2016-2017学年度第一学期八年级数学期末试题

合集下载

2016-2017八年级上数学试题及答案

2016-2017八年级上数学试题及答案

八年级数学试题 第 1 页 (共 9 页)2016-2017学年度第一学期期末测试八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.若分式22-+x x 有意义,则x 的取值范围是( ). A .2=xB .2≠xC .2-=xD .2-≠x2.下列图形中,是轴对称图形的是( ).A B C D 3.下列分解因式正确的是( ). A .23)1(-=-x x x xB .))((22y x y x y x -+=+C .))((22y x y x y x +--=--D .22)12(144-=+-x x x(超范围)4.下列各组数中不能作为直角三角形的三边长的是( ) . A . 9,8,6B .25,24,7C .5.2,2,5.1D .15,12,95.如果q px x x x ++=+-2)3)(2(,那么q p ,的值分别为( ). A.6,5==q pB. 6,1-==q pC. 6,1==q pD. 6,5-==q p6. 一个正多边形的内角和是它的外角和的3倍,则这个多边形的边数是( ). A .8B .9C .7D. 67.已知2=+y x ,则222121y xy x ++的值是( ). A .2B .4C .1D .218. 化简xxx x -+-112的结果是( ) A. 1+x B. 1-x C.x - D. x八年级数学试题 第 2 页 (共 9 页)9. 如图,在△ABC 中,AB=AC ,BD平分∠ABC 交AC于点D ,AE ∥BD 交CB 的延长线于 点E .若∠E=30°,则∠BAC 的度数为( ) . A. 30B. 45C. 60D. 75超范围11.如图,ABC ∆中, 90=∠C , 30=∠A ,AB 的垂直平分线交AC 于点D ,交AB 于点E ,6=AC ,则CD 的长为( ).A .1B .2C .3D .412.如图,ABD ∆是等边三角形,以BD 为边向外作等边三角形DBC ∆,点F E ,分别在AD AB ,上且DF AE =,连接DE BF ,,两直线相交于点G ,连接CG ,下列结论:①ADE ∆≌CDG ∆, ② 60=∠BGE ,③ BG DG CG +=, ④CDG BDG S S ∆∆=.其中正确的结论有( ). A.1个B.2个C.3个D.4个二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.计算:)5(152ab b a -÷________. .14.已知等腰三角形两边的长分别是8和6,则该三角形的周长为 _________ . 15. 如图,DCB ABC ∠=∠,请补充一个条件:________________ ,使ABC ∆≌DCB ∆.9题图12题图11题图15题图DCBA18题图16题图八年级数学试题 第 3 页 (共 9 页)16. 如图,AD 是ABC ∆的角平分线,DF DE ,分别是ABD ∆和ACD ∆的高,6=AC ,7=AB ,ACD ∆的面积是18,则ABC ∆的面积是_______________ .17. 一组按规律排列的式子:a 2b5,38b a,…(0≠ab ),则第n 个式子是 .18.如图所示,在ABC ∆中,AC AB =,E D ,是ABC ∆内两点,AD 平分BAC ∠. 60=∠=∠E EBC ,若10=BE ,4=DE ,则BC 的长度是___________ .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19. 解分式方程:xx x -=+--23123.20.如图,已知AE AB =,21∠=∠,E B ∠=∠, 求证:ED BC =.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出 必要的演算过程或推理步骤.21.因式分解:(1)39x x -; (2)32296y y x xy --.22.先化简,再求值:221(1)24x x x x x +-÷+-,其中x 是方程2111x x =+-的解.23. 如图,在直角坐标系中,正方形网格的边长为1,ABC ∆的顶点在网格的格点上,(1)将ABC ∆向下平移3个单位,得到111C B A ∆, 请在网格中画出111C B A ∆;(2)画出111C B A ∆关于y 轴对称的图形222C B A ∆, 并写出222C B A ∆的顶点坐标.20题图第 4 页 (共 9 页)24.如图,∠ABC = 90,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD=DE ,点F 是AE 的中点,FD 与AB 的延长线相交于点M ,连接MC . (1)求证:∠FMC =∠FCM ; (2)AD 与MC 垂直吗?并说明理由.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.为了改变我区城市环境,创建全国卫生城市,梓潼街道拟对滨江路带的排水道等公用设施 全面更新改造,现有甲、乙两个工程队有意承包这项工程.经调查知道:甲工程队单独完成此 项工程的时间是乙工程队单独完成此项工程时间的1.5倍,若甲、乙两工程队合作只需12天 完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2) 根据梓潼街道的要求,工程须在21天内完成.若甲工程队每天的工程费用是2.5万元,乙工程队每天的工程费用是4.5万元.请你选择一种方案(方案一:甲单独完成;方案二:乙单独完成;方案三:甲乙合作完成),既能按时完工,又能使工程费用最少,并求出最少费用是多少万元.26.我们知道,如果两个三角形全等,则它们面积相等,而两个不全等的三角形,在某些情况 下,可通过证明等底等高来说明它们的面积相等.已知ABC ∆与DEC ∆是等腰直角三角形, 90=∠=∠DCE ACB ,连接BE AD ,.(1)如图1,当 90=∠BCE 时,求证BCE ACD S S ∆∆=.(2)如图2,当 0<BCE ∠< 90时,(1)中的结论是否仍然成立?如果成立,请证明;如果不成立,说明理由.(3)如图3,在(2)的基础上,作BE CF ⊥,延长FC 交AD 于点G ,求证:点G 为AD 中点.D A B C E图2八年级数学试题 第 5 页 (共 9 页)2016-2017学年度第一学期期末测试八年级数学答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13. a 3-; 14.22或20 ; 15.AB=CD(答案不唯一);16.39; 17.n a 1-3n b ; 18.14.三、解答题(本大题2个小题,每题7分,共14分) 解答时每小题必须写出必要的演算过程或推理步骤. 19.解:两边同时乘以(2-x ),得323-=-+-x x ………………………3分22=x解得1=x ………………………6分经检验,1=x 是原方程的解. ………………………7分 20.证明:∵∠BAD=∠BAD ,∠1=∠2,∴∠BAD+∠1=∠BAD+∠2即∠BAC=∠EAD. ……………………………………………3分 在△BAC 和△DAE 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠EAD BAC AE AB E B ∴△BAC ≌△EAD (ASA ). ………………………………………6分 ∴BC=ED. ………………………………………………………7分四、解答题(本大题4个小题,每小题10分,共40分)八年级数学试题 第 6 页 (共 9 页)21. 解:(1)原式=)9(2-x x …………………………2分=)3)(3(-+x x x …………………………5分(2)原式)96(22y x xy y --=…………………………2分 )69(22y xy x y +--=2)-3(y x y -=…………………………5分22.解:原式1422222+-⨯+--=x x x x x x x …………………………………………………………2分()()()()()12222+++---=x x x x x x x………………………………………………………4分 ()()()()()21221+++-+-=x x x x x x x 2+-=x ;…………………………………………………………………………6分 因为1112-=+x x , 所以122+=-x x ,解得3=x ,……………………………………………………8分 原式132-=-=……………………………………………………………………10分 23.解:(1)作图略…………………………………………………………………4分 (2)作图略…………………………………………………………………7分三个顶点的坐标分别为()1,12-A ,()0,32B ,()2,22C .……………10分 24.(1)证明:∵△ADE 是等腰三角形,F 是AE 的中点,DE AD ⊥∴DF ⊥AE ,DF=AF=EF. ...................................................................................2分 又∵∠ABC=90°,∠DCF,∠AMF 都与∠MAC 互余, ∴∠DCF=∠AMF又∵∠DFC=∠AFM =90°∴△DFC ≌△AFM. ……………………………………………..5分 ∴CF=MF , ∴∠FMC=∠FCM. ……………………………………..6分 (2)AD ⊥MC …………………………7分 由(1)知∠MFC=90°,FD=FE,FM=FC ∴∠FDE=∠FMC=45°.八年级数学试题 第 7 页 (共 9 页)∴DE ∥CM ,∴AD ⊥MC. (10)五、解答题(本大题2个小题,每小题12分,共24分)25天,则甲工程队单独完成该工程需1.5x 天,2分1.5×20=30(天)答:甲工程队单独完成此项工程需30天,乙单独完成此项工程需20天………5分 (2)方案一:由甲工程队单独完成需30天,工程费用755.230=⨯(万元)…7分 方案二:由乙工程队单独完成需20天, 工程费用905.420=⨯(万元)………9分 方案三:由甲、乙两队合作完成需12天, 工程费用84125.25.4=⨯+)((万元) ……11分 答:选择方案三既能按时完成,又能使工程费用最少,最少费用为84万元.…12分 26.证明:(1)∵ABC ∆与DEC ∆是等腰直角三角形∴BC AC =,EC DC =,090=∠=∠DCE ACB , 又∵090=∠BCE∴BCE ACD ∠=∠,……………………………………………………1分 在ACD ∆与BCE ∆中,⎪⎩⎪⎨⎧=∠=∠=EC DC BCE ACD BCAC ,∴ACD ∆≌BCE ∆,……………………………2分∴BCE ACD S S ∆∆=;…………………………………………………………3分 (2)过点A 作AG 垂直DC 的延长线于点G ,作CE BH ⊥,垂足为H , ……………………………………………………………………………4分 ∵090=∠=∠GCE ACB ,∴BCH ACG ∠=∠,……………………………………………………5分 在ACG ∆与BCH ∆中八年级数学试题 第 8 页 (共 9 页)⎪⎩⎪⎨⎧=∠=∠∠=∠=090BHC AGC BCH ACG BC AC ,∴ACG ∆≌BCH ∆,………………………6分∴BH AG =, ∵CE CD =, ∴CE BH CD AG ⋅=⋅2121 即BCE ACD S S ∆∆=;……………………………………………………………7分 (3)过点A 作AM 垂直CG 的延长线于点M ,过点D 作CG DN ⊥,垂足为N , ……………………………………………………………………………………8分 ∵090=∠=∠BFC ACB ,∴ 090=∠+∠BCF ACM ,090=∠+∠BCF CBF ,∴CBF ACM ∠=∠,…………………………………………………………9分 在ACM ∆与CBF ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠=090BFC AMC CBF ACM BC AC ,∴ACM ∆≌CBF ∆,∴CF AM =,…………………………………………………………………10分 同理可证DCN ∆≌CEF ∆,…………………………………………………11分 ∴ CF DN =, ∴ AM DN =, 在AGM ∆与DGN ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠=090DNG AMG DGN AGM DN AM ,∴AGM ∆≌DGN ∆,∴DG AG =,即G 为AD 中点.………………………………………………………………12分。

学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。

【精品】2016-2017八年级(初二)上册数学期末试卷及答案

【精品】2016-2017八年级(初二)上册数学期末试卷及答案

八年级(初二)上册数学期末试卷及答案一、细心填一填(本题共10小题;每小题4分,共40分.) 1.若x 2+kx +9是一个完全平方式,则k =.2.点M (-2,k )在直线y =2x +1上,则点M 到x 轴的距离是.3.已知一次函数的图象经过(-1,2),且函数y 的值随自变量x 的增大而减小,请写出一个符合上述条件的函数解析式.4.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离是.5.在△ABC 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD:∠BAC=1:3,则∠C=.6.一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为.7.某市为鼓励居民节约用水,对自来水用户收费办法调整为:若每户/月不超过12吨则每吨收取a 元;若每户/月超过12吨,超出部分按每吨2a 元收取.若小亮家5月份缴纳水费20a 元,则小亮家这个月实际用水4题 5题图AD CAEB D C8. 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有____________(把你认为正确的序号都填上).9.对于数a,b,c,d,规定一种运算a bc d=ad-bc,如102(2)-=1³(-2)-0³2=-2,那么当(1)(2)(3)(1)x xx x++--=27时,则x=10、已知,3,5==+xyyx则22yx+=二、精心选一选(本题共10小题;每小题4分,共40分)11、下列四个图案中,是轴对称图形的是()12、等腰三角形的一个内角是50°,则另外两个角的度数分别是()A、65°,65°B、50°,80°C、65°,65°或50°,80°D、50°,5013、下列命题:(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于2的点之间有无数多个点表示无理数,其中错误的命题的个数是( )A、2B、3C、4D、514.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是ABC EDOP Q( )A.4B.3C.5D.215.已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1、y2大小关系是()A. y1> y2B. y1= y2C.y1< y2D.不能比较16.下列运算正确的是 ( )A.x2+x2=2x4B.a2²a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y2 17.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形18.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm,)ABD20.一名学生骑自行车出行的图象如图,其中正确的信息是( ) A.整个过程的平均速度是760千米/时B.前20分钟的速度比后半小时慢C.该同学途中休息了10分钟D.从起点到终点共用了50分钟三.用心做一做21.计算(10分,每小题5分)(1)分解因式6xy 2-9x 2y -y 3 (2)223(2)()()a b ab b b a b a b --÷-+-22. (10分) 如图,(1)画出△ABC 关于Y 轴的对称图形△A 1B 1C 1 (2)请计算△ABC 的面积 (3)直接写出△ABC 关于X 轴对称的三角形△A 2B 2C 2的各点坐标。

2016-2017八年级期末数学试卷

2016-2017八年级期末数学试卷

2016~2017学年度第一学期期末考试八年级数学试题考试时间:120分钟试卷总分:150分第Ⅰ卷(满分100分)一、选择题(每小题3分,共10小题,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请用2B 铅笔在答题卷上将对应题目正确答案的代号涂黑。

1.下面四个图案中不是轴对称图形的是A B C D . 2.分式21-x 有意义,则x 的取值范围是 A .2>x B .错误!未找到引用源。

C .错误!未找到引用源。

D 错误!未找到引用源。

.2=x .3.用科学记数法表示0.0000064记为A .71064-⨯ B .41064.0-⨯ C .6104.6-⨯ D .810640-⨯.4.下列各式从左到右的变形是因式分解的是A .2)1(3222++=++x x x B .22))((y x y x y x -=-+C .)(222y x y x -=-D .222)(y x y xy x -=+-.5.如图,在△ABC 和△DEF 中,∠B=∠DEF ,AB=DE ,添加下列一个条件后,仍然不能..证明△ABC ≌△DEF ,这个条件是 A .∠A=∠D B .BC=EF C .∠ACB=∠F D .AC=DF .6.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短.7.如果把分式yx x+中的x 和y 的值都扩大为原来的3倍,那么分式的值 A .扩大为原来的3倍 B .不变 C .缩小为原来的31 D .缩小为原来的61.8.已知一个多边形的每一个外角都是60°,则这个多边形的边数是第5题图 第6题图A .3B .4C .5D .6.9.工程队要铺设一段全长2000米的管道,因天气原因需停工两天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x 米,则根据题意所列方程正确的是 A .25020002000=+-x x 错误!未找到引用源。

2016-2017年秋季八年级数学期末试卷(新人教版)

2016-2017年秋季八年级数学期末试卷(新人教版)

2016-2017年秋季八年级(上)期末考试数学试卷考试时间:120分钟 试卷满分:120分班级: 姓名: 命题人:周国年一、精心选择,一锤定音!('3010'3=×)1、如果分式2-3x x +有意义,则x 的取值范围是( )。

A 、2 B 、-3 C 、2≠x D 、3-≠x2、某红外线遥控器发出的红外波长为m 00000094.0,这个数用科学计数法表示为( )。

A 、m 6-104.9×B 、m 7-104.9×C 、m 8-104.9×D 、m 9-104.9×3、下列计算正确的是( )。

A 、532a a a =+ B 、532a a a =• C 、532a a =)( D 、532a a a =÷ 4、如右下图,一种滑翔伞的形状是左右对称的四边形ABCD ,其中∠B =40°,∠CAD =60°,则∠BCD =( )。

A 、160°B 、120°C 、80°D 、100°5、下列等式从左到右变形,属于因式分解的是( )。

A 、ay ax y x a -)-(=B 、1-)2(1-22+=+x x x xC 、)1-(-2a a a a =D 、)1-(1-2aa a a = (第4题图) 6、如图,已知正六边形ABCDEF 和正方形AGHF ,则∠ABG 的度数为( )。

A 、75°B 、70°C 、65°D 、60°7、仔细观察上面的图形,依据图形面积间的关系,不添加辅助线,便可得到一个熟悉的公式,这个公式是( )。

A 、222--y xy x y x +=)(B 、2222--y xy x y x +=)(C 、2222y xy x y x ++=+)(D 、222y x y x +=+)(8、如下图,线段AC 与BD 相交于点O ,且OA =OC ,请添加一个条件,使AOB Δ≌COD Δ,这个条件可以是( )。

2016-2017学年第一学期期末检测八年级数学试题及参考答案与评分标准(新人教版11-15章)

2016-2017学年第一学期期末检测八年级数学试题及参考答案与评分标准(新人教版11-15章)

2016—2017学年度第一学期期末调研考试八年级数学试题注意:本份试卷共7页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题;1-6每小题2分,7-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要3.若n 边形的内角和比外角和大180°,则n 的值为A.5 B .6 C .7 D .8 4.点(-4,3)关于x 轴对称的点坐标是A .(-4,-3)B .(4,3)C .(4,-3)D .(3,-4) 5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是7.若x+m与x-3的乘积中不含x的一次项,则m的值为A.-3 B.3 C.0 D.18.如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是A.(a+b)2=a2+2ab+b2B.a2-b2=(a+b)(a-b)C.(a-b)2=a2-2ab+b2 D.(a+2b)(a-b)=a2+ab-2b29.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是A.30°B.40°C.50°D.60°10.把代数式3x3-12x2+12x分解因式,结果是A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)211.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断正确的是A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确12.已知a-b=1,则a2-b2-2b的值为A.4 B.3 C.1 D.013.A.56B.54C.32D.16-14、下列运算中正确的个数为①20160=1;②4;③|-6|=6;④2142-⎛⎫=-⎪⎝⎭;⑤(a-b)2=a2-b2;⑥a2+a=a3A.2 B.3 C.4 D.515.如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为A.30°B.40°C.50°D.60°16.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是A.2个B.3个C.4个D.5个二、填空题(本大题共4个小题;每小题3分,共12分.请把答案写在题中的横线上)三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.计算(本题共2个小题,共10分,每个5分).(1)分解因式:3ax2-27a(2)计算:(a+2b)(a-2b)-(2a-3b)2+3a(a-4b)22.(本题满分10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.23.(本题满分10分)已知:如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D,求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.24.(本题满分11分)25.(本题满分11分)某商场用6万元购进某种商品,由于畅销,很快销售一空,于是该商场又用12.8万元购进了第二批这种商品,所购数量是第一批购进数量的2倍,但单价贵了2元,该商品定价都是35元,但最后剩下的100件商品按定价的八折销售,很快售完。

2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版

2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版

2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。

1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。

5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。

6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。

7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。

8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。

10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。

11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。

在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。

2016-2017学年人教版初二数学上册期末检测题含答案

2016-2017学年人教版初二数学上册期末检测题含答案
2016-2017 学年八年级数学上册期末检测题
(本检测题满分:120 分,时间:120 分钟)
一、选择题(每小题 3 分,共 36 分)
1.若点 A(-3,2)关于原点对称的点是点 B,点 B 关于������轴对称的点是点 C,则点 C 的坐 标是() A.(3,2) B. (-3,2) C. (3,-2) D. (-2,3) 2.(2015•江苏连云港中考)下列运算正确的是( ) A.2a+3b=5ab B.5a-2a=3a C.������2 · ������3 =������6 D. ������+������ =������2 +������2
15.如图所示,∠E=∠F=90° ,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF; ③△ACN≌△ABM;④CD=DN.其中正确的是(将你认为正确的结论的序号都填上) .
第 15 题图
第 17 题图
16.如图所示, AD 是△ABC 的角平分线, DE⊥AB 于点 E,DF⊥AC 于点 F,连接 EF 交 AD 于点 G,则 AD 与 EF 的位置关系是. 17.如图所示,已知△ABC 和△BDE 均为等边三角形,连接 AD、CE,若∠BAD=α,则 ∠BCE=. 18.(2015·河北中考)若 a=2b≠0,则 19.方程
第 8 题图
(甲)作∠������������������、∠������������������的平分线,分别交������������于������、������,则������、������即 为所求; (乙)作������������、������������的中垂线,分别交������������于������、������,则������、������即为所求. 对于甲、乙两人的作法,下列判断正确的是( ) A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确 2 骣m 4 ÷ + 9.化简 ç ) ç ÷? (m 2) 的结果是( çm - 2 2 - m ÷ 桫

2016-2017学年最新人教版第一学期八年级数学(上册)期末测试卷(有答案)

2016-2017学年最新人教版第一学期八年级数学(上册)期末测试卷(有答案)

2016-2017学年八年级(上)期末数学试卷一、选择题(共10个小题,每小题只有一个正确选项,每小题3分,满分30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下列运算中,正确的是()A.2a+3b=5ab B.3x2÷2x=x C.2=x2+y43.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠1 D.a≠﹣14.等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:DC=9:7,则点D到AB边的距离为()A.18 B.16 C.14 D.126.已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±167.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.8.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形9.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣210.若关于x的方程=+1无解,则a的值为()A.1 B.2 C.1或2 D.0或2二、填空题(共10个小题,每小题3分,满分30分)11.已知分式,当x=时,分式没有意义;当x=时,分式的值为0;当x=2时,分式的值为.12.(﹣)﹣1﹣(﹣2)0=.13.当a=时,关于x的方程=的解是x=1.14.用科学记数法表示0.0000002016=.15.已知x+=5,那么x2+=.16.若=3,则=.17.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为.18.小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为米.19.一个多边形的每一个外角都等于40°,则该多边形的内角和等于.20.如图所示,AB=AC,点D,E分别在AC,AB上,AF⊥CE,AG⊥BD,垂足分别为F,G,AF=AG,下列结论:①∠B=∠C;②∠EAF=∠DAG;③AD=AE;④BE=CD其中正确的是(只填序号)三、解答题(共8个小题,满分60分)21.先化简(1+)÷,再从1,2中选取一个适当的数代入求值.22.先化简,再求值:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y,其中x=5,y=2.23.已知a﹣b=4,ab=3,求a3b﹣2a2b2+ab3的值.24.某学校学生进行急行军训练,预计行72km的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.25.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.26.如图所示,在△ABE和△ACD中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)∠DAM=∠EAN,以其中三个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个正确的命题,并写出证明过程.已知:;求证:.27.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.28.某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.2016-2017学年中八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10个小题,每小题只有一个正确选项,每小题3分,满分30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列运算中,正确的是()A.2a+3b=5ab B.3x2÷2x=x C.2=x2+y4【考点】整式的混合运算.【分析】根据合并同类项,单项式的除法,幂的乘方,完全平方公式进行计算,再选择即可.【解答】解:A、2a+3b不能合并,故错误;B、3x2÷2x=1.5x,故错误;C、(x2)3=x6,故正确;D、(x+y2)2=x2+2xy2+y4,故错误;故选C.【点评】本题考查了整式的混合运算,是各地中考题中常见的题型.涉及知识:合并同类项;单项式的除法;幂的乘方;完全平方公式.3.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠1 D.a≠﹣1【考点】分式有意义的条件.【分析】根据分式有意义的条件:分母≠0即可求解.【解答】解:根据题意得:a﹣1≠0,解得:a≠1.故选C.【点评】本题考查了分式有意义的条件:分母≠0,理解分式有意义的条件是关键.4.等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】由于长为4的边可能为腰,也可能为底边,故应分两种情况讨论.【解答】解:当腰为4时,另一腰也为4,则底为18﹣2×4=10,∵4+4=8<10,∴这样的三边不能构成三角形.当底为4时,腰为(18﹣4)÷2=7,∵0<7<7+4=11,∴以4,7,7为边能构成三角形.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:DC=9:7,则点D到AB边的距离为()A.18 B.16 C.14 D.12【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据比例求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD,得到答案.【解答】解:过点D作DE⊥AB于E,∵BC=32,BD:CD=9:7,∴CD=32×=14,∵∠C=90°,DE⊥AB,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14.故选:C.【点评】本题主要考查的是角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.6.已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±16【考点】完全平方式.【分析】这里首末两项是x和4y这两个数的平方,那么中间一项为加上或减去x和4y积的2倍.【解答】解:∵x2+kxy+16y2是一个完全平方式,∴±2×x×4y=kxy,∴k=±8.故选B.【点评】本题考查的是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.7.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.8.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形【考点】翻折变换(折叠问题);矩形的性质.【专题】证明题.【分析】对翻折变换及矩形四个角都是直角和对边相等的性质的理解及运用.【解答】解:∵ABCD为矩形∴∠A=∠C,AB=CD∵∠AEB=∠CED∴△AEB≌△CED(故D选项正确)∴BE=DE(故A选项正确)∠ABE=∠CDE(故B选项不正确)∵△EBA≌△EDC,△EBD是等腰三角形∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确)故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.9.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2 【考点】解分式方程.【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.10.若关于x的方程=+1无解,则a的值为()A.1 B.2 C.1或2 D.0或2【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:ax=4+x﹣2解得:(a﹣1)x=2,∴当a﹣1=0即a=1时,整式方程无解,分式方程无解;当a≠1时,x=x=2时分母为0,方程无解,即=2,∴a=2时方程无解.故选:C.【点评】本题考查了分式方程无解的条件,是需要识记的内容.二、填空题(共10个小题,每小题3分,满分30分)11.已知分式,当x=﹣2时,分式没有意义;当x=﹣时,分式的值为0;当x=2时,分式的值为.【考点】分式有意义的条件;分式的值为零的条件;分式的值.【分析】根据分式没有意义的条件,分式等于0的条件以及把x=2代入分式求值即可.【解答】解:当分式没有意义时,x+2=0,解得:x=﹣2;当分式的值是0时,2x+1=0,解得:x=﹣;当x=2时,原式==.故答案是:﹣2;﹣;.【点评】本题考查了分式有意义的条件,当分母等于0时,分式无意义,分式有意义的条件是:分母≠0.12.(﹣)﹣1﹣(﹣2)0=﹣4.【考点】负整数指数幂;零指数幂.【专题】计算题;推理填空题.【分析】首先根据负整指数幂的运算方法,求出(﹣)﹣1的值是多少;然后根据零指数幂的运算方法,求出(﹣2)0的值是多少;最后根据有理数减法的运算方法,求出算式的值是多少即可.【解答】解:(﹣)﹣1﹣(﹣2)0=﹣3﹣1=﹣4.故答案为:﹣4.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.13.当a=﹣9时,关于x的方程=的解是x=1.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:=,去分母得:4a+6=3a﹣3,解得:a=﹣9,经检验a=﹣9是原方程的解,故答案为:﹣9【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.用科学记数法表示0.0000002016= 2.16×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000002016=2.16×10﹣7.故答案为:2.16×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.已知x+=5,那么x2+=23.【考点】完全平方公式.【专题】计算题.【分析】所求式子利用完全平方公式变形后,将已知等式代入计算即可求出值.【解答】解:∵x+=5,∴x2+=(x+)2﹣2=25﹣2=23.故答案为:23.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.16.若=3,则=.【考点】比例的性质;分式的值.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=3,得a=3b.===.故答案为:.【点评】本题考查了比例的性质,利用等式的性质得出a=3b是解题关键.17.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为20.【考点】轴对称的性质.【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=20,∴△PMN的周长=20.故答案为:20.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.18.小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为100米.【考点】解直角三角形的应用-坡度坡角问题.【分析】此题实际上是在直角三角形中,已知斜边,求30度所对的直角边.【解答】解:由题意得,AB=200米,∠A=30°,故可得BC=100米.故答案为:100.【点评】本题考查了坡度及坡角的知识,本题涉及的角度比较特殊,所以我们可以直接利用含30°角的直角三角形的性质求解.19.一个多边形的每一个外角都等于40°,则该多边形的内角和等于1260°.【考点】多边形内角与外角.【分析】先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n﹣2)180°计算即可求解.【解答】解:多边形的边数是:360°÷40°=9,则内角和是:(9﹣2)180°=1260°.故答案是:1260°.【点评】本题主要考查了正多边形的外角与边数的关系,求出多边形的边数是解题的关键.20.如图所示,AB=AC,点D,E分别在AC,AB上,AF⊥CE,AG⊥BD,垂足分别为F,G,AF=AG,下列结论:①∠B=∠C;②∠EAF=∠DAG;③AD=AE;④BE=CD其中正确的是①②③④(只填序号)【考点】全等三角形的判定与性质.【分析】根据HL可证Rt△AGB≌Rt△AFC,从而得出∠B=∠C,进而得出∠EAF=∠DAG,再利用ASA证明△AEF≌△AGD,从而得出AD=AE,BE=CD.【解答】解:∵AG⊥BD,AF⊥CE,∴△AGB和△AFC是直角三角形,在Rt△AGB和Rt△AFC中,,∴Rt△AGB≌Rt△AFC(HL),∴∠B=∠C,∠BAG=∠CAF,故①正确;又∵∠BAG=∠EAF+∠FAG,∠CAF=∠DAG+∠FAG,∴∠EAF=∠DAG,故②正确;在△AFE和△AGD中,,∴△AFE≌△AGD(ASA),∴AD=AE,故③正确;∵AB=AC,∴AB﹣AE=AC﹣AD,∴BE=CD,故④正确.故答案为:①②③④.【点评】本题主要考查了直角三角形全等的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.三、解答题(共8个小题,满分60分)21.先化简(1+)÷,再从1,2中选取一个适当的数代入求值.【考点】分式的化简求值.【专题】计算题;分式.【分析】首先根据分式化简的方法,把(1+)÷化简;然后把a=2代入化简后的算式,求出算式的值是多少即可.【解答】解:(1+)÷=÷=×=﹣当a=2时,原式=﹣=﹣.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,解答此题的关键是要明确:分式的化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.22.先化简,再求值:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y,其中x=5,y=2.【考点】整式的混合运算—化简求值.【分析】直接利用乘法公式去括号,进而合并同类项,再利用整式除法运算法则化简,进而得出答案.【解答】解:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y=[x2﹣4y2﹣(x2+4y2+4xy)]÷2y=(﹣8y2﹣4xy)÷2y=4y+2x,将x=5,y=2代入上式得:原式=4×2+2×5=18.【点评】此题主要考查了整式的混合运算,正确应用乘法公式是解题关键.23.已知a﹣b=4,ab=3,求a3b﹣2a2b2+ab3的值.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab,进而分解因式,再将已知代入求出答案.【解答】解:∵a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,∴将a﹣b=4,ab=3代入上式可得:原式=3×42=48.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确分解因式是解题关键.24.某学校学生进行急行军训练,预计行72km的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.【考点】分式方程的应用.【分析】首先设原计划行军的速度为xkm/时,则加速后的速度为(1+20%)xkm/时,根据题意可得等量关系:原计划所用时间﹣实际所用时间=1小时,根据等量关系列出方程,再解即可.【解答】解:设原计划行军的速度为xkm/时,由题意得:﹣=1,解得:x=12,经检验:x=12是原分式方程的解,答:原计划行军的速度为12km/时.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.【考点】作图-轴对称变换.【分析】利用关于y轴对称点的性质进而得出各点坐标,进而画出图形即可.【解答】解:如图所示:△A1B1C1各点的坐标分别为:A1(3,2),B1(4,﹣3),C1(1,﹣1).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.26.如图所示,在△ABE和△ACD中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)∠DAM=∠EAN,以其中三个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个正确的命题,并写出证明过程.已知:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN;求证:AB=AC.【考点】全等三角形的判定与性质;命题与定理.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件证明全等.利用全等三角形对应角,对应边相等解题.【解答】解:已知:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN,求证:AB=AC.证明:在△ADM与△AEN中,∵,∴△ADM≌△AEN(SAS),∴∠D=∠E.∵∠DAM=∠EAN,∴∠DAC=∠EAB.在△ABE和△ACD中,∵,∴△ABE≌△ACD(ASA),∴AB=AC.故答案为:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN;AB=AC.【点评】本题考查全等三角形的判定与性质,在解答此题时要注意SAS、ASA定理的应用,此题属开放性题目,答案不唯一.27.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.【点评】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.28.某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.【考点】分式方程的应用.【分析】根据方案(1)的叙述可知:甲工程队单独完成时的时间=工期;由方案(2)可得:乙工程队单独完成这项工程时,所用的天数﹣5天=工期;可以设出工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数,即可表示出各自的工作效率,根据方案(3)即可列方程求得工期,进而计算方案(1)(3)各自需要的工程款,即可作出比较.【解答】解:设工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数是x天,(x+5)天.根据题意得:4(+)+=1,解得:x=20,经检验x=20是原方程的解.则甲、乙单独完成这项工程时所需要的天数是20天,25天.则方案(1)的工程款是:20×1.5=30万元;方案(3)的工程款是:1.5×4+1.1×20=28(万元).综上所述,可知在保证正常完工的前提下,应选择第三种方案:甲、乙两队合作4天,剩下的工程由乙队独做.答:方案(3)比较省钱.【点评】本题主要考查了分式方程的应用,正确理解工作时间、工作效率、工作量之间的关系是解题的关键.。

2016-2017学年初二人教版数学上册期末考试试题及答案word版

2016-2017学年初二人教版数学上册期末考试试题及答案word版

D CAB2016-2017学年初二人教版数学上册期末考试试题总分:150 时间:120分钟一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、如图,两直线a ∥b ,与∠1相等的角的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个 2、不等式组x>3x<4⎧⎨⎩的解集是( ) A 、3<x<4 B 、x<4 C 、x>3 D 、无解 3、如果a>b ,那么下列各式中正确的是( ) A 、a 3<b 3-- B 、a b<33C 、a>b --D 、2a<2b -- 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( ) A 、AAS B 、ASA C 、SAS D 、SSS5、将五边形纸片ABCDE 按如图所示方式折叠,折痕为AF ,点E 、D 分别落在E ′,D ′,已知∠AFC=76°, 则∠CFD ′等于( )A .31°B .28°C .24°D .22° 6、下列说法错误的是( )A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形;7、下列各组中的两个根式是同类二次根式的是( )A.和B.和C.和D.和8、如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是 ( ).A . m >5B . m ≥5C . m<5D . m ≤8C9、的整数部分为,的整数部分为,则的值是( )A. 1B. 2C. 4D. 91abABDFABO CD 10、一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x二、填空题(每小题4分,共32分)11、不等式2x-1>3的解集是__________________; 12、已知,则.13、在实数范围内因式分解 . 14、计算22142a a a -=-- .15、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是__________; 16、如图,AD 和BC 相交于点O ,OA=OD ,OB=OC ,若∠B=40°,∠AOB=110°,则∠D=________度;17、若不等式组121x m x m <+⎧⎨>-⎩无解,则m 的取值范围是_______.第15题图 第16题图18、如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示).三、解答题(共78分)19、(8分)解不等式x+1(x 1)12--≤,并把解集在数轴上表示出来。

2016-2017学年第一学期人教版八年级上册期末数学试卷含答案

2016-2017学年第一学期人教版八年级上册期末数学试卷含答案

2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a22.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)23.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.计算:+=__________.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于__________.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是__________度.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为__________.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=__________.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是__________cm2.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式__________;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式__________.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△EFD.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标__________;(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选:B.【点评】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵AC=DF,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据AAS,也可证明△ABC≌△DEF,故B正确;但添加AB=DE时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形全等的HL定理.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共7小题,每小题3分,满分21分)9.计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.【考点】因式分解-提公因式法.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13或14.【考点】等腰三角形的性质;三角形三边关系.【分析】分4是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4是腰长,则三角形的三边分别为4、4、5,能组成三角形,周长=4+4+5=13,②若4是底边,则三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,综上所述,这个三角形周长为13或14.故答案为:13或14.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【考点】含30度角的直角三角形;角平分线的性质.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是18cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×6×6=18cm2.故答案是:18.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式(a+b)2=a2+2ab+b2;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.【考点】完全平方公式的几何背景.【分析】(1)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,2个矩形的边长相同,且长为a,宽为b,则2个矩形的面积为2ab,空白的是两个正方形,较大的正方形的边长为a,面积等于a2,小的正方形边长为b,面积等于b2,大正方形面积减去2个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.【解答】解:(1)∵阴影部分都是全等的矩形,且长为a,宽为b,∴2个矩形的面积为2ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴空白正方形的面积为a2和b2,∴(a+b)2=a2+2ab+b2.故答案为(a+b)2=a2+2ab+b2.(2)∵四周阴影部分都是全等的矩形,且长为a,宽为b,∴四个矩形的面积为4ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴中间小正方形的面积为(a+b)2﹣4ab,∵中间小正方形的面积也可表示为:(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.【考点】整式的混合运算—化简求值;零指数幂.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2+x2﹣2xy+y2+2xy=2x2,当x=(3﹣π)0=1时,原式=2.【点评】此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式(β﹣α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后求解即可.(2)同(1)即可得出结果.【解答】解:(1)∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵AE是角平分线,∴∠BAE=∠BAC=×80°=40°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣40°=50°,∴∠DAE=∠BAD﹣∠BAE=50°﹣40°=10°;(2)∵∠B=α,∠C=β(α<β),∴∠BAC=180°﹣(α+β),∵AE是角平分线,∴∠BAE=∠BAC=90°﹣(α+β),∵AD是高,∴∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F 或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC≌△EFD,已知BC=DF,AB=EF,具备了两组边对应相等,故添加∠B=∠F或AB∥EF或AC=ED后可分别根据SAS、AAS、SSS来判定其全等;(2)因为AB=EF,∠B=∠F,BC=FD,可根据SAS判定△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220﹣90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=8,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),从9:20到下午1:40,共计4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标(0,2);(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解题.【解答】解:(1)如图1,作CD⊥BO于D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴CD=BO=2,∴B点坐标(O,2);故答案为:(0,2);(2)如图3,作EG⊥y轴于G,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO和△EBG中,,∴△BAO≌△EBG(AAS),∴BG=AO,EG=OB,∵OB=BF,∴BF=EG,在△EGP和△FBP中,,∴△EGP≌△FBP(AAS),∴PB=PG,∴PB=BG=AO=3.【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。

2016-2017学年度北师大版第一学期初二数学期末试卷 有答案

2016-2017学年度北师大版第一学期初二数学期末试卷 有答案

2016-2017学年度第一学期初二数学期末试卷一.选择题(共10小题)1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>12.方程组的解是()A.B.C.D.3.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上,但有限D.有无数个4.李大伯有一片果林,共80棵果树,某日,李大伯开始采摘今年第一批成熟的果子,他随机选取2棵果树共摘得果子,质量分别为(单位:kg):0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23,以此计算,李大伯收获的这批果子的单个质量和总质量分别约为()A.0.25kg,200kg B. 2.5kg,100kgC.0.25kg,100kg D.2.5kg,200kg5.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2 B.60,2 C.60,D.60,6.如果m是任意实数,则点P(m﹣4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限7.不等式组的整数解有()个.A. 1 B. 2 C. 3 D. 48.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>49.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A. 1 B. 2 C. 3 D. 410.如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定二.填空题(共7小题)11.144的算术平方根是_________,的平方根是_________.12.如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是_________.(结果保留根号)13.已知方程组的解满足方程x+2y=k,则k=_________.14.有一组数据:6、3、4、x、7,它们的平均数是10,则这组数据的中位数是_________.15.已知点A(2a﹣1,3a+1),直线l经过点A,则直线l的解析式是_________.16.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________ cm2.17.不等式组的解集是_________.三.解答题(共9小题)18.计算:(1)()﹣1﹣+(5﹣π)0 (2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)19.(1)计算:﹣52﹣+(﹣)﹣2+π0;(2)先化简,再求值:a(2﹣a)﹣(1+a)(1﹣a),其中a=.20.解方程组.21.6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图:根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;①从平均数和中位数方面比较一班和二班的成绩;②从平均数和众数方面比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.22.如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.23.如图,△AOB中,A,B两点的坐标分别为(2,4)、(6,2),求:△AOB 的面积.(△AOB的面积可以看作一个长方形的面积减去一些小三角形的面积)24.2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?25.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?26.直线y=﹣x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.参考答案一.选择题(共10小题)1.B2.D3.B4.C5.C6.D7.D8.C9.C10.A二.填空题(共7小题)11.12,±2.12.213.﹣3.14.6.15.y=x+.16.317.﹣1<x<.三.解答题(共9小题)18.(1);(2)x2﹣2x﹣3.19.(1)﹣18;(2)0.20..21.解答:解:(1)一班中C级的有25﹣6﹣12﹣5=2人.故统计图为:(2)a=(6×100+12×90+2×80+70×5)÷25=87.6;b=90c=100;(3)①从平均数和中位数的角度,一班和二班平均数相等,一班的中位数大于二班的中位数,故一班成绩好于二班.②从平均数和众数的角度,一班和二班平均数相等,一班的众数小于二班的众数,故二班成绩好于一班.③从B级以上(包括B级)的人数的角度,一班有18人,二班有12人,故一班成绩好于二班.22.∠A=30°.23.解答:解:过点A、B分别作x轴、y轴的垂线CE、CF交点为C,垂足分别为E、F∵A(2,4)、B(6,2)∴OE=AC=4,EA=CB=BF=2,OF=6,∴S ECFO=6×4=24 …(2分)S△AOE=×4×2=4 …(4分)S△ACB=×4×2=4 …(6分)S△BOF=×6×2=6 …(8分)∴S△AOB=S ECFO﹣S△AOE﹣S△ACB﹣S△BOF=24﹣4﹣4﹣6=10 …(10分)∴△AOB的面积是10.24.解答:解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,∴,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得,y=1500x+1200(16﹣x),=300x+19200,∵300>0,∴y随x值增大而增大,当x=5时,y有最小值,=300×5+19200=20700元;∴y最小方法二:当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.25.解答:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.26.解答:解:(1)y=0,x=0,求得A(8,0),B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是(秒),∴点P的速度是=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10﹣2t=16﹣2t,如图,过点P作PD⊥OA于点D,由,得PD=.∴S=OQ•PD=﹣.(3)当S=时,∵,∴点P在AB上当S=时,﹣=∴t=4∴PD==,AP=16﹣2×4=8AD==∴OD=8﹣=∴P(,)M1(,),M2(﹣,),M3(,﹣)。

2016-2017学年人教版八年级上册期末考试数学试题含答案

2016-2017学年人教版八年级上册期末考试数学试题含答案

P RE图2图1第6题图D DBCBCA(Q)A2016—2017学年度第一学期终结性检测试题八年级数学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.1.2的平方根是A.±2B.2C.−2D.42.剪纸是中国最古老的民间艺术之一,是中华传统文化中的一块瑰宝.下列四个剪纸图案中不是..轴对称图形的是A.B.C.D.3.将3个红球,2个白球装在一个不透明的盒子里,这五个球除了颜色不同外其他均相同.如果从盒子中任摸出一个球,那么恰好摸到白球的可能性是A.23B.25C.35D.14.已知一个三角形两边的长分别为3和7,那么第三边的边长可能是下列各数中的A.3 B.4 C.7 D.105.在0,π,722,2,0.021021021…这五个数字中,无理数有A.2个 B.3个 C.4个 D.5个6.小丽做了一个画角平分线的仪器(图1),其中AB=AC,BD=DC.将仪器上的点A与∠PQR的顶点Q重合,调整AB 和AC的位置,使它们分别落在∠PQR的两边上,过点A、D的射线就是∠PRQ的角平分线(图2).此仪器的画图原理是:根据仪器结构,可得△ABD≌△ACD,这样就有∠BAD=∠CAD.其中,△ABD≌△ACD的依据是A.SAS B.ASA C.AAS D.SSS7. 某校有19名同学参加了中学生规范汉字书写大赛的初赛,他们的成绩各不相同,在统计这些同学的成绩后取前10名代表学校参加复赛.如果小新只知道自己的成绩,想判断自己能否进入复赛,那么他需要知道这组数据的A.平均数B.中位数C.众数D .频数8. 下列计算正确的是A.2a a= B .a b a b+=+ C.()2a a= D.ab a b=⋅赵爽“勾股圆方图”lQABP160°45°mm mmD.C.B.A.MNNMNMNM图1图2B 2A 2D C D 1B 1C 1A 1BA D 2C 2D CA B A 1C1B 1D 1DCBA MN9.如图,△ABC 中,AC =3,BC =4,AB=5,BD 平分∠ABC ,如果 M 、N 分别为BD 、BC 上的动点,那么CM+MN 的最小值是 A .2.4 B .3 C .4 D .4.810.如图,直线m 表示一条河,点M 、N 表示两个村庄,计划在m 上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)mNM二、填空题(本题共18分,每小题3分)11.如果二次根式 1x - 有意义,那么 x 的取值范围是 . 12.如果将一副三角板按如图方式叠放,那么∠1= .13.已知x 1 和 x 2分别为方程220x x +-=的两个实数根,那么 x 1+x 2= ;12x x ⋅= . 14. 计算: 2(23)26=-+ .15. “已知点P 在直线 l 上 ,利用尺规作图过点P 作直线 PQ ⊥l ”的作图方法如下:①以点 P 为圆心,以任意长为半径画弧,交直线 l 于A 、B 两点;②分别以A 、B 两点为圆心,以大于 12AB 的长为半径画弧,两弧交于点Q ; ③连接PQ .则直线 PQ ⊥l .请什么此方法依据的数学原理是 .16. 中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD 的面积为1,如果把它的各边分别延长一倍得到正方形A 1B 1C 1D 1,则正方形A 1B 1C 1D 1的面积为 ;再把正方形A 1B 1C 1D 1的各边分别延长一倍得到正方形A 2B 2C 2D 2(如图2),如此进行下去,得到的正方形A n B n C n D n 的面积为 (用含n 的式子表示,n 为正整数).三、解答题(本题共30分,每题5分)17.计算:()313+2312+64---EC B A D18.用配方法解一元二次方程:x 2 + 6x = 919. (本题5分)从①∠B =∠C ②∠BAD =∠CDA ③AB =DC④BE =CE 四个等式中选出两个作为条件,证明AED △是等腰三角形(写出一种即可).20. 某调查小组采用简单随机抽样方法,对我区部分初中生每天进行课外阅读的时间进行了抽样调查,将所得数据进行整理后绘制成如下统计图表,根据图表中的信息回答下列问题:我区部分初中生课外阅读时间频数分布直方图我区部分初中生课外阅读时间扇形统计图50分钟40分钟30分钟20分钟时间(分钟)50分钟 12% 分钟30分钟 44%分钟人数22018020024014010012060204080160O(1)该调查小组抽取的样本容量是多少? (2)分别补全两个统计图表;(3)请估计我区初中生每天进行课外阅读的平均时间.21.已知:关于x 的一元二次方程()22210k x x -++=有两个实数根.(1)求k 的取值范围;(2)如果k 为正整数,且该方程的两个实根都是整数,求k 的值.22. 对于正实数a 、b ,定义新运算a b ab a b *=-+.如果21661x *=,求实数x 的值.四、解答题(本题共21分)23. (本题5分)已知:关于x 的一元二次方程22(23)320x m x m m -++++=(m 为实数)的两个实数根分别是△ABC 的两边AB 、AC 的长,且第三边BC 的长为5.当m 取何值时,△ABC 为直角三角形?24.(本题5分)列方程解应用题:某校为开展开放性综合实践活动,计划在校园内靠墙用篱笆围出一块长方形种植园地.已知离校墙10m 的距离有一条平行于墙的甬路,如果篱笆的长度是40m ,种植园地的面积是198 m 2,那么这个长方形园地的边长应该各是多少m ?甬路25. (本题5分)如图,在Rt△ABC中,∠ACB =90°,AB=8 cm,AC=4cm,点D从点B出发,以每秒3cm的速度在射线..BC上匀速运动,当点D运动多少秒时,以A、D、B为顶点的三角形恰为等腰三角形?(结果可含根号).AC B26. (本题6分)(1)已知:图1中,△ABC为等边三角形,CE平分△ABC的外角∠ACM,D为BC边上任意一点,连接AD、DE,如果∠ADE=60°,求证:AD=DE.(2)图2中△ABC为任意三角形且∠ACB=60°,如果其他条件不变,这个结论还成立吗?说明你的理由.ADE MAB ME图1图2CBCD2016—2017学年度第一学期终结性检测试题八年级数学答案及评分标准一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B C A D B C D A 二、填空题(本题共18分,每小题3分)11.x≥1 12.105°13.-2(2分),1(1分);14.5 15.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线.(仅回答前一句扣1分)(或等腰三角形三线合一)注:此题答案不唯一,其他正确答案请酌情相应给分16.5(1分),5n(2分).三、解答题(本题共30分,每题5分)我区部分初中生课外阅读时间频数分布直方图50分钟40分钟30分钟20分钟时间(分钟)人数22018020024014010012060204080160O 20 分钟我我区部分初中生课外阅读时间扇形统计图302050分钟 12% 40 分钟30分钟44%人221820241410126020408016OECBA D 17.解:原式=1+2323+4-- 4分 =733- 5分18.解:x 2 + 6x = 9x 2 +6x+9 = 9+9 1分(x +3)2 =18 2分x +3=±32 3分x 1 =-3+32,x 2=-3-32 5分注:此题用其他解法不给分19.选择的条件是:①∠B =∠C ②∠BAD =∠CDA (或①③,①④,②③)1分证明:在△BAD 和△CDA 中∵B C BAD CDA AD DA ∠=∠⎧⎪∠=∠⎨⎪=⎩2分 ∴ BAD CDA ∆≅∆(AAS) 3分∴ A D B D A C ∠=∠ 4分 即 在△AED 中 A D E D A E∠=∠ ∴AE = DE ,△AED 为等腰三角形 5分 (注:选择不同条件且证明过程正确请酌情相应给分)20.解:(1)样本的容量为500 1分 (2)4分(3)208030220401405060500⨯+⨯+⨯+⨯=33.6答:我区初中生每天进行课外阅读的时间大约为33.6分钟. 5分21.解:(1)∵关于x 的一元二次方程()22210k x x -++=有两个实根∴k ≠2且△=()224242124b ac k k -=--=-≥0 1分 ∴k ≤3且k ≠ 2 2分 (2)∵k 为正整数,∴k=1或3 3分 又∵方程()22210k x x -++=的两个实根都为整数当k=1时,△ = 12-4k = 8,不是完全平方数,∴k=1不符合题意,舍去; 4分当k=3时,△ = 12-4k = 0,原方程为2210x x ++=符合题意∴k= 3 5分22.解:∵a b ab a b *=-+,且21661x *=,∴22161661x x -+= 1分当x >0时,得:241661x x -+=即24770x x +-= 2分解得:111x =-(舍去),27x = 3分当x <0时,得:241661x x --+=即24770x x --= 4分解得:311x =(舍去),47x =-∴x =±7 5分23.(1)∵a = 1,b = -(2m +3) ,c=m 2+3m+2 ∴ △= b 2-4ac=()()2223432m m m -+-++⎡⎤⎣⎦=2241294128m m m m ++--- = 1 >0∴无论m 取何值,方程总有两个不相等的实数根x40-2x 甬路由求根公式得:()2231422m b b ac x a +±-±-==即12x m =+,21x m =+ 2分 不妨设AB=m+1,AC=m+2,则AB < AC∵△ABC 为直角三角形且第三边BC =5,当BC 为直角边时,由勾股定理得:AB 2+ BC 2=AC 2∴()()222152m m ++=+,解得m =11 3分 当BC 为斜边时,由勾股定理得:AB 2 +AC 2=BC 2 ∴()()222125m m +++=,解得m 1=2,m 2=-5当m =-5时,AB=m+1=-4,∴m =-5舍去 4分 ∴m =11或m =2时,△ABC 为直角三角形. 5分24.解:设该园地垂直于校墙的一边长为 x m ,则平行于墙的一边长为(40-2x )m ,根据题意列方程得: 1分()402198x x -= 2分 整理,得:220990x x -+=解得:111x =,29x = 3分 ∵11>10,∴ 111x =不符合实际要求,舍去∴x = 9,此时40-2x = 22 4分答:这个长方形园地该园地垂直于校墙的一边长为9 m ,平行于墙的一边长为22m . 5分25.解:在Rt △ABC 中,∵∠A CB =90°,AB =8 cm ,AC=4 cm ,∴BC=22AB AC -=43 cm∵点D 从点B 出发,以每秒3 cm 的速度在射线BC 上匀速运动, 设当点D 运动t 秒时△ABD 为等腰三角形,则BD =(3t )cm 1分如图所示:D 3CD 2BAD 1ABME图1C D F当 AB = AD 时,∵∠A CB = 90°, ∴BD =2 BC = 83 cm即3t = 83,解得 t 1=8 2分当 BD=AB 时,3t = 8,∴t 2 =8333分 当 BD=AD 时,点D 在AB 的垂直平分线上, 作AB 的垂直平分线交BC 于D ,在Rt △ACD 中, ∵∠ACD =90°,∴ AC 2+ CD 2= AD 2又∵AC=4 cm ,AD = BD=3t cm , CD =BC -BD =(43-3t ) cm ,∴42+(43-3t )2 =(3t )2解得 t 3 = 83 4分答:当点D 运动8秒,833秒,83秒时,△ABD 为等腰三角形. 5分26.证明:(1)在AB 上取点F ,使得AF=DC ,连接FD 1分 ∵等边△ABC ,∴AB =BC ,∠B = ∠ACB = 60°,∠ACM = 120° 又∵AF=DC∴BF=BD ,△FBD 为等边三角形 ∴∠BFD = 60°∴∠AFD = 120° ∵CE 平分∠ACM ,∠ACM = 120° ∴∠ECM = 60°,∠DCE =120°∴∠AFD =∠DCE∵∠ADC =∠B+ ∠BAD ,∠ADC =∠ADE+ ∠EDC 且∠B=∠ADE=60°∴∠BAD = ∠EDC 即∠FAD = ∠CDE 在△AFD 和△DCE 中∵AFD DCEAF DC FAD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFD ≌△DCE (ASA)∴AD =DE 3分EM图2DBCAG(2) AD =DE 成立 在AC 上取点G ,使GC=CD ,连接GD 4分 ∵∠ACB =60°,∴△CDG 为等边三角形,∴DG=DC ,∠DGC =∠GDC = 60°,∠AGD = 120° ∵(1)中已证明∠ECD =120° ∴∠AGD =∠ECD∵∠ADE =∠ADG+ ∠GDE=60°, ∠GDC =∠GDE+ ∠EDC =60°∴∠AD G = ∠EDC 在△ADG 和△EDC 中∵AGD ECD DG DC ADG EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADG ≌△EDC (ASA)∴AD =ED 6分备注:此评分标准仅提供有限的解法,其他正确解法仿此标准酌情给分。

2016—2017学年度第一学期期末考试八年级数学试题()

2016—2017学年度第一学期期末考试八年级数学试题()

安徽省六安市2016-2017学年度第一学期期末考试八年级数学试题一、选择题1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( )2.函数=y 1-x 的自变量x 的取值范围是( )A .0≥xB .0>xC .1≥xD .1>x 3.将一副三角板按图中方式叠放,则∠α等于( )A .75°B .60°C .4D .30°4.工人师傅常用角尺平分一个任意角.作法如图:∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合.由此可得△MOC ≌△NOC .过角尺顶点C 的射线OC 便是∠AOB 的平分线,在这种作法中,判断△MOC ≌△NOC 的依据是( ) A .AAS B .SAS C .ASA D .SSS 5.已知一次函数b kx y +=,当2<x 时,0>y ,则下列判断正确的是( ) A .图象经过第一、二、四象限 B .图象经过第一、二、三象限 C .图象经过第一、三、四象限D .图象经过第二、三、四象限6.若点 P (a ,a -2)在第四象限,则a 的取值范围是( )A .-2<a <0B .0<a <2C .a >2D .a <0 7.各边长均为整数、周长为10的三角形有( )A .1个B .2个C .3个D .4个 8.在平面直角坐标系中,把直线x y =向左平移一个单位长度后,其解析式为( ) A .1+=x y B .x y = C .1-=x y D .2-=x y 9.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;第4题图第3题图 4530α④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1) →(1,1) →(1,0)→(2,0)→(2,1)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) A .(4,0) B . (5,5) C .(0,5) D .(5,0)二、填空题11.点P 关于x 轴对称的点是(2,-1),则P 点的坐标是 . 12.命题“如果0 ab ,那么a 、b 都是正数”是 .(填“真命题”或“假命题”) 13.如图所示,请用不等号“<”或“>”表示∠1、∠2、∠3的大小关系: .14.如图,△ABC 的周长为30cm ,DE 垂直平分边AC ,交BC 于点D ,交AC 于点E ,连接AD ,若AE=4cm ,则△ABD 的周长是= .15.某机械油箱中装有油60升,工作时平均每小时耗油5升,则工作时,油箱中剩余油量Q (升)与工作时间t (时)之间的函数关系式是 . 16.若△ABC 的一个外角等于140°,且∠B=∠C ,则∠A= .第9题图 第10题图O x y 1 2 3 32 1 第17题图第18题图12 3第13题图EABCD第14题图17.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程0kx b +=的解为2x =;④0<+b kx 的解集是2<x .其中说法正确的有 .(把你认为说法正确的序号都填上). 18.如图,在平面直角坐标系中,已知A (3,4)、B (0,2),在x 轴上有一动点C ,当△ABC 的周长最小时,C 点的坐标为 .三、解答题 19.计算:20.如图,F E ,分别为线段AC 上的两个动点,且AC DE ⊥于E 点,AC BF ⊥于F 点,若CE AF CD AB ==,,BD 交AC 于M 点.⑴求证:MF ME MD MB ==,; ⑵当F E ,两点移动至如图(2)所示的位置时,其余条件不变,上述结论是否成立?若成立,请加以证明.【证明】21.如图,已知一次函数b kx y +=1和正比例函数=2y x 21的图象交于点A (-2,m ),又一次函数b kx y +=1的图象过点B (1,4)。

2016-2017学年八年级数学期末考-试卷

2016-2017学年八年级数学期末考-试卷

2016-2017学年八年级数学期末考试卷(测试时间:120分钟满分:120分)一、1、下列计算中正确的是( ).A.2352a b a+=B.44a a a÷=C.248·a a a=D.236()a a-=-2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、如图1,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性图14、等腰三角形一个角是30°,则它的顶角是()A. 30°B. 120°C. 30°或120°D. 150°5、已知△ABC≌△FED,若∠FED=37°,∠BCA=100°,则∠BAC的度数是()A. 100°B. 80°C. 43°D. 37°6、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)7、如图2,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6 cm,则点D到AB的距离是( )A.4 cm B. 6 cmC.8 cm D.10 cm图28.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则根据题意列出的方程是( ).A.80705x x=-B.80705x x=+C.80705x x=+D.80705x x=-二、填空题(每题4分,共28分)9、当x ____ __时,分式xx-+121有意义..用科学记数法表示—0.000 000 0314= .10、如图3,已知AC=BD,DA∠=∠,请你添一个直接条件,,使△AFC≌△DEB.CBAAB DC E图4 11、如图4,在△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD 的周长为13cm,则△ABC 的周长为____________. 12、如图5,在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则AB= __㎝; 13、如图6,在△ABC 中,D 是BC 延长线上的一个点,∠B=40°,∠ACD=120°,则∠A=___________图5 图614、观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…,根据你发现的规律 计算:2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+=__________(n 为正整数). 15、如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有条__________条对角线。

2016-2017八年级数学期末试卷

2016-2017八年级数学期末试卷
故选D.
考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.
10.D.
【解析】
试题分析:
∵4a2+ma+25是完全平方式,
∴4a2+ma+25=(2a±5)2=4a2±20a+25,
∴m=±20.
故选D.
考点:完全平方式.
11.6cm
【解析】
试题分析:∵BD=10cm,BC=8cm,∠C=90°,
26.6台
【解析】设原来每天装配机器x台,依题意得:
解这个方程得:
经检验: 是原方程的解
答:原来每天装配机器6台。
27.改进操作方法后每天加工250个零件.
【解析】
试题分析:首先设出原计划每天加工x个零件,则改进后每天加工2.5x个零件,再根据“加工1500个零件时,改进后比原计划提前了9天”找出等量关系为:原计划时间﹣提前时间=改进方法后时间.
∵∠A+∠B+∠C=180°,∴∠A=180°-50°-50°=80°.
∴这个等腰三角形的顶角为50°和80°.
故选C.
考点:1.等腰三角形的性质;2.分类思想的应用.
9.D.
【解析】
试题分析:A、系数相加字母部分不变,故A错误;
B、底数不变指数相加,故B错误;
C、底数不变指数相减,故C错误;
D、底数不变指数相乘,故D正确;
A.圆B.正方形C.长方形D.等腰梯形
10.10.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,
有下列结论:①AB∥CD②AB=CD③AB⊥BC
④AO=OC其中正确的有()。
A. 4个B. 3个C. 2个D. 1个

雄2016-2017八年级上期末数学试题

雄2016-2017八年级上期末数学试题

A B CD2016—2017学年度第一学期期末考试八 年 级 数 学 试 题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。

一、选择题(本题共15个小题;1--10每题3分,11--15每题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案的字母填入下表) 1. 下列平面图形中,不是轴对称图形的是2. 使分式23x -有意义的x 的取值范围是 A .3x ≠ B .3x > C .3x < D .3x = 3.若1a b +=,则222a b b -+的值为A .4B .3C .1D .0 4. 若分式61a +的值为正整数,则整数a 的值有 A .3个 B.4个C .6个D .8个 5.下列运算错误的是A .22()1()a b b a -=- B .1a ba b --=-+ C .0.55100.20.323a b a ba b a b++=-- D .a b b aa b b a--=++6.下列各式从左到右的变形是因式分解且分解正确的是A. 2)1(3222++=++x x xB.22))((y x y x y x -=-+C. x 2-xy +y 2=(x -y)2D. )(222y x y x -=- 7.如图,△ABC ≌△DCB ,若AC =7,BE =5,则DE 的长为 A .2 B .3 C .4 D .5(第7题图) (第9题图) (第10题图)8. 在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关于x 轴对称,则m n +的值是--------------------( )A .-1B .1C .5D .-59. 如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线MN 交AC 于D 点,则∠DBC的度数是A .30°B .35°C .45°D .50°10. 如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC11. 已知图中的两个三角形全等,则∠1等于(第11题图)b (第12题图)CAN M BDA . 72°B . 60°C . 50°D . 58° 12.如图,在△ABC 中,分别以点A 和点B 为圆心,大于AB 21的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连结AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为A .7B .14C .17D .20 13. 下列计算正确的是A .(﹣5)0=0B .2a 2•a ﹣1=2aC .(ab 2)3=a 2b 5D . x 2+x 3=x 514.如图,等腰三角形ABC 的底边BC 长为2,面积是6,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为A .6B .7C .8D .9(第14题图)15. 如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=A .90°﹣αB . 90°+αC .D . 360°﹣α二、填空题(每小题3分,共15分.把答案写在题中横线上)16. 已知a+b=4,a ﹣b=3,则a 2﹣b 2= .17. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为______________________18.当x = 时,分式1xx -值为0.19.已知AD 是△ABC 的一条高,∠BAD=75°,∠CAD=15°,则∠BAC 的度数为_ __.(第15题图)(第18题图)20. 如图,在ABC △中,20cm AB =,12cm AC =,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当APQ △是以点∠A 为顶角,AP 为腰的等腰三角形时,运动的时间是_ __秒.三、解答题(本大题共6个小题;共65分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年度第一学期八年级数学期末试题(命题人:长子七中陈海燕)一、选择题(每小题3分,共30分)1、-8的立方根为 ( ) A .2 B .-2 C .±2 D .±42、实数711、π、4、 0.3、32-、 0.1010010001……中,无理数的个数是 ( ) A .2 B .3 C .4 D .5 3、下列运算正确的是 ( ) A. a 3·a 2=a 6 B.a 3÷a 2 = a 4C. (a 2b)3= a 6b 3 D. a +a = a 2 4、对某校八年级(1)班60名同学的一次数学测验成绩进行统计,如果80.5—90.5分这一组的频数是18,那么这个班的学生这次数学测验成绩在80.5—90.5分之间的频率是( ). A .18 B .0.3 C .0.4 D .0.355、已知a 、b 、c 是三角形的三边长,如果满足0108)6(2=-+-+-c b a ,则三角形的形状是 ( ) A .底与边不相等的等腰三角形 B .等边三角形 C .钝角三角形 D .直角三角形6.如图,在Rt △ACB 中,∠C=90°,BE 平分∠CBA 交AC 于点E ,过E 作ED ⊥AB 于D 点, 当∠A 为( )时,ED 恰为AB 的中垂线。

8、 某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃, 那么最省事的办法是 ( )A .带①去B .带②去C .带③去D .带①和②去9.如图,在△ACB 中,有一点P 在AC 上移动,若AB=AC=5,BC=6,则AP+BP +CP 的最小值为 ( )A. 4.8B. 8C. 8.8D. 9.810. 如图,是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m .按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长是( )(计算时视管道为线,中心O 为点)A .2mB .6mC .3m D.9m二、填空题(每小题3分,共15分)11.因式分解:22242yxy x +-=12.等腰三角形的周长为20cm ,一边长为6cm ,则底边长为cm 。

13.如果多项式1322+-kx x 能分解因式,其结果是)1)(12(++x x ,则k =。

14.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE,则∠E=15如图,在边长为aa >b );把剩下的部分拼 成一个梯形,分别计算这两个图形的阴影部分的面积,由此得到代数恒等式三、解答题(本题共8大题,共75分)16、计算:(每小题4分,共16分) (12))12)(12(++-m m (3)22016-20172015⨯(简便计算) (4))6()182412(2233445y x y x y x y x -÷-+ 17、先化简,再求值(7分).3),2(1)1(2a 22=--+++-x a a a a 其中)()(18(8分)问题背景:在△ABC 中,AB 、BC 、AC19. (本大题8分)如图所示,AC=AE ,∠1=∠2,AB=AD . 求证:BC=DE .20、(8分)某校为了满足学生借阅图书的需求,计划购买一批新书,为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如图所示 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图(2)该校学生最喜欢借阅哪类图书?并求出此类图书所在扇形的圆心角的度数?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其他这四类图书的购买量,问应购买这四类图书各多少本?21.(本大题8分).阅读下面材料: 在数学课上,老师提出如下问题:小芸的作法如下:请你回答:(1)作图第一步为什么要大于21AB 的长?”(2)小芸的作图是否正确?请说明理由。

22.(本题8分)探究:如图 在△ABC 中,DE 是边BC 的垂直平分线,交BC 于点D ,交AB 于点E ,连结CE。

求证:CE+AE=AB.应用:如图 在Rt△ABC中,∠B=90°,DE垂直平分AC交AB于D,交AC于E,连结CD,若AB=8,BC=4,求CD的长度。

23.(本题12分)如图8所示,在等边△ABC中,线段AM为BC边上的中线. 动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)填空:∠CAM=度;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.(备用图1) (备用图2)2016-2017学年度第一学期八年级数学期末试题(参考答案)一、1~5BBCBD 6~10 CACDB二、11~15 2(x-y)2 6或8 -1 15° ))((a 22b a b a b -+=-三、16.()72232142--31=++=⨯+=)(原式 ()()()2241)2(1212-12m m m m -=-=+=原式()()1-2016-1-20162016-120161-20163222==+=)(原式 ()xy y x y 34x 2-42233+-=原式()()()()()()()()4221122112a )2(1)1(2a .172222222-=+-=+-++-=---++-=--+++-=a a a a a aa a a a a a a a a )()(原式18..(8分) (1)(2分)S △ABC=3×3-1/2×2×1-1/2×3×2-1/2×3×1=3.5,故答案为(2)(6分)如图:,∵DE 2+EF 2=10 DF 2=10 ∴DE 2+EF 2=DF 2 ∴△DEF 是直角三角形。

19.(本大题8分)如图,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE . 证明:∵∠1=∠2 ∴∠CAB=∠EAD⎪⎩⎪⎨⎧=∠=∠=AD AB EAD CAB AE AC ∴ △CAB ≌△EAD(SAS)∴ BC=DE20、(1)略。

(2)漫画。

漫画:144°;科普:126°;文学:36°;其他:54°. (3)漫画:240本;科普:210本;文学:60本;其他:90本。

21、解:如果等于AB 21两弧只相交一点;如果小于AB 21,两弧没有相交所以作图第一步要大于21AB 的长。

2分 (2)小芸的作图是否正确?请说明理由。

小芸的作图是正确的。

3分理由:由作图知:AC=AD BC=BD 而CD 是两个三角形的公共边 在△CAD 和△CBD 中AC BC CD CD AD BD =⎧⎪=⎨⎪=⎩∴ △CAD ≌△CBD(SSS)6分 ∴CD 是AB 的对称轴即CD 是AB 的垂直平分线 8分22.(1)证明:∵DE 是边BC 的垂直平分线,交AB 于点E ∴EB=EC ∵AB=AE+EB ∴CE+AE=AB (2)523.解:(1)30;………………………………………………………..1分 (2)∵ABC ∆与DEC ∆都是等边三角形∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ……………….2分 ∴BCE DCB DCB ACD ∠+∠=∠+∠ ∴BCE ACD ∠=∠∴ACD ∆≌BCE ∆()SAS …………………………………………...3分(3) AOB ∠是定值,︒=∠60AOB ,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD ∆≌BCE ∆, 则︒=∠=∠30CAD CBE ,又︒=∠60ABC∴︒=︒+︒=∠+∠903060ABC CBE ………………………..............4分 ∵ABC ∆是等边三角形,线段AM 为BC 边上的中线 ∴AM 平分BAC ∠,即︒=︒⨯=∠=∠30602121BAC BAM ∴︒=︒-︒=∠603090BOA ………………………………5分②当点D 在线段AM 的延长线上时,如图2, ∵ABC ∆与DEC ∆都是等边三角形∴BC AC =,CE CD =,︒=∠=∠60DCE ACB∴DCE DCB DCB ACB ∠+∠=∠+∠,∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆()SAS ………………………………...6分∴︒=∠=∠30CAD CBE ,同理可得:︒=∠30BAM ,∴︒=︒-︒=∠603090BOA (7)分③当点D 在线段MA 的延长线上时, ∵ABC ∆与DEC ∆都是等边三角形∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴︒=∠+∠=∠+∠60ACE BCE ACE ACD ∴BCE ACD ∠=∠∴ACD ∆≌BCE ∆()SAS ……………………………….8分 ∴CAD CBE ∠=∠ 同理可得:︒=∠30CAM∴︒=∠=∠150CAD CBE∴︒=∠30CBO ,︒=∠30BAM ,∴︒=︒-︒=∠603090BOA ……………9分(图3)。

相关文档
最新文档