高考数学大一轮复习第六章数列第4讲数列求和配套练习文北师大版
北师大版高考数学一轮总复习6.4《数列求和》ppt课件
5.(1)分组求和:把一个数列分成几个可以直接求和的数 列.
(2)裂项相消:有时把一个数列的通项公式分成二项差的 形式,相加过程消去中间项,只剩有限项再求和.
(3)错位相减:适用于一个等差数列和一个等比数列对应 项相乘构成的数列求和.
(4)倒序相加:例如,等差数列前 n 项和公式的推导方法.
[答案] 1.累加法
2.累积法
3.na12+an
na1+nn-2 1d
倒序相加法
na1
a11-qn 1-q
a1-anq 1-q
4
.
(1)
nn+1 2
(2)n2 + n
(3)n2
nn+12n+1
(4)
6
(5)nn+2 12
基础自测
1.数列{1+2n-1}的前 n 项和为( )
A.1+2n
B.2+2n
C.n+2n-1
D.n+2+2n
[解析] 数列的通项公式为:an=n+21n,
Sn=(1+2+3+…+n)+
12+14+18+…+21n
=
nn+1 2
+
1-21n=12(n2+n+2)-21n.
利用裂项相消求和
等差数列{an}的各项均为正数,a1=3,前n项和 为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
在数列{an}中,an=
1 n+1
+
2 n+1
+…+
n n+1
,又bn=
an·a2n+1,求数列{bn}的前n项和Sn.
[解析] an=n+1 1+n+2 1+…+n+n 1 =1+2n++…1 +n=n2nn++11=n2 ∴bn=an·a2n+1=n2·n2+2 1=nn8+1 =8(1n-n+1 1).
2021高三数学北师大版(理)一轮教师用书:第6章 第4节 数列求和
第四节 数列求和[最新考纲] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.1.公式法(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ; (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n)1-q ,q ≠1.2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n 项和.裂项时常用的三种变形:①1n (n +1)=1n -1n +1; ②1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.一、思考辨析(正确的打“√”,错误的打“×”) (1)已知等差数列{a n }的公差为d ,则有1a n a n +1=1d ⎝⎛⎭⎪⎫1a n -1a n +1.( )(2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( ) (3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4) 利用倒序相加法可求得sin 21°+sin 22°+sin 23° +…+sin 288°+sin 289°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 二、教材改编1.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A.1B.56C.16D.130B [∵a n =1n (n +1)=1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.]2.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -2 C [S n =a 1+a 2+a 3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+...+(2n +2n -1)=(2+22+ (2))+2(1+2+3+…+n )-n =2(1-2n )1-2+2×n (n +1)2-n=2(2n -1)+n 2+n -n =2n +1+n 2-2.]3.S n =12+12+38+…+n2n 等于( ) A.2n -n -12n B.2n +1-n -22nC.2n -n +12nD.2n +1-n +22nB [由S n =12+222+323+…+n2n ,① 得12S n =122+223+…+n -12n +n2n +1,②①-②得,12S n =12+122+123+…+12n -n 2n +1,=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-n2n +1, ∴S n =2n +1-n -22n.]4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+ (-1)n -1·n ,则S 17=________.9 [S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.]考点1 分组转化法求和分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:注意在含有字母的数列中对字母的分类讨论.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. [解] (1)当n ≥2时,a n =S n -S n -1 =n 2+n 2-(n -1)2+(n -1)2=n .当n =1时,a 1=S 1=1满足a n =n , 故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.[母题探究] 在本例(2)中,若条件不变求数列{b n }的前n 项和T n . [解] 由本例(1)知b n =2n +(-1)n n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n =2n +1-n 2-52.所以T n =⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.常用并项求和法解答形如(-1)n a n 的数列求和问题,注意当n 奇偶性不定时,要对n 分奇数和偶数两种情况分别求解.对n 为奇数、偶数讨论数列求和时,一般先求n 为偶数时前n 项和T n .n 为奇数可用T n =T n -1+b n (n ≥2)或T n =T n +1-b n +1最好.已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . [解] (1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5, ∴3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1)=(-2)×n =-2n . 考点2 裂项相消法求和形如a n =1n (n +k )(k 为非零常数)型a n =1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k . 提醒:求和抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.已知数列{a n }是公差为2的等差数列,数列{b n }满足b 1=6,b 1+b 22+b 33+…+b nn=a n +1.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n b n 的前n 项和.[解] (1)数列{a n }是公差为2的等差数列, 数列{b n }满足b 1=6,b 1+b 22+b 33+…+b nn =a n +1.所以当n =1时,a 2=b 1=6, 故a n =6+2(n -2)=2n +2, 由于b 1+b 22+b 33+…+b nn =a n +1,① 当n ≥2时,b 1+b 22+b 33+…+b n -1n -1=a n ,②①-②得:b nn =a n +1-a n =2, 所以b n =2n .所以b n =⎩⎪⎨⎪⎧6 (n =1)2n (n ≥2).(2)当n =1时,S 1=1a 1b 1=14×6=124.当n ≥2时,1a n b n =12n (2n +2)=14⎝ ⎛⎭⎪⎫1n-1n +1, 则S n =124+14⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1,=124+14⎝ ⎛⎭⎪⎫12-1n +1, =2n -112(n +1),当n =1时满足上式,故S n =2n -112(n +1).本例第(1)问在求{b n }的通项公式时灵活运用了数列前n 项和与项的关系,注意通项公式是否包含n =1的情况;第(2)问在求解中运用了裂项法,即若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1. [教师备选例题](2019·唐山五校联考)已知数列{a n }满足:1a 1+2a 2+…+n a n=38(32n -1),n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =log 3a n n ,求1b 1b 2+1b 2b 3+…+1b n b n +1.[解] 1a 1=38(32-1)=3,当n ≥2时,因为n a n =⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n a n -⎝ ⎛⎭⎪⎪⎫1a 1+2a 2+…+n -1a n -1 =38(32n -1)-38(32n -2-1)=32n -1, 当n =1时,na n=32n -1也成立,所以a n =n32n -1.(2)b n =log 3a nn =-(2n -1),因为1b n b n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, 所以1b 1b 2+1b 2b 3+…+1b n b n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. (2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑nk =1 1S k=________.2nn +1[设等差数列{a n }的首项为a 1,公差为d , 依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,因此∑nk=11S k=2⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=2nn+1.] 形如1n+k+n(k为非零常数)型a n=1n+k+n=1k(n+k-n).已知函数f(x)=x a的图像过点(4,2),令a n=1f(n+1)+f(n),n∈N+,记数列{a n}的前n项和为S n,则S2 019=()A. 2 018-1B. 2 019-1C. 2 020-1D. 2 020+1C[由f(4)=2得4a=2,解得a=12,则f(x)=x.∴a n=1f(n+1)+f(n)=1n+1+n=n+1-n,S2 019=a1+a2+a3+…+a2 019=(2-1)+(3-2)+(4-3)+…+( 2 020-2 019)= 2 020-1.]运用分母有理化对分式1n+1+n正确变形并发现其前后项之间的抵消关系是求解本题的关键.求和S=11+3+13+5+…+1119+121=()A.5 B.4 C.10 D.9A[S=1-31-3+3-53-5+…+119-121119-121=1-11-2=5,故选A.] 形如b n=(q-1)a n(a n+k)(a n+1+k)(q为等比数列{a n}的公比)型b n=(q-1)a n(a n+k)(a n+1+k)=1a n+k-1a n+1+k.(2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1.(1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2×3n a n a n +1的前n 项和T n .[解] (1)∵a 2=8,S n =a n +12-n -1, ∴a 1=S 1=a 22-2=2,当n ≥2时,a n =S n -S n -1=a n +12-n -1-⎝ ⎛⎭⎪⎫a n 2-n ,即a n +1=3a n +2,又a 2=8=3a 1+2, ∴a n +1=3a n +2,n ∈N +, ∴a n +1+1=3(a n +1),∴数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,∴a n +1=3×3n -1=3n ,∴a n =3n -1.(2)∵2×3na n a n +1=2×3n(3n -1)(3n +1-1)=13n -1-13n +1-1. ∴数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和 T n =⎝ ⎛⎭⎪⎫13-1-132-1+⎝ ⎛⎭⎪⎫132-1-133-1+…+⎝ ⎛⎭⎪⎫13n -1-13n +1-1=12-13n +1-1. 本例第(1)问在求解通项公式时运用了构造法,形如a n +1=λa n +μ的数列递推关系求通项公式都可以采用此法;第(2)问运用了裂项相消法求和.已知 {a n }是等比数列,且a 2=12,a 5=116,若b n =a n +1(a n +1)(a n +1+1),则数列{b n }的前n 项和为( )A.2n -12(2n +1)B.2n -12n +1C.12n +1D.2n -12n +2A [a 5=a 2·q 3,∴q 3=18,∴q =12,a 1=1, ∴a n =⎝ ⎛⎭⎪⎫12n -1,b n =⎝ ⎛⎭⎪⎫12n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12n -1+1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12n +1=1⎝ ⎛⎭⎪⎫12n +1-1⎝ ⎛⎭⎪⎫12n -1+1 ∴b 1+b 2+b 3+…+b n =⎣⎢⎢⎡⎦⎥⎥⎤1⎝ ⎛⎭⎪⎫121+1-1⎝ ⎛⎭⎪⎫120+1+⎣⎢⎢⎡⎦⎥⎥⎤1⎝ ⎛⎭⎪⎫122+1-1⎝ ⎛⎭⎪⎫121+1+⎣⎢⎢⎡⎦⎥⎥⎤1⎝ ⎛⎭⎪⎫123+1-1⎝ ⎛⎭⎪⎫122+1+…+⎣⎢⎢⎡⎦⎥⎥⎤1⎝ ⎛⎭⎪⎫12n +1-1⎝ ⎛⎭⎪⎫12n -1+1 =1⎝ ⎛⎭⎪⎫12n +1-12=2n -12(2n +1).故选A.] 形如a n =n +1n 2(n +2)2型a n =n +1n 2(n +2)2=14⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ; (2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N +,都有T n <564.[解] (1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,当n ≥2时,a n =S n-S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n ,故b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1(n -1)2-1(n +1)2+1n 2-1(n +2)2=116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝ ⎛⎭⎪⎫1+122=564. (1)与不等式相结合考查裂项相消法求和问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.(2)放缩法常见的放缩技巧有: ①1k 2<1k 2-1=12⎝⎛⎭⎪⎫1k -1-1k +1. ②1k -1k +1<1k 2<1k -1-1k .③2(n +1-n )<1n<2(n -n -1).已知等比数列{a n }的前n 项和为S n ,满足S 4=2a 4-1,S 3=2a 3-1. (1)求{a n }的通项公式;(2)记b n =log 2(a n ·a n +1),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n<2.[解] (1)设{a n }的公比为q ,由S 4-S 3=a 4得2a 4-2a 3=a 4, 所以a 4a 3=2,所以q =2.又因为S 3=2a 3-1, 所以a 1+2a 1+4a 1=8a 1-1, 所以a 1=1.所以a n =2n -1.(2)证明:由(1)知b n =log 2(a n ·a n +1)=log 2(2n -1×2n )=2n -1, 所以T n =1+(2n -1)2·n =n 2,所以1T 1+1T 2+…+1T n =112+122+…+1n 2<1+11×2+12×3+…+1(n -1)n=1+1-12+12-13+…+1n -1-1n =2-1n <2.考点3 错位相减法求和错位相减法求和的具体步骤 步骤1→写出S n =c 1+c 2+…+c n .步骤2→等式两边同乘等比数列的公比q ,即qS n =qc 1+qc 2+…+qc n . 步骤3→两式错位相减转化成等比数列求和.步骤4→两边同除以1-q ,求出S n .同时注意对q 是否为1进行讨论.(2019·莆田模拟)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +1,数列{b n }满足a 1=b 1,点P (b n ,b n +1)在直线x -y +2=0上,n ∈N +.(1)求数列{a n },{b n }的通项公式; (2)设c n =b na n,求数列{c n }的前n 项和T n .[解] (1)由a n +1=2S n +1可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,所以a 2=3a 1.故{a n }是首项为1,公比为3的等比数列. 所以a n =3n -1.由点P (b n ,b n +1),在直线x -y +2=0上,所以b n +1-b n =2. 则数列{b n }是首项为1,公差为2的等差数列. 则b n =1+(n -1)·2=2n -1.(2)因为c n =b n a n =2n -13n -1,所以T n =130+331+532+…+2n -13n -1.则13T n =131+332+533+…+2n -33n -1+2n -13n ,两式相减得:23T n =1+23+232+…+23n -1-2n -13n .所以T n =3-12·3n -2-2n -12·3n -1=3-n +13n -1.本例巧妙地将数列{a n }及其前n 项和为S n ,数列与函数的关系等知识融合在一起,难度适中.求解的关键是将所给条件合理转化,并运用错位相减法求和.(2019·烟台一模)已知等差数列{a n }的公差是1,且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2a n 的前n 项和T n .[解] (1)因为{a n }是公差为1的等差数列,且a 1,a 3,a 9成等比数列,所以a 23=a 1a 9, 即(a 1+2)2=a 1(a 1+8),解得a 1=1. 所以a n =a 1+(n -1)d =n .(2)T n =1×⎝ ⎛⎭⎪⎫121+2×⎝ ⎛⎭⎪⎫122+3×⎝ ⎛⎭⎪⎫123+…+n ×⎝ ⎛⎭⎪⎫12n ,12T n =1×⎝ ⎛⎭⎪⎫122+2×⎝ ⎛⎭⎪⎫123+…+(n -1)×⎝ ⎛⎭⎪⎫12n +n ×⎝ ⎛⎭⎪⎫12n +1, 两式相减得12T n =⎝ ⎛⎭⎪⎫121+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -n ×⎝ ⎛⎭⎪⎫12n +1, 所以12T n =12-⎝ ⎛⎭⎪⎫12n +11-12-n ×⎝ ⎛⎭⎪⎫12n +1=1-12n -n 2n +1.所以T n =2-2+n2n .课外素养提升⑥ 数学建模—— 数列中等量关系的建立2019全国卷Ⅰ理科21题将数列与概率知识巧妙的融合在一起,在考查概率知识的同时,突出考查学生借用数列的递推关系将实际问题转化为数学问题的能力.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题,这就要求考生除熟练运用数列的有关概念外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解题的速度.直接借助等差(等比)数列的知识建立等量关系【例1】 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入? [解] (1)第1年投入为800万元, 第2年投入为800×⎝ ⎛⎭⎪⎫1-15万元,…,第n 年投入为800×⎝ ⎛⎭⎪⎫1-15n -1万元,所以,n 年内的总投入为:a n =800+800×⎝ ⎛⎭⎪⎫1-15+…+800×⎝ ⎛⎭⎪⎫1-15n -1=4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,第1年旅游业收入为400万元,第2年旅游业收入为400×⎝ ⎛⎭⎪⎫1+14万元,…,第n 年旅游业收入400×⎝ ⎛⎭⎪⎫1+14n -1万元.所以,n 年内的旅游业总收入为b n =400+400×⎝ ⎛⎭⎪⎫1+14+…+400×⎝ ⎛⎭⎪⎫1+14n -1=1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1.(2)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0, 化简得5×⎝ ⎛⎭⎪⎫45n +2×⎝ ⎛⎭⎪⎫54n -7>0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n ,代入上式得:5x 2-7x +2>0.解得x <25,或x >1(舍去).即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. ∴至少经过5年,旅游业的总收入才能超过总投入.[评析] 本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点,正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.【素养提升练习】 公民在就业的第一年就交纳养老储备金a 1,以后每年交纳的数目均比上一年增加d (d >0),历年所交纳的储备金数目a 1,a 2,…,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.如果固定年利率为r (r >0),那么,在第n 年末,第一年所交纳的储备金就变为a 1(1+r )n -1,第二年所交纳的储备金就变为a 2(1+r )n -2,…,以T n 表示到第n 年末所累计的储备金总额.求证:T n =A n +B n ,其中{A n }是一个等比数列,{B n }是一个等差数列.[解] T 1=a 1,对n ≥2反复使用上述关系式,得 T n =T n -1(1+r )+a n=T n -2(1+r )2+a n -1(1+r )+a n=a 1(1+r )n -1+a 2(1+r )n -2+…+a n -1(1+r )+a n ,① 在①式两端同乘1+r ,得(1+r )T n =a 1(1+r )n +a 2(1+r )n -1+…+a n -1(1+r )2+a n (1+r ),② ②-①,得rT n =a 1(1+r )n +d [(1+r )n -1+(1+r )n -2+…+(1+r )]-a n =dr [(1+r )n -1-r ]+a 1(1+r )n -a n .即T n =a 1r +d r 2(1+r )n -d r n -a 1r +dr 2.如果记A n =a 1r +d r 2(1+r )n,B n =-a 1r +d r 2-dr n ,则T n =A n +B n ,其中{A n }是以a 1r +dr 2(1+r )为首项,以1+r (r >0)为公比的等比数列;{B n }是以-a 1r +d r 2-d r 为首项,-dr 为公差的等差数列.借助数列的递推关系建立等量关系【例2】 大学生自主创业已成为当代潮流.某大学大三学生夏某今年一月初向银行贷款两万元作开店资金,全部用作批发某种商品.银行贷款的年利率为6%,约定一年后一次还清贷款.已知夏某每月月底获得的利润是该月月初投入资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1 500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出.(1)设夏某第n 个月月底余a n 元,第n +1个月月底余a n +1元,写出a 1的值并建立a n +1与a n 的递推关系;(2)预计年底夏某还清银行贷款后的纯收入.(参考数据:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10-11,0.1212≈8.92×10-12)[解] (1)依题意,a 1=20 000(1+15%)-20 000×15%×20%-1 500=20 900(元), a n +1=a n (1+15%)-a n ×15%×20%-1 500 =1.12a n -1500(n ∈N +,1≤n ≤11). (2)令a n +1+λ=1.12(a n +λ),则 a n +1=1.12a n +0.12λ,对比(1)中的递推公式,得λ=-12 500. 则a n -12 500=(20 900-12 500)1.12n -1, 即a n =8 400×1.12n -1+12 500.则a 12=8 400×1.1211+12 500≈41 732(元).又年底偿还银行本利总计20 000(1+6%)=21 200(元), 故该生还清银行贷款后纯收入41 732-21 200=20 532(元).[评析] (1)先求出a 1的值,并依据题设得出a n +1与a n 的关系;(2)利用构造法求得{a n }的通项公式,并求相应值.【素养提升练习】 如图,P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,是曲线C :y 2=12x (y ≥0)上的点,A 1(a 1,0),A 2(a 2,0),…,A n (a n,0),…,是x 轴正半轴上的点,且△A 0A 1P 1,△A 1A 2P 2,…,△A n -1A n P n ,…,均为斜边在x 轴上的等腰直角三角形(A 0为坐标原点).(1)写出a n -1、a n 和x n 之间的等量关系,以及a n -1、a n 和y n 之间的等量关系; (2)用数学归纳法证明a n =n (n +1)2(n ∈N +); (3)设b n =1a n +1+1a n +2+1a n +3+…+1a 2n,对所有n ∈N +,b n <log 8t 恒成立,求实数t的取值范围.[解] (1)依题意,△A 0A 1P 1,△A 1A 2P 2,…,△A n -1A n P n ,…,均为斜边在x 轴上的等腰直角三角形(A 0为坐标原点),故有x n =a n -1+a n 2,y n =a n -a n -12.(2)证明:①当n =1时,可求得a 1=1=1×22,命题成立; ②假设当n =k 时,命题成立,即有a k =k (k +1)2. 则当n =k +1时,由归纳假设及(a k -a k -1)2=a k -1+a k , 得⎣⎢⎡⎦⎥⎤a k +1-k (k +1)22=k (k +1)2+a k +1.即(a k +1)2-(k 2+k +1)a k +1+k (k -1)2·(k +1)(k +2)2=0,解得a k +1=(k +1)(k +2)2(a k +1=k (k -1)2<a k ,不合题意,舍去),即当n =k +1时,命题成立.综上所述,对所有n ∈N +,a n =n (n +1)2. (3)b n =1a n +1+1a n +2+1a n +3+…+1a 2n=2(n +1)(n +2)+2(n +2)(n +3)+…+22n (2n +1) =2n +1-22n +1=2n 2n 2+3n +1=2⎝⎛⎭⎪⎫2n +1n +3.因为函数f (x )=2x +1x 在区间[1,+∞)上单调递增,所以当n =1时,b n 最大为13,即b n ≤13.由题意,有13<log 8t ,所以t >2,所以,t ∈(2,+∞).。
2019届高考数学(北师大版文)大一轮复习讲义第六章 数列 第4讲 数列求和.4 Word版含答案
§数列求和.等差数列的前项和公式==+..等比数列的前项和公式=(\\(,=,,(--)=((-(-),≠.)).一些常见数列的前项和公式()++++…+=.()++++…+-=.+=…()++++(+.)()++…+=.知识拓展数列求和的常用方法()公式法直接利用等差、等比数列的求和公式求和.()分组转化法把数列转化为几个等差、等比数列,再求解.()裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①=-;②=;③=-.()倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.()错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和.()并项求和法一个数列的前项和中,可两两结合求解,则称之为并项求和.形如=(-)()类型,可采用两项合并求解.题组一思考辨析.判断下列结论是否正确(请在括号中打“√”或“×”)()如果数列{}为等比数列,且公比不等于,则其前项和=.(√)()当≥时,=.(√) ()求=+++…+之和时,只要把上式等号两边同时乘以即可根据错位相减法求得.(×)()数列的前项和为+.(×) ()推导等差数列求和公式的方法叫作倒序求和法,利用此法可求得°+°+°+…+°+°=.(√) ()如果数列{}是周期为的周期数列,那么=(,为大于的正整数).(√)题组二教材改编.一个球从高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第次着地时,经过的路程是().+(--).+(--).(--).(--)答案解析第次着地时,经过的路程为+(++…+×-)=+××(-+-+…+-)=+×=+(--)..+++…+-=.(≠且≠)答案-解析设=+++…+-,①则=+++…+,②①-②得(-)=+++…+--=-,。
高考数学一轮复习: 专题6.4 数列求和(练)
专题6.4 数列求和【基础巩固】一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.【答案】n 2+1-12n【解析】该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.(·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________. 【答案】2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.【答案】-200【解析】S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.(·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 【答案】7【解析】根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.5.(·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 【答案】6【解析】由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.6.(·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1 (a k a k +1)的值为________. 【答案】1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.8.(·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________. 【答案】4n-1【解析】由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.二、解答题9.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.10.(·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ. 令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+12λ+1.由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n-1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2). 代入①得S n =n +32a n -1=n 2+5n 6.【能力提升】11.(·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 【答案】92【解析】a n =1+(n -1)=n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号. ∴S n +8a n 的最小值是92. 12.(·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________. 【答案】7813.(·南京、盐城模拟)已知函数f (x )=⎩⎨⎧1-x -12,0≤x <2,f x -2,x ≥2,若对于正数k n (n ∈N*),直线y=k n x与函数y=f(x)的图象恰有(2n+1)个不同交点,则数列{k2n}的前n项和为________.【答案】n4n+4【解析】函数f(x)的图象是一系列半径为1的半圆,因为直线y=k n x与f(x)的图象恰有(2n+1)个不同交点,所以直线y=k n x与第(n+1)个半圆相切,则2n+1k n1+k2n=1,化简得k2n=14n n+1=14⎝⎛⎭⎪⎫1n-1n+1,则k21+k22+…+k2n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4n+4.14.(·苏、锡、常、镇四市调研)正项数列a1,a2,…,a m(m≥4,m∈N*),满足a1,a2,a3,…,a k-1,a k(k<m,k∈N*)是公差为d的等差数列,a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列.(1)若a1=d=2,k=8,求数列a1,a2,…,a m的所有项的和S m;(2)若a1=d=2,m<2 016,求m的最大值;(3)是否存在正整数k,满足a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m)?若存在,求出k的值;若不存在,请说明理由.又a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列,则a k=a1·2m+1-k,故a1+(k-1)d=a1·2m+1-k,即(k-1)d=a1(2m+1-k-1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1, 则ka 1+12k (k -1)d =3×2a 1×1-2m -k1-2,即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k-1),则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k+k =6×2m +1-k-12,显然k ≠6,则2m +1-k=k +126-k =-1+186-k,。
2025高考数学一轮复习-6.4-数列求和【课件】
易错易混 4.在数列{an}中,已知 an=n+11n+3(n∈N*),则{an}的前 n 项和 Sn=
_____12__56_-__n_+1__2_-__n_+1__3_ ______. 【解析】 ∵an=n+11n+3=12n+1 1-n+1 3, ∴Sn=1212-14+13-15+14-16+15-17+…+n+1 1-n+1 3 =1212+13-n+1 2-n+1 3 =1256-n+1 2-n+1 3.
第六章 数列
第四节 数列求和
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.公式法 (1)等差数列{an}的前 n 项和 Sn=na12+an=na1+nn-2 1d. 推导方法:倒序相加法.
na1,q=1, (2)等比数列{an}的前 n 项和 Sn=a111--qqn,q≠1. 推导方法:乘公比, 错位相减法 .
6.若{log2an}是首项为 1,公差为 2 的等差数列,则数列{nan}的前 n 项和为 _S_n_=__2_+__6_n_9-__2__·4_n_.
【解析】 由题意可得 log2an=1+2(n-1)=2n-1, ∴an=22n-1=2·4n-1,∴nan=2n·4n-1, ∴数列{nan}的前 n 项和 Sn=2(1×40+2×41+3×42+…+n×4n-1), ∴12Sn=1×40+2×41+3×42+…+n×4n-1, ∴2Sn=1×41+2×42+3×43+…+n×4n,
课堂考点突破
——精析考题 提升能力
考点一 分组转化求和 【例 1】 已知数列{an}满足 a1=1,an+an-1=2n(n≥2,n∈N*). (1)记 bn=a2n,求数列{bn}的通项公式; (2)求数列{an}的前 n 项和 Sn.
高考数学一轮复习 第六章 数列 第4讲 数列求和教学案 理 北师大版-北师大版高三全册数学教学案
第4讲 数列求和一、知识梳理 1.数列求和方法(1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列求和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.2.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+(2n -1)=n 2; (3)2+4+6+8+…+2n =n 2+n . 3.数列求和的常用方法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(2)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.(3)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (4)分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后再相加减.(5)并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.常用结论记住常用的裂项公式(1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .二、教材衍化1.一个球从100 m 高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)解析:选 A.第10次着地时,经过的路程为100+2(50+25+…+100×2-9)=100+2×100×(2-1+2-2+…+2-9)=100+200×2-1(1-2-9)1-2-1=100+200(1-2-9). 2.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0172 018,则项数n 为( )A .2 014B .2 015C .2 016D .2 017解析:选D.a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0172 018,所以n =2 017.故选D. 3. 1+2x +3x 2+…+nxn -1=________(x ≠0且x ≠1).解析:设S n =1+2x +3x 2+…+nx n -1,① 则xS n =x +2x 2+3x 3+…+nx n,② ①-②得:(1-x )S n =1+x +x 2+…+xn -1-nx n=1-x n1-x -nx n,所以S n =1-x n(1-x )2-nx n1-x. 答案:1-x n(1-x )2-nxn 1-x一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )答案:(1)√ (2)√ (3)× 二、易错纠偏常见误区|K(1)不会分组致误; (2)错位相减法运用不熟练出错.1.已知数列:112,214,318,…,⎝ ⎛⎭⎪⎫n +12n ,…,则其前n 项和关于n 的表达式为________.解析:设所求的数列前n 项和为S n ,则S n =(1+2+3+…+n )+12+14+…+12n =n (n +1)2+1-12n .答案:n (n +1)2+1-12n2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 解析:S n =1×2+2×22+3×23+…+n ×2n,① 所以2S n =1×22+2×23+3×24+…+n ×2n +1,②①-②得-S n =2+22+23+…+2n -n ×2n +1=2×(1-2n)1-2-n ×2n +1,所以S n =(n -1)2n +1+2.答案:(n -1)2n +1+2分组转化求和(师生共研)(2020·某某模拟)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解】 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d , 又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n. 因为b n =a 2n +2a n -1, 所以b n =2n -1+2n,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+ (2)) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.分组转化法求和的常见类型(1)若a n =b n ±,且{b n },{}为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,,n 为偶数的数列,其中数列{b n },{}是等比数列或等差数列,可采用分组转化法求和.1.若数列{a n }是2,2+22,2+22+23,…,2+22+23+ (2),…,则数列{a n }的前n 项和S n =________.解析:a n =2+22+23+ (2)=2-2n +11-2=2n +1-2,所以S n =(22+23+24+…+2n +1)-(2+2+2+ (2)=22-2n +21-2-2n =2n +2-4-2n .答案:2n +2-4-2n2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =2an +(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n , 故b n =2n+(-1)nn . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+ (2))+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52. 所以T n=⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.错位相减法求和(师生共研)(2020·某某市部分区联考)已知数列{a n }是等差数列,数列{b n }是等比数列,且a 1=1,a 3+a 4=12,b 1=a 2,b 2=a 5.(1)求{a n }和{b n }的通项公式;(2)设=(-1)na nb n (n ∈N +),求数列{}的前n 项和S n .【解】 (1)设等差数列{a n }的公差为d ,因为a 1=1,a 3+a 4=12, 所以2a +5d =12,所以d =2,所以a n =2n -1.设等比数列{b n }的公比为q ,因为b 1=a 2,b 2=a 5, 所以b 1=a 2=3,b 2=a 5=9, 所以q =3,所以b n =3n.(2)由(1)知,a n =2n -1,b n =3n,所以=(-1)n ·a n ·b n =(-1)n ·(2n -1)·3n =(2n -1)·(-3)n, 所以S n =1·(-3)+3·(-3)2+5·(-3)3+…+(2n -1)·(-3)n,① 所以-3S n =1·(-3)2+3·(-3)3+…+(2n -3)·(-3)n +(2n -1)·(-3)n +1,②①-②得,4S n =-3+2·(-3)2+2·(-3)3+…+2·(-3)n-(2n -1)·(-3)n +1=-3+2·(-3)2[1-(-3)n -1]1+3-(2n -1)·(-3)n +1=32-4n -12·(-3)n +1. 所以S n =38-4n -18·(-3)n +1.运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错位相减,如本题先把①式两边同乘以-3得到②式,再把两式错位相减;三是注意符号,相减时要注意最后一项的符号.(2020·某某模拟)设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求数列{a n }的通项公式;(2)设b n =n a n,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a na n -1=3(n ≥2), 又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3,所以{a n }是首项为1,公比为3的等比数列, 所以a =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n .裂项相消法求和(师生共研)(2020·某某八所重点高中4月联考)设数列{a n }满足a 1=1,a n +1=44-a n(n ∈N +).(1)求证:数列{1a n -2}是等差数列; (2)设b n =a 2na 2n -1,求数列{b n }的前n 项和T n . 【解】 (1)证明:因为a n +1=44-a n ,所以1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n2a n -4-1a n -2=2-a n 2a n -4=-12,为常数. 因为a 1=1,所以1a 1-2=-1,所以数列{1a n -2}是以-1为首项,-12为公差的等差数列. (2)由(1)知1a n -2=-1+(n -1)(-12)=-n +12, 所以a n =2-2n +1=2nn +1, 所以b n =a 2n a 2n -1=4n2n +12(2n -1)2n =4n 2(2n -1)(2n +1)=1+1(2n -1)(2n +1)=1+12(12n -1-12n +1), 所以T n =b 1+b 2+b 3+…+b n=n +12(1-13+13-15+15-17+…+12n -1-12n +1)=n +12(1-12n +1)=n +n2n +1, 所以数列{b n }的前n 项和T n =n +n2n +1.利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ·⎝ ⎛⎭⎪⎫1a n -1a n +2,1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1(a n ≠0).1.数列{a n }满足a 1=1, a 2n +2=a n +1(n ∈N +).(1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1, 又由已知易得a n >0, 所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.2.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.并项求和(师生共研)(2020·某某八市重点高中联盟测评)已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6-2成等比数列.(1)求数列{a n }的通项公式;(2)记b n =(-1)na 2n +1a n a n +1,数列{b n }的前n 项和为S n ,求S 2n .【解】 (1)设等差数列{a n }的公差为d , 因为a 2+2,a 4,a 6-2成等比数列, 所以a 24=(a 2+2)(a 6-2),所以(a 3+d )2=(a 3-d +2)(a 3+3d -2),又a 3=3,所以(3+d )2=(5-d )(1+3d ),化简得d 2-2d +1=0,解得d =1, 所以a n =a 3+(n -3)d =3+(n -3)×1=n . (2)由(1)得,b n =(-1)na 2n +1a n a n +1=(-1)n 2n +1n (n +1)=(-1)n (1n +1n +1),所以S 2n =b 1+b 2+b 3+…+b 2n =-(1+12)+(12+13)-(13+14)+…+(12n +12n +1)=-1+12n +1=-2n2n +1.用并项求和法求数列的前n 项和一般是指把数列的一些项合并组成我们熟悉的等差数列或等比数列来求和.可用并项求和法的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n”;三是数列{a n }是周期数列.[提醒] 运用并项求和法求数列的前n 项和的突破口是会观察数列的各项的特征,如本题,数列{b n }的通项公式为b n =(-1)n2n +1n (n +1),易知数列{b n }是摆动数列,所以求和时可以将各项进行适当合并.(2020·某某某某二检)已知数列{a n }的前n 项和S n =n 2-2kn (k ∈N +),S n 的最小值为-9.(1)确定k 的值,并求数列{a n }的通项公式;(2)设b n =(-1)n·a n ,求数列{b n }的前2n +1项和T 2n +1.解:(1)由已知得S n =n 2-2kn =(n -k )2-k 2,因为k ∈N +,则当n =k 时,(S n )min =-k 2=-9,故k =3.所以S n =n 2-6n .因为S n -1=(n -1)2-6(n -1)(n ≥2),所以a n =S n -S n -1=(n 2-6n )-[(n -1)2-6(n -1)]=2n -7(n ≥2). 当n =1时,S 1=a 1=-5,满足a n =2n -7, 综上,a n =2n -7.(2)依题意,得b n =(-1)n ·a n =(-1)n(2n -7), 则T 2n +1=5-3+1+1-3+5-…+(-1)2n(4n -7)+(-1)2n +1[2(2n +1)-7]=5-=5-2n .数列与其他知识的交汇问题一、数列与不等式的交汇问题(2020·某某某某二模)设S n 是数列{a n }的前n 项和,且a 1=3,当n ≥2时,有S n+S n -1-2S n S n -1=2na n ,则使得S 1S 2…S m ≥2 019成立的正整数m 的最小值为________.【解析】 因为S n +S n -1-2S n S n -1=2na n (n ≥2), 所以S n +S n -1-2S n S n -1=2n (S n -S n -1)(n ≥2), 所以(2n +1)S n -1-(2n -1)S n =2S n S n -1(n ≥2). 易知S n ≠0,所以2n +1S n -2n -1S n -1=2(n ≥2).令b n =2n +1S n,则b n -b n -1=2(n ≥2),又b 1=3S 1=3a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列,所以b n =2n -1,所以2n +1S n =2n -1,所以S n =2n +12n -1.所以S 1S 2…S m =3×53×…×2m +12m -1=2m +1≥2 019,所以m ≥1 009.即使得S 1S 2…S m ≥2 019成立的正整数m 的最小值为1 009. 【答案】 1 009解决本题的关键:一是细观察、会构造,即通过观察所给的关于S n ,a n 的关系式,思考是将S n 往a n 转化,还是将a n 往S n 转化;二是会解不等式,把求出的相关量代入已知不等式,转化为参数所满足的不等式,解不等式即可求出参数的最小值.二、数列与三角函数的综合(2020·某某某某4月联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且3sin B -sin C b -a =sin A +sin B c .(1)求角A 的大小;(2)若等差数列{a n }的公差不为零,a 1sin A =1,且a 2,a 4,a 8成等比数列,b n =1a n a n +1,求数列{b n }的前n 项和S n .【解】 (1)由3sin B -sin C b -a =sin A +sin Bc ,根据正弦定理可得3b -c b -a =b +a c,即b 2+c 2-a 2=3bc , 所以cos A =b 2+c 2-a 22bc =32,由0<A <π,得A =π6.(2)由(1)知,A =π6,设数列{a n }的公差为d (d ≠0),因为a 1sin A =1,所以a 1sin π6=12a 1=1,解得a 1=2.因为a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ), 所以d 2=2d .又d ≠0,所以d =2,则a n =2n ,b n =1a n a n +1=12n (2n +2)=14(1n -1n +1),则S n =14[(1-12)+(12-13)+…+(1n -1n +1)]=14(1-1n +1)=n 4n +4.破解数列与三角函数相交汇问题的策略:一是活用两定理,即会利用正弦定理和余弦定理破解三角形的边角关系;二是会用公式,即会利用等差数列与等比数列的通项公式求解未知量;三是求和方法,针对数列通项公式的特征,灵活应用裂项相消法、分组求和法、错位相减法等求和.三、数列与函数的综合(2020·某某某某5月联考)已知等差数列{a n }的前n 项和为S n ,公差d >0,a 6和a 8是函数f (x )=154ln x +12x 2-8x 的极值点,则S 8=( )A .-38B .38C .-17D .17【解析】 因为f (x )=154ln x +12x 2-8x ,所以f ′(x )=154x +x -8=x 2-8x +154x=(x -12)(x -152)x,令f ′(x )=0,解得x =12或x =152.又a 6和a 8是函数f (x )的极值点,且公差d >0, 所以a 6=12,a 8=152,所以⎩⎪⎨⎪⎧a 1+5d =12,a 1+7d =152,解得⎩⎪⎨⎪⎧a 1=-17,d =72.所以S 8=8a 1+8×(8-1)2×d =-38,故选A.【答案】 A破解数列与函数相交汇问题的关键:一是会利用导数法求函数的极值点;二是会利用等差数列的单调性,若公差大于0,则该数列单调递增,若公差小于0,则该数列单调递减,若公差等于0,则该数列是常数列,不具有单调性;三是会利用公式法求和,记清等差数列与等比数列的前n 项和公式,不要搞混.四、数列中的新定义问题(2020·某某模拟)数列{a n }的前n 项和为S n ,定义{a n }的“优值”为H n =a 1+2a 2+…+2n -1a n n,现已知{a n }的“优值”H n =2n,则S n =________.【解析】 由H n =a 1+2a 2+…+2n -1a n n=2n,得a 1+2a 2+…+2n -1a n =n ·2n ,①当n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)2n -1,②由①-②得2n -1a n =n ·2n -(n -1)2n -1=(n +1)2n -1,即a n =n +1(n ≥2),当n =1时,a 1=2也满足式子a n =n +1, 所以数列{a n }的通项公式为a n =n +1, 所以S n =n (2+n +1)2=n (n +3)2.【答案】n (n +3)2破解此类数列中的新定义问题的关键:一是盯题眼,即需认真审题,读懂新定义的含义,如本题,题眼{a n }的“优值”H n =2n的含义为a 1+2a 2+…+2n -1a n n=2n;二是想“减法”,如本题,欲由等式a 1+2a 2+…+2n -1a n =n ·2n 求通项,只需写出a 1+2a 2+…+2n -2a n -1=(n -1)·2n -1,通过相减,即可得通项公式.五、数列中的新情境问题(2020·某某六校第二次联考)已知{a n }是各项均为正数的等比数列,且a 1+ a 2=3,a 3-a 2= 2,等差数列{b n }的前n 项和为S n ,且b 3=5,S 4=16.(1)求数列{a n },{b n }的通项公式;(2)如图,在平面直角坐标系中,有点P 1(a 1,0),P 2(a 2,0),…,P n (a n ,0),P n +1(a n +1,0),Q 1(a 1,b 1),Q 2(a 2,b 2),…,Q n (a n ,b n ),若记△P n Q n P n +1的面积为,求数列{}的前n 项和T n .【解】 (1)设数列{a n }的公比为q ,因为a 1+a 2=3,a 3-a 2=2,所以⎩⎪⎨⎪⎧a 1+a 1q =3,a 1q 2-a 1q =2,得3q 2-5q -2=0,又q >0, 所以q =2,a 1=1,则a n =2n -1.设数列{b n }的公差为d ,因为b 3=5,S 4=16,所以⎩⎪⎨⎪⎧b 1+2d =5,4b 1+6d =16,解得⎩⎪⎨⎪⎧b 1=1,d =2,则b n =2n -1.(2)由(1)得P n P n +1=a n +1-a n =2n -2n -1=2n -1,P n Q n =b n =2n -1,故=S △P n Q n P n +1=2n -1(2n -1)2=(2n -1)2n -2,则T n =c 1+c 2+c 3+…+=12×1+1×3+2×5+…+(2n -1)2n -2,① 2T n =1×1+2×3+4×5+…+(2n -1)2n -1,②由①-②得,-T n =12+2(1+2+…+2n -2)-(2n -1)·2n -1=12+2(1-2n -1)1-2-(2n -1)2n -1=(3-2n )2n -1-32,故T n =(2n -3)2n -1+32(n ∈N +).数列中新情境问题的求解关键:一是观察新情境的特征,如本题中的各个直角三角形的两直角边长的特征;二是会转化,如本题,把数列{}的通项公式的探求转化为直角三角形的两直角边长的探求;三是活用数列求和的方法,如本题,活用错位相减法,即可得数列{}的前n 项和.[基础题组练]1.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16解析:选A.S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.在数列{a n }中,a 1=2,a 2=2,a n +2-a n =1+(-1)n,n ∈N +,则S 60的值为( ) A .990 B .1 000 C .1 100D .99解析:选A.n 为奇数时,a n +2-a n =0,a n =2;n 为偶数时,a n +2-a n =2,a n =n .故S 60=2×30+(2+4+…+60)=990.3.已知函数f (x )=a x+b (a >0,且a ≠1)的图象经过点P (1,3),Q (2,5).当n ∈N +时,a n =f (n )-1f (n )·f (n +1),记数列{a n }的前n 项和为S n ,当S n =1033时,n 的值为( )A .7B .6C .5D .4解析:选D.因为函数f (x )=a x+b (a >0,且a ≠1)的图象经过点P (1,3),Q (2,5),所以⎩⎪⎨⎪⎧a +b =3,a 2+b =5,所以⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =4(舍去),所以f (x )=2x+1,所以a n =2n+1-1(2n +1)(2n +1+1)=12n +1-12n +1+1, 所以S n =⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-19+…+ ⎝ ⎛⎭⎪⎫12n +1-12n +1+1=13-12n +1+1, 令S n =1033,得n =4.故选D.4.(2020·某某某某期末)在数列{a n }中,若a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N +),则该数列的前100项之和是( )A .18B .8C .5D .2解析:选C.因为a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N +),所以a 3=3-1=2,a 4=2-3=-1,a 5=-1-2=-3,a 6=-3+1=-2,a 7=-2+3=1,a 8=1+2=3,a 9=3-1=2,…,所以{a n }是周期为6的周期数列,因为100=16×6+4,所以S 100=16×(1+3+2-1-3-2)+(1+3+2-1)=5.故选C.5.已知数列{a n }满足a 1=1,a n +1·a n =2n(n ∈N +),则S 2 018等于( ) A .22 018-1B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B.a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,所以a n +2a n=2.所以a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,所以S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.故选B.6.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.解析:因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2.因此S 2 017=S 2 016+a 2 017=(a 1+a 2+a 3+a 4)+…+(a 2 009+a 2 010+a 2 011+a 2 012)+(a 2 013+a 2 014+a 2 015+a 2 016)+a 2 017=2 0164×2+a 1=1 008.答案:1 0087.(2020·某某三湘名校(五十校)第一次联考)已知数列{a n }的前n 项和为S n ,a 1=1.当n ≥2时,a n +2S n -1=n ,则S 2 019=________.解析:由a n +2S n -1=n (n ≥2),得a n +1+2S n =n +1,两式作差可得a n +1-a n +2a n =1(n ≥2),即a n +1+a n =1(n ≥2),所以S 2 019=1+2 0182×1=1 010.答案:1 0108.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N +),记T n=1S 1+1S 2+…+1S n(n ∈N +),则T 2 018=________.解析:由a n +2-2a n +1+a n =0(n ∈N +),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n (a 1+a n )2=n (n +1)2,所以1S n=2n (n +1)=2(1n -1n +1),T n =1S 1+1S 2+…+1S n =2(11-12+12-13+…+1n -1n +1)=2(1-1n +1)=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019. 答案:4 0362 0199.已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n4(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =4na n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n4①,所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N +) ②,①-②得4n -1a n =14(n ≥2,n ∈N +),所以a n =14n (n ≥2,n ∈N +).由于a 1=14,故a n =14n (n ∈N +).(2)由(1)得b n =4na n 2n +1=12n +1,所以b n b n +1=1(2n +1)(2n +3)=12(12n +1-12n +3),故T n =12(13-15+15-17+…+12n +1-12n +3)=12(13-12n +3)=n 6n +9. 10.已知数列{a n }的前n 项和为S n ,S n =3a n -12.(1)求a n ;(2)若b n =(n -1)a n ,且数列{b n }的前n 项和为T n ,求T n . 解:(1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1(n ≥2),② ①-②得,2(S n -S n -1)=3a n -3a n -1, 化简得a n =3a n -1(n ≥2), 在①中,令n =1可得,a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列, 从而有a n =3n -1.(2)b n =(n -1)3n -1,T n =0×30+1×31+2×32+…+(n -1)×3n -1,③则3T n =0×31+1×32+2×33+…+(n -1)×3n.④ ③-④得,-2T n =31+32+33+…+3n -1-(n -1)×3n=3-3n1-3-(n -1)×3n =(3-2n )×3n-32.所以T n =(2n -3)×3n+34.[综合题组练]1.(2020·某某五个一名校联盟第一次诊断)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 018项的和为( )A .1 008B .1 009C .2 017D .2 018解析:选D.设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,所以数列{a n cos n π}的前 2 018项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 017+b 2 018)=2×2 0182=2 018.故选D.2.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76B .78C .80D .82解析:选B.由已知a n +1+(-1)na n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,两式相减得a n +2+a n =(-1)n·(2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.已知数列{a n },若a n +1=a n +a n +2(n ∈N +),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则数列{b n }的前2 019项和为________.解析:由“凸数列”的定义及b 1=1,b 2=-2,得b 3=-3,b 4=-1,b 5=2,b 6=3,b 7=1,b 8=-2,…,所以数列{b n }是周期为6的周期数列,且b 1+b 2+b 3+b 4+b 5+b 6=0,于是数列{b n }的前2 019项和等于b 1+b 2+b 3=-4.答案:-44.(2020·某某质量监测)已知数列{a n }和{b n }满足a 1a 2a 3…a n =2b n (n ∈N +),若数列{a n }为等比数列,且a 1=2,a 4=16,则数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =________.解析:因为{a n }为等比数列,且a 1=2,a 4=16,所以公比q =3a 4a 1=3162=2,所以a n =2n ,所以a 1a 2a 3…a n =21×22×23×…×2n =21+2+3+…+n=2n (n +1)2.因为a 1a 2a 3…a n =2b n ,所以b n =n (n +1)2.所以1b n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.所以⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =b 1+b 2+b 3+…+b n=2⎝ ⎛⎭⎪⎫11-12+12-13+13-14+…+1n -1n +1=2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 答案:2n n +15.已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)·(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n4na n a n +1=(-1)n(12n -1+12n +1), 当n 为偶数时,T n =-(1+13)+(13+15)-(15+17)+…-(12n -3+12n -1)+(12n -1+12n +1),所以T n =-1+12n +1=-2n2n +1. 当n 为奇数时,T n =-(1+13)+(13+15)-(15+17)+…+(12n -3+12n -1)-(12n -1+12n +1), 所以T n =-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数-2n +22n +1,n 为奇数.。
2018版高考数学大一轮复习第六章数列6.4数列求和课件文北师大版
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)
a1-an+1 (1) 如果数列{an}为等比数列, 且公比不等于 1, 则其前 n 项和 Sn= . 1-q (√ )
1 1 1 1 (2)当 n≥2 时, 2 =2( - ). n -1 n-1 n+1 ( √ )
(3)求Sn=a+2a2+3a3+„+nan之和时,只要把上式等号两边同时乘以a
=4Sn+3.
(1)求{an}的通项公式; 解答
1 (2)设 bn= ,求数列{bn}的前 n 项和. anan+1
解答
由an=2n+1可知 1 1 1 1 1 bn= = =22n+1-2n+3. anan+1 (2n+1)(2n+3) 设数列{bn}的前n项和为Tn,则 Tn=b1+b2+…+bn
②
①-②可得
2n+3 2n-1 2n+3 1 1 1 1 T n =3- n , 故 Tn=6- 2n-1 . n=2+ + 2+…+ n-2- 2 2 2 2 2 2
题型三 裂项相消法求和 1 命题点 1 an= 型 n(n+k)
例3
(2015· 课标全国Ⅰ)Sn为数列{an}的前n项和.已知an>0, a2 n + 2an
an (2) 当 d>1 时,记 cn=b ,求数列{cn}的前 n 项和 Tn. n
由d>1,知an=2n-1,bn=2n-1, 2n-1 故 cn= n-1 , 2
解答
2n-1 3 5 7 9 于是 Tn=1+2+22+23+24+…+ n-1 , 2
①
2n-1 1 1 3 5 7 9 T n . n= + 2+ 3+ 4+ 5+…+ 2 2 2 2 2 2 2
的最大值为 8. (1)确定常数 k,并求 an;
2018北师大版文科数学高考总复习练习:6-4数列求和 含
第4讲 数列求和基础巩固题组(建议用时:40分钟)一、选择题1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100解析 因为S nn =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75. 答案 C2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ) A .9 B .8 C .17 D .16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A .5 B .6 C .7 D .16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 答案 C5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N +),则S 2 016=( )A .22 016-1B .3·21 008-3C .3·21 008-1D .3·21 007-2解析 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 015+a 2 016 =(a 1+a 3+a 5+…+a 2 015)+(a 2+a 4+a 6+…+a 2 016) =1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B.答案 B 二、填空题6.(2016·上饶模拟)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________.解析 由题意知所求数列的通项为1-2n 1-2=2n -1,故由分组求和法及等比数列的求和公式可得和为2(1-2n )1-2-n =2n +1-2-n .答案 2n +1-2-n7.(2016·宝鸡模拟)数列{a n }满足a n +a n +1=12(n ∈N +),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n , 则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6. 答案 68.(2017·安阳二模)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n-1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1. 答案 4n -1 三、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由⎩⎨⎧ b 2=b 1q =3,b 3=b 1q 2=9得⎩⎨⎧b 1=1,q =3. ∴b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1 =n (1+2n -1)2+1-3n 1-3=n 2+3n -12.10.(2017·铜川一模)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N +). (1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N +),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)当n =1时,a 1=S 1, 由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1, 则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ), 所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列. 故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N +). (2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n .所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2, 所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(2n +2).能力提升题组 (建议用时:20分钟)11.(2016·郑州模拟)已知数列{a n }的通项公式为a n =1(n +1)n +n n +1(n ∈N +),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 016中,有理数项的项数为( ) A .42 B .43 C .44 D .45 解析 a n =1(n +1)n +n n +1=(n +1)n -n n +1[(n +1)n +n n +1][(n +1)n -n n +1] =nn -n +1n +1.所以S n =1-22+⎝ ⎛⎭⎪⎫22-33+⎝ ⎛⎭⎪⎫33-44+…+⎝ ⎛⎭⎪⎫n n -n +1n +1=1-n +1n +1,因此S 3,S 8,S 15…为有理项,又下标3,8,15,…的通项公式为n 2-1(n ≥2),所以n 2-1≤2 016,且n ≥2,所以2≤n ≤44,所以有理项的项数为43. 答案 B12.(2017·济南模拟)在数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( )A .76B .78C .80D .82解析 因为a n +1+(-1)n a n =2n -1,所以a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78. 答案 B13.设f (x )=4x 4x +2,若S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,则S =________.解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x ,∴f (x )+f (1-x )=4x 4x +2+22+4x=1.S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,①S =f ⎝ ⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+f ⎝ ⎛⎭⎪⎫12 015,② ①+②得,2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫2 0142 015+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫12 015=2014,∴S =2 0142=1 007. 答案 1 00714.(2015·山东卷)已知数列{a n }是首项为正数的等差数列,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n ·a n +1的前n项和为n2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d ,令n =1,得1a 1a 2=13,所以a 1a 2=3.①令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.②解①②得a 1=1,d =2,所以a n =2n -1. (2)由(1)知b n =2n ·22n -1=n ·4n , 所以T n =1×41+2×42+…+n ×4n , 所以4T n =1×42+2×43+…+n ×4n +1, 两式相减,得-3T n =41+42+…+4n -n ·4n +1 =4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.。
【走向高考】高考数学总复习 6-4数列求和课后作业 北师大版
【走向高考】2013年高考数学总复习 6-5课后作业 北师大版一、选择题1.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .42[答案] C[解析] 由题意设S n =An 2+Bn ,又∵S 2=2,S 4=10,∴4A +2B =2,16A +4B =10, 解得A =34,B =-12,∴S 6=36×34-3=24.2.数列{a n }的前n 项和为S n ,若a n =1n +n +,则S 8等于( )A.25B.130 C.730 D.56[答案] A [解析] ∵a n =1n +n +=1n +1-1n +2,而S n =a 1+a 2+…+a n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n n +,∴S 8=8+=25. 3.(2011·安徽文,7)若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-15[答案] A[解析] 该题考查数列求和,难易属中,用到乘公比错位相减法. 设a 1+a 2+…+a 10=S ,则S =-1×(3×1-2)+(-1)2×(3×2-2)+…+(-1)10(3×10-2) ① -S =(-1)2×(3×1-2)+…+(-1)10(3×9-2)+(-1)11(3×10-2) ② ①-②得2S =-1+(-1)2×3+…+(-1)10×3-(-1)11×28=-1+3×--91+1+28.∴2S =30,∴S =15.4.(文)已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( )A .13B .10C .9D .6[答案] D[解析] a n =2n-12n =1-⎝ ⎛⎭⎪⎫12n,∴S n =a 1+a 2+a 3+…+a n=⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫121+⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫122+⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫123+…+⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n =n -⎝ ⎛⎭⎪⎫12+122+123+ (12)=n -12⎝ ⎛⎭⎪⎫1-12n 1-12=n -1+12n =32164=5164,∴n =6.(理)(2012·山东日照模拟)已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N +),设其前n 项和为S n ,则使S n <-5成立的自然数n ( )A .有最大值63B .有最小值63C .有最大值32D .有最小值32[答案] B[解析] S n =a 1+a 2+a 3+…+a n =log 223+log 234+log 245+…+log 2n +1n +2=log 2⎝ ⎛⎭⎪⎫23×34×45×…×n +1n +2=log 22n +2<-5, ∴2n +2<132,∴64<n +2, ∴n >62,∴n min =63.5.数列1×12,2×14,3×18,4×116,…的前n 项和为( )A .2-12n -n2n +1B .2-12n -1-n2nC.12(n 2+n +2)-12nD.12n (n +1)+1-12n -1 [答案] B[解析] S =1×12+2×14+3×18+4×116+…+n ×12n =1×121+2×122+3×123+…+n ×12n ,①则12S =1×122+2×123+3×124+…+(n -1)×12n +n ×12n +1,② ①-②得12S =12+122+123+…+12n -n ×12n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n2n +1.∴S =2-12n -1-n2n .6.(文)122-1+132-1+142-1+…+1n +2-1的值为( )A.n +1n + B.34-n +1n+C.34-12⎝ ⎛⎭⎪⎫1n +1+1n +2D.32-1n +1+1n +2[答案] C [解析] ∵1n +2-1=1n 2+2n =1n n +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴S n =12⎝ ⎛1-13+12-14+13-15+ (1)-⎭⎪⎫1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2. (理)(2012·汕头模拟)已知a n =log (n +1)(n +2)(n ∈N +),若称使乘积a 1·a 2·a 3·…·a n 为整数的数n 为劣数,则在区间(1,2013)内所有的劣数的和为( )A .2026B .2046C .1024D .1022[答案] A[解析] ∵a 1·a 2·a 2·…·a n =lg3lg2·lg4lg3·…·n +n +=n +lg2=log 2(n +2)=k ,则n =2k -2(k ∈Z).令1<2k -2<2013,得k =2,3,4, (10)∴所有劣数的和为-291-2-18=211-22=2026.二、填空题7.设f (x )=12x +2,则f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)的值为________.[答案] 5 2[解析] ∵f (-n )+f (n +1)=12-n+2+12n +1+2=2n1+2n ·2+12n +1+2=2n·2+12n +1+2=22, ∴f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)=5 2.8.(文)(2012·启东模拟)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.[答案] 2n +1-2[解析] ∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2 =2-2n1-2+2=2n -2+2=2n , ∴S n =2-2n +11-2=2n +1-2.(理)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N +),则a 12+a 23+…+a nn +1=________.[答案] 2n 2+6n[解析] 令n =1得a 1=4, 即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2+3(n -1)]=2n +2, 所以a n =4(n +1)2, 当n =1也适合,所以a n =4(n +1)2(n ∈N +). 于是a n n +1=4(n +1),故a 12+a 23+…+a nn +1=2n 2+6n .三、解答题9.已知数列{a n }的前n 项和S n =2n 2-3n . (1)求证:数列{a n }是等差数列;(2)若b n =a n ·2n,求数列{b n }的前n 项和T n . [解析] (1)证明:a 1=S 1=-1,当n ≥2时,a n =S n -S n -1=2n 2-3n -2(n -1)2+3(n -1)=4n -5. 又a 1适合上式,故a n =4n -5(n ∈N +). 当n ≥2时,a n -a n -1=4n -5-4(n -1)+5=4,所以{a n }是等差数列且d =4,a 1=-1. (2)b n =(4n -5)·2n,∴T n =-21+3·22+…+(4n -5)·2n,① 2T n =-22+…+(4n -9)·2n +(4n -5)·2n +1,② ①-②得-T n =-21+4·22+…+4·2n -(4n -5)·2n +1=-2+4·-2n -11-2-(4n -5)·2n +1=-18-(4n -9)·2n +1, ∴T n =18+(4n -9)·2n +1.一、选择题1.(2012·威海模拟)已知数列{a n }的前n 项和S n =n 2-4n +2,则 |a 1|+|a 2|+…+|a 10|=( ) A .66 B .65 C .61 D .56[答案] A[解析] 当n ≥2时,a n =S n -S n -1=2n -5; 当n =1时,a 1=S 1=-1,不符合上式,∴a n =⎩⎪⎨⎪⎧-1,n =1,2n -5,n ≥2,∴{|a n |}从第3项起构成等差数列,首项|a 3|=1, 末项|a 10|=15.∴|a 1|+|a 2|+…+|a 10|=1+1++2=66.2.(文)(2012·郑州模拟)数列{a n }满足a n +a n +1=12(n ∈N +),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( )A.212 B .6 C .10 D .11[答案] B[解析] 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项,偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6.(理)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n +1-2 B .3n C .2n D .3n-1[答案] C[解析] 解法1:由{a n }为等比数列可得a n +1=a n ·q ,a n +2=a n ·q 2由{a n +1}为等比数列可得(a n +1+1)2=(a n +1)(a n +2+1),故(a n ·q +1)2=(a n +1)(a n ·q 2+1), 化简上式可得q 2-2q +1=0,解得q =1,故a n 为常数列,且a n =a 1=2,故S n =n ·a 1=2n ,故选C. 解法2:设等比数列{a n }的公比为q ,则有a 2=2q 且a 3=2q 2, 由题设知(2q +1)2=3·(2q 2+1), 解得q =1,以下同解法1. 二、填空题3.(湖南六校联考)数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n a n +1,则数列{b n }的前10项和S 10=________.[答案]1011[解析] 由题意可知a n +1=a n (1-a n +1),整理可得1a n +1-1a n =1,则1a n =1+(n -1)=n ,所以a n =1n,b n =a n a n +1=1n n +=1n -1n +1,故S 10=b 1+b 2+…+b 10=1-111=1011. 4.(2012·江门模拟)有限数列A ={a 1,a 2,…,a n },S n 为其前n 项的和,定义S 1+S 2+…+S nn为A 的“凯森和”;如果有99项的数列{a 1,a 2,…,a 99}的“凯森和”为1000,则有100项的数列{1,a 1,a 2,…,a 99}的“凯森和”为________.[答案] 991[解析] ∵{a 1,a 2,…,a 99}的“凯森和”为S 1+S 2+…+S 9999=1000,∴S 1+S 2+…S 99=1000×99,数列{1,a1,a 2,…,a 99}的“凯森和”为:1+S 1++S 2++…+S 99+100=100+S 1+S 2+…+S 99100=991.三、解答题5.已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和. (1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n . [解析] 本题主要考查等差数列的基本性质,以及通项公式的求法,前n 项和的求法,同时也考查了学生的基本运算能力.(1)因为{a n }为首项a 1=19,公差d =-2的等差数列, 所以a n =19-2(n -1)=-2n +21,S n =19n +n n -2(-2)=-n 2+20n .(2)由题意知b n -a n =3n -1,所以b n =3n -1-2n +21T n =b 1+b 2+…+b n =(1+3+…+3n -1)+S n=-n 2+20n +3n-12.6.设数列{a n }的前n 项和为S n ,已知a 1=1,且a n +2S n S n -1=0(n ≥2), (1)求数列{S n }的通项公式; (2)设S n =1f n ,b n =f (12n )+1.记P n =S 1S 2+S 2S 3+…+S n S n +1,T n =b 1b 2+b 2b 3+…+b n b n +1,试求T n ,并证明P n <12.[解析] (1)∵a n +2S n S n -1=0(n ≥2), ∴S n -S n -1+2S n S n -1=0. ∴1S n -1S n -1=2.又∵a =1,∴S n =12n -1(n ∈N +).(2)证明:∵S n =1f n,∴f (n )=2n -1.∴b n =2(12n )-1+1=(12)n -1.T n =(12)0·(12)1+(12)1·(12)2+…+(12)n -1·(12)n =(12)1+(12)3+(12)5+…+(12)2n -1=23[1-(14)n]. ∵S n =12n -1(n ∈N +)∴P n =11×3+13×5+…+1n -n +=12⎝ ⎛⎭⎪⎫1-12n +1<12. 7.(文)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n . [解析] 本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练掌握数列的基础知识是解答好本类题目的关键.对(1)可直接根据定义求解,(2)问采用裂项求和即可解决.(1)设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有⎩⎪⎨⎪⎧a 1+2d =72a 1+10d =26,解得a 1=3,d =2,所以a n =3+2(n -1)=2n +1;S n =3n +n n -2×2=n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a 2n -1=1n +2-1=14·1n n +=14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14·⎝ ⎛⎭⎪⎫1-1n +1=n n +,即数列{b n }的前n 项和T n =n n +.[点评] 数列在高考中主要考查等差、等比数列的定义、性质以及数列求和,解决此类题目要注意合理选择公式,对于数列求和应掌握经常使用的方法,如:裂项、叠加、累积.本题应用了裂项求和.(理)已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝ ⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .[解析] (1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,①由题意S n -1·S n ≠0, ①式两边同除以S n -1·S n , 得1S n -1S n -1=2, ∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列. ∴1S n=1+2(n -1)=2n -1, ∴S n =12n -1. (2)又b n =S n 2n +1=1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1]=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.。
北师大版高考数学一轮复习统考第6章数列第4讲数列的求和课件
11 解析
2
PART TWO
核心考向突破
最新 PPT 欢迎下载 可修改
12
考向一 分组转化法求和
例 1 (2020·广东佛山教学质量检测)已知数列{an}中,a1=1,an+an+1 =pn+1,其中 p 为常数.
(1)若 a1,a2,a4 成等比数列,求 p 的值; (2)若 p=1,求数列{an}的前 n 项和 Sn.
14 解
1.分组转化求和通法
若一个数列能分解转化为几个能求和的新数列的和或差,可借助求和
公式求得原数列的和.求解时应通过对数列通项结构特点进行分析研究,
将数列的通项合理分解转化.
2.分组转化求和的常见类型
(1)若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法 求{an}的前 n 项和.
最新 PPT 欢迎下载 可修改
解析 6答案
2.(2019·安徽六校联考)已知等差数列{an}的前 n 项和为 Sn,若 a2+a8
+a11=30,则 S13 的值是( )
A.130
B.65
C.70
D.75
解析 因为数列{an}是等差数列,且 a2+a8+a11=30,所以 3a7=a2+ a8+a11=30,则 a7=10,S13=a1+a213×13=13a7=13×10=130.故选 A.
Sn
=
(a1
+
a2)
+
(a3
+
a4)
+
…
+
(an
-
1
+
an)
=
2
+
4
+
…
+
n
=
2+nn2 2
=
n2+2n 4;
高考数学一轮复习第六章数列6.4数列求和课件文北师大版
diǎn)3
解 (1)设等比数列{an}的公比为q,等差数列{bn}的公差为d.
由已知,得a2=3q,a3=3q2,b1=3,b4=3+3d,b13=3+12d,
3 = 3 + 3,
= 1 + ,
故
⇒ 2
⇒q=3(q=1 舍去).
3 2 = 3 + 12
= 1 + 4
∴d=2,∴an=3n,bn=2n+1.
2.在写出“Sn”与“qSn”的表达式时,应特别注意将两式“错项对齐”,以便下
一步正确求出“Sn-qSn”的表达式.
第十九页,共30页。
--20
20考点(kǎo
diǎn)1
考点
(kǎo
diǎn)2
考点
(kǎo
diǎn)3
对点训练2(2016河南洛阳月考)已知数列{an}的前n项和为
Sn,Sn=2an+n-3,n∈N*.
an=
,为奇数,
,为偶数
比数列或等差数列,可采用分组求和法求和.
第十四页,共30页。
--15
15考点(kǎo
diǎn)1
考点(kǎo
diǎn)2
考点(kǎo
diǎn)3
对点训练1(2016山东昌乐二中模拟)已知等差数列{an}满
足:a5=11,a2+a6=18.
(1)求数列{an}的通项公式;
∵
A n∈N+,∴n 的最大值为 98.故选 A.
关闭
解析
解析
第八页,共30页。
答案
答案
- 9知识(zhī
shi)梳理
双基自测(zì
cè)
近年届高考数学大一轮复习第六章数列6.4数列求和学案文北师大版(2021年整理)
2019届高考数学大一轮复习第六章数列6.4 数列求和学案文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第六章数列6.4 数列求和学案文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第六章数列6.4 数列求和学案文北师大版的全部内容。
§6。
4 数列求和最新考纲考情考向分析1。
熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.本节以考查分组法、错位相减法、倒序相加法、裂项相消法求数列前n项和为主,识别出等差(比)数列,直接用公式法也是考查的热点.题型以解答题的形式为主,难度中等或稍难.一般第一问考查求通项,第二问考查求和,并与不等式、函数、最值等问题综合。
1.等差数列的前n项和公式S n=错误!=na1+错误!d。
2.等比数列的前n项和公式S n=错误!3.一些常见数列的前n项和公式(1)1+2+3+4+…+n=错误!。
(2)1+3+5+7+…+2n-1=n2。
(3)2+4+6+8+…+2n=n(n+1).(4)12+22+…+n2=错误!。
知识拓展数列求和的常用方法(1)公式法直接利用等差、等比数列的求和公式求和.(2)分组转化法把数列转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①错误!=错误!-错误!;②错误!=错误!错误!;③错误!=错误!-错误!.(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)如果数列{a n}为等比数列,且公比不等于1,则其前n项和S n=a1-a n+1 1-q.(√)(2)当n≥2时,错误!=错误!错误!.( √)(3)求S n=a+2a2+3a3+…+na n之和时,只要把上式等号两边同时乘以a即可根据错位相减法求得.( ×)(4)数列错误!的前n项和为n2+错误!.( ×)(5)推导等差数列求和公式的方法叫作倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 数列求和一、选择题1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.答案 C2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A .5 B .6 C .7 D .16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 答案 C5.已知数列{a n }满足a 1=1,a n +1·a n =2n(n ∈N +),则S 2 016=( )A .22 016-1B .3·21 008-3 C .3·21 008-1D .3·21 007-2解析 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 015+a 2 016 =(a 1+a 3+a 5+…+a 2 015)+(a 2+a 4+a 6+…+a 2 016) =1-21 0081-2+21-21 0081-2=3·21 008-3.故选B.答案 B 二、填空题6.(2016·上饶模拟)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________.解析 由题意知所求数列的通项为1-2n1-2=2n-1,故由分组求和法及等比数列的求和公式可得和为21-2n1-2-n =2n +1-2-n .答案 2n +1-2-n7.(2016·宝鸡模拟)数列{a n }满足a n +a n +1=12(n ∈N +),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.答案 68.(2017·安阳二模)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n-1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案 4n-1 三、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎪⎨⎪⎧b 1=1,q =3.∴b n =b 1qn -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n 1+2n -12+1-3n 1-3=n 2+3n-12. 10.(2017·铜川一模)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N +),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)当n =1时,a 1=S 1, 由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n(n ∈N +).(2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n.所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1n +1n +2=1n +1-1n +2, 所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n22n +2.11.(2016·郑州模拟)已知数列{a n }的通项公式为a n =1n +1n +n n +1(n ∈N +),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 016中,有理数项的项数为( )A .42B .43C .44D .45 解析 a n =1n +1n +n n +1=n +1n -n n +1[n +1n +n n +1][n +1n -n n +1]=n n -n +1n +1. 所以S n =1-22+⎝ ⎛⎭⎪⎫22-33+⎝ ⎛⎭⎪⎫33-44+…+⎝ ⎛⎭⎪⎫nn-n +1n +1=1-n +1n +1, 因此S 3,S 8,S 15…为有理项,又下标3,8,15,…的通项公式为n 2-1(n ≥2),所以n 2-1≤2 016,且n ≥2,所以2≤n ≤44,所以有理项的项数为43. 答案 B12.(2017·济南模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( )A .76B .78C .80D .82解析 因为a n +1+(-1)na n =2n -1,所以a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78. 答案 B13.设f (x )=4x 4x +2,若S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,则S =________.解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x ,∴f (x )+f (1-x )=4x4x +2+22+4x =1.S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,①S =f ⎝⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+f ⎝ ⎛⎭⎪⎫12 015,②①+②得,2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫2 0142 015+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫12 015=2 014,∴S =2 0142=1 007.答案 1 00714.(2015·山东卷)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n 2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d ,令n =1,得1a 1a 2=13, 所以a 1a 2=3.① 令n =2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15.②解①②得a 1=1,d =2,所以a n =2n -1. (2)由(1)知b n =2n ·22n -1=n ·4n,所以T n =1×41+2×42+…+n ×4n, 所以4T n =1×42+2×43+…+n ×4n +1,两式相减,得-3T n =41+42+ (4)-n ·4n +1=41-4n1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+3n -14n +19.。