人教版七年级上册数学各单元测试题[1]
人教版七年级数学上册单元测试题全套含答案
三、解答题(共 66 分) 19.(8 分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来. -11,0,2,-|-3|,-(-3.5).
2
20.(16 分)计算: -1 2 -1
(1)5×(-2)+(-8)÷(-2); (2) 2-5× 2 ÷ 4 ;
1-12-3 (3)(-24)× 2 3 8 ;
A.点 A B.点 B C.点 C D.点 D 4.2016 年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金 408 万元.408 万用科学记数法表示正确的是( ) A.408×104 B.4.08×104 C.4.08×105 D.4.08×106 5.下列算式正确的是( ) A.(-14)-5=-9 B.0-(-3)=3 C.(-3)-(-3)=-6 D.|5-3|=-(5-3) 6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),- 1 中,化简结果等于 1 的个数是( )
输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
24.(12 分)下面是按规律排列的一列数:
1+-1 第 1 个数:1- 2 ;
1+-1 1+(-1)2 1+(-1)3
第 2 个数:2- 2
3
4;
1+-1 1+(-1)2 1+(-1)3 1+(-1)4 1+(-1)5
第 3 个数:3- 2
七年级上册数学各单元测试题(含答案)人教版
第 一 章 有 理 数班级 学号 姓名 得分一、选择题(4分³10=40分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334³710人B 、33.4³510人C 、3.34³210人D 、3.34³610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)³51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ²y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1³20)mmB 、(0.1³40)mmC 、(0.1³220)mmD 、(0.1³202)mm二、填空题(5分³4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 .14、观察下列各数,按规律在横线上填上适当的数。
人教版七年级数学上册单元测试题全套含答案
输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
-1 A.3 个 B.4 个 C.5 个 D.6 个 7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是 1cm),刻度尺上的“0cm”和“8cm”分别对应 数轴上的-3.6 和 x,则 x 的值为( )
A.4.2 B.4.3 C.4.4 D.4.5 8.有理数 a,b 在数轴上的位置如图所示,下列各式成立的是( )
A.b>0 B.|a|>-b C.a+b>0 D.ab<0 9.若|a|=5,b=-3,则 a-b 的值为( ) A.2 或 8 B.-2 或 8 C.2 或-8 D.-2 或-8
10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发
5
3
___________________.
13.绝对值大于 4 而小于 7 的所有整数之和是________.
14.点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位到达点 B,则这两点所表示
的数分别是________和________.
15.如图是一个简单的数值运算程序.当输入 x 的值为-1 时,则输出的数值为________.
现的规律得出 22016 的末位数字是( )
A.2 B.4 C.6 D.8
二、填空题(每小题 3 分,共 24 分)
人教版数学七年级上册-有理数单元测试卷
人教版数学七年级上册-有理数单元测试卷考试范围:第1章有理数;考试时间:100分钟;满分:120分学校:___________姓名:___________班级:___________考号:___________ 题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题)1.如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.按括号内的要求用四舍五人法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.0136≈0.014(精确到0.0001)4.2018的相反数是()A.﹣2018 B.2018 C.﹣ D.5.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.6.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.7.在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④8.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.B.D.5+29.时代超市出售的三种品牌月饼袋上,分别标有质量为:(500±5)g、(500±10)g、(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A.10g B.20g C.30g D.40g10.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)评卷人得分二.填空题(共5小题)11.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过mm.12.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为.13.某市2018年元旦的最低气温为﹣1℃,最高气温为7℃,这一天的最高气温比最低气温高℃.14.若a、b互为倒数,则4ab=.15.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.评卷人得分三.解答题(共7小题)16.请你把下列各数填入表示它所在的数集的圈里:﹣2,﹣20%,﹣0.13,﹣7,10,,21,6.2,4.7,﹣8这四个集合合并在一起(填“是”或“不是”)全体有理数集合,若不是,缺少的是.17.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)18.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.19.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a+b|﹣|c﹣a|的值.20.阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=1=0﹣(﹣1);线段BC=2=2﹣0;线段AC=3=2﹣(﹣1)问题(1)数轴上点M、N代表的数分别为﹣9和1,则线段MN=;(2)数轴上点E、F代表的数分别为﹣6和﹣3,则线段EF=;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m.21.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)=8,求a的值.22.某公司股票上周五在股市收盘价(收市时的价格)为每股25.8元股,在接下来的一周交易日内,老何记下该股票每日收盘价比前一天的涨跌情况(记上涨为正,单位:元)﹒星期一二三四五每股涨跌(元)+2 ﹣0.5 +1.5 ﹣1.8 +0.8根据上表回答下列问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价和最低价分别是多少元?(3)已知老何在周一收盘时买进该公司股票1000股,在周四以收盘价格将全部股票卖出.已知买入与卖出股票均需支付成交金额的3‰(千分之三)的交易费,问老何的收益情况如何?参考答案与试题解析一.选择题(共10小题)1.解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.解:65000=6.5×104,故选:B.3.解:403.53≈404(精确到个位),故选项A错误,2.604≈2.6(精确到十分位),故选项B错误,0.0234≈0.0(精确到0.1),故选项C正确,0.0136≈0.0136(精确到0.0001),故选项D错误,故选:C.4.解:2018的相反数是:﹣2018.故选:A.5.解:|﹣3|=3,故选:A.6.解:∵a在原点的左侧,b再原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴<0,∴D错误.故选:B.7.解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.8.解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.9.解:由题意知:任意拿出两袋,最重的是520g,最轻的是480g,所以质量相差520﹣480=40(g).故选:D.10.解:①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则=﹣1,正确;③若a2=b2,则a=b或a=﹣b,错误;④若a<0,b<0,所以ab﹣a>0,则|ab﹣a|=ab﹣a,正确;故选:B.二.填空题(共5小题)11.解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0312.解:﹣1+5=4.答:此时点A所对应的数为4.故答案为:4.13.解:由题意可得:这一天的最高气温比最低气温高7﹣(﹣1)=8(℃).故答案为:8.14.解:∵a、b两实数互为倒数,ab=1,∴4ab=4,故答案为:4.15.解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.三.解答题(共7小题)16.这四个集合合并在一起不是全体有理数集合,缺少的是0.故答案为:不是;0.17.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.18.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5.故答案为:1,﹣2.5;(2)∵A点表示1,∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合,∴其中点==﹣1,∵点B表示﹣2.5,∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.19.解:由数轴可得,a<0<b<c,|b|<|a|<|c|,∴b﹣c<0,a+b<0,c﹣a>0,∴|b﹣c|+|a+b|﹣|c﹣a|=c﹣b﹣a﹣b﹣c+a=﹣2b.20.解:(1)∵点M、N代表的数分别为﹣9和1,∴线段MN=1﹣(﹣9)=10;故答案为:10;(2)∵点E、F代表的数分别为﹣6和﹣3,∴线段EF=﹣3﹣(﹣6)=3;故答案为:3;(3)由题可得,|m﹣2|=5,解得m=﹣3或7,∴m值为﹣3或7.21.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣32;(2)☆3=×32+2××3+=8a+8=8,解得:a=0.22.解:(1)25.8+2﹣0.5=27.3(元);(2)周一25.8+2=27.8(元),周二27.3元,周三27.3+1.5=28.8(元),周四28.8﹣1.8=27(元),周五27+0.8=27.8(元)∴本周最高价为28.8元,最低价为27元;(3)(27﹣27.8)×1000﹣(27.8+27)×1000×3‰=﹣964.4(元),答:老何亏损了964.4元.。
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版七年级数学上册单元测试题:第1章_有理数
数学七年级上第一章有理数单元检测参考完成时间:60分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法中不正确的是().A.-3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2 000既是负数,也是整数,但不是有理数D.0是正数和负数的分界2.-2的相反数的倒数是().A.2 B.12C.12−D.-23.比-7.1大,而比1小的整数的个数是().A.6 B.7 C.8 D.94.如果一个数的平方与这个数的差等于0,那么这个数只能是().A.0 B.-1 C.1 D.0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为().A.63×102千米B.6.3×102千米C.6.3×104千米D.6.3×103千米6.有理数a,b在数轴上的位置如图所示,下列各式正确的是().A.a>0 B.b<0C.a>b D.a<b7.下列各组数中,相等的是().A.32与23B.-22与(-2)2C.-|-3|与|-3| D.-23与(-2)38.在-5,110−,-3.5,-0.01,-2,-212各数中,最大的数是().A.-12 B.1 10−C.-0.01 D.-59.如果a+b<0,并且ab>0,那么().A.a<0,b<0 B.a>0,b>0C.a<0,b>0 D.a>0,b<010.若a表示有理数,则|a|-a的值是().A.0 B.非负数C.非正数D.正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.123−的倒数是________,123−的相反数是______,123−的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13.计算:-|-5|+3=__________.所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,12−,13,14−…,第2 013个数是________.15.比132−大而比123小的所有整数的和为________.16.若|x-2|与(y+3)2互为相反数,则x+y=__________.17.近似数2.35万精确到__________位.18.对于任意非零有理数a,b,定义运算如下:a b=(a-b)÷(a+b),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分)19.计算:(每小题4分,共20分)(1)-20+(-14)-(-18)-13;(2)172×314÷(-9+19);(3)-24×131243⎛⎫−+−⎪⎝⎭;(4)(-81)÷12 4+49÷(-16);(5)(-1)3-112⎛⎫−⎪⎝⎭÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,43−−,0,227,-3.14,2 006,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合{…}.21.(8分)“十一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化日期1日2日3日4日5日6日7日人数变化 1.60.80.4-0.4-0.80.2-1.2(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C点拨:A中-3.14不是-π,是负分数,C选项中-2 000是负整数,更是有理数,所以说法错误.故选C.2答案:B3答案:C点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D点拨:A中科学记数法表示为2位数错,B、C中10的指数错,只有D正确,故选D.6答案:D点拨:a在原点左侧为负数,b在原点右侧为正数,所以A、B、C均错,只有D正确.7答案:D点拨:32=9,23=8,故A错;-22=-4,(-2)2=4,所以B错,-|-3|=-3,|-3|=3,所以C错;-23=-8,(-2)3=-8,相等,故选D.8答案:C点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A点拨:a+b<0,所以a,b中一定至少有一个负数,且负数的绝对值较大.又因为ab>0,所以a,b同号,且同为负号.10答案:B点拨:可以用特殊值法求解,当a=2时,|a|-a=|2|-2=0;当a=0时,|a|-a=|0|-0=0;当a=-2时,|a|-a=|2|-(-2)=4,故选B.11答案:37−123123点拨:根据概念分别写出.12答案:-9或-1点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1.13答案:-2点拨:-|-5|=-5,14答案:12013点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是1 2013.15答案:-3点拨:比132−大而比123小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1点拨:|x-2|与(y+3)2互为相反数,所以|x-2|+(y+3)2=0,所以x-2=0,y+3=0,所以x=2,y=-3,所以x+y=-1.17答案:百18答案:-4点拨:根据定义中规定的计算式子可知:(-3)5=(-3-5)÷(-3+5)=-8÷2=-4.19解:(1)―20+(―14)―(―18)―13=-20-14+18-13=-20-14-13+18=-47+18=-29;(2)172×314÷(-9+19)=1571571211024241016⨯÷=⨯⨯=;(3)-24×131243⎛⎫−+−⎪⎝⎭=12-18+8=2;(4)(-81)÷12 4+49÷(-16)=(-81)×49+49×116⎛⎫− ⎪⎝⎭=-36-136=13636−;(5)(-1)3-112⎛⎫−⎪⎝⎭÷3×[3―(―3)2]=-1-12÷3×(3―9)=-1-12×13×(-6)=-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:22,2006, 1.88,7⎧⎫+⋅⋅⋅⎨⎬⎩⎭;(2)负数集合:44,, 3.14,(5),3⎧⎫−−−−−+⋅⋅⋅⎨⎬⎩⎭;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:422, 3.14,, 1.88,37⎧⎫−−−+⋅⋅⋅⎨⎬⎩⎭.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏.21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a人,它们相差:(a+1.6+0.8+0.4)-(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a+1.6+0.8+0.4-a-1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人),所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a人,所以到3日时的人数是(a+1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16=+17+7+5+16+11-15-3-6-8-9=56-41=+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米.(2)出租司机最远处离出发点有17千米.(3)56+|-41|=97(千米),0.08×97=7.76(升).答:这天共耗油7.76升.。
最新人教版七年级数学上册单元测试题及答案全册
最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。
人教版数学七年级上册单元测试卷-第一单元 有理数(含答案)
保密★启用前人教版数学七年级上册单元测试卷第一单元 有理数一、单选题1.如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ). A .5元B .5-元C .3-元D .7元2.2022的相反数是( ) A .12022B .12022-C .−2022D .20223.下列计算结果为0的是( ) A .2222--B .223(3)-+-C .22(2)2-+D .2333--⨯4.数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是( ). A .-5B .-1C .1D .55.华为最新款手机芯片“麒麟990”是一种微型处理器,每秒可进行100亿次运算,它工作2022秒可进行的运算次数用科学记数法表示为( ) A .140.202210⨯B .1220.2210⨯C .132.02210⨯D .142.02210⨯6.下面算式与11152234-+的值相等的是( )A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭B .11133234⎛⎫--+ ⎪⎝⎭C .111227234⎛⎫+-+ ⎪⎝⎭D .11143234⎛⎫--+ ⎪⎝⎭7.观察下列三组数的运算:3(2)8-=-,328-=-;3(3)27-=-,3327-=-;3(4)64-=-,3446-=-.联系这些具体数的乘方,可以发现规律.下列用字母a 表示的式子:①当0a <时,33()a a =-;①当0a >时,33()a a -=-.其中表示的规律正确的是( ) A .①B .①C .①、①都正确D .①、①都不正确8.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =9.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .610.如图,数轴上4个点表示的数分别为a 、b 、c 、d .若|a ﹣d |=10,|a ﹣b |=6,|b ﹣d |=2|b ﹣c |,则|c ﹣d |=( )A .1B .1.5C .1.5D .2二、填空题11.用科学记数法表示的数的原数5.001×106=___.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.13.东京与北京的时差为1h +,伯伯在北京乘坐早晨9:00的航班飞行约3h 到达东京,那么李伯伯到达东京的时间是____.(注:正数表示同一时刻比北京时间早的时数) 14.大家知道,550=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是:表示6的点与表示3的点之间的距离.类似地,式子()5a --在数轴上的意义是______. 15.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |; (2)a +b +c ______0:(3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a . 16.下列说法:①若a ,b 互为相反数,则ab=﹣1;①如果|a +b |=|a |+|b |,则ab ≥0;①若x 表示一个有理数,则|x +2|+|x +5|+|x ﹣2|的最小值为7; ①若abc <0,a +b +c >0,则a bc ab abc a bc ab abc+++的值为﹣2.其中一定正确的结论是____(只填序号). 三、解答题 17.计算:(1)2(7)18(2)-⨯--÷-; (2)212316()12()234-÷--⨯-.18.画出数轴,用数轴上的点表示下列各数,并用“>”将它们连接起来: 33,2,1.5,,0,0.54---.19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.如图所示,在数轴上点A,B,C表示得数为﹣2,0,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC ﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.21.入冬以来,某品牌的羽绒服统计了在西乡市场某一周的销售情况,以每天100件为标准,超过的件数记作正数,不足的件数记作负数,记录如下:8,12,-9,6,-11,10,-2.(1)求销量最多的一天比销量最少的一天多销售______件;(2)该品牌羽绒服这一周的销售总量是多少件?若每件羽绒服的利润为130元,则这一周销售该品牌羽绒服的总利润为多少元?22.对于平面内的两点M、N,若直线MN上存在点P,使得MP=1NP成立,则称点P为点M、N的“和谐点”,但点P不是点N、M的“和谐点”.(1)如图1,点A、B在直线l上,点C、D是线段AB的三等分点,则是点A、B的“和谐点”(填“点C或“点D”);(2)如图2,已知点E、F、G在数轴上,点E表示数-2,点F表示数1,且点F是点E、G的“和谐点”,求点G表示的数;(3)如图3,数轴上的点P表示数5,点M从原点O出发,以每秒3个单位的速度向左运动,点N从点P出发,以每秒10个单位的速度向左运动,点M、N同时出发.在M、N、P三点中,若点M是另两个点的“和谐点”,则OM= .23.计算:已知|m|=1,|n|=4.(1)当mn<0时,求m+n的值;(2)求m﹣n的最大值.24.阅读下面的文字回答后面的问题:求231005555+++⋯+的值解:令231005555S=+++⋯+①将等式两边同时乘以5到:23410155555S=+++⋯+①①-①得:101455S=-①101554S-=即101231005555554-+++⋯+=问题:求231002222+++⋯+的值;参考答案:1.B【解析】【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.2.C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.3.B【解析】【分析】根据有理数的乘方对各选项分别进行计算,然后利用排除法求解即可.【详解】A. 22--=−4−4=−8,故本选项错误;22B. 22-+-=−9+9=0,故本选项正确;3(3)C. 22-+=4+4=8,故本选项错误;(2)2D. 2333--⨯=−9−9=−18,故本选项错误.故选B.【点睛】此题考查有理数的乘方,解题关键在于掌握运算法则4.B【解析】【分析】根据数轴上点的坐标特点及平移的性质解答即可.【详解】解:根据题意:数轴上2所对应的点为A,将A点左移3个单位长度,得到点的坐标为2-3=-1,故选:B.【点睛】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识.5.C【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同,题中:1亿810=.【详解】解:100亿1010=,1013102022 2.02210⨯=⨯,故选:C.【点睛】本题考查科学记数法的表示方法,关键要正确确定a的值以及n的值.6.C【解析】【分析】直接计算每个算式,对比答案即可.【详解】解:1111115 52527 23423412-+=+-++=;A 、1111111117324324324123423423412⎛⎫⎛⎫--+-=++-=+++--= ⎪ ⎪⎝⎭⎝⎭;B 、1111111111333333723423423412⎛⎫--+=++=++++= ⎪⎝⎭;C 、1111115227227723423412⎛⎫+-+=+--++= ⎪⎝⎭;D 、11111114343823423412⎛⎫--+=++++= ⎪⎝⎭,故选:C 【点睛】本题考查了有理数的加减运算,熟记有理数的加减混合运算的法则是解题的关键. 7.B 【解析】 【分析】根据三组数的运算的规律逐个判断即可得. 【详解】解:由三组数的运算得:[]333222))8((-=-==----, []3333(3)(3)27-=--=--=-,[]3334(4)(4)64-=--=--=-,归纳类推得:当0a <时,33()a a =--,式子①错误; 由三组数的运算得:3328(2)-=-=-, 33327(3)--=-=, 33464(4)--=-=,归纳类推得:当0a >时,33()a a -=-,式子①正确; 故选:B . 【点睛】本题考查了有理数乘方的应用,正确归纳类推出一般规律是解题关键. 8.A 【解析】 【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,①当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t,BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),①OQ= BO- BQ=2-t,①PQ= 2OQ ;①当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),①OQ=BQ- BO=t-2,①PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用.9.B【解析】【分析】表示2017的点在﹣1的右侧,从点﹣1到2017共2018个单位长度,根据2018÷8=252……2,是252圈余2个单位长度,所以对应的数字就是2.【详解】解:因为正方形的周长为8个单位长度,所以正方形的边长为2个单位长度.表示2017的点与表示﹣1的点的距离等于2017﹣(﹣1)=2018个单位长度,因为2018÷8=252……2,所以252圈余2个单位长度,所以对应的数字是2.故选:B.【点睛】此题考查了数轴,解题的关键是找出正方形的周长与数轴上的数字的对应关系.10.D【解析】【分析】根据|a−d|=10,|a−b|=6得出b和d之间的距离,从而求出b和c之间的距离,然后假设a 表示的数为0,分别求出b,c,d表示的数,即可得出答案.【详解】解:①|a−d|=10,①a和d之间的距离为10,假设a表示的数为0,则d表示的数为10,①|a−b|=6,①a和b之间的距离为6,①b表示的数为6,①|b−d|=4,①|b−c|=2,①c表示的数为8,①|c−d|=|8−10|=2,故选:D.【点睛】本题主要考查数轴上两点间的距离、绝对值的意义,关键是要能恰当的设出a、b、c、d表示的数.11.5001000【解析】【分析】把5.001×106表示成原数的形式,就是把5.001的小数点向右移动6位即可得到.【详解】解:5.001×106=5001000,故答案为:5001000.【点睛】本题考查了科学记数法,把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向右移几位.12.1或-3##-3或1【解析】【分析】根据a、b互为相反数,c、d互为倒数,m的绝对值为2,可以得到a+b=0,cd=1,m=±2,然后代入所求式子计算即可.【详解】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,当m=2时,()()2202120112020a bm cd++-=+-=;当m=﹣2时,()()220212013 2020a bm cd++-=-+-=-;故答案为:1或-3.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a+b=0,cd=1,m=±2.13.13时【解析】【分析】根据题意,9点先加上3个小时,再加上时差的1个小时,得到达到东京的时间.【详解】由题意得93113++=,∴李伯伯到达东京是下午13时.故答案是:13时.【点睛】本题考查有理数加法的实际应用,解题的关键是掌握有理数加法运算法则.14.表示a的点与表示-5的点之间的距离【解析】【分析】利用绝对值的意义即可求解.【详解】=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距解:因为550-,它在数轴上的意义是:表示6的点与表示3的点之间的距离,离,式子63a--在数轴上的意义是表示a的点与表示-5的点之间的距离.所以式子()5【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.15.<<>>>【解析】【分析】首先根据数轴可得b<a<0<c,然后再结合绝对值的性质和有理数的加减法法法则进行计算即可.【详解】解:(1)①根据数轴可得b<a<0<c,①|a|<|b|故答案为:<;(2)①a<0<c,|a|>|c|,①a+c<0,①a+b+c<0;故答案为:<;(3)①a-b>0,①a-b+c>0;故答案为:>;(4)①a >b ,①a +c >b ;故答案为:>;(5)①c >b ,①c -b >0,①c -b >a .故答案为:>;【点睛】此题主要考查了有理数的比较大小,关键是掌握绝对值的定义和有理数的加减法法法则. 16.①①##①①【解析】【分析】根据相反数和绝对值的意义讨论即可得出答案.【详解】①若a ,b 互为相反数,则0a b +=,不能得出1a b=-,故①错误; ①当0,0a b ≥≥或0,0a b <<时,a b a b +=+成立,当0,0a b ><或0,0a b <>时,a b a b a b +=-≠+, ∴a b a b +=+成立,则0,0a b ≥≥或0,0a b <<,即0ab ≥,故①正确; ①252x x x ++++-表示x 到数2-、5-、2三个点的距离之和,所以2x =-时,252x x x ++++-取得最小值,最小值为2(5)7--=,故①正确;①当0,0,0c a b <>>且0a b c ++>时,111102abcababca bc ab abc a bc ab abc a bc ab abc--+++=+++=-+-=≠-,故①错误. 故答案为:①①.【点睛】本题考查相反数与绝对值,掌握绝对值的意义是解题的关键.17.(1)23(2)-63【解析】【分析】直接利用有理数混合运算法则计算即可.(1)解:2(7)18(2)14(9)14923-⨯--÷-=--=+=.(2) 解:21231116()12()1612()64163234412-÷--⨯-=-÷-⨯-=-+=-. 【点睛】本题考查有理数的混合运算,注意先算乘方,再算乘除,后算加减,有括号要先算括号里面的;可以结合题目特点,灵活运用结合律、分配律、交换律,从而起到简化运算的效果.18.作图见解析;33 1.500.524>>>->->-. 【解析】【分析】先在数轴上表示出各个数,再根据数轴上的点表示的数的大小规律即可得到结果.【详解】解:在数轴上表示出各个数如图所示:则可得3>1.5>0>−0.5>34->−2【点睛】本题考查了利用数轴比较有理数的大小,解题的关键是熟练掌握数轴上的点表示的数,右边的数始终大于左边的数.19.()13 2.50232-<-<<<--< 【解析】【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.解:33--=-,(2)2--=, ①13 2.50232-<-<<<< , ①13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【解析】【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t , 则6436BC t t t =+-=+,()32225AB t t t =---=+ ()62544BC AB t t t ∴-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.21.(1)23(2)该品牌羽绒服这一周的销售总量是714件,总利润为92820元【解析】(1)直接利用有理数的减法法则,用最大的数减去最小的数即可;(2)可以先求出7天的标准件数,再加上比标准多或少件数即可,利用这周销售羽绒服的总件数×130即可.(1)12(11)23--=(件)故答案为:23;(2)7×100+8+12+(-9)+6+(-11)+10+(-2)=714(件)所以该品牌羽绒服这一周的销售总量是714件.714×130=92820(元)所以这一周销售该品牌羽绒服的总利润为92820元.【点睛】本题主要考查正数和负数,正确利用有理数的运算法则是解题的关键.22.(1)点C(2)-5或7(3)45或1517或4511【解析】【分析】(1)点C、D是线段AB的三等分点,故可直接依题意判断得到答案.(2)按“和谐点”的定义列出等式,然后可求得答案.(3)设经过t秒后满足点M是点N、P的“和谐点”或点M是P、N的“和谐点”,求出t的值,进而得到答案.(1)解:①点C、D是线段AB的三等分点①12 AC BC=故点C是点A、B的“和谐点”.(2)解:点F 是点E 、G 的“和谐点”,依题意有12EF GF =, ①3EF =①6GF =①点G 为-5或7.(3)解:设时间t 秒后:①满足点M 是点N 、P 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12NM PM = ①()157532t t -=+当570t ->时,()15757532t t t -=-=+,解得517t =①点M 为1517-,1517OM = 当570t -<时,()()157532t t --=+,解得1511t①点M 为1511-,4511OM =①满足点M 是P 、N 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12PM NM = ①153572t t +=- ,解得15t =①45OM =综上所述,45OM =或1517或4511 【点睛】本题考查数轴上的两点距离及动点问题,熟练掌握数轴的相关知识,按定义列出等式求解是解题的关键.23.(1)±3;(2)m ﹣n 的最大值是5.【解析】【分析】由已知分别求出m =±1,n =±4;(1)由已知可得m =1,n =﹣4或m =﹣1,n =4,再求m +n 即可;(2)分四种情况分别计算即可.【详解】①|m |=1,|n |=4,①m =±1,n =±4;(1)①mn <0,①m =1,n =﹣4或m =﹣1,n =4,①m +n =±3;(2)分四种情况讨论:①m =1,n =4时,m ﹣n =﹣3;①m =﹣1,n =﹣4时,m ﹣n =3;①m =1,n =﹣4时,m ﹣n =5;①m =﹣1,n =4时,m ﹣n =﹣5;综上所述:m ﹣n 的最大值是5.【点睛】本题考查了有理数的运算,绝对值的运算;掌握有理数和绝对值的运算法则,能够正确分类是解题的关键.24.10122-【解析】【分析】根据题目解题过程进行求解即可;【详解】解:令231002222S =+++⋯+①将等式两边同时乘以2到:20134122222S =+++⋯+①①-①得:10122S =-①10122S =-,即23100101222222++++=⋯-.【点睛】本题主要考查有理数混合运算的应用,正确理解题意,根据题目方法步骤进行求解是解题的关键.。
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
最新人教版七年级数学上册单元测试题及答案全册
最新人教版七年级数学上册单元测试题及答案全册第一章有理数章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.14D14-2.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.160 8×10104.某市一天上午的气温是10 ℃,下午上升了2 ℃,半夜(24时)下降了15 ℃,则半夜的气温是()A.3 ℃B.-3 ℃C.4 ℃D.-2 ℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()图1-1A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.-23-的倒数是()A. 32B.32- C.23 D. 23-7.下列运算错误的是()A.-8×2×6=-96B.(-1)2 014+(-1)2 015=0C.-(-3)2=-9D.2÷ 43× 34=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b<0C.(b-a)(a+1)>0D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____.12.已知有理数a,b,c在数轴上的位置如图1-3,且|a|=1,|b|=2,|c|=4,则a-b+c=_____.图1-313.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是____,最小的积是_____.14.已知a,b互为相反数,且|a-b|=6,则b-1=____.15.已知|x|=4,|y|=12,且xy<0,则xy的值等于_____.16.将640 000精确到十万位为_______,4.10×105精确到了_____位.17.定义一种新的运算“@”的法则为:x@y=xy-1,则(2@3)@4=______.18.计算:1+2-3-4+5+6-7-8+9+10-11-12+……-2007-2008+2009+2010-2011-2012+2013=______.三、解答题(共58分)19.(8分)如图1-4,一个单位长度表示2,解答下列问题:图1-4(1)若点B与点D所表示的数互为相反数,求点D所表示的数;(2)若点A与点D所表示的数互为相反数,求点D所表示的数;(3)若点B与点F所表示的数互为相反数,求点D所表示的数的相反数.20.(8分)计算:(1)1137(3)() 63412+-÷-+-;(2)-23+(-2)2×(-1)-(-2)4÷(-2)3;(3)11311()() 6841248--+-÷-;×(-12).(4)23292421.(10分)如图1-5,观察图形得1+3+5+7+9+11=()2,由此你能推出从1开始的n个连续奇数之和是多少吗?选择几个n的值,用计算器验证一下.图1-522.(10分)规定一种新的运算:a△b=ab-a-b+1,如3△4=3×4-3-4+1=6,试求(-5)△4的值.23.(10分)从图1-6中最小的数开始,由小到大依次用线段连接各数,并指出你所得图形的名称.图1-624.(12分)某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少答案一、1.A 2.A 3.C4.B 解析:根据题意可列算式为10+2-15=12-15=-3 (△).故选B.5.C 解析:(-0.1-0.3+0.2+0.3)+5×4=20.1(kg).故选C.6.B 解析:23-- =23-,23-的倒数为32-.故选B. 7.D 解析:2÷43×34 =2×34×34=98,故D 选项错误.故选D. 8.C 解析:由A ,B 两点在数轴上的位置可知,-1<a <0,b >1,所以ab <0,a +b >0,故A ,B 错误;因为-1<a <0,b >1,所以b -1>0,a +1>0,a -1<0,所以(b -a )(a +1)>0,(b -1)(a -1)<0,故C 正确,D 错误.故选C.9.D 解析:因为|a -1|+(b +3)2=0,所以a -1=0,b +3=0,所以a =1,b =-3,所以ba =(-3)1=-3.故选D.10.B 解析:2*1=2-1+2×1=1+2=3.故选B.二、11. -3 解析:由-1先向右平移6个单位长度到达点A ,再由点A 向左平移8个单位长度到达点B,则此时这个点表示的数是-1+6-8=-3.12. -7 解析:根据a,b,c在数轴上的位置可知b>0,c<0,a<0,再根据|a|=1,|b|=2,|c|=4可求出a,b,c的值,代入a-b+c进行计算即可.13. 75 -30 解析:根据题意知任取的三个数是-5,-3,5时,它们的积最大,是(-5)×(-3)×5=75.任取的三个数是-5,-3,-2时,它们的积最小,是(-5)×(-3)×(-2)=-30.14. 2或-4 解析:由a,b互为相反数,可得a+b=0,得a=-b.由|a-b|=6,得|-b-b|=6,|b|=3,所以b=±3.当b=3时,b-1=2;当b=-3时,b-1=-4.15. -8 解析:先根据xy<0确定xy的符号,再根据绝对值的定义求出x与y的比值即可.16. 6×105千17. 19 解析:根据运算法则x@y=xy-1知,(2@3)@4=(2×3-1)×4-1=19.18. 1 解析:原式=1+(2-3)+(-4+5)+(6-7)+(-8+9)+…+(2 006-2 007)+(-2 008+2 009)+(2 010-2 011)+(-2 012+2 013)=1.三、19.解:(1)因为点B与点D所表示的数互为相反数,且点B与点D之间有4个单位长度,每个单位长度为2,所以可得点D所表示的数为4.(2)因为点A与点D所表示的数互为相反数,且它们之间有5个单位长度,所以点D表示的数为5.(3)因为点B与点F所表示的数互为相反数,且它们之间有6个单位长度,可得C,D中间的点为原点,可得点D表示的数为2,它的相反数为-2.20.解:(1)原式=16+(-3)÷-16=16+3×6=1816.(2)原式=-8+(-4)-16÷(-8)=-8-4+2=-10.(3)原式=-16-18+34-112×(-48)=-16×(-48)-18×(-48)+34×(-48)-112×(-48)=8+6-36+4=-18.(4)原式=30-124×(-12)=30×(-12)-124×(-12)=-360+12=-35912.21.解:6;n2.验证略.22.解:根据题意,得(-5)△4=(-5)×4-(-5)-4+1=-20+5-4+1=-18.23.解:连数顺序为-193→-512→-4.9→-|-4.5|→-4→+(-1)→0→2→|-3|→-(-5)→|-6|→8.所得图形是小轿车.24.解:(1)250-9=241(辆).故本周六生产了241辆摩托车.(2)-5+7-3+4+10-9-25=-21<0,所以本周总产量与计划相比减少了21辆.产量最多的一天为周五,产量最少的一天多生产了35辆.与计划相比减少了21辆.第二章整式的加减章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列式子,不是整式的是( ) A .x y -12 B .37x C .x -11D .02.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .-2xy 2 B .3x 2 C .2xy 3 D .2x 33.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足( ) A .都小于5 B .都大于5 C .都不小于5 D .都不大于54.下列各组单项式,不是同类项的是( ) A .3x 2y 与-2yx 2 B .2ab 2与-ba 2 C .xy3与5xy D .23a 与32a 5.若单项式2x n y m -n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( ) A .3,9 B .9,9 C .9,3 D .3,3 6.-[x -(y -z )]去括号后应得( )A .-x +y -zB .-x -y +zC .-x -y -zD .-x +y +z 7.A ,B 都是五次多项式,则A -B 一定是( ) A .四次多项式 B .五次多项式 C .十次多项式 D .不高于五次的多项式8.已知a ,b 两数在数轴上对应的点的位置如图2-1,则化简式子|a+b |-|a -2|+|b+2|的结果是( )图2-18A .2a +2bB .2b +3C .2a -3D .-19.已知m -n =100,x+y =-1,则式子(n+x )-(m -y )的值是( )A .99B .101C .-99D .-10110.某商家在甲批发市场以每包m 元的价格购进了40包茶叶,又在乙批发市场以每包n 元(m >n )的价格购进了同样的茶叶60包,如果商家以每包m n +2元的价格卖出这种茶叶,那么卖完后,该商家( ) A .盈利了 B .亏损了 C .不盈不亏 D .盈亏不能确定 二、填空题(每小题4分,共32分)11.在多项式3x 2+πxy 2+9中,次数最高的项的系数是 .12.观察下列单项式:3a 2,5a 5,7a 10,9a 17,11a 26,…,它们是按一定规律排列的,那么这列式子的第n 个单项式是 .13.若多项式x 2-3kxy -3y 2+6xy -8不含xy 项,则k = . 14.写出一个只含有字母x ,y15.如果单项式-xy b +1与a x y -231216.在等式的括号内填上恰当的项,x 2-y 2+8y -4=x 2-( ). 17.已知P =2xy -5x +3,Q=x -3xy -2 且3P +2Q=5恒成立,则x = .18.如图2-2是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a+b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b )米,则王明家楼梯的竖直高度(即BC 的长度)为 米.图2-2三、解答题(共58分)19.(8分)计算:(1)-x+2(x-2)-(3x+5);(2)3a2b-2[ab2-2(a2b-2ab2)].xy△z△时,不小心把字母y,z的指数用墨水污染了,20.(8分)王佳在抄写单项式-23他只知道这个单项式的次数是5,你能帮助王佳确定这个单项式吗?21.(10分)已知-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,求a2-2a+1的值.22.(10分)化简求值:(1)把a-2b看作一个“字母”,化简多项式-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3,并求当a-2b=-1时的值.(2)已知|x-2|+(y-1)2=0,求x2+(2xy-3y2)-2(x2+xy-2y2)的值.23.(10分)已知成婷的年龄是m岁,乔豆的年龄比成婷的年龄的2倍少4岁,张华的年龄比乔豆的年龄的1还多1岁,求这三位同学的年龄的和.224.(12分)某超市在春节期间实行打折促销活动,规定如下表:一次性购物促销方法少于200元不打折低于500元但不低于200元打九折500元或超过500元其中500元部分打九折,超过500元部分打八折(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a <300),用含a的式子表示两次购物王老师实际付款多少元?答案一、1.C 解析:A.是多项式,故A 不符合题意;B.是单项式,故B 不符合题意;C.不是整式,故C 符合题意;D.是单项式,故D 不符合题意.故选C.2.D 解析:A.-2xy 2的系数是-2,不符合题意;B.3x 2的系数是3,次数是2,不符合题意;C.2xy 3的系数是2,次数是4,不符合题意;D.2x 3的系数是2,次数是3,符合题意.故选D.3.D 解析:因为多项式里次数最高项的次数,就是这个多项式的次数,该多项式的次数是5,所以这个多项式次数最高项的次数是5,所以这个多项式的任何一项的次数满足都不大于5.故选D.4.B 解析:字母相同且相同字母的指数也相同,故A ,C ,D 不符合题意;相同字母的指数不同,不是同类项,故B 符合题意.故选B.5.C 解析:由题意,得n =3,m -n =2n ,所以m =9,n =3.故选C.6.A 解析:-[x -(y -z )]=-(x -y +z )=-x +y -z .故选A.7.D 解析:若五次项是同类项,且系数相等,则A -B 的次数低于五次;否则A -B 的次数一定是五次.故选D.8.A 解析:由图可得-2<b <-1<1<a <2,且|a |>|b |,则|a +b |-|a -2|+|b +2|=a +b +(a -2)+b +2=a +b +a -2+b +2=2a +2b .故选A.9.D 解析:因为m -n =100,x +y =-1,所以原式=n +x -m +y =-(m -n )+(x +y )=-100-1=-101.故选D.10.A 解析:根据题意,得该商家在甲批发市场购进的茶叶的利润为40()m n m +-2=20(m +n )-40m =20n -20m (元);在乙批发市场购进的茶叶的利润为60m +n 2-n =30(m +n )-60n =30m -30n (元).所以该商家的总利润为20n-20m+30m-30n=10m-10n=10(m-n)(元).因为m>n,所以m-n>0,即10(m-n)>0,所以该商家盈利了.故选A.二、11.π 解析:在多项式3x2+πxy2+9中,次数最高的项是πxy2,其系数是π.12.(2n+1)a n2+1 解析:3a2=(2×1+1)a12+1,5a5=(2×2+1)a22+1,7a10=(2×3+1)a32+1,…,所以第n个单项式是(2n+1)a n2+1.13. 2 解析:原式=x2+(-3k+6)xy-3y2-8.因为该多项式不含xy项,所以-3k+6=0,所以k=2.14.x2+2xy+1(答案不唯一)15. 1 解析:由同类项的概念可知a-2=1,b+1=3,所以a=3,b=2,所以(a-b)2 017=(3-2)2 017=1.16.y2-8y+4 解析:括号内的项为x2-(x2-y2+8y-4)=y2-8y+4.17. 0 解析:因为P=2xy-5x+3,Q=x-3xy-2,所以3P+2Q=6xy-15x+9+2x-6xy-4=-13x+5.因为3P+2Q=5恒成立,所以-13x+5=5,解得x=0.即x=0时,3P+2Q=5恒成立.18.(a-2b)解析:根据题意可得,(3a-b)-(2a+b)=3a-b-2a-b=a-2b.故王明家楼梯的竖直高度(即BC的长度)为(a-2b)米.三、19.解:(1)原式=-x+2x-4-3x-5=-2x-9.(2)原式=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:由题意知,x的指数是1,则y,z的指数的和是4.当y的指数是1时,z的指数是3;当y的指数是2时,z的指数是2;当y的指数是3时,z的指数是1.所以这个单项式是-23xyz3或-23xy2z2或-23xy3z.21.解:因为-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,所以3+|a|=7,a-4≠0,所以a=-4.故a2-2a+1=(-4)2-2×(-4)+1=25.22.解:(1)-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3=(a-2b)5(-3a+6b)+5(a-2b)3=-3(a-2b)6+5(a-2b)3.当a-2b=-1时,原式=-3×(-1)6+5×(-1)3=-3×1+5×(-1)=-8.(2)原式=x2+2xy-3y2-2x2-2xy+4y2=-x2+y2.因为|x-2|+(y-1)2=0,所以x-2=0,y-1=0,即x=2,y=1,则原式=-4+1=-3.23.解:由题意可知,乔豆的年龄为(2m-4)岁,张华的年龄为12(2m-4)+1岁,则这三位同学的年龄的和为m+(2m-4)+12(2m-4)+1=m+2m-4+(m-2+1)=4m-5(岁).答:这三位同学的年龄的和是(4m-5)岁.24.分析:(1)500元部分按9折付款,剩下的100元按8折付款.(2)当200≤x<500时,他实际付款0.9x元;当x≥500时,他实际付款500×0.9+0.8×(x-500)=0.8x+50 (元).(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款-第一次购物款-500)×8折,把相关数值代入即可求解.解:(1)530.500×0.9+(600-500)×0.8=530(元).(2)0.9x 0.8x +50.(3)因为200<a <300,所以第一次实际付款为0.9a 元,第二次付款超过500元,超过500元部分为(820-a -500)元,所以两次购物王老师实际付款为0.9a +0.8(820-a -500)+450=0.1a +706(元).第三章 一元一次方程 章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.在方程①3x -y =2,②x +1x -2=0 ,④ x 2-2x -3=0中一元一次方程的个数为( )A .1B .2C .3D .42.已知x =1是方程x +2a =-1的解,那么a 的值是( )A .-1B .0C .1D .23.方程|x -3|=6的解是( )A .9B .±9C .3D .9或-34.运用等式的性质变形,正确的是( )A .如果a =b ,那么a +c=b -cB .如果 =a b c c ,那么a =bC .如果a =b ,那么 =a b c cD .如果a =3,那么a 2=3a 2 5.解方程 21101136++-=x x 时,去分母、去括号后,正确的结果是( )A .4x +1-10x +1=1B .4x +2-10x -1=1C .4x +2-10x -1=6D .4x +2-10x +1=66.若4x -5与 212-x 的值相等,则x 的值是( )A .1B .32C .23D .27.马强在计算“41+x ”时,误将“+”看成“-”,结果得12,则41+x 的值应为( )A .29B .53C .67D .708.为了参加全校文艺演出,某年级组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队的人数的3倍.设从舞蹈队中抽调了x 人参加合唱队,可得正确的方程是( )A .3(46-x )=30+xB .46+x =3(30-x )C .46-3x =30+xD .46-x =3(30-x )9.当x =1时,式子ax 3+bx +1的值是2,则方程 123244+-+=ax bx x 的解是() A .x =13 B .x =-13C .x =1D .x =-1 10.某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,而按原价的九折出售,将赚20元,那么这种商品的原价是( )A .500元B .400元C .300元D .200元二、填空题(每小题4分,共32分)11.若关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,则k =______.12.若a -5=b -5,则a =b ,这是根据______.13.在方程3a -5=2a +6的两边同时减去一个多项式可以得到方程的解为a =11,则这个多项式是________.14.已知a ,b 互为相反数,且ab ≠0,则方程ax +b =0的解为________.15.如果2(x +3)的值与3(1-x )的值互为相反数,那么x 等于________.16.在有理数范围内定义运算“△”,其规则为a △b =ab +1,则方程(3△4)△x =2的解为x =________.17.张强在做作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是x + 13=13x +△,怎么办呢?张强想了想,便翻看了书后的答案,此方程的解是x =-3,张强很快补好了这个常数,并迅速完成了作业,这个常数是______.18.请你阅读下面的诗句:“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的树为______棵.三、解答题(共58分)19.(8分)解下列方程:(1)3x (7-x )=18-x (3x -15);(2) 0.170.210.70.03--=x x . 20.(8分)下面是马小哈同学做的一道题:解方程: 212134-+=-x x . 解:①去分母,得4(2x -1)=1-3(x +2).②去括号,得8x -4=1-3x -6.③移项,得8x +3x =1-6+4.④合并同类项,得11x =-1.⑤系数化为1,得x =- 111.(1)上面的解题过程中最早出现错误的步骤(填序号)是________.(2)请正确的解方程: 12224-+-=-x x x . 21.(10分)已知|a -3|+(b +1)2=0,式子22-+b a m 的值比 12b -a +m 的值多1,求m 的值. 22.(10分)当m 为何值时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.(10分)已知a 是非零整数,关于x 的方程ax |a |-bx 2+x -2=0是一元一次方程,求a +b 的值与方程的解.24.(12分)一艘载重480 t 的船,容积是1 050 m 3,现有甲种货物450 m 3,乙种货物350 t ,而甲种货物每吨的体积为2.5 m 3,乙种货物每立方米0.5 t .问:(1)甲、乙两种货物是否都能装上船?如果不能,请说明理由.(2)为了最大限度地利用船的载质量和容积,两种货物应各装多少吨? 答案一、1.A 解析:①含有两个未知数,不是一元一次方程;②方程左边不是整式,不是一元一次方程;③符合一元一次方程的概念;④未知数的最高次数是2,不是一元一次方程.故选A.2.A 解析:把x =1代入方程,得1+2a =-1,解得a =-1.故选A.3.D 解析:因为|x -3|=6,所以x -3=6或x -3=-6.①x -3=6,解得x =9;②x -3=-6,解得x =-3.故选D.4.B 解析:A.利用等式的性质1,两边都加c ,得到a +c=b +c ,所以A 不正确;B.利用等式的性质2,两边都乘c ,得到a =b ,所以B 正确;C.因为c 可能为0,所以C 不正确;D.因为a 2=9,3a 2=27,所以a 2≠3a 2,所以D 不正确.故选B.5.C 解析:去分母,得2(2x +1)-(10x +1)=6.去括号,得4x +2-10x -1=6.故选C.6.B 解析:根据题意,得4x -5=212-x .去分母,得8x -10=2x -1,解得x =32.故选B. 7.D 解析:根据题意,得41-x =12,解得x =29.所以41+x =41+29=70.故选D.8.B 解析:由题意可知,46+x =3(30-x ).故选B.9.C 解析:把x =1代入ax 3+bx +1=2,得a +b +1=2,即a +b =1.去分母,得2ax +2+2bx -3=x ,整理,得(2a +2b -1)x =1,即[2(a +b )-1]x =1.把a +b =1代入,得x =1.故选C.10.C 解析:设这种商品的原价是x 元.根据题意,得75%x +25=90%x -20,解得x =300.故选C.二、 11. 0 解析:由关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,得|k -1|=1且k -2≠0,解得k =0.12.等式的性质1 解析:在等式的两边同时加5就可以得到a =b .这是根据等式的性质1.13. 2a -5 解析:方程两边都减2a -5,得a =11.14.x =1 解析:因为a ,b 互为相反数,且ab ≠0,所以b a=-1.方程ax +b =0的解为x =-b a=1. 15. 9 解析:根据题意,得2(x +3)+3(1-x )=0.去括号,得2x +6+3-3x =0.移项,合并同类项,得-x =-9,解得x =9. 16.113 解析:根据题中的新定义,得3△4=12+1=13.代入方程(3△4)△x =2,得13△x =2,即13x +1=2,解得x =113. 17.53- 解析:设这个常数是a .把x =-3代入方程,得-3+13=13×(-3)+a ,解得a =53-.故这个常数是53-. 18. 5 解析:设诗句中谈到的树为x 棵,则鸦有(3x +5)只.根据题意,得5(x -1)=3x +5,解得x =5.所以诗句中谈到的树为5棵.三、19.解:(1)去括号,得21x -3x 2=18-3x 2+15x .移项、合并同类项,得6x =18,解得x =3.(2)将分母转化为整数,得=101720173--xx 方程两边同乘21,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 20.分析:(1)根据等式的性质,解一元一次方程的步骤即可判断;(2)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解. 解:(1)①.(2)去分母,得4x -2(x -1)=8-(x +2).去括号,得4x -2x +2=8-x -2.移项,得4x -2x +x =8-2-2.合并同类项,得3x =4.系数化为1,得x =43. 21.分析:先根据|a -3|+(b +1)2=0求出a ,b 的值,再根据式子22-+ba m 的值比12b -a +m 的值多1列出方程 22-+b a m =12b -a +m ,把a ,b 的值分别代入求出m 的值.解:因为|a -3|≥0,(b +1)2≥0,且|a -3|+(b +1)2=0,所以a -3=0且b +1=0,解得a =3,b =-1. 由题意,得22-+ba m =12b -a +m +1, 即131252-=--+++m m , 解得m =0.所以m 的值为0.22.分析:先分别解两个方程求得方程的解,再根据关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2,即可列方程求得m 的值.解:由4x -m =2x +5,得x =52+m . 由2(x -m )=3(x -2)-1,得x =-2m +7.因为关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2, 所以52+m +2=-2m +7, 解得m =1.故当m =1时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.分析:分情况讨论,(1)a =b ,|a |=2;(2)b =0,|a |=1.首先根据一元一次方程的概念求得a ,b 的值,然后将其代入a +b 并求值,最后将a ,b 的值代入原方程,由一元一次方程的解法解方程.解:(1)a =b ,|a |=2,当a =2时,b =2,此时a +b =4,方程的解为x =2;当a =-2时,b =-2,此时a +b =-4,方程的解为x =2.(2)|a |=1,b =0,解得a =±1,b =0.当a=1时,原方程为x+x-2=0,解得x=1,a+b=1+0=1;当a=-1时,原方程为-x+x-2=0,不存在.24.分析:求出甲种货物和乙种货物的吨数,与载质量进行比较即可作出判断;设装甲种货物x t,乙种货物(480-x)t,通过理解题意可知本题存在等量关系:甲种货物所占的总体积+乙种货物所占的总体积=1 050 m3,根据这个等量关系列出方程求解即可.解:(1)不能.=180(t),理由:甲种货物重4502.5180+350=530>480,所以甲、乙两种货物不能都装上船.x=1 050,(2)设装甲种货物x t,则装乙种货物(480-x)t.依题意有2.5x+4800.5解得x=180.480-x=300.答:为了最大限度地利用船的载质量和容积,应装甲种货物180 t,乙种货物300 t.第四章几何图形初步章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1. 下列第一行的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如,由a,b组成的图形记作a⊙b,那么由此可知,下列选项的图形,可以记作a⊙d的是()2. 如图4-1,该几何体从正面看得到的平面图形是()图4-13. 对于直线AB、线段CD、射线EF,其中能相交的图是()4. 下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象是()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)5. 如图4-2,AB=12,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则线段DB的长度为()图4-2A.4B.6C.8D.106. 已知线段AB和点P,如果PA+PB=AB,那么()A.P为AB的中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7. 学校、书店、邮局在平面图上的标点分别是A,B,C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25°B.65°C.115°D.155°8. 若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对图4-39. 如图4-3,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°C.∠BOE=2∠CODD.∠AOD=1∠EOC210. 如图4-4,OD⊥AB于点O,OC⊥OE,图中与∠AOC互补的角有()图4-4A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)11.夏天,快速转动的电扇叶片,给我们一个完整的平面的感觉,说明_____.12.如图4-5,C,D是线段AB上的两点,若AC=4,CD=5,DB=3则图中所有线段长度的和是_____.图4-513.已知∠A=100°,那么∠A的补角是_____.14.时钟上3点40分时分针与时针夹角的度数为____.15.如图4-6,O在直线AB上,∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.图4-616.已知∠AOC和∠BOD都是直角,如果∠AOB=150°,那么∠COD的度数为_____.17.如图4-7,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为_____.图4-718.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出的直线有_____.三、解答题(共58分)19.(8分)计算:(1)22°18′×5;(2)90°-57°23′27″.20.(8分)把图4-8的展开图和它们的立体图形连起来.图4-821.(10分)如图4-9,已知线段a,b,c,用圆规和直尺画图.(不用写作法,保留画图痕迹)(1)画线段AB,使得AB=a+b-c;(2)在直线AB外任取一点K,画射线AK和直线BK;(3)反向延长AK至点P,使AP=KA,画线段PB,比较所画图形中线段PA与BK长度的和与线段AB长度的大小.图4-922.(10分)如图4-10,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10 cm,求线段AB,CD的长度.图4-1023.(10分)如图4-11(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图4-11(2),4-11(3),4-11(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)图4-1124.(12分)如图4-12,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.图4-12答案一、1.A 解析:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合.故选A.2. A3. B 解析:A.直线AB与线段CD不能相交,故此选项不符合题意;B.直线AB 与射线EF能相交,故此选项符合题意;C.射线EF与线段CD不能相交,故此选项不符合题意;D.直线AB与射线EF不能相交,故此选项不符合题意.故选B.4. B 解析:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间,线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间,线段最短.故选B.5. D 解析:因为C为AB的中点,AB=12,所以AC=BC=12AB=12×12=6.因为AD∶CB=1∶3,所以AD=2,所以DB=AB-AD=12-2=10.故选D.6. B 解析:如图D4-1.因为PA+PB=AB,所以点P在线段AB上.故选B.图D4-17. C 解析:如图D4-2.由图可知,∠CAB=∠1+∠2=25°+90°=115°.故选C.图D4-28. B 解析:因为∠1=40.4°=40°24′,∠2=40°4′,所以∠1>∠2.故选B.9. B 解析:因为OD,OE分别是∠AOC,∠BOC的平分线,所以∠AOD=∠COD,∠EOC=∠BOE.又因为∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,所以∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选B.10. B 解析:根据题意,得(1)因为∠AOC+∠BOC=180°,所以∠BOC与∠AOC 互补.(2)因为OD⊥AB,OC⊥OE,所以∠EOD+∠DOC=∠BOC+∠DOC=90°,所以∠EOD=∠BOC,所以∠AOC+∠EOD=180°,所以∠EOD与∠AOC互补,所以图中与∠AOC互补的角有2个.故选B.二、11.线动成面12. 41 解析:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故题图中所有线段长度的和为AC+AD+AB+CD+CB+DB=41.13. 80°14. 130°解析:3点40分时分针与时针夹角的度数为30°×4+1=130°.315. 2 解析:因为∠AOD=90°,所以∠AOC+∠COD=90°.因为∠COE=90°,所以∠COD+∠DOE=90°,所以∠AOC=∠DOE.因为∠BOD=180°-∠AOD=90°,所以∠DOE+∠BOE=90°,所以∠BOE=∠COD.故图中相等的锐角有2对.16. 30°或150°解析:如图D4-3(1),因为∠BOD=90°,∠AOB=150°,所以∠AOD=60°.又因为∠AOC=90°,所以∠COD=30°.如图D4-3(2),因为∠BOD=90°,∠AOC=90°,∠AOB=150°,所以∠AOD=60°,所以∠COD=150°.综上所述,∠COD的度数为30°或150°.图D4-317. 51 解析:因为正方体的表面展开图,相对的面一定相隔一个正方形,所以6若不是最小的数,则6与9是相对面.因为6与9相邻,所以6是最小的数,所以这6个整数的和为6+7+8+9+10+11=51.18. 1条、4条或6条解析:如果A,B,C,D四点在同一直线上,那么只能确定一条直线,如图D4-4(1);如果4个点中有3个点(不妨设点A,B,C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图D4-4(2);如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B,C,D确定3条直线,点B分别与点C,D确定2条直线,最后点C,D确定一条直线,这样共确定6条直线,如图D4-4(3).综上所述,过其中每2个点可以画1条、4条或6条直线.(1)(2)(3)图D4-4三、19.解:(1)22°18′×5=110°90′=111°30′.(2)90°-57°23′27″=32°36′33″.20. 解:如图D4-5.图D4-521. 分析:(1)首先作射线CE在射线CE上截取CD=a,BD=b,再在CB上截取AC=c,则可得出AB=a+b-c;(2)根据射线和直线的概念过点K即可作出;(3)根据AP=AK,利用两点之间线段最短即可得出答案.解:(1)如图D4-6(1).(2)如图D4-6(2).(1)(2)(3)图D4-6(3)如图D4-6(3).因为AP=KA,所以线段PA与BK长度的和大于线段AB的长度.22.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm.因为E,F分别为线段AB,CD的中点,所以AE=12AB=1.5x(cm),CF=12CD=2x(cm).所以EF=AC-AE-CF=6x-1.5x-2x=2.5x(cm).因为EF=10 cm,所以2.5x=10,解得x=4.所以AB=12 cm,CD=16 cm.23. 解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5=485π.24. 解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.。
人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)
人教版七年级数学上册第2章《整式的加减》单元测试题测试范围:§2.1 整式 参考时间:60分钟(答案附卷后)一、选择题(每小题3分,共30分) 1.单项式-4a 的系数是( )A. 4B. -4C. 1D. a 2.单项式43a 2b 4的次数是( )A. 9B. 8C. 7D. 6 3.用代数式表示“a 的5倍与b 的差”,正确的是( )A. 5a -bB. 5a +bC. a -5bD. 5(a -b) 4.若多项式x 2-5x -2与3x 2+4x -n 的常数项相同,则n -1n的值是( )A. 0B. 1.5C.-2D. 25.多项式21145x -的最高次项的系数为( )A. 2B. 15C. -15D. -120 6. 某商品打七折后价格为a 元,则原价为( )A. 0.7a 元B. 107a 元 C. 1.2a 元 D. (a +0.2)元7.某种股票原价为a 元,连续两天上涨,每次涨幅为10%,则该股票两天后的价格为( )A. 1.21a 元B. 1.1a 元C.1.2a 元D. (a +0.2)元 8.已知代数式3x 2-4x +6的值为15,则9x 2-12x -7的值是( )A. 10B. 15C. 18D. 20 9.多项式3x |m |y 3+(m -3)x -1是关于x 、y 的六次三项式,则m 的值为( )A. -3B. 3C. ±3D. ±110. 一列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,若第n 个单项式的系数为b , 则下列算式结果为1的是( )A. |b |-2nB. 2n -|b |C. 3n -|b |D. 以上都不对二、填空题(每小题3分,共18分) 11.下列各式:①3xy ; ②-4; ③5x; ④26x +; ⑤23m n+; ⑥x 2-y 2-1. 其中单项式有_________, 多项式有___________,整式有_______________. (填序号)12. 为了帮助洪水灾区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中6名教师人均 捐款a 元,则该班学生共捐款_______________元(用含a 的代数式表示). 13. 任意写出一个含有字母x 、y 的四次三项式,其中最高次项的系数为-2, 一次项系数为1,常数项为-5,你写出的多项式是________________. 14. 按下面程序计算:输入x =-4,则输出的结果是____________.15. 已知当x =-1时,ax 3+bx +1的值为5,则当x =1时,ax 3+bx -1的值为__________. 16. 如图,两个正方形面积分别为9和4. 两个阴影部分面积分别为S 1、S 2(S 1>S 2),则S 1-S 2的值为__________.第16题三、解答题(共8题,共72分)17.(8分)关于x 的多项式x 4+(a +2)x 3+5x 2-(b +4)x -1不含x 3项和x 项,求a -b 的值.18. (8分)若多项式(a -2b )x 3-x 2+x -b 是关于x 的二次三项式,常数项为3,求a 2-b 2的值.19.(8分)若332|b |a x y --是关于x 、y 的单项式,且系数是5,次数是5,求a 、b 的值.20. (8分)已知(m +3)2+|n -1|=0,求式子5m 2n 3+4(m -n )2的值.21.(8分)已知整式A =10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1. (1)当x =1时,求整式A 的值; (2)当x =-1时,求整式A 的值;(3)小明同学做此题第(2)题时,由于将整式中某一项前的“+”号看成“-”号,误求得 整式的值为7,问小明同学看错了哪一项前的符号?22. (10分)甲、乙两家文具店出售同样的毛笔和宣纸,毛笔每支18元,宣纸每张2元. 甲店优惠方法为:买一支毛笔送两张宜纸;乙店优惠方法为:按总价的九折优惠. 小丽想购买5支毛笔,宣纸x 张(x ≥10). (1) 若到甲店购买,应付______________元(用代数式表示);(2) 若到乙店购买,应付______________元(用代数式表示); (3) 若小丽要买宣纸10张,应选择那家商店? 若买100张呢?23. (10分)某人买了50元的乘车公交卡,若此人乘车的次数用m表示,则记录他每次乘车后的余额如下表:(1) 写出此人乘车的次数m表示余额的式子;(2)若m为多项式2x3y4z+32x3y4-5的次数,计算乘了m次后还剩下多少元?24. (12分)观察下列三行数:-3,9,-27,81,-243,……①-6,6,-30,78,-246,……②-1,3,-9,27,-81,……③(1) 第一行数按什么规律排列?(2) 第二行、第三行的数与第一行数分别有什么关系?(3) 设x、y、z分别是这①②③行的第n、n-1、n-2个数,若x+y-az与n无关,求a的值.答 案一、选择题(每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案BDABCBADAB第10题:b =(-1)n (2n -1),|b |=2n -1,故选B .二、填空题(每小题3分,共18分)11. ①②,⑤⑥,①②⑤⑥; 12. (3200-6a ); 13. -2x 3y +x -5(不唯一); 14. -30; 15. -5; 16. 5.三、解答题(共8题,共72分) 17. a =-2,b =-4,a -b =2. 18. a =-6,b =-3,a 2-b 2=27. 19. a =-10,b =5或1.20. m =-3,n =1,原式=109.21. (1)当x =1时,A =10+9+8+7+6+5+4+3+2+1=55;(2)当x =-1时,A =-10+9-8+7-6+5-4+3-2+1=-5;(3) ∵7-(-5)=12,12÷2=6,系数为6,故看错了5次项前的符号. 22. (1)5×18+2(x -10)=2x +70,填(2x +70);(2)0.9(5×18+2x )=1.8x +81,填(1.8x +81);(3)当x =10时,甲店费用为2x +70=90(元),乙店费用为1.8x +81=99(元),应选甲店; 当x =100时,甲店费用为2x +70=270(元),乙店费用为1.8x +81=261(元),应选乙店. 23. (1)(50-0.8m )(元);(2)当m =8时,50-0.8m =43.6(元). 24. (1)第一行的第n 个数为:(-3)n ;(2)第二行的数为第一行的相应数减去3,即第二行的第n 个数为:(-3)n -3; 第三行的数为第一行的相应数除以3,即第三行的第n 个数为:13×(-3)n ; (3)由题设得:x =(-3)n ,y =(-3)n -1-3,z =13×(-3)n -2, ∴x +y -az =(-3)n +[(-3)n -1-3]-13a (-3)n -2=(-3)n -2[(-3)2+(-3)-13a ]-3=(-3)n -2(6-13a )-3, 令6-13a =0,得a =18.。
七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版
第一章《有理数》单元测试题一、选择题(每小题只有一个正确答案)1.﹣的相反数是()A. 4 B.﹣ C. D.﹣42.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元 B.﹣237元 C. 237元 D. 503.下列说法正确的是()A.正数和负数统称有理数 B.正整数和负整数统称为整数C.小数不是分数 D.整数和分数统称为有理数4.在,+7, 0,,中,负数有()A. 4个 B. 3个 C. 2个 D. 1个5.下列说法中错误的是()A.正分数、负分数统称分数 B.零是整数,但不是分数C.正整数、负整数统称整数 D.零既不是正数,也不是负数6.下列各数:,,,,,,…中,有理数的个数有()A. 4个 B. 5个 C. 6个 D. 0个7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.﹣1 B. 0 C. 1 D.不存在8.“厉害了我的国”一档电视节目展示了我国国内生产总值由2006年的3645亿元增长到2017年的82.712万亿元,用科学记数法表示应为()A.0.82712×1014 B.8.2712×1013 C.8.2712×1014 D.8.2712×10129.如果a、b互为相反数,且b≠0,则式子a+b,,|a|﹣|b|的值分别为()A. 0,1,2 B. 1,0,1 C. 1,﹣1,0 D. 0,﹣1,010.数轴上一点表示的有理数为,若将点向右平移个单位长度后,点表示的有理数应为()A. B. C. D.11.京九铁路的全长用四舍五入法得到近似数为,则它精确到( ) A.万位 B.十万位 C.百万位 D.千位12.若,,,的大小关系是()A. B. C. D.二、填空题13.比较大小:________;________;________14.如果定义为与中较大的一个,那么________.15.下列算式中,①,②,③,④,⑤.计算错误的是________.(填序号)16.若m、n互为相反数,x、y互为倒数,则m+n+xy+=__.17.已知|x|=5,|y|=4,且x>y,则2x+y的值为____________.三、解答题18.将下列各数填入相应的集合中:—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,有理数集合:{ };无理数集合:{ };整数集合:{ };分数集合:{ }19.计算:(1)|-3|-5×(-)+(-4); (2)(-2)2-4÷(-)+(-1)2017.20.计算:(1)-18×;(2)(-1)3-÷3×[2-(-3)2].21.把下列各数表示的点画在数轴上,并用“”把这些数连接起来,然后指出哪些是负数、哪些是分数、哪些是非负整数.,,,,,22.已知a,b互为相反数,且a≠0,c,d为倒数,m的绝对值为3,求m(2a+2b)2015+(cd)2016+()2017-m2的值.23.蜗牛从某点O开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):,,,,,,.通过计算说明蜗牛是否回到起点O.蜗牛离开出发点O最远时是多少厘米?在爬行过程中,如果每爬厘米奖励粒芝麻,则蜗牛一共得到多少粒芝麻?24.阅读下面的解题过程:计算:(-15)÷×6.解:原式=(-15)÷×6(第一步)=(-15)÷(-1)(第二步)=-15.(第三步)回答:(1)上面解题过程中有两处错误,第一处是第________步,错误的原因是________________;第二处是第________,错误的原因是________________.(2)把正确的解题过程写出来.参考答案1.C【解析】【分析】根据只有符号不同的两个数互为相反数,即可得出答案.【详解】解:的相反数是.故答案为:C.【点睛】此题主要考查相反数的意义,熟记相反数的意义是解题的关键.2.B【解析】【分析】根据条件“收入为正、支出为负”进行解答.【详解】依题意,规定收入为正,支出为负,那么支出237元应记作﹣237元,选项B正确. 【点睛】本题考查用正负数表示两个具有相反意义的量,属基础题.3.D【解析】【分析】根据有理数的分类及整数,分数的概念解答即可.【详解】A中正有理数,负有理数和0统称为有理数,故A错误;B中正整数,负整数和0统称为整数,故B错误;C中小数3.14是分数,故C错误;D中整数和分数统称为有理数,故D正确.故选D.【点睛】本题考查了有理数,整数,分数的含义.掌握有理数,整数,分数的含义是解题的关键.4.C【解析】【分析】根据小于0的数即为负数解答可得.【详解】在,+7, 0,,数中,负数有-1,共2个,故选C.【解答】解:在-4,0,-1.5,3,-2,15数中,负数有-4、-1.5、-2这3个,故选:B.【点评】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键.5.C【解析】【分析】根据有理数、分数、整数的含义和分类,逐项判断即可.【详解】:∵正分数、负分数统称分数,∴选项A正确;∵零是整数,但不是分数,∴选项B正确;∵正整数、负整数、0统称整数,∴选项C不正确;∵零既不是正数,也不是负数,∴选项D正确.故选C.【点睛】此题主要考查了有理数、分数、整数的含义和分类,要熟练掌握,解答此题的关键是要明确:0是自然数.6.C【解析】【分析】根据有理数的定义解答即可.【详解】在﹣6,﹣3.14,﹣π,,0.307,4,0.212121…中,有理数有﹣6,﹣3.14,,0.307,4,0.212121…共6个.故选C.【点睛】本题考查了有理数的定义,掌握有理数是有限小数或无限循环小数是解题的关键.7.A【解析】【分析】先根据自然数,整数,有理数的概念分析出a,b,c的值,再进行计算.【详解】∵最小的自然数是0,最大的负整数是﹣1,绝对值最小的有理数是0,∴a+b+c=0+(﹣1)+0=﹣1,故选A.【点睛】本题考查了有理数的加法运算,解题的关键是知道最小的自然数是0,最大的负整数是-1,绝对值最小的有理数是0.8.B【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】82.712万亿= 8.2712×1013故选:B【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法意义.9.D【解析】【详解】∵a、b互为相反数,且b≠0,∴a+b=0,=﹣1,|a|﹣|b|=0,则式子a+b,,|a|﹣|b|的值分别为0,﹣1,0.故选D.10.C【解析】【分析】根据平移的性质,进行分析选出正确答案.【详解】﹣2+3=1.故A点表示的有理数应为1.故选C.【点睛】本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.11.B【解析】【分析】根据近似数精确到哪一位,应当看末位数字5实际在哪一位,写出原数即可得出答案.【详解】∵2.5×106=2500000,5在十万位,∴2.5×106精确到十万位;故选:B.【点睛】考查近似数的精确度问题,解决问题的关键是正确区分精确度与有效数字的确定方法. 12.A【解析】【分析】根据﹣1<m<0,可得:0<m2<1,<﹣1,据此判断出m,m2,的大小关系即可.【详解】∵﹣1<m<0,∴0<m2<1,<﹣1,∴<m<m2.故选A.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.【解析】【分析】先根据乘方的定义进行计算,再根据有理数大小比较方法比较即可求解.【详解】解:∵43=64,34=81,64<81,∴43<34;∵(-5)2=25,52=25,∴(-5)2=52;∵-|-3|=-3,-(-3)=3,-3<3,∴-|-3|<-(-3).故答案为:<;=;<.【点睛】考查了有理数大小比较,本题的关键是根据乘方的定义进行计算,求出结果.14.【解析】【分析】根据规则计算出与,比较大小即可得到答案.【详解】∵-(﹣3)×2=6,-(﹣3)+2=5,∴(﹣3)*2=6.故答案为:6.【点睛】本题考查了有理数的乘法,根据规律解题是解题的关键.15.①②③④【解析】【分析】根据有理数的乘方,有理数的除法和乘法的法则,计算得到结果,即可作出判断.【详解】① ﹣(﹣2)2=﹣4,故错误;②﹣5÷×5=﹣125,故错误;③=,故错误;④(﹣3)2×(﹣)=﹣3,故错误;⑤﹣33=﹣27.故错误.故答案为:①②③④.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.0【解析】【分析】互为相反数的两个数的和为0,商为-1,互为倒数的两个数的积为1.【详解】∵m、n互为相反数,x、y互为倒数,∴m+n=0,,xy=1∴原式=0+1+(-1)=0.【点睛】本题主要考查的是相反数和倒数的性质,属于中等难度题型.明确互为相反数的两个数的和为零,互为倒数的两个数的积为1是解决这个问题的基础.17.6或14【解析】【分析】根据绝对值的性质可得x=±5,y=±4,再根据x>y,可得①x=5,y=4,②x=5,y=﹣4,然后可得2x+y的值.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4.∵x>y,∴①x=5,y=4,2x+y=14;②x=5,y=﹣4,2x+y=6.故答案为:6或14.【点睛】本题主要考查了有理数的加法和绝对值,关键是掌握绝对值等于一个正数的数有两个.18.—7 , 0,, —2.55555……, 3.01, +9,+10﹪;4.020020002…,;—7 ,0, +9 ;, —2.55555……, 3.01, +10﹪.【解析】【分析】根据有理数,无理数,整数,分数的概念进行分类即可.【详解】有理数集合:{ —7 , 0,, —2.55555……, 3.01, +9,+10﹪ };无理数集合:{ 4.020020002…, };整数集合:{ —7 , 0, +9 };分数集合:{ , —2.55555……, 3.01, +10﹪ }【点睛】考查有理数,无理数,整数,分数的概念,整数和分数统称为有理数;无理数指的是无限不循环小数;整数包含正整数,0和负整数.19.(1)2;(2)9.【解析】【分析】(1)先化简绝对值、进行乘法运算,然后再进行加减法运算即可;(2)先进行乘方运算、再进行乘除运算、最后进行加减运算即可得.【详解】(1) )|-3|-5×(-)+(-4)=3-(-3)-4=3+3-4=2;(2) (-2)2-4÷(-)+(-1)2017=4-(-6)-1=4+6-1=9.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序与运算法则是解题的关键.20.(1)-6;(2) .【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-××(-7)=-1+=.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.21.见解析.【解析】【分析】首先在数轴上表示各数,再根据在数轴上表示的两个有理数,右边的数总比左边的数大比较大小;再根据负数小于0和有理数的分类找出负数、分数、非负整数.【详解】,负数:,;分数:,,;非负数:,,,.【点睛】考查了有理数的大小比较以及有理数的分类,掌握在数轴上表示的两个有理数,右边的数总比左边的数大是解题的关键.22.-9.【解析】【分析】根据相反数、互为倒数、正整数的性质,推出a+b=0,cd=1,m=1,整体代入即可解决问题. 【详解】由题意得a+b=0,cd=1,=-1,|m|=3,∴m=±3,∴m2=(±3)2=9,∴原式=m[2(a+b)]2015+12016+(-1)2017-9=m(2×0)2015+1+(-1)-9=-9.【点睛】本题考查有理数的混合运算、相反数、互为倒数、正整数的性质等知识,属于中考常考题型. 23.(1)是回到起点O;(2)8厘米;(3)108.【解析】【分析】(1)分别相加,看是否为0,为0则回到了起点O;(2)分别计算绝对值,再比较大小即可;(3)计算绝对值的和,就是总路程,列式可得结论.【详解】(1)﹣6+12﹣10+5﹣3+10﹣8=0.所以蜗牛可以回到起点O.(2)|﹣6|=6,|﹣6+12|=6,|﹣6+12﹣10|=4,|﹣6+12﹣10+5|=1,|﹣6+12﹣10+5﹣3|=2,|﹣6+12﹣10+5﹣3+10|=8,所以蜗牛离开出发点O最远时是8厘米;(3)(6+12+10+5+3+10+8)×2=54×2=108答:蜗牛一共得到108粒芝麻.【点睛】本题考查了正数和负数的意义和有理数的加减法,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量;相加减时要注意同号相加比较简便.24.第二运算顺序错误第三步符号错误【解析】分析:(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是符号错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.详解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是符号错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、符号错误.点睛:(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.。
人教版七年级上册数学单元测试卷(1-4章)
七年级上册数学人教版单元测试卷(1-4章)第一章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.下列有关“0”的叙述中,错误的是( )A.0既不是正数,也不是负数B.0 ℃是零上温度和零下温度的分界线C.海拔是0 m表示没有海拔D.0是最小的自然数2.某种食品保存的温度是(-10±2)℃,下列温度,不适合储存这种食品的是( )A.-6 ℃B.-8 ℃C.-10 ℃D.-12 ℃3.2018年1月,“墨子号”量子卫星实现了距离达7 600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.将7 600用科学记数法表示为( )A.0.76×104B.7.6×103C.7.6×104D.76×1024.下列等式成立的是( )A.|-8|=8B.-(-1)=-1C.1÷(-3)=D.-2×3=65.若a2=1,b是2的相反数,则a+b的值为( )A.-3B.-1C.-1或-3D.1或-36.如图是嘉淇同学的练习题,他最后的得分是( )A.20分B.15分C.10分D.5分7.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.a+b>0B.a-b<0C.ab>0D.(-)3>08.数学家发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数a2+b-1.如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-1,3)放入其中,得到有理数m,再将有理数对(m,1)放入其中,得到的有理数是( )A.3B.6C.9D.129.已知|m|=4,|n|=6,且|m+n|=m+n,则m-n的值是( )A.-10B.-2C.-2或-10D.210.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入图中的圆圈内,使横、竖及内、外两圈上的4个数之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为( )A.-6或-3B.-8或1C.-1或-4D.1或-1二、填空题(每题3分,共18分)11.如果-5 m表示一个物体向北运动5 m,那么+3 m表示.12.近似数8.06×106精确到位,把347 560 000精确到百万位是.13.若两个数的乘积等于-1,则称其中一个数是另一个数的负倒数,则|-1|的负倒数为.14.已知a,b为有理数,且ab>0,则++的值是.15.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数-2,4,-6,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是.(只写一种)16.如图是一数值转换机的示意图,若输入x=-1,则输出的结果是.三、解答题(共52分)17.(6分)把下列各数分别填入相应的集合里:-4,-|-|,0,,-3.14,1 024,-(+5).(1)正数集合:{ …}.(2)负数集合:{ …}.(3)整数集合:{ …}.(4)分数集合:{ …}.18.(12分)计算下列各题:(1)(--+)×48;(2)-14+(-3)×[(-4)2+2]-(-2)3÷4;(3)-3×(-)2-4×(1-)-8÷()2;(4)(-8)×(--+)×15.19.(8分)):(1)上星期五借出多少册?(2)上星期四比上星期三多借出多少册?(3)上周平均每天借出多少册?20.(8分)若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求2 0201-(a+b)+m2-(cd)2 020+n(a+b+c+d)的值.21.(8分)如图,数轴上A,B两点表示的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求a,b的值;(2)现有一动点P从点A出发,以每秒3个单位长度的速度向右运动,同时另一动点Q从点B出发,以每秒2个单位长度的速度向左运动.①设两动点在数轴上的点C相遇,求点C表示的数;②经过多长时间,两动点在数轴上相距20个单位长度?22.(10分)阅读理解题:从左边第一个格子开始向右数,在每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)根据上述条件,可知x=,●=,○=;(2)试判断第2 019个格子中的数是多少,并说明理由;(3)判断:前n个格子中所填整数之和是否可能为2 020?若能,求出n的值,若不能,请说明理由.(4)若从前n个格子中任取两个数并用大数减去小数得到差值,然后将所有的差值累加起来称为前n项的累差值.如前3项的累差值为|1-●|+|1-○|+|●-○|,则前3项的累差值为;若取前10项,则前10项的累差值为多少?(请给出必要的计算过程)第二章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.在式子x2+5,,0,,2xy,x2+中,整式有()A.2个B.3个C.4个D.5个2.下列关于单项式-2x2y的说法正确的是()A.系数为2,次数为2B.系数为2,次数为3C.系数为-2,次数为2D.系数为-2,次数为33.下列各组单项式中,不是同类项的是()A.12a3y与B.6a2mb与-a2bmC.23与32D.x3y与-xy34.若多项式4x2-(m-1)y2+1是关于x,y的三次三项式,则常数m等于()A.-1B.1C.±1D.05.下列各式中,去括号正确的是()A.2a2-(a-b+3c)=2a2-a-b+3cB.a+(-3x+y-2)=a-3x+y-2C.3x-[x-(2x-4)]=3x-x-2x+4D.-(x-y)+2(a-1)=-x+y+2a-16.某文具店举行促销活动,促销的方法是将原价a元的文具盒以(0.8a-2)元出售,则下列说法中,能正确表达该文具店举行的促销活动的是()A.原价减去2元后再打4折B.原价打8折后再减去2元C.原价减去2元后再打8折D.原价打4折后再减去2元7.已知m-n=100,x+y=-1,则式子(n+x)-(m-y)的值是()A.99B.101C.-99D.-1018.一个多项式A与多项式2x2-3xy-y2的和是多项式x2+xy+y2,则A等于()A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy9.按如图所示的程序运算,能使输出的结果为12的是()A.x=-4,y=-2B.x=3,y=3C.x=2,y=4D.x=4,y=210.若A=x2-2xy+y2,B=x2+2xy+y2,则下列式子与4xy相等的是()A.A+BB.B-AC.A-BD.2A-2B二、填空题(每题3分,共18分)11.用式子表示“比a的平方的一半小1的数”是.12.如果单项式x2与x n y的和仍然是一个单项式,则(m+n)2 019=.13.若关于x,y的多项式x2y-7mxy+y3+6xy不含二次项,则m=.14.当x=-2时,ax5+bx-7=5,则当x=2时,ax5+bx-7=.15.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒……则第n个图案中有根小棒.…第1个第2个第3个16.定义:若a+b=n,则称a与b是关于数n的“平衡数”.比如3与-4是关于-1的“平衡数”,5与12是关于17的“平衡数”.若8x2-6kx+14与-2(4x2-3x+k)(k为常数)是关于数m的“平衡数”,则m的值为.三、解答题(共52分)17.(12分)计算下列各式:(1)3a2+3b2+2ab-4a2-3b2;(2)a2+(5a2-2a)-2(a2-3a);(3)3(m2n+mn)-4(mn-2m2n)+mn;(4)a2-[(ab-a2)+4ab]-ab.18.(8分)化简并求值:(1)12(a2b-ab2)+5(ab2-a2b)-4(a2b+3),其中a=,b=5;(2)(x2-5xy+y2)-[-3xy+2(x2-xy)+y2],其中|x-1|+(y+2)2=0.19.(6分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆形花坛,若花坛的半径为x m,广场长a m,宽b m.(1)用含x,a,b的式子表示广场空地的面积为;(2)若a=500,b=200,x=20,求广场空地的面积.(计算结果保留π)20.(8分)已知A,B是关于x的整式,其中A=mx2-2x+1,B=x2-nx+5.(1)化简A+2B;(2)当x=2时,A+2B的值为-5,求式子4n-4m+9的值.21.(8分)小张同学在计算A-(ab+2ac-1)时,将“A-”错看成了“A+”,得出的结果是3ab-ac.(1)请你求出这道题的正确结果;(2)试探索:当字母b,c满足什么关系时,(1)中的结果与字母a的取值无关.22.(10分)某市市民生活用电已实行阶梯电价:第一档为月用电量170度以内(含170度),执行电价标准每度电0.525元;第二档为月用电量171~260度,用电量超过第一档的部分按规定每度电0.575元;第三档为月用电量260度以上,用电量超过第二档的部分按规定每度电0.825元.(1)小明家5月份的用电量为160度,求小明家5月份应缴的电费;(2)若小明家月用电量为x度,请分别求出x在第二档、第三档时小明家应缴的电费;(用含x的式子表示)(3)小明家11月份的用电量为240度,求小明家11月份应缴的电费.第三章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.下列方程是一元一次方程的是()A.x2-4x=3B.3x-1=C.x+2y=1D.xy-3=52.设x,y,c是有理数,则下列结论正确的是()A.若x=y,则x+c=y-cB.若x=y,则xc=ycC.若x=y,则=D.若=,则2x=3y3.下列方程中,解为x=-1的是()A.3x+=-2B.7(x-1)=0C.4x-7=5x+7D.x=-34.下列方程的变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程x=,系数化为1,得x=1D.方程-=1,整理,得3x=65.若关于x的一元一次方程-=1的解是x=-1,则k的值是()A. B.1 C.- D.06.甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组的人数比乙组人数的一半多2个.设乙组原有x人,则可列方程为()A.2x=x+2B.2x=(x+8)+2C.2x-8=x+2D.2x-8=(x+8)+27.一个两位数,个位上的数字与十位上的数字的和是9,若将个位上的数字与十位上的数字对调后所得的新数比原数大9,则原来的两位数为()A.54B.27C.72D.458.元旦前夕,某商店购进某种商品100件,每件按进价加价30%作为标价,可是总卖不出去,后来每件按标价降价20%,以每件104元出售,终于在元旦前全部售出,则这批商品在销售过程中的盈亏情况是()A.亏损40元B.盈利400元C.亏损400元D.不盈不亏9.某书店推出售书优惠活动:①一次性购书不超过100元的,不享受优惠;②一次性购书超过100元但不超过200元的,一律打9折;③一次性购书超过200元的,一律打8折.如果王明同学一次性购书付款162元,那么王明所购书的原价为()A.180元B.202.5元C.180元或202.5元D.180元或200元10.有一系列方程,第1个方程是x+=3,其解为x=2;第2个方程是+=5,其解为x=6;第3个方程是+=7,其解为x=12……根据此规律,第10个方程的解是()A.x=90B.x=99C.x=110D.x=132二、填空题(每题3分,共18分)11.方程3x+1=7的解是.12.若式子的值比的值大1,则x的值为.13.对于任意有理数a,b,定义关于“⊗”的一种运算为a⊗b=2a-b,例如:5⊗2=2×5-2=8.若(x-3)⊗x=2 014,则x的值为.14.轮船沿江从A港顺流航行到B港比从B港返回A港少用3 h,若轮船在静水中的速度为26 km/h,水流的速度为2 km/h,则A港与B港相距km.15.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,若每人分7两,则剩余4两;若每人分9两,则还差8两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)16.已知关于x的方程x+3=2x+b的解为x=2,则关于y的方程-(y-1)+3=-2(y-1)+b的解为.三、解答题(共52分)17.(8分)解下列方程:(1)4y-3(20-y)=6y-7(11-y);(2)-=2-.18.(6分)已知关于y的方程=y+与=3y-2的解互为相反数,求a的值.19.(8分)(1)分析积分榜,平一场比负一场多得分;(2)若胜一场得3分,七(5)班也比赛了6场,胜场是平场的一半且共积了14分,则七(5)班胜几场?20.(8分)某玩具厂要生产500个芭比娃娃,此生产任务由甲、乙、丙三台机器承担,甲机器每小时生产12个,乙、丙两台机器每小时生产的个数之比为4∶5.若甲、乙、丙三台机器同时生产,刚好用10小时25分钟完成任务.(1)求乙、丙两台机器每小时各生产多少个?(2)由于某种原因,三台机器只能按一定次序循环交替生产,且每台机器在每个循环中只能生产1小时,即每个循环需要3小时.①若生产次序为甲、乙、丙,则最后一个芭比娃娃由机器生产完成,整个生产过程共需小时;②请直接写出完成生产任务的最少时间及此时三台机器的生产次序.21.(10分)甲、乙两人分别从A,B两地同时相向而行,于E处相遇后,甲继续向B地行走,乙休息了14分钟,再继续向A 地行走.甲、乙分别到达B地和A地后立即折返,仍在E处相遇.已知甲每分钟行走60米,乙每分钟行走80米,则A,B 两地相距多少米?22.(12分)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是甲种电视机每台1 500元,乙种电视机每台2 100元,丙种电视机每台2 500元.若商场同时购进其中两种不同型号的电视机共50台,恰好用去9万元.(1)请你设计进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号的电视机的方案中,为使获利最多,则应选择哪种进货方案.第四章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.下列图形中,与其他三个不同类的是()A B C D2.如图,下列说法正确的是()A.图中共有5条线段B.直线AB与直线AC是同一条直线C.射线AB与射线BA是同一条射线D.点O在直线AC上3.如图,四个图形是由四个立体图形展开得到的,相应的立体图形依次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.根据下列线段的长度,能判断A,B,C三点不在同一条直线上的是()A.AB=8,BC=19,AC=27B.AB=10,BC=9,AC=18.9C.AB=21,BC=11,AC=10D.AB=7.5,BC=14,AC=6.55.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2 cm,那么AC比BC长()A.1 cmB.2 cmC.4 cmD.6 cm6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.从正面看得到的平面图形的面积为5B.从左面看得到的平面图形的面积为3C.从上面看得到的平面图形的面积为3D.从三个方向看得到的平面图形的面积都是47.黑板上有四个不同的点A,B,C,D,过其中任意两个点画直线,可以画出直线的条数为()A.1或2B.1,4或6C.1,3,4或6D.1,2,4或68.已知∠α的余角是23°17'38″,∠β的补角是113°17'38″,那么∠α和∠β的大小关系是()A.∠α>∠βB.∠α=∠βC.∠α<∠βD.不能确定9.下列时刻,时针与分针的夹角为直角的是()A.3时30分B.9时30分C.8时55分D.3时分10.如图,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点AB.点BC.A,B之间D.B,C之间二、填空题(每题3分,共18分)11.如图,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路线可供选择,在不考虑其他因素的情况下,架设管道的最短路线是,依据是.第11题图第12题图第13题图12.如图,O为直线AB上一点,已知∠1=40°,OD平分∠BOC,则∠AOD=.13.如图,点A,O,B在同一条直线上,射线OD平分∠BOC,射线OE在∠AOC的内部,且∠DOE=90°,写出图中所有互为余角的角:.14.一个角的余角的3倍比它的补角小10°,则这个角的度数为.15.如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为10 cm,若AP=PB,则这条绳子的原长为cm.第15题图第16题图16.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,给出以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB-∠AOD=90°;④∠COE+∠BOF=180°.其中正确的是.(填序号)三、解答题(共52分)17.(6分)计算:(1)19°24'+76°26″-24°2'16″;(2)29°11'×3-106°32'÷4.18.(8分)如图,已知C为线段AB上一点,AC=12,CB=AC,D,E分别为AC,AB的中点,求DE的长.19.(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)试确定射线OC的方向;(2)求∠COD的度数;(3)若射线OE平分∠COD,求∠AOE的度数.。
七年级数学上册第一单元测试题人教版3篇
七年级数学上册第一单元测试题人教版3篇篇一:人教版初一数学上册第一章有理数单元测试题及答案有理数单元测试题满分100分时间60分一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1、下列说法正确的是()A整数就是正整数和负整数B负整数的相反数就是非负整数C有理数中不是负数就是正数D零是自然数,但不是正整数2、下列各对数中,数值相等的是()A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()A.-12B.-9C.-0.01D.-54、如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B.-1C.1D. 0或15、绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 56、计算:(-2)100+(-2)101的是()A. 2100B.-1C.-2D.-21007、比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 98、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A.1.205×107 B.1.20×108 C.1.21×107 D.1.205×1049、下列代数式中,值一定是正数的是( )A.x2 B.|-x+1| C.(-x)2+2 D.-x2+110、已知8.622=74.30,若x2=0.7430,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±86211、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
新人教版七年级上册数学各单元分章节测试题
第一章有理数【课标要求】考点知识点知识与技能目标了解理解掌握灵活应用有理数有理数及有理数的意义∨相反数和绝对值∨有理数的运算∨解释大数∨【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.?下列说法正确的个数是????????????????(????)①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A1?? B2?? C3? ?D42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列???????????????(????)A?-b<-a<a<b?B?-a<-b<a<b?C?-b<a<-a<b?D?-b<b<-a<a 3.?下列说法正确的是???????????????????????(????)①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A?①②??B?①③???C?①②③???D???①②③④4.下列运算正确的是?????????????????????????(????)A??B??-7-2×5=-9×5=-45C??3÷D??-(-3)2=-95.若a+b<0,ab<0,则?????????????????????????(????)A?a>0,b>0?? B?a<0,b<0C?a,b两数一正一负,且正数的绝对值大于负数的绝对值D?a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差??(????)A?0.8kg??B??0.6kg??C?0.5kg??D?0.4kg7.一根1m 长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是??????????????????????????(????)A()5m???B?[1-()5]m??C()5m??D?[1-()5]m8.若ab≠0,则的取值不可能是??????????????(????)A??0??B???1???C?2????D??-2二、填空题。
七年级数学上册第一单元测试卷(人教版)
七年级数学上册第一单元测试卷(人教版) 七年级数学上册第一单元测试卷(人教版)一、填空题(每题3分,共30分)1.设向东为正,向西为负,则向东走38米记作+38米,向西走30米记作-30米,原地不动记作0米。
记作-15米表示向西走15米,记作+40米表示向东走40米。
2.一个数既不是负数,也不是正数,则这个数是0.3.在数轴上表示两个数a、b,若a<b,则a在b的左边,b在a的右边。
4.(-3.254)的相反数是3.254,(0.)的相反数是-0..5.一个数a的绝对值是4,则a=4或a=-4.6.如果a<0,b<0,则a+b<0.7.甲乙两数的和为-23.4,乙数为-8.1,甲比乙大15.3.8.把(-4)-(-3)+(-7)+(-5)-(-7)写成省略括号的和的形式是-4+3-7-5+7,读作负四加三减七减五加七。
9.计算(-2)×(-4)=8,(-9/14)×(-2/14)=1/49.10.3与(-2)的积是-6,3除以(-2)的商是-1.5.二、选择题(每题3分,共30分)11.在0,-1,-2,-3,53,8,-125,16中负数的个数是4.12.以下说法正确的是D.0既不是正数也不是负数。
13.下面用“>”、“153>0和D.0<-2002<-2005.14.7-a的相反数是-2,则a=5.15.若|a+b|=-(a+b),下列结论正确的是C.a+b=0.16.计算(-2)^(1/51)+[(+1)+(-0.5)+(+1)]等于6/5.17.如果a<0,则a和它的相反数的差的绝对值等于2a。
18.若ab=|ab|,必有B.ab≥0.19.下面说法中正确的是:在数轴上,两个数的距离等于它们的差的绝对值。
A。
一个数与其倒数的积为1,一个数与其相反数的和为0,两个数的积为1时,它们互为倒数。
B。
若a^2>0,则a^3为正数。
人教版七年级数学上册第一单元测试题
七年级上数学测试题(一)一、选择题(共20分) 1、在211-,2.1,2-,0 ,()2--中,负数的个数有( )A.2个B.3个C.4个D.5个 2、一个数加上12-等于5-,则这个数是( )A .17 B.7C.17- D.7- 3、下列算式正确的是( ) A. (-14)-5=-9 B. 0-(-3)=3 C. (-3)-(-3)=-6 D. |5-3|=-(5-3)4、比较4.2-,5.0-,()2-- ,3-的大小,下列正确的( )。
A.3- >4.2- > ()2--> 5.0- B.()2-- > 3->4.2-> 5.0- C.()2-- > 5.0- > 4.2-> 3- D. 3-> ()2-->4.2-> 5.0-5、乘积为1-的两个数叫做互为负倒数,则2-的负倒数是( ) A.2- B.21-C.21D.26、已知字母a 、b 表示有理数,如果a +b =0,则下列说法正确的是( ) A . a 、b 中一定有一个是负数 B. a 、b 都为0 C. a 与b 不可能相等 D. a 与b 的绝对值相等7、一个数的平方为16,则这个数是( ) A.4或4- B.4- C.4 D.8或8-8、绝对值大于2且小于5的所有整数的和是 ( ) A. 7 B. -7 C. 0 D. 59、一个数的绝对值是3,则这个数可以是( ) A.3 B.3- C.3或者3- D.3110、()34--等于( )A .12- B. 12C.64- D.64二、填空题 11、在215-,0,-(-1.5),-│-5│,2,411,24中,整数是. 12、A 地海拔高度是-30米,B 地海拔高度是10米,C 地海拔高度是-10米,则地势最高的与地势最低的相差__________米.13、在数轴上距原点3个单位长度的点表示的数是___________.14、已知P 是数轴上的一点4-,把P 点向左移动3个单位后再向右移1个单位长度,那么P 点表示的数是______________. 15、311-的相反数是_______,它的倒数是_______,它的绝对值是______. 16、既不是正数也不是负数的数是_________,其相反数是________.17、最大的负整数是 _________,最小的正整数是_________ . 18、在274⎪⎭⎫ ⎝⎛-中的底数是__________,指数是_____________.19、()1-2003+()20041-=______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数【课标要求】【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
9.比大而比小的所有整数的和为。
10.若那么2a一定是。
11.若0<a<1,则a,a2,的大小关系是。
12.多伦多与北京的时间差为–12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是。
13上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min。
14.规定a﹡b=5a+2b-1,则(-4)﹡6的值为。
15.已知=3,=2,且ab<0,则a-b=。
16.已知a=25,b= -3,则a99+b100的末位数字是。
三、计算题。
17.18. 8-2×32-(-2×3)219.20.[-38-(-1)7+(-3)8]×[-53]21. –12 × (-3)2-(-)2003×(-2)2002÷22.–16-(0.5-)÷×[-2-(-3)3]-∣-0.52∣四、解答题。
23.已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
(单位:km)(1)求收工时距A地多远?(2)在第次纪录时距A地最远。
(3)若每km耗油0.3升,问共耗油多少升?26.如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。
参考答案:一、选择题:1-8:BCADDBCB二、填空题:9.-3;10.非正数;11.;12.2:00;13.3.625×106;14.-9;15.5或-5;16.6三、计算题17.-9;18.-45;19.;20.;21.;22.四、解答题:23.-2×17×33;24.0;25.(1)1(2)五(3)12.3;26.第二章一元一次方程【课标要求】【知识梳理】1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解x=;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题:列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
【能力训练】一、填空题(本题共20分,每小题4分):1.x=时,代数式与代数式的差为0;2.x=3是方程4x-3(a-x)=6x-7(a-x)的解,那么a=;3.x=9 是方程的解,那么,当1时,方程的解;4.若是2ab2c3x-1与-5ab2c6x+3是同类项,则x=;5.x=是方程|k|(x+2)=3x的解,那么k=.二、解下列方程(本题50分,每小题10分):1.2{3[4(5x-1)-8]-20}-7=1;2.=1;3.x-2[x-3(x+4)-5]=3{2x-[x-8(x-4)]}-2;4.;5..三解下列应用问题(本题30分,每小题10分):1.用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m3, 第一架工作16小时,第二架工作24小时,共掘土8640 m3,问每架掘土机每小时可以掘土多少 m3?2.甲、乙、丙三个工厂共同筹办一所厂办学校,所出经费不同,其中甲厂出总数的,乙厂出甲丙两厂和的,已知丙厂出了16000元.问这所厂办学校总经费是多少,甲乙两厂各出了多少元?3.一条山路,从山下到山顶,走了1小时还差1km,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km.参考答案:一、填空题:1.9;2.;3.或;4.x=;5.;二、解方程:1.x=1;2.;3.x=6;4.;5.三、应用题:1.第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200 m32.总经费42000元,甲厂出12000元,乙厂出14000元3.上山速度为每小时4 km,下山速度为每小时6 km,单程山路为5 km.第三章图形认识初步【课标要求】【知识梳理】1.点、线、面:通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)。
2.角①通过丰富的实例,进一步认识角。
②会比较角的大小,能估计一个角的大小,会计算角度的和与差,识别度分、秒,会进行简单换算。
③了解角平分线及其性质。
【能力训练】一、填空题1、如图,图中共有线段_____条,若是中点,是中点,⑴若,,_________;⑵若,,_________。
2、不在同一直线上的四点最多能确定条直线。
3、 2:35时钟面上时针与分针的夹角为______________。
4、如图,在的内部从引出3条射线,那么图中共有_______个角;如果引出5条射线,有_______个角;如果引出条射线,有_______个角。
5、⑴;⑵。
二、选择题1、对于直线,线段,射线,在下列各图中能相交的是()2、如果与互补,与互余,则与的关系是()、=、、、以上都不对3、为直线外一点,为上三点,且,那么下列说法错误的是()、三条线段中最短、线段叫做点到直线的距离、线段是点到的距离、线段的长度是点到的距离4、如图,,,点B、O、D在同一直线上,则的度数为()、、、、5、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()、南偏西50度方向、南偏西40度方向、北偏东50度方向、北偏东40度方向三、作图并分析1、⑴在图上过点画出直线、直线的垂线;⑵在图上过点画出直线的垂线,过点画出直线的垂线。
2、如图,⑴过点画直线∥;⑵连结;⑶过画的垂线,垂足为;⑷过点画的垂线,垂足为;⑸量出到的距离≈______(厘米)(精确到厘米)量出到的距离≈______(厘米)(精确到厘米)⑹由⑸知到的距离______到的距离(填“<”或“=”或“>”)四、解答题:1、如图,AD=DB, E是BC的中点,BE=AC=2cm,线段DE的长,求线段DE的长.2、如图,运动会上一名服务的同学要往返于百米起跑点A、终点记时处B(A、B位于东西方向)及检录处C,他在A处看C点位于北偏东60°方向上,在B处看C点位于西北方向(即北偏西45°)上。
(1)确定检录处C的位置;(2)现限定只用刻度尺作为工具,如果想知道这位同学在检录处C与百米起跑点A之间往返一次要走多少米(不考虑其他因素),你有什么办法?(要求:只写出一种办法,不需具体计算)解:参考答案:一、填空题:1.10、4、1;2.6;3.132.5°;4.10、21、;5.23.5、44、52二、选择题1-5:BCDCB 四、解答题:1.DE=6;第四章数据的收集与整理江苏省赣榆县沙河中学张庆华【课标要求】【能力训练】一、选择题1.近年来国内生产总值年增长率的变化情况如图所示.从图上看,下列结论中不正确的是( ).A.1995~1999年,国内生产总值的年增长率逐年减小;B.2000年国内生产总值的年增长率开始回升;C.这7年中,每年的国内生产总值不断增长;D.这7年中,每年的国内生产总值不断减小.2.武汉市某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比.下图是将某年级66篇学生调查报告进行整理,•分成5组画出的频数分布直方图.已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的调查报告有(分别大于或等于80分为优秀,且分数为整数)( ).A.18篇B.24篇C.25篇D.27篇3.星期天晚饭后,小红从家里出去散步,•右图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( ).A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了;B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了.C.从家出发,一直散步(没有停留),然后回家了;D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回.4.某校为了了解学生的身体素质情况,对初三(2)班的50•名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组的频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是( ).A.①②B.②③C.①③D.①②③二、填空题1.现有A、B两个班级,每个班级各有45名学生参加一次测验.•每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A•班的成绩如下表所示,B班的成绩如图所示.A班(1)由观察所得,_____班的标准差较大;(2)若两班合计共有60人及格,问参加者最少获_______分才可以及格.2.在相同条件下,对30辆同一型号的汽车进行耗油1•升所走路程的试验,根据测得的数据画出频率分布直方图如图.则本次试验中,耗油1升所行走的路程在13.•05•~13.•55km•范围内的汽车共有_____辆.3.2003年,在我国内地发生了“非典型肺炎”疫情,•在党和政府的正确领导下,目前疫情已得到有效控制,下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).中国内地非典新增确诊病例数据走势图(截止到2003年5月14日上午10时)从图中,可知道:(1)5月6日新增确诊病例人数为________人;(2)在5月9日至5月11日三天中,共新增确诊病例人数为______人;(3)从图上可看出,5月上半月新增确诊病例总体呈_______趋势.4.在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比.初三.(3)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频率分布表,并画出了频率分布直方图(部分)如下:根据以上信息回答下列问题:(1)该班90分以上(含90分)的调查报告共有________篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占_________%;(3)补全频率分布直方图.三、解答题1.为了让学生了解环保知识,增强环保意识,•某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.•请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:频率分布表(1)填充频率分布表中的空格;(2)初全频率分布直方图;(3)在该问题中的样本容量是多少?答:_________________.(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由).答:________________.(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?答:________________.2.新安商厦对销售较大的A、B、C三种品牌的洗衣粉进行了问卷调查,发放问卷270份(问卷由单选和多选题组成).对收回的238份问卷进行了整理,•部分数据如下:一、最近一次购买各品牌洗衣粉用户的比例(如图).二、用户对各品牌洗衣粉满意情况汇总表:根据上述信息回答下列问题:(1)A品牌洗衣粉的主要竞争优势是什么?你是怎样看出来的?(2)广告对用户选择品牌有影响吗?请简要说明理由.(3)你对厂家有何建议?参考答案:一、选择题:1-4:DDBD二、填空题:1.A班,5;2.12;3.138,-49,下降;4.21,76,略三、解答题:1.12,0.24,50,1,50,80。