第17届中国女子数学奥林匹克

合集下载

高中学科竞赛简介

高中学科竞赛简介

题两部分,满分120分。其中填空题8道,0分。 加试(二试)考试时间为9:40-12:10,共150分钟。试题为四道解
答题,前两道每题40分,后两道每题50分,满分180分。试题内容涵盖平
面几何、代数、数论、组合数学等。 根据最新消息,2011年数学联赛的试题规则与2010年相同。
道题,每天三道,每个得分点三分,每题21分;第8天:阅卷(学生参观
考察),主试委员会根据分数确定一、二、三等奖获奖名单;前20至30 名选手进入国家集训队;第9天:闭幕式。 国家集训队3、4月份集训,通过考试选出6人进入国家队,国家队的 考试由平时测验和最后考试两部分组成;平时测验成绩和最后考试成绩 各占一半。六月份进行为期3周的集训,7月份参加IMO,过程同CMO。 中国数学奥林匹克(CMO):省一和国家一二三等奖有保送高校资格。 省二有自主招生资格,通过自主招生后自动保送。
中国西部数学奥林匹克概述
简介 中国西部数学奥林匹克(Chinese Western Mathematical Olympiad,缩 写为CWMO),是为位于中国西部省份(包括江西)的中学生举办的数学 竞赛,由中国数学奥林匹克委员会举办,一般定于每年11月份举行。目的 是为了鼓励西部地区中学生学习数学的兴趣。自从2001年举办第一届竞赛
东道主。按IMO的规定,每一届的东道主必须向上一届的所有参赛国发出
邀请,而新参加的国家则应当向东道主表明参加的意愿,再由东道主发出 邀请。 1988年第29届,根据香港的建议,IMO首次设立了荣誉奖,奖给那些 虽然未得金、银、铜牌,但至少有一道题得满分的选手。这一措施,大大 调动了各参赛国及参赛选手的积极性。
三、国际数学奥林匹克(IMO)
(2)每个参赛团组织一个参赛队,成员不超过8人,其中队员不超

2018年度国外数学竞赛试题翻译汇编

2018年度国外数学竞赛试题翻译汇编
2018 年度国外数学 竞赛试题翻译汇编
(升级版)
赵力 2019 - 06 - 19
时间,就像高铁,一眨眼,就过站了……
人生很简单 总有一些风景,注定要错过 与其执着,不如随缘 只要懂得“珍惜、知足、感恩”就可以了!
笑看世事繁华,淡定人生心态 不索不可取,不求不可得 学会感恩,做人做事,无憾我心 不再奢望浮华之梦,不再……
v
纯属公益, 免费使用分享, 只送不卖
2018 年亚太地区数学奥林匹克试题
时间,一点不像高铁,过了站,居然买不到回来的车票!
生命,不就如一场雨吗 你曾无知地在其间雀跃,曾痴迷地在其间沉吟 但更多时候 你得忍受那些寒冷与潮湿,那些无奈与寂寞 并且以晴日的幻想来度日
当你握紧双手,里面什么也没有 当你打开双手,世界就在你手中
纯属公益, 免费使用分享, 只送不卖
目录
2018 年亚太地区数学奥林匹克 ……………………………………… 1 2018 年波罗的海地区数学奥林匹克 ………………………………… 2 2018 年第 10 届 Benelux 数学奥林匹克 ……………………………… 5 2018 年巴尔干地区数学奥林匹克 …………………………………… 6 2018 年巴尔干地区数学奥林匹克预选题…………………………… 7 2018 年巴尔干地区初中数学奥林匹克 ……………………………… 10 2018 年高加索地区数学奥林匹克 …………………………………… 11 2018 年中美洲及加勒比地区数学奥林匹克 ………………………… 13 2018 年 Cono Sur 数学奥林匹克 ……………………………………… 14 2018 年捷克-波兰-斯洛伐克联合数学竞赛 ………………………… 15 2018 年捷克和斯洛伐克数学奥林匹克 ……………………………… 16 2018 年多瑙河地区数学奥林匹克 …………………………………… 17 2018 年欧洲女子数学奥林匹克 ……………………………………… 19 2018 年欧洲数学杯奥林匹克 ………………………………………… 21 2018 年拉丁美洲数学奥林匹克 ……………………………………… 23 2018 年国际大都市数学竞赛(IOM) ………………………………… 24 2018 年第 2 届 IMO 复仇赛 …………………………………………… 25 2018 年第 5 届伊朗几何奥林匹克 …………………………………… 26 2018 年第 17 届基辅数学节竞赛 …………………………………… 30 2018 年地中海地区数学竞赛 ………………………………………… 32 2018 年中欧数学奥林匹克 …………………………………………… 33 2018 年北欧数学奥林匹克 …………………………………………… 35 2018 年泛非数学奥林匹克 …………………………………………… 36 2018 年泛非数学奥林匹克预选题 …………………………………… 38 2018 年罗马尼亚大师杯数学奥林匹克 ……………………………… 42

这八大赛事数竞党必须了解

这八大赛事数竞党必须了解

常有学生问:学竞赛有没有什么秘诀?当然有,秘诀就4个字,勤思多练。

这可不是灌鸡汤,至少在CMO之前,还远没有到需要拼智商或天赋的程度,学好每一个知识点,打牢基础,多刷题,常总结,想不获奖都很难呐。

此外,学竞赛闭门造车是行不通的,多和大佬切磋交流,多见识不同题型,非常非常重要,所以,今天要给大家介绍八大不可错过的赛事,那里高手云集,任思想激扬碰撞,那里好题无数,亦是高联前练兵的好机会。

下面进入正题,首先隆重推出今天要聊的八大赛事:1、中国女子数学奥林匹克2、中国西部数学奥林匹克3、中国东南地区数学奥林匹克4、北方希望之星数学邀请赛5、中国数学奥林匹克协作体夏令营6、中国数学奥林匹克希望联盟数学夏令营7、陈省身杯全国高中数学奥林匹克夏令营8、爱尖子数学能力测评如果你对以上赛事如数家珍,欢迎跳到文末,有历届试题可以下载哦(超级福利);如果你是萌新,请仔细往下阅读,下面将逐一详细介绍每项赛事的时间、参赛对象、考试形式、奖项等。

(点击可查看大图)中国女子数学奥林匹克简称女奥(CGMO),这是一项专门为女生而设的数学竞赛,参赛对象是高一、高二女生(也有人称之为“妹赛”)。

自首届女奥在珠海举办,迄今已成功举办了16届,比赛时间一般在每年8月中旬。

由全国各省市、港澳台及部分国外代表队各组织一个代表队参赛,另外会邀请近3年承办过女奥的学校各派一个代表队参赛。

每支代表队最多由4名高中女学生和1名领队教师组成。

竞赛分两天,每天4道题,共8道题,每题15分,满分120分,考试时间均为8:00~12:00,试题难度介于全国高中数学联赛和中国数学奥林匹克之间,最终根据成绩评出团体总分第1名和个人金、银、铜牌。

其奖项对高校自主招生及清北学科营有一定参考意义,个人总分前12名的同学可直接进入中国数学奥林匹克(CMO)。

此外,和其他数学竞赛相比,女奥还别具一格地设有健美操团体比赛。

中国西部数学奥林匹克中国西部数学奥林匹克(CWMO),是由中国数学会奥林匹克委员会创办,主要面向中国中西部地区及亚洲地区高一、高二年级学生的数学探究活动。

数学奥林匹克竞赛训练题:代数部分(1)集合、数与式

数学奥林匹克竞赛训练题:代数部分(1)集合、数与式

数学奥林匹克竞赛训练题:代数部分(1)集合、数与式B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016 已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017 对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018 设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019 求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020 证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021 求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029 求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程. B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j ≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程.B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.把n2个互不相等的实数排成下表:a11,a12,…,a1na21,a22,…,a2n…a n1,a n2,…,a nn取每行的最大数得n个数,其中最小的一个是x;再取每列的最小数,又得n个数,其中最大的一个是y,试比较x n与y n的大小.【题说】1982年上海市赛二试题2【解】设x=a ij,y=a pq,则a ij≥a iq≥a pq所以x≥y.(1)当n是奇数时,x n≥y n.(2)当n是偶数时(i)如果x≥y≥0,则x n≥y n;(ii)如果0≥x≥y,则x n≤y n;(iii)如果x≥0≥y,则当x≥-y时,x n≥y n;当x≤-y时,x n≤y n.B1-032对任意实数x、y.定义运算x*y为:x*y=ax+by+cxy其中a、b、c为常数,等式右端运算是通常的实数的加法和乘法.现已知1*2=3,2*3=4,并且有一个非零实数d,使得对于任意实数x,都有x*d=x,求d的值.【题说】1985年全国联赛一试题2(4).原题为填空题.【解】由所设条件,有1*2=a+2b+2c=3 (1)2*3=2a+3b+6c=4 (2)x*d=ax+bd+cxd=(a+cd)x+bd=x(3)由(3)得a+cd=1 (4)B d=0 (5)因d≠0,故由(5)式得b=0.再解方程(1)及(2),得a=5,c=-1,最后由(4)式得d=4.B1-033计算下式的值:【题说】第五届(1987年)美国数学邀请赛题14.注意324=4³34.【解】x4+4y4=(x2+2y2)2-(2xy)2=[(x2+2y2)-2xy][(x2+2y2)+2xy]=[(x-y)2+y2][(x+y)2+y2]。

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO(1985年,芬兰赫尔辛基)吴思皓(男)上海向明中学确规定铜牌上海交通大学王锋(男)北京大学(根据yongcheng先生提供的信息修订)目前作企业软件第27届IMO(1986年,波兰华沙)李平立(男)天津南开中学金牌北京大学方为民(男)河南实验中学金牌北京大学张浩(男)上海大同中学金牌复旦大学荆秦(女)陕西西安八十五中银牌北京大学,现在美国哈佛大学任教林强(男)湖北黄冈中学铜牌中国科技大学第28届IMO(1987年,古巴哈瓦那)刘雄(男)湖南湘阴中学金牌南开大学滕峻(女)北京大学附中金牌北京大学林强(男)湖北黄冈中学银牌中国科技大学潘于刚(男)上海向明中学银牌北京大学何建勋(男)广东华南师范大学附中铜牌中国科技大学高峡(男)北京大学附中铜牌北京大学,现在北大任教第29届IMO(1988年,澳大利亚堪培拉)团体总分第二陈晞(男)上海复旦大学附中金牌复旦大学,美国密苏里大学,美国哈佛大学,现在加拿大Alberta大学数学系任教授韦国恒(男)湖北武汉武钢三中银牌北京大学查宇涵(男)南京十中银牌北京大学,在中科院数学所任副研究员邹钢(男)江苏镇江中学银牌北京大学王健梅(女)天津南开中学银牌北京大学何宏宇(男)以满分成绩获第29届国际数学奥林匹金牌,1993年破格列入美国数学家协会会员,1994年获博士学位,现任亚特兰大乔治大学教授、博士生导师,从事现代数学研究前沿的《李群》《微分几何》等方向的研究,在《李群》的研究上已有重大突破。

第30届IMO(1989年,原德意志联邦共和国布伦瑞克)团体总分第一罗华章(男)重庆水川中学金牌北京大学俞扬(男)吉林东北师范大学附中金牌吉林大学霍晓明(男)江西景德镇景光中学金牌中国科技大学唐若曦(男)四川成都九中银牌中国科技大学颜华菲(女)北京中国人民大学附中银牌北京大学本科,1997年获美国麻省理工博士,现任Texax A&M Uneversity 数学系教授,美国数学会常务理事会成员,Mathematical Reviews评论员。

历届女子数学奥林匹克试题

历届女子数学奥林匹克试题

目录2002年女子数学奥林匹克 (1)2003年女子数学奥林匹克 (3)2004年女子数学奥林匹克 (5)2005年女子数学奥林匹克 (7)2006年女子数学奥林匹克 (9)2007年女子数学奥林匹克 (11)2008年女子数学奥林匹克 (13)2009年女子数学奥林匹克 (16)2010年女子数学奥林匹克 (19)2011年女子数学奥林匹克 (21)2012年女子数学奥林匹克 (24)2002年女子数学奥林匹克1.求出所有的正整数n,使得20n+2能整除2003n+2002.2.夏令营有3n(n是正整数)位女同学参加,每天都有3位女同学担任执勤工作.夏令营结束时,发现这3n位女同学中的任何两位,在同一天担任执勤工作恰好是一次.(1)问:当n=3时,是否存在满足题意的安排?证明你的结论;(2)求证:n是奇数.3.试求出所有的正整数k,使得对任意满足不等式k(aa+ab+ba)>5(a2+a2+b2)4.⊙O1和⊙O2相交于B、C两点,且BC是⊙O1的直径.过点C作⊙O1的切线,交⊙O2于另一点A,连结AB,交⊙O1于另一点E,连结CE并延长,交⊙O2于点F.设点H为线段AF内的任意一点,连结HE并延长,交⊙O1于点G,连结BG并延长,与AC的延长线交于点D.求证:AA AH=AA AC.5.设P1,P2,⋯,P n(n≥2)是1,2,⋯,n的任意一个排列.求证:1P1+P2+1P2+P3+⋯+1P n−2+P n−1+1P n−1+P n>n−1n+2.6.求所有的正整数对(x,y),满足x y=y x−y.7.锐角△ABC的三条高分别为AD、BE、CF.求证:△DEF的周长不超过△ABC周长的一半.8.设A1,A2,⋯,A8是平面上任意取定的8个点,对平面上任意取定的一条有向直线l,设A1,A2,⋯,A8在该直线上的摄影分别是P1,P2,⋯,P8.如果这8个射影两两不重合,以直线l的方向依次排列为P i1,P i2,⋯,P i8,这样,就得到了1,2,…,8的一个排列i1,i2,⋯,i8(在图1中,此排列为2,1,8,3,7,4,6,5).设这8个点对平面上所有有向直线作射影后,得到的不同排列的个数为N8=N(A1,A2,⋯88的最大值.图12003年女子数学奥林匹克1. 已知D 是△ABC 的边AB 上的任意一点,E 是边AC 上的任意一点,连结DE ,F 是线段DE 上的任意一点.设AC AA =x ,AA AA =y ,CH CA =z .证明: (1) S △ACH =(1−x )yzS △AAA ,S △AAH =x (1−y )(1−z )S △AAA ;(2) �S △ACH 3+�S △AAH 3≤�S △AAA 3.2. 某班有47个学生,所用教室有6排,每排有8个座位,用(i ,j )表示位于第i 排第j 列的座位.新学期准备调整座位,设某学生原来的座位为(i ,j ),如果调整后的座位为(m ,n ),则称该生作了移动[a ,a ]=[i −m ,j −n ],并称a +b 为该生的位置数.所有学生的位置数之和记为S .求S 的最大可能值与最小可能值之差.3. 如图1,ABCD 是圆内接四边形,AC 是圆的直径,BB ⊥AA ,AC 与BD 的交点为E ,F 在DA 的延长线上.连结BF ,G 在BA 的延长线上,使得BD ∥BB ,H 在GF 的延长线上,AC ⊥DB .证明:B 、E 、F 、H 四点共圆.图14.(1)证明:存在和为1的5个非负实数a、b、c、d、e,使得将它们任意放置在一个圆周上,总有两个相邻数的乘积不小于19;(2)证明:对于和为1的任意玩个非负实数a、b、c、d、e,总可以将它们适当放置在一个圆周上,且任意相邻两数的乘积均不大于19.5.数列{a n}定义如下:a1=2,a n+1=a n2−a n+1,n=1,2,⋯.证明:1−120032003<1a1+1a2+⋯+1a2003<1.6.给定正整数n(n≥2).求最大的实数λ,使得不等式a n2≥λ(a1+a2+⋯+a n−1)+2a n对任意满足a1<a2⋯<a n的正整数a1,a2,⋯,a n均成立.7.设△ABC的三边长分别为AB=b、BA=a、AA=a,a、b、c互不相等,AD、BE、CF分别为△ABC的三条内角平分线,且DE=DF.证明:(1)a b+c=b c+a+c a+b;(2)∠BAA>90°.8.对于任意正整数n,记n的所有正约数组成的集合为S n.证明:S n中至多有一半元素的个位数为3.2004年女子数学奥林匹克1.如果存在1,2,⋯,n的一个排列a1,a2,⋯,a n,使得k+a k(k=1,2,⋯,n)都是完全平方数,则称n为“好数”.问:在集合{11,13,15,17,19}中,哪些是“好数”,哪些不是“好数”?说明理由.(苏淳供题)2.设a、b、c为正实数.求a+3c a+2b+c+4b a+b+2c−8c a+b+3c的最小值.(李胜宏供题)3.已知钝角△ABC的外接圆半径为1.证明:存在一个斜边长为√2+1的等腰直角三角形覆盖△ABC.(冷岗松供题)4.一副三色纸牌,共有32张,其中红黄蓝每种颜色的牌各10张,编号分别是1,2,⋯,10;另有大小王牌各一张,编号均为0.从这副牌中任取若干张牌,然后按如下规则计算分值:每张编号为k的牌记为2k分.若它们的分值之和为2004,则称这些牌为一个“好牌组”.试求“好牌组”的个数.(陶平生供题)5.设u、v、w为正实数,满足条件u√vv+v√vu+v√uv≥1.试求u+v+v的最小值. (陈永高供题)6.给定锐角△ABC,点O为其外心,直线AO交边BC于点D.动点E、F分别位于边AB、AC上,使得A、E、D、F四点共圆.求证:线段EF在边BC上的投影的长度为定值.(熊斌供题)7.已知p、q为互质的正整数,n为非负整数.问:有多少个不同的整数可以表示为ii+jj的形式,其中i,j为非负整数,且i+j≤n.(李伟固供题)8.将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置多少个互不重叠的“十字形”(每个“十字形”恰好盖住棋盘上的5个小方格)?(冯祖明供题)2005年女子数学奥林匹克1.如图1,点P在△ABC的外接圆上,直线CP、AB相交于点E,直线BP、AC相交于点F,边AC的垂直平分线与边AB相交于点J,边AB的垂直平分线与边AC相交于点K.求证:AA2AH=AA⋅AA AA⋅AH.图1(叶中豪供题)2.求方程组�5�x+1x�=12�y+1y�=13(z+1z)xy+yz+zx=1,的所有实数解.(朱华伟供题)3.是否存在这样的凸多面体,它共有8个顶点、12条棱和6个面,并且其中有4个面,每两个面都有公共棱?(苏淳供题)4.求出所有的正实数a,使得存在正整数n及n个互不相交的无限整数集合A1,A2,⋯,A n满足A1∪A2∪⋯∪A n=Z,而且对于每个A i中的任意两数b>c,都有a−b≥a i.(袁汉辉供题)5.设正实数x、y满足x3+y3=x−y.求证:x2+4y2<1. (熊斌供题)6.设正整数n(n≥3).如果在平面上有n个格点P1,P2,⋯,P n满足:当�P i P j�为有理数时,存在P k,使得|P i P k|和�P j P k�均为无理数;当�P i P j�为无理数时,存在P k,使得|P i P k|和�P j P k�均为有理数,那么,称n是“好数”.(1)求最小的好数;(2)问:2005是否为好数(冯祖明供题)7.设m、n是整数,m>n≥2,S=�1,2,⋯,m�,T=�a1,a2,⋯,a n�是S的一个子集.已知T中的任两个数都不能同时整除S中的任何一个数.求证:1a1+1a2+⋯+1a n<m+n m. (张同君供题)8.给定实数a、b(a>a>0),将长为a、宽为b的矩形放入一个正方形内(包含边界).问正方形的边至少为多长?(陈永高供题)2006年女子数学奥林匹克1.设a>0,函数f:(0,+∞)→R满足f(a)=1.如果对任意正实数x、y,有f(x)f(y)+f�a x�f�a y�=2f(xy),求证:f(x)为常数.(朱华伟供题)2.设凸四边形ABCD的对角线交于点O.△OAD、△OBC的外接圆交于点O、M,直线OM分别交△OAB、△OCD的外接圆于点T、S.求证:M是线段TS的中点.(叶中豪供题)3.求证:对i=1,2,3,均有无穷多个正整数n,使得n,n+2,n+28中恰有i个可表示为三个正整数的立方和.(袁汉辉供题)4.8个人参加一次聚会.(1)如果其中任何5个人中都有3个人两两认识,求证:可以从中找出4个人两两认识;(2)试问:如果其中任何6个人中都有3个人两两认识,那么是否一定可以找出4个人两两认识?(苏淳供题)5.平面上整点集S=�(a,a)�1≤a,a≤5(a、a∈Z)�,T为平面上一整点集,对S中任一点P,总存在T中不同于P的一点Q,使得线段PQ上除点P、Q外无其它的整点.问T的元素个数最少为多少?(陈永高供题)6.设集合M={1,2,⋯,19},A={a1,a2,⋯,a k}⊆M.求最小的k,使得对任意的a∈M,存在a i、a j∈A,满足a=a i或a=a i±a j(a i、a j 可以相同).(李胜宏供题)7.设x i>0(i=1,2,⋯,n),k≥1.求证:∑11+x i n i=1⋅∑x i n i=1≤∑x i k+11+x i n i=1⋅∑1x i k n i=1. (陈伟固供题)8.设p为大于3的质数,求证:存在若干个整数a1,a2,⋯,a t满足条件−p2<a1<a2<⋯<a t<p2,使得乘积p−a1|a1|⋅p−a2|a2|⋅⋯⋅p−a t|a t|是3的某个正整数次幂.(纪春岗供题)2007年女子数学奥林匹克1.设m为正整数,如果存在某个正整数n,使得m可以表示为n和n的正约数个数(包括1和自身)的商,则称m是“好数”.求证:(1)1,2,⋯,17都是好数;(2)18不是好数.(李胜宏供题)2.设△ABC是锐角三角形,点D、E、F分别在边BC、CA、AB上,线段AD、BE、CF经过△ABC的外心O.已知以下六个比值AC CA、AA AA、AH HA、AH HA、AA AA、AC CA中至少有两个是整数.求证:△ABC是等腰三角形.(冯祖明供题)3.设整数n(n>3),非负实数a1,a2,⋯,a n满足a1+a2+⋯+a n=2.求a1a22+1+a2a32+1+⋯+a n a12+1的最小值.(朱华伟供题)4.平面内n(n≥3)个点组成集合S,P是此平面内m条直线组成的集合,满足S关于P中每一条直线对称.求证:m≤n,并问等号何时成立?(边红平供题)5.设D是△ABC内的一点,满足∠BAA=∠BAA=30°,∠BBA=60°,E是边BC的中点,F是边AC的三等分点,满足AF=2FC.求证:BD⊥DB.(叶中豪供题)6.已知a、a、b≥0,a+a+b=1.求证:�a+14(a−b)2+√a+√b≤√3(李伟固供题)7.给定绝对值都不大于10的整数a、b、c,三次多项式f(x)=x3+ ax2+ax+b满足条件�f(2+√3)�<0.0001.问:2+√3是否一定是这个多项式的根?(张景中供题)8.n个棋手参加象棋比赛,每两个棋手比赛一局.规定:胜者得1分,负者得0分,平局得0.5分.如果赛后发现任何m个棋手中都有一个棋手胜了其余m-1个棋手,也有一个棋手输给了其余m-1个棋手,就称此赛况具有性质P(m).对给定的m(m≥4),求n的最小值f(m),使得对具有性质P(m)的任何赛况,都有所有n名棋手的得分各不相同.(王建伟供题)2008年女子数学奥林匹克1.(1)问能否将集合�1,2,⋯,96�表示为它的32个三元子集的并集,且每个三元子集的元素之和都相等;(2)问能否将集合�1,2,⋯,99�表示为它的33个三元子集的并集,且每个三元子集的元素之和都相等.(刘诗雄供题)2.已知式系数多项式ϕ(x)=ax3+ax2+bx+d有三个正根,且ϕ(0)<0.求证:2a3+9a2d−7aab≤0. (朱华伟供题)3.求最小常数a(a>1),使得对正方形ABCD内部任一点P,都存在△P AB、△PBC、△PCD、△PDA中的某两个三角形,其面积之比属于区间�a−1,a�.(李伟固供题)4.在凸四边形ABCD的外部分别作正△ABQ、△BCR、△CDS、△DAP,记四边形ABCD的对角线的和为x,四边形PQRS的对角线中点连线的和为y.求y x的最大值.(熊斌供题)5.如图1,已知凸四边形ABCD满足AB=BC,AD=DA,E、F分别是线段AB、AD上一点,满足B、E、F、D四点共圆,作△DPE顺向相似于△ADC,作△BQF顺向相似于△ABC.求证:A、P、Q三点共线.图1 注:两个三角形顺向相似是指它们的对应顶点同按顺时针方向或同按逆时针方向排列.(叶中豪 供题)6. 设正数列x 1,x 2,⋯,x n ,⋯满足(8x 2−7x 1)x 17=8及x k+1x k−1−x k 2=x k−18−x k 8(x k x k−1)7(k ≥2).求正实数a ,使得当x 1>a 时,有单调性x 1>x 2>⋯>x n >⋯,当0<x 1<a 时,不具有单调性. (李胜宏 供题)7. 给定一个2008×2008的棋盘,棋盘上每个小方格的颜色均不相同.在棋盘的每一个小方格中填入C 、G 、M 、O 这4个字母中的一个,若棋盘中每一个2×2的小棋盘中都有C 、G 、M 、O 这4个字母,则称这个棋盘为“和谐棋盘”,问有多少种不同的和谐棋盘?(冯祖明 供题)8. 对于正整数n ,令f n =�2n √2008�+[2n √2009].求证:数列f 1,f 2,⋯中有无穷多个奇数和无穷多个偶数([x ]表示不超过实数x 的最大整数).(冯祖明 供题)B2009年女子数学奥林匹克1. 求证:方程aab =2009(a +a +b )只有有限组正整数解(a,b,c).(梁应德 供题)2. 如图1,在△ABC 中,∠BAA =90°,点E 在△ABC 的外接圆圆Γ的弧BC (不含点A )内,AE >EC .连结EC 并延长至点F ,使得∠DAA =∠AAB ,连结BF 交圆Γ于点D ,连结ED ,记△DEF 的外心为O .求证:A 、C 、O 三点共线.图1 (边红平 供题)3. 在平面直角坐标系中,设点集�P 1,P 2,⋯,P 4n+1�=�(x ,y )�x 、y 为整数,|x |≤n ,|y |≤n ,xy =0�,其中,n ∈N +.求(P 1P 2)2+(P 2P 3)2+⋯+(P 4n P 4n+1)2+(P 4n+1P 1)2的最小值.(王新茂 供题)4. 设平面上有n (n ≥4)个点V 1,V 2,⋯,V n ,任意三点不共线,某些点之间连有线段.把标号分别为1,2,⋯,n 的n 枚棋子放置在这n 个点处,每个点处恰有一枚棋子.现对这n 枚棋子进行如下操作:每B次选取若干枚棋子,将它们分别移动到与自己所在点有线段相连的另一个点处;操作后每点处仍恰有一枚棋子,并且没有两枚棋子在操作前后交换位置.若一种连线段的方式使得无论开始时如何放置这n 枚棋子,总能经过有限次操作后,使每个标号为k (k =1,2,⋯,n )的棋子在点V k 处,则称这种连线段的方式为“和谐的”.求在所有和谐的连线段的方式中,线段数目的最小值. (付云皓 供题)5. 设实数xyz 大于或等于1.求证:(x 2−2x +2)(y 2−2y +2)(z 2−2z +2)≤(xyz )2−2xyz +2 (熊 斌 供题)6. 如图2,圆Γ1、Γ2内切于点S ,圆Γ2的弦AB 与圆Γ1切于点C ,M 是弧AB (不含点S )的中点,过点M 作MN ⊥AB ,垂足为N .记圆Γ1的半径为r .求证:AA ⋅AB =2rMN .图2 (叶中豪 供题)7. 在一个10×10的方格表中有一个有4n 个1×1的小方格组成的图形,它既可被n 个“”型的图形覆盖,也可被n 个“”或“”型(可以旋转)的图形覆盖.求正整数n的最小值.(朱华伟供题)8.设a n=n√5−�n√5�.求数列a1,a2,⋯,a2009中的最大项和最小项,其中,[x]表示不超过实数x的最大整数.(王志雄供题)2010年女子数学奥林匹克1. 给定整数n (n ≥3),设A 1,A 2,⋯,A 2n 是集合�1,2,⋯,n�的两两不同的非空子集,记A 2n+1=A 1.求∑|A i ∩A i+1||A i |⋅|A i+1|2n i=1的最大值.(梁应德 供题)2. 如图1,在△ABC 中,AB =AA ,D 是边BC 的中点,E 是在△ABC 外一点,满足AD ⊥AB ,BD =BB .过线段BE 的中点M 作直线MB ⊥BD ,交△ABD 的外接圆的劣弧AD 于点F .求证:DB ⊥BB .图1 (郑焕 供题)3. 求证:对于每个正整数n ,都存在满足下面三个条件的质数p 和整数m :(1)i ≡5(mmd 6);(2)i ∤n ;(3)n ≡m 3(mmd i ).(付云皓 供题) 4. 设实数x 1,x 2,⋯,x n 满足∑x i 2=1(n ≥2)n i=1.求证:∑(1−k ∑ix i 2n i=1)2x k 2k n k=1≤(n−1n+1)2∑x k 2k n k=1,并确定等号成立的条件.(李胜宏供题)5.已知f(x)、g(x)都是定义在R上递增的一次函数,f(x)为整数当且仅当g(x)为整数.证明:对一切x∈R,f(x)−g(x)为整数.(刘诗雄供题)6.如图2,在锐角△ABC中,AB>AA,M为边BC的中点,∠BAA的外角平分线交直线BC于点P.点K、F在直线P A上,使得MB⊥BA,MM⊥PA.求证:BC2图2(边红平供题)7.给定正整数n(n≥3).对于1,2,⋯,n的任意一个排列P=(x1,x2,⋯,x n),若i<j<k,则称x j介于x i和x k之间(如在排列(1,3,2,4)中,3介于1和4之间,4不介于1和2之间).设集合S={P1,P2,⋯,P m}的每个元素P i(1≤i≤m)中都不介于另外两个数之间.求m的最大值.(冯祖鸣供题)8.试求满足下列条件的大于5的最小奇数a:存在正整数m1、n1、m2、n2,使得a=m12+n12,a2=m22+n22,且m1−n1=m2−n2.(朱华伟供题)2011年女子数学奥林匹克1.求出所有的正整数n,使得关于x,y的方程1x+1y=1n恰有2011组满足x≤y的正整数解(x,y) .(熊斌供题)2.如图1,在四边形ABCD的对角线AC与BD相交于点E,边AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q,若MB⋅AB=NB⋅AB, BQ⋅BP=AQ⋅AP,求证:PQ垂直于BC.图1(郑焕供题)3.设正数a,a,b,d满足aabd=1,求证:1+1+1+1+9≥25(朱华伟供题)4.有n(n≥3)名乒乓球选手参加循环赛,每两名选手之间恰好比赛一次(比赛无平局).赛后发现,可以将这些选手排成一圈,使得对于任意三名选手A,B,C,若A,B在圈上相邻,则A,B中至少有一人战胜了C,求n的所有可能值.(付云皓供题)5.给定非负实数a,求最小实数f=f(a),使得对任意复数,Z1,Z2和实数x(0≤x≤1),若|Z1|≤a|Z1−Z2|,则|Z1−xZ2|≤f|Z1−Z2|.(李胜宏供题)6.是否存在正整数m,n,使得m20+11n是完全平方数?请予以证明.(袁汉辉供题)7.从左到右编号为B1,B2,⋯,B n的n个盒子共装有n个小球,每次可以选择一个盒子B k,进行如下操作:若k=1且B1中至少有1个小球,则可从B1中移1个小球至B2中;若k=n,且B n中至少有1个小球,则可从B n中移1个小球至B n-1中,若2≤k≤n-1且B k中至少有2个小球,则可从B k中分别移1个小球至B k-1和B k+1中,求证:无论初始时这些小球如何放置,总能经过有限次操作使得每个盒子中恰有1个小球.(王新茂供题)8. 如图2,已知⊙O 为△ABC 中BC 边上的旁切圆,点D 、E 分别在线段AB 、AC 上,使得BD ∥BA .⊙O 1为△ADE 的内切圆,O 1B 交DO 于点F ,O 1C 交EO 于点G .⊙O 切BC 于点M .⊙O 1切DE 于点N .求证:MN 平分线段FG .图2 (边红平 供题)A2012年女子数学奥林匹克1.设a1,a2,⋯,a n为非负实数,求证:11+a1+a1(1+a1)(1+a2)+⋯+ a1a2⋯a n−1(1+a1)(1+a2)⋯(1+a n)≤1.2.如图1所示,圆O1和O2外切于点T,点A、E在圆O1上,AB切圆O2于点B,ED切圆O2于点D,直线BD、AE交于点P.(1)求证:AB⋅DT=AT⋅DB;(2)求证:∠ATP+∠DTP=180°Array图13.求所有整数对(a,b),使得存在整数d>1,对任意的正整数n,都有d|a n+a n+1.4.在正十三边形的13个顶点上各摆放一枚黑子或者白子,一次操作是指将两枚棋子的位置交换.求证:无论开始时棋子是如何摆放的,总可以至多操作一次,使得各个棋子的颜色关于正十三边形的某一条对称轴是对称的.5.如图2所示,在△ABC中,I为内切圆圆心,D、E分别为AB、AC边上的切点,O为△BIC的外心,求证:∠OBB=∠ODA.图26. 某个国家有n (n ≥3)个城市,每两个城市间都有一条双向航线.这个国家有两个航空公司,每条航线由一家公司经营.一个女数学家从某个城市出发,经过至少两个其它城市,回到出发地.如果无论怎样选择出发城市和路径,都无法只乘坐一家公司的航班,求n 的最大值.7. 有一个无穷项的正整数数列a 1≤a 2≤a 3≤⋯.已知存在正整数k和r ,使得r a r =k +1,求证:存在正整数s ,使得s a s =k .8. 集合{0,1,2,⋯,2012}中有多少个元素k ,使得A 2012k 是2012的倍数.B。

2002-2012女子数学奥林匹克CGMO

2002-2012女子数学奥林匹克CGMO
四 、⊙O1 和 ⊙O2 相 交 于 B 、C 两 点 , 且 BC 是 ⊙O1 的直径. 过点 C 作 ⊙O1 的切线 ,交 ⊙O2 于另一 点 A ,连结 AB ,交 ⊙O1 于另一点 E ,连结 CE 并延长 , 交 ⊙O2 于点 F. 设点 H 为线段 A F 内的任意一点 , 连 结 HE 并延长 , 交 ⊙O1 于点 G , 连结 BG 并延长 , 与
= R ( sin 2 C + sin 2 B) = 2 Rsin( B + C) cos( B - C) = 2 Rsin A·cos ( B - C) = acos( B - C) ≤a. 同理 , DE + EF ≤b , EF + DF ≤c.
将上述三式相加得
DE +
EF +
FD
≤1 2
(
a
矛盾. 故 c < a + b.
方法二 :构造函数
f ( x) = 5 x2 - 6 ( a + b) x + 5 a2 + 5 b2 - 6 ab.
则 f ( c) < 0.
因 f ( x) 在区间
3 5
(
a+
b)
,
+

递增 ,且
f ( a + b) = 5 ( a + b) 2 - 6 ( a + b) ( a + b) + 5 a2 +
无正整数解. 所以 ,不存在满足题设要求的 n.
二 、(1) 当 n = 3 时 , 存在满足题意的安排. 具体
安排如下 (把 9 位女同学记为 1 ,2 , …,9) :
(1 ,2 ,3) , (1 ,4 ,5) , (1 ,6 ,7) , (1 ,8 ,9) , (2 ,4 ,6) ,

《中等数学》2020年总目次

《中等数学》2020年总目次

2020年第12期49《中等数学》2020年总目次I M O快讯(10.封底)数学活动课程讲座.初中.初中数学竞赛中的组合最值问题解法举例(钟志强6-2)完全平方数的性质及其应用(李昌勇刘应成6-7)•高中•一些关于无穷多个素因子的问题(吴宇培丨*2) “线性化”在多元不等式证明与最值求解中的应用(唐智逸茹双林2-2)数学竞赛中两种不等式基本思想的应用(缠祥瑞3*2)数学竞赛中的复数问题(唐立华 4.27-2)数学竞赛中组合几何问题的常见解法(程振峰李宝毅5-2)递归计数的六种方式(冯跃峰8-2)圆锥曲线几个结论的证明与应用(金荣生9-2)数学竞赛中数列不等式的常见解法举例(王逸凡王彬瑶10-2)数论中的升幂引理及其应用(王永喜丨卜2)对应思想在组合问题中的应用(缠祥瑞12-2)命题与解题数学命题中的“抱残守缺”(陶平生I*7)例谈不等式题的命制方法(张端阳卜1丨)两道赛题的创作思路、答题情况及启示(林天齐何忆捷熊斌2-8)开世定理的推广与应用(李庆圣2,12)老题新芽别样趣味(肖恩利陈博文3-6) 2019年全国高中数学联赛加试第三题的改进(晏兵川赵凌燕3*13)一道罗马尼亚竞赛题的分析与推广(朱华伟邱际春4‘7)一道高中数学竞赛题的探讨(邱慎海沈家书4’11)一道集训队选拔考试题的推广(李伟健4*14)一道不等式赛题的演变与推广(邱际春朱华伟郑焕5-9)利用抽屉原理证明三道竞赛题(隋婷婷5*11)一道数学竞赛题的推广(林根 5 •13)一道中国北方数学奥林匹克试题的引申(赵凌燕隋世友6‘11)判别式在不定方程中的应用(雷勇7-9)三道国外竞赛题的简解(姚先伟于娟7 •12)两道数学竞赛题的分析与推广(邱际春朱华伟8‘12)与三角形的内切圆有关的一个性质及相关性质和命题(李庆圣一道印度赛题的解题思考(李明谈谈数学竞赛中的数学期望(吴宇培关于一道数论题的思考(李彬解题小品—投石问路(陶平生利用复数证明竞赛题(刘东华华洁一道东南赛题与2020年高中联赛数论题的渊源(陶平生一道高中联赛题的推广与变形(王若飞9.9)9.16)10.11)10-13)11.7)11-11)12.7)12.9)赛题另解(1-154-155-157-1310-15)2020年全年高中数学联赛加试题另解(李庆圣杨续亮刘晓理等12-13)专题写作一类麦比乌斯反演问题及其应用(刘志乐2•15)多项式根的倒数和问题求解(梅述恩 3 •17)一个与多项式相关的不等式(刘亮赵斌5*18)高斯整数在数学竞赛中的应用(古德麟 7_15)一道北方希望之星数学夏令营试题的拓展第29届南美洲数学奥林匹克(8.36) (贾秀平段敏敏11-14)2020年全国高中数学联赛浙江赛区预赛(9-20)学生习作2020年全国高中数学联赛重庆赛区预赛(9-25)2018中国香港代表队选拔考试(9-28)论局部调整法的妙用(阮书镐4-17)2018中美洲及加勒比地区数学奥林匹克(9-32)构造表格探究一类数的分布(徐博润6-18)第61届I M O试题(10-16)一种证明三元齐次不等式的方法(王一鹏8.16)2020年全国高中数学联合竞赛(10-17)两道罗马尼亚大师杯赛题的另解(严彬玮9-18)第17届中国东南地区数学奥林匹克(10-25)竞赛之窗第61届I M O试题解答(11-18)第16届中国东南地区数学奥林匹克2019中国数学奥林匹克希望联盟夏令营(1.29 2.30第30届亚太地区数学奥林匹克第35届中国数学奥林匹克2019年全国高中数学联赛四川赛区预赛第三届中国北方希望之星数学夏令营2019青少年数学国际城市邀请赛2019年全国高中数学联赛江苏赛区预赛2019美国数学竞赛(八年级)2019年北京市中学生数学竞赛复赛(高一)2019年全国高中数学联赛吉林赛区预赛第六届伊朗几何奥林匹克2019年全国高中数学联赛甘肃赛区预赛第12届罗马尼亚大师杯数学邀请赛2020美国数学竞赛(十、十二年级)2018爱沙尼亚国家队选拔考试(初中)2018荷兰数学奥林匹克(初中)2019马其顿数学奥林匹克(初中)2019巴尔干地区数学奥林匹克(初中)2〇19希腊数学奥林匹克(初中)2019希腊国家队选拔考试(初中)2019年全国高中数学联赛贵州赛区预赛2019年全国高中数学联赛重庆赛区预赛第83届莫斯科数学奥林匹克(7,29 2020欧洲女子数学奥林匹克2019年全国高中数学联赛广西赛区预赛2019美国国家队选拔考试第60届I M O预选题(11-2212-20) 0-17)2019亚太地区数学奥林匹克(11-32) 3-33)第19届中国女子数学奥林匹克(11-36)首届百年老校数学竞赛(12-30) (1*35)(2.18)2019瑞士数学奥林匹克(初赛)(12-37) (2.25)再品佳题(2-36)(3.20)第二届国际大都市竞赛(数学)(1-38) (3-27)第32届北欧数学竞赛(2-39) (4.21)2018瑞士数学奥林匹克(预赛)(3-39)(4.26)课外训练(4-29)(4.34).初中.(5.20)(186罗家亮 6.34187 李铁汉汪波 6 •(5.27)39 188 谢文晓9.34189 陈迁赵手志(5-32)王祥10.38)(6.20).高中■(6.23)(247 巢中俊 1.41 248王永中2•41 249 (6.28)于现峰 3.41250王永喜4■41251 刘(6-30)小杰宛昭勋5‘42252杨运新6•42 253 (6.31)李潜7 41254徐节槟龙崎钢8-40(6.33)255何忆捷9.39256李培臣谭祖春郝(7.20)泽来10.42 257 胡满11.42258褚小光(7-26)田开斌12.39)8.29)(7.36)(8.20)(8.24)数学奥林匹克问题(1-48 2-47 3.474-475-48 6.477.488.469-4610-48 11-48 12-46)。

小学五年级奥数-平均数

小学五年级奥数-平均数

低年级孩子学习奥数的好处是什么
通过奥数在儿童脑发育期间来培养孩子的能力。 就孩子的学习能力而言,学习奥数可以锻炼孩子的观察力、注意力、思维能力、创新能力和计算能力。这些学习能力的提高与其他科目在学习过程中所用脑产生途径和效果是不一样的。
怎样学习奥数?
学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。 在孩子真正掌握了“奥数”的学习方法后,坚持每天做一定数量的练习题就显得尤为重要。做题的前提是对学过的知识有了透彻的领悟,做题不光是只做难题,简单、中等、难,这三类题都要做,最好把比例控制在3:5:2为最佳。从而避免了孩子难题还会做,中等题和基本题总是准确率不高的现象。 六年级开始后要坚持每天做十道左右的题。为了提高孩子解题速度,根据题目的难度每次限时40-60分钟,然后由家长严格计时并根据标准答案判分。记录不会做或做错的题目,有能力的家长可以自己给孩子讲解,最好把一时不理解的题目请教相关的有丰富经验的老师,直至弄懂、弄通为止!!!对于做题中发现的问题及时解决,这是我们做题最终的也是最重要的目的!以前不会做或做错的题目,以后一定要让孩子不定时的至少再做一次!题目的选择可根据正在学习的奥数课程和辅导老师的建议,由孩子和家长一起讨论来决定。学习几个知识点后一定要做一些综合试卷或综合题,主要针对孩子学习的“薄弱”环节,要求辅导老师必须有针对性地给孩子多做些题目。做题的另一个目的就是要从小培养孩子具有举一反三、融会贯通的能力。注意:刚开始做题前一定要对所学知识已经透彻、深刻的掌握,否则题做得再多的也只会事倍功半,起不到我们想要的效果。
专题简析: 把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。 如何灵活运用平均数的数量关系解答一些稍复杂的问题呢? 下面的数量关系必须牢记: 平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量×平均数

历届数学奥林匹克参赛名单

历届数学奥林匹克参赛名单

1985-2012年国际数学奥林匹克中国参赛人数按地区、学校统计国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。

由罗马尼亚罗曼(Roman)教授发起。

1959年7月在罗马尼亚古都布拉索举行第一届竞赛。

我国第一次派学生参加国际数学奥林匹克是1985年,当时仅派两名学生,并且成绩一般。

我国第一次正式派出6人代表队参加国际数学奥林匹克是1986年。

2012年第53届国际数学奥林匹克竞赛将于今年7月4日至16日在阿根廷马德普拉塔(Mar del Plata , Argentina)举行。

入选国家队的六名学生是:(按选拔成绩排名)陈景文(中国人民大学附属中学)、吴昊(辽宁师范大学附属中学)、左浩(华中师范大学第一附属中学)、佘毅阳(上海中学)、刘宇韬(上海中学)、王昊宇(武钢三中)---------------------------------------------------------历届IMO的主办国,总分冠军及参赛国(地区)数为:年份届次东道主总分冠军参赛国家(地区)数1959 1 罗马尼亚罗马尼亚71960 2 罗马尼亚前捷克斯洛伐克51961 3 匈牙利匈牙利 61962 4 前捷克斯洛伐克匈牙利71963 5 波兰前苏联81964 6 前苏联前苏联91965 7 前东德前苏联81966 8 保加利亚前苏联91967 9 前南斯拉夫前苏联131968 10 前苏联前东德121969 11 罗马尼亚匈牙利141970 12 匈牙利匈牙利141971 13 前捷克斯洛伐克匈牙利151972 14 波兰前苏联141973 15 前苏联前苏联161974 16 前东德前苏联181975 17 保加利亚匈牙利171976 18 澳大利亚前苏联191977 19 南斯拉夫美国211978 20 罗马尼亚罗马尼亚171979 21 美国前苏联231981 22 美国美国271982 23 匈牙利前西德301983 24 法国前西德321984 25 前捷克斯洛伐克前苏联341985 26 芬兰罗马尼亚421986 27 波兰美国、前苏联371987 28 古巴罗马尼亚421988 29 澳大利亚前苏联491989 30 前西德中国501990 31 中国中国541991 32 瑞典前苏联561992 33 俄罗斯中国621993 34 土耳其中国651994 35 中国香港美国691995 36 加拿大中国731996 37 印度罗马尼亚751997 38 阿根廷中国821998 39 中华台北伊朗841999 40 罗马尼亚中国、俄罗斯812000 41 韩国中国822001 42 美国中国832002 43 英国中国842003 44 日本保加利亚822004 45 希腊中国852005 46 墨西哥中国982006 47 斯洛文尼亚中国1042007 48 越南俄罗斯932008 49 西班牙中国1032009 50 德国中国1042010 51 哈萨克斯坦中国1052011 52 荷兰中国101------------------------------------------------------------------历届国际数学奥林匹克中国参赛学生分省市、分学校统计按学校排名(TOP16)1 武汉钢铁三中 152 湖南师大附中 113 华南师范大学附中 104 北大附中 94 人大附中 96 湖北黄冈中学 86 上海中学 88 上海华东师大二附中 5 8 东北育才学校 510 华中师大一附中 410 复旦大学附中 410 深圳中学 410 东北师范大学附中 4 14 上海向明中学 314 长沙市一中 314 哈尔滨师范大学附中 3 以下略。

2017年中国数学奥林匹克国家集训队名单

2017年中国数学奥林匹克国家集训队名单

2017年中国数学奥林匹克国家集训队名单姓名地区学校吴蔚琰安徽合肥一六八周行健北京人大附中王阳昇北京北京四中陈远洲北京北师大附属实验中学杨向谦北京人大附中夏晨曦北京北师大二附谢卓凡北京清华附中薛彦钊北京人大附中胡宇征北京北京四中林挺福建福建师范大学附属中学任秋宇广东华南师大附中何天成广东华南师大附中卜辰璟贵州贵阳一中顾树锴河北衡水第一中学赵振华河南郑州外国语学校迟舒乘黑龙江哈尔滨市第三中学姚睿湖北华中师范大学第一附属中学魏昕湖北武汉二中黄楚昊湖北武钢三中刘鹏飞湖北武汉二中赵子源湖北华中师范大学第一附属中学徐行知湖北武钢三中吴金泽湖北武汉二中张騄湖南长沙市长郡中学刘哲成湖南长沙市雅礼中学仝方舟湖南长沙市长郡中学谢添乐湖南长沙市雅礼中学尹龙晖湖南长沙市雅礼中学丁力煌江苏南京外国语学校朱心一江苏南京外国语学校高轶寒江苏南京外国语学校彭展翔江西高安二中孔繁淏辽宁大连二十四中孔繁浩辽宁东北育才学校孟响辽宁大连24中毕梦达辽宁辽宁省实验中学韩序舜辽宁大连育明高级中学辛正则山东山东省胜利第一中学王浩然山东山东日照一中张子洲山西山西大学附属中学蒋诗琪上海上海市上海中学李亚臻上海上海市华东师大二附中侯喆文上海上海市华东师大二附中庄子杰上海上海市上海中学范峻昊上海上海市上海中学张之奕上海上海市上海中学李羽航上海复旦大学附属中学鲁一逍上海上海市上海中学彭淏四川成都七中叶添四川成都七中嘉祥外国语学校蒋佳轩四川成都七中李为远四川成都七中肖逸南浙江杭州二中叶奇浙江乐成寄宿中学连家睿浙江乐成寄宿中学滕丁维浙江乐成寄宿中学葛佳迪浙江乐成寄宿中学陈柯润浙江乐成寄宿中学江元旸浙江宁波市鄞州中学吴雨航浙江镇海中学。

小升初准备季 盘点四大杯赛和以外的其他赛事

小升初准备季 盘点四大杯赛和以外的其他赛事

小升初准备季盘点四大杯赛和以外的其他赛事现在小升初可谓竞争激烈啊!都是精英啊,看到现在孩子真是十八般武艺样样精通啊。

大名鼎鼎的四大杯赛之一的走美杯。

真可谓游戏与学习相结合,很贴近生活:内容为优秀数学建模小论文展示、趣味数学解题技能展示、数学益智游戏(个人、团体)、数学发现之旅、团体对抗赛和智力运动会。

其中智力运动会内容主要包括七巧板、九连环、华容道、鲁班锁、数独、二十四点、魔方、桥牌。

笑侃各奥数竞赛的区别中环杯:既然不是大环,也不是小环,决定了难度适中,不如华罗庚杯难。

华罗庚杯:华罗庚一代数学家,代表最高数学水平,当然他的名字命名的竞赛也是最难的。

小机灵:以小聪明灵活快速解题为目的,不能太难。

解难题,就不是小机灵能解的了,而是需要大智慧。

走美杯:既然是走进美妙的数学花园,当然是走进花园去的人越多越好,等奖肯定容易,以吸引更多的孩子走进数学花园。

希望杯:如果太难,都不得奖,是绝望了。

既然是给孩子希望,题目当然就要容易呀。

亚太杯:亚洲环太平洋区域竞赛,太平洋是最大的海洋,多么大气,题目一定难,否则和名称不符合了。

数学大王:叫大王的,都比较童话,卡通,题目也不可能很难。

虽为笑侃,但是写的十分中肯啊,让人在搞笑之余对各大数学赛事的区别一目了然。

春蕾杯"春蕾杯"全国小学生阅读、思维、英语邀请赛是一项课外学科类综合性竞赛,分别由小学生阅读竞赛、小学生思维竞赛、小学生英语竞赛组成。

竞赛按年级出卷考试。

参加对象为二、三、四、五、六年级学生,每个学生都可以参加自己相应年级的竞赛。

竞赛报名时,学生可选择三门学科的一门、两门或三门全部参加。

竞赛时间为每年元旦前后。

竞赛分初赛和决赛两次进行。

初赛在各自学校举行,决赛由各地区统一时间、统一考场、统一考试。

竞赛内容:阅读竞赛以《小学生阅读》的阅读材料为主,学校授课知识为辅;思维竞赛以学校授课知识为基础,同时增加部分日常生活中体现的能力题、综合题和学科创新题;英语竞赛只考笔试,按各年级组英语、语言水平和各年级学生应掌握的核心语言基础知识、技能和综合运用能力要求命题,题型主要包括字母、单词、句子、对话和短文等,命题既有同步性,又有水平度。

数学奥林匹克的起源

数学奥林匹克的起源
1949
捷克斯 洛伐克
1951
Δ= 其中 ,
3
2
2
3
,ω =
- 1+ 3 i . 2
一般地 ,一元三次方程
ax + bx + cx + d = 0
美国于 1950 年开始举办中学生数学竞 赛 . 但其早在 1938 年就开始举办大学生数学 竞赛 ( 普特南数学竞赛) . 我国是一个有着数学传统的国家 , 历史 上我国先人曾在数学研究上作出过巨大的贡 献 ( 诸如 《九章算术》 的成书 ,祖冲之的圆周率 计算 、 孙子的著名定理 、 求一次剩余问题的大
1545 年 , 卡丹的 《大法》 一书出版 , 书中
火在奥林匹亚点燃 , 这标志着竞赛活动得以 恢复 . 从此以后 , 每四年举办一届 ( 两次世界 大战期间曾有间断) , 参赛国家越来越多 , 以 致成为众人瞩目的世界性的体育赛事 . 其实 ,体育赛事在中国早有出现 , 赛马 、 角力 、 棋类 ( 中国象棋 、 围棋 ,由于 “博奕论” 或 “对策论” 数学分支的出现 , 如今这种赛事当 归类于数学) 等均是当时的比赛项目 ,至于武 术竞技形式当数 “打擂台” 了.
1535 年 2 月 22 日 ,米兰大教堂里挤满了
3
人 ,他们不是来做祈祷的 , 而是来看热闹的 , 因为塔塔里亚与菲俄的竞赛在此举行 . 比赛结果是 : 塔塔里亚只用了两个小时 便解完了对方的全部问题 , 而菲俄却没能解 出一道对方提供的题目 . 塔塔里亚又一次大 胜 . 从此 ,塔塔里亚在米兰名声大振 . 有 “天才怪人” 之称的数学家卡丹闻知此 事后 ,屡次拜访塔塔里亚 ,目的是想从他那儿 得到求解三次方程的公式 — — — 卡丹的虔诚与 承诺 ( 对外秘而不宣 ) 使塔塔里亚放松了警 惕 ,终于将公式给了卡丹 .

第七至十九届中国数学奥林匹克竞赛试题含答案

第七至十九届中国数学奥林匹克竞赛试题含答案

第七至十九届中国数学奥林匹克竞赛试题第七届中国数学奥林匹克 (1992年)1. 设方程x n +a n-1x n-1+a n-2x n-2+....+a 1x+a 0=0的系数都是实数,且适合条件0<a 0≦a 1≦a 2≦....≦a n-1≦1。

已知λ为方程的复数根且适合条件|λ|>1,试证:λn+1=1。

2. 设x 1, x 2, ... , x n 为非负实数,记 x n+1= x 1,a=min{x 1, x 2, ... , x n },试证:n Σ i=1 1+x i _ 1+x i+1 ≦n+ 1 (1+a)2nΣ i=1(x i -a)2 ,3. 且等式成立当且仅当 x 1 =x 2= ... =x n 。

4. 在平面上划上一个9x9的方格表,在这上小方格的每一格中都任意填入+1或-1。

下面一种改变填入数字的方式称为一次变动;对于任意一个小方格有一条公共边的所有小方格(不包含此格本身)中的数作连乘积,于是每取一个格,就算出一个数,在所有小格都取遍后,再将这些算出的数放入相应的小方格中。

试问是否总可以经过有限次变动,使得所有方小方格中的数都变为1?5. 凸四边形内接于圆O ,对角线AC 与BD 相交于P ,ΔABP 与ΔCDP 的外接圆相交于P 和另一点Q ,且O 、P 、Q 三点两两不重合。

试证∠OQP=90。

6. 在有8个顶点的简单图中,没有四边形的图的边数的是大值是多少?7. 已知整数序列{a 1, a 2, ...... }满足条件:1. a n+1=3a n -3a n-1+a n-2,n=2, 3, .....。

2. 2a 1= a 0+a 2-2。

3. 对任意的自然数m ,在序列{a 1, a 2, ...... }中必有相继的m 项a k , a k+1, ... , a k+m-1都为完全平方数。

试证:序列{a 1, a 2, ...... }的所有项都是完全平方数。

第17届中国女子数学奥林匹克

第17届中国女子数学奥林匹克

32中等数学第17届中国女子数学奥林匹克中图分类号G42479文献标识码A文1设实数《彡%。

=0《+=aen多0证明对于任意正整数ar均有2如图1点分别在AMC的边仙札上且孤//执分别为△趣△40的外心直线0此与仙此分别交于点P?〇为AA/^的外心M为直线奶与价的交点证明M为说的中点章编号005646208003204生均无法按上述要求寄出贺卡时(1)每人手中均有至少张贺卡2)若此时存在A名学生&/P使得巧从未寄贺卡给AP从未寄贺卡给尽=2A)则这名学生最初准备的贺卡数量相同取遍所有模长为的复数时z的模长的最大值图3设实数数列UJ多)满足%证明对任意的整数n>2均有其中s表示对《的所有正因子求和表示与y的最小公倍数表示n的所有素因子P的积4名姓名两两不同的学生互寄贺卡每人准备了n1个信封分别写上其他n1名学生的姓名和地址并准备了至少张签有自己姓名的贺卡每天会有名学生按如下要求寄出贺卡先选择张自己手中的贺卡包括收到的贺卡放入个尚未使用的信封使得贺卡签名与收信人姓名不同再将该贺卡寄出并于当日寄达证明当所有学6给定正整数ft若整数集Z的子集序列42/22/满足对=2j686/且对于任意的6/均有*y6人*y可以相等则称为Z上的条A问Z上共有多少条请说明理由7将208行4列方格表的每个格染成红色或蓝色使得方格表每行的红格数与蓝格数相等每列的红格数与蓝格数也相等记m为满足上述要求的染色方法的总数求m除以2018所得的余数8如图2Zf分别为的内切圆在边仙仏上的切点/为内心直线fi/与4C交于点F直线C/与交于点G直线/£与if/C/FG分别交于点MVP直线SC与/P交于点?证明BC=2MV当且仅当7Q=2JR图2208年第期参考答案1当a^O时对于任意的n多均有当0<a专时注意到%a/?=lae为单调减函数设60a贝*=/*£[/0a/〇又/0=la/Ia=l彡1+al因此对任意的多均有?多02设?〇与?〇的第二个交点为r联由4、(7\2)四点共圆=>zBDT=zECT类似地ZC£T=Z/)BrMABDT^/\ECT=^^=^^由冬Br、£四点共圆BTET=snZBATsnZEAT显然丄^r于是Z£4r+Z=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


^ ^ ^



寄 出 的 信封总 数记 为 、 % 中 的 贺 卡 总 数 记 注意 到 三 者 均 为 关 于天 数 的 函 数 为m







由 冬B

r 、£
四 点共 圆
ET

_
每经 过



天必 出 现 以 下 三种 情 况之


BT
s in



ii

Z BA T
si n

>。




EA T


同 时减 少




% 不变


显然




^i

% 减少



v。
增加



>。
不变


于是 Z



4 r +




90




>。

' ^ 均不变



又 因为







首 先证 明 若 最 终 时 刻 尺 从未 寄 贺 卡给 且若 I 则 尽 手 中 的 所有 贺 卡 的 签 名 均为

仏 >〇


4、
(:

7\ 2 )
四点共 圆


则 巧 只 没 给 G 寄 过贺 卡 P 给 定集 合 F A /





的 整数
引 理得 证






使得
a =b q+ r



假设存 在 某 个 尽 使 得







£







V 。







V。

C p ( V。



与 引理









的 最小性矛 盾 于是



7?
将 满 足 条件 的 染 色 方式 称为 格 局











个子
的未



BD T = z E CT


Br

F。

在任 何

天 结束 时 从

F。

FW 。
类 似地 Z C £T




/)
寄 出 的 信封 总数 记为








F\ F 。
向 % 的未
M A BD T


^/ \ EC T




上的


条 数为
k + l



+ 2〇 + 2





_  ̄

3 +2




+3
r ( W+ W+


+3








当 且仅 当

5 + 2 t = 1 0





t = 1
时 上 式等




矣I






Pi



Pk


0 ^ z


?? ?


^z ^


若 a 为实 数
〇) + (〇


〇>
的 复数 令

易知 若


矣 % 矣 和2 矣










t =
2R e〇












w2












+ 1






&> + 2 )



2 (


w 〇




) 2
从 而 方 程 ① 的 非 负 整 数解 数 为




w + 2












r\ a





+ 2〇


10

3〇

因此
3〇
3 + 2
_










/( ?


ae
为单 调减 函 数




n +

这 卜⑴










贝J


騎 备A



) )





*?


£

[/




/(
〇)



又/
/(













= l




寄达 证明 当所有 学




20
18
年第
1 1

33
参 考 答 案



这卜




, § 岑 >7




d n

, ^




^O
时 对于任意 的





均有

士 § 卜 °




0 < a

专1
时 注 意到


0 )
其中


P(


表示
的 欧拉 函数


证明
假设存 在 这 样 的



§ S f



圣,



由于

















据 式〇 有

> 7 ^ 多 0 〇



士£
§







w] = 7
' 及 v v 中 的 某 个 心 使 得 ' 从 未 寄 信 给从 而


如图



Z)







/)



、 i


( ?


/I
名 姓名 两 两 不 同 的 学 生 互 寄 贺 卡



BC

2M V


当 且仅 当

7Q =
2J R
每 人 准备 了 有

个信封 分别 写 上其 他n





名 学 生 的 姓 名 和 地 址 并 准 备 了 至少
若 / H 〇 为 好 集 不 妨设






故 存在

h 中 的 某个


中 的某
的 最小 正 整数 则 对 任意 的

<1

e /

均有

个 ' 使得 ' 从未 寄信 给这 个 过 程可 以 无 限 重 复下 去 矛 盾
相关文档
最新文档