1000(C) 250000 (D) 100000014.设随机变量X 具有概率密度则常数k = .(A) 1/2 (B) 1 (C) 3/2 (D) 215.在第14小题中, {10.5}P X -≤≤= .(A) 1/4 (B) 3/4 (C) 1/8 (D) 3/816. 抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的最小点数(max{,}U X Y =)为1的概率为 .(A) 7/36 (B) 9/36 (C) 11/36 (D) 13/3617. 抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗15001, 0()5000, t e t f t -⎧>⎪=⎨⎪⎩其它2,0,()0,x x k f x ≤≤⎧=⎨⎩其它.骰子的点数之和(Z=X+Y)为 的概率最大;(A) 6 (B) 7 (C) 8 (D) 918.设松山湖园区理工学院后门22路汽车的载客人数服从10λ=的泊松分布,今任意观察一辆到理工学院后门的22路汽车,车中无乘客的概率为 ;(A) 1/10 (B) 1/10! (C) 10e - (D) 102!e - 19.设随机变量X ~ N (100,64),Y ~ N (100,36),且X 与Y 相互独立,则,X –Y 服从 分布.(A) (100,64)N (B) (0,100)N (C) (100,100)N(D) (0,28)N20. 在第19小题中,P(X –Y<20) = .(A) 2.28% (B) 15.87% (C) 84.13%(D) 97.72% 21.已知~ (10,0.1)X B ,则E(X 2) = .(A) 0.9 (B) 0.99 (C) 1.99 (D) 1.9 22.已知D(X) = 2,E(Y) = 3,E( Y 2 )= 11,X 和Y 相互独立,则D(2X+Y+2) = .(A) 8 (B) 9 (C) 10 (D) 1122.已知D(X) = 1,D (Y) = 1,X 和Y 的相关系数1XY ρ=.则D(X+2Y) = .(A) 7 (B) 8 (C) 9(D) 1023.设随机向量(X,Y)具有联合密度函数 (,)f x y =(22), 0,0,0, x y ke x y -+⎧>>⎨⎩其它.则密度函数中的常数k = .(A) 1 (B) 2 (C) 3(D) 4 24.设随机变量X ,Y 的概率密度分别为:=)(x f X 23, 01,0, 其它x x ⎧≤≤⎨⎩, =)(y f Y 2, 00 , 其它y y ≤≤⎧⎨⎩. 已知随机变量X 和Y 相互独立.则概率{}P Y X >= .(A) 0.2 (B) 0.4 (C) 0.6 (D) 0.825.设X 1,X 2,X 3是来自总体X 的简单随机样本,则下列统计量11221233123111111,,()222363T X X T X X X T X X X =+=++=++中,属于无偏估计的统计量中最有效的一个为 .(A) 1T (B) 2T (C) 3T (D) 12,T T26.设201,...,X X 及140,...,Y Y 分别是总体)10,20(N 的容量为20和40的两个独立样本,这两组样本的样本均值分别记为Y X ,.Y X -服从分布 . (A) 1(0,)2N (B) 1(0,)4N (C) 3(0,)4N (D) (0,1)N 27.在第26小题中, {}5P X Y -≤= . (A) 15.87% (B) 57.62% (C) 78.81% (D) 84.13%28.在第26小题中,2021(20)10ii X =-∑服从分布 .(A) (19)t (B) (20)t (C) 2(19)χ (D) 2(20)χ29. 在第26小题中,40212021(20)2(20)ii i i Y X ==--∑∑服从分布 . (A) (40,20)F (B) (20,40)F (C) (19,39)F (D) (39,19)F30. 在样本量和抽样方式不变的情况下,若降低置信度,则 ;(A ) 置信区间的宽度会增大 (B ) 置信区间的宽度会缩小(C ) 置信区间的宽度可能缩小也可能增大 (D ) 不会影响置信区间的宽度 31. 在对同一个总体的参数进行检验时,若在α=0.05显著性水平下拒绝原假设H 0,则在α 等于0.1的显著性不平下 ;(A )肯定接受H 0 ( (B )有时拒绝H 0 有时接受H 0(C )可能拒绝H 0 也可能接受H 0 (D )肯定拒绝H 032. 设总体~ (0,)X U θ,θ未知,12,,,n X X X 是来自总体X 的样本,则θ的极大似然估计量为 . (A) ˆX θ= (B) 12ˆmax{,,,}n X X X θ= (C) 12ˆmin{,,,}n X X X θ= (D) ˆ2X θ=33. 设总体2~ (,)X N μσ,参数μ未知, 2σ已知,12,,,n X X X 是来自总体X的样本,则μ的矩估计量为 . (A) ˆX μ= (B) ˆ2X μ= (C) ˆ1/X μ= (D) 2ˆX μ=34.假设检验的第一类错误(弃真)是指:(A) 0H 为假但接受0H (B) 0H 为假且拒绝0H(C) 0H 为真且接受0H (D) 0H 为真但拒绝0H35. 某工厂在生产过程的产品检验假设H 0:产品是合格的,显著性水平为5%,工厂厂长问什么是显著性水平,正确的说法是 .(A) 如果产品是不合格的,有5%的概率检验为合格;(B) 如果产品是不合格的,有95%的概率检验为不合格;(C) 如果产品是合格的,有5%的概率检验为不合格;(D) 如果产品是合格的,有95%的概率检验为不合格;二、计算题1. 设中石油的桶装石油的重量重服从正态分布,规定每桶重量是250公斤,标准差为3公斤,有的消费者由于重量不足250公斤而来投诉,公司解释这是由于随机原因引起的,因为有的桶装石油重量超过250公斤.(1)消费者购买一桶其重量不足247公斤的概率有多大?(2)若一次购买3桶,其平均重量不到248公斤的概率有多大?2. 从一批牛奶中随机抽取16盒检测其三聚氰胺的含量。

发现每盒牛奶中三聚氰胺的含量平均为1.8毫克/公斤,标准差为0.36毫克/公斤。

假设这批牛奶中三聚氰胺的含量(单位:毫克/公斤)服从正态分布),(2σμN .试求:(1) 三聚氰胺含量的均值μ的置信度为95%的置信区间;(2)三聚氰胺含量的方差2σ的置信度为95%的置信区间.(220.9750.025(15) 6.262, (15)27.488x x ==)3.某厂家声称其生产的某型号手机待机时间不低于99小时。

从该厂家生产的该型号手机总体中随机取得一个样本容量为25的样本,经计算求该厂家生产的该型号手机待机时间的样本均值为95小时,样本标准差为5小时。

请以显著性水平为0.05α=检验该厂家声明是否真实可信?.。

相关文档
最新文档