集合与函数的概念

合集下载

01集合与函数概念(fxb)

01集合与函数概念(fxb)

第一章集合与函数概念知识网络第一讲集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:三:集合的基本运算①两个集合的交集:A B = {}x x A x B ∈∈且; ②两个集合的并集: A B ={}x x A x B ∈∈或; ③设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且方法:常用数轴或韦恩图进行集合的交、并、补三种运算.★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。

难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。

重难点: 1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{})(x f y x =、{})(x f y y =、{})(),(x f y y x =等的差别,如果对集合中代表元素认识不清,将导致求解错误:问题:已知集合221,1,9432x y x y M x N y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭则M N=( )A. Φ;B. {})2,0(),0,3(;C. []3,3-;D. {}3,2[错解]误以为集合M 表示椭圆14922=+y x ,集合N 表示直线123=+y x ,由于这直线过椭圆的两个顶点,于是错选B[正解] C ; 显然{}33≤≤-=x x M ,R N =,故]3,3[-=N M(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用Venn 图。

3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即A ⊆φ (2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若B A ⊆,C B ⊆,则C A ⊆ 4.集合的运算性质(1)交集:①A B B A =;②A A A = ;③φφ= A ;④A B A ⊆ ,B B A ⊆ ⑤B A A B A ⊆⇔= ;(2)并集:①A B B A =;②A A A = ;③A A =φ ;④A B A ⊇ ,B B A ⊇ ⑤A B A B A ⊆⇔= ; (3)交、并、补集的关系 ①φ=A C A U ;U A C A U =②)()()(B C A C B A C U U U =;)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系 题型1:集合元素的基本特征[例1](2008年江西理)定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )A .0;B .2;C .3;D .6[解题思路]根据A B *的定义,让x 在A 中逐一取值,让y 在B 中逐一取值,xy 在值就是A B *的元素[解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知A B *={}4,2,0,故应选择D【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。

第讲集合与函数

第讲集合与函数

f ( x) 的定义域为
D f (, 0) (0, ) ,
g ( x) 的定义域为
Dg (0, ) ,
D f Dg
f ( x) 与 g ( x) 不相同。
例7 解
函数 f ( x) | x | 与 g ( x) x 2 是否相同?
f ( x) 与 g ( x) 的定义域均为实数域 R ,
。 2 。 1 。 3 2 1 。 x O 1 2 3 4 。 1 。 2 。 3
想想取整函数的图形是什么样子?
y [ x]
例5
已知 f ( x 1)
x 2, 0 x 1 , 求 f ( x) 的表达式。 2 x, 1 x 2,

令 t x 1,得 f (t )
确定的法则 f 有唯一确定的 y B 与之对应,则称 f
为从 A 到 B 的一个引映射,记为 f :A B,或记为 f :x y,x A,习惯上也记为 y f ( x),x A。
其中, y 称为 x 在映射 f 下的像, x 称为 y 在映射 f 下
的一个原像 , A 称为映射 f 的定义域 , 记为 D( f ); A中
在不需要区别上面两种情况时,一般将统称为函 数在区间 I 上单调增加, 记为 f ( x) I 。
设函数 f ( x) 在区间 I 上有定义, x1,x2 I ,
若 x2 x2 f ( x2 ) f ( x1 ),则称函数 f ( x) 在区 间 I 上是单调减少的。 若 x2 x2 f ( x2 ) f ( x1 ),则称函数 f ( x) 在区 间 I 上是严格单调减少的。
实质上,函数 y f ( x) 就是映射 f : A R

集合与函数概念

集合与函数概念

集合与函数概念
集合和函数是数学中的基本概念。

集合是指将具有相同性质的元素汇集在一起形成一个整体。

集合通常用大写字母表示,其中的元素用小写字母表示。

集合中的元素是无序的,且每个元素在集合中是唯一的,
即不会重复出现。

例如,可以将所有大写英文字母组成的集合表示为A = {A, B, C, ..., Z},表示包含了所有大写英文字母的集合。

函数是集合之间的一种特殊关系。

一个函数将一个集合中
的元素映射到另一个集合中的元素。

函数通常用小写字母
表示,例如f,g等。

函数包括一个定义域(即输入的集合)和一个值域(即输出的集合)。

对于定义域中的每一个元素,函数都有唯一的映射结果。

例如,可以定义一个函数f,它将自然数集合N中的每个元素n映射到其平方值,即f(n) = n^2。

在这个例子中,定义域为N,值域为平方数的集合。

集合和函数在数学中有广泛的应用,包括在代数、几何、概率论等领域。

它们是数学研究和应用的基础。

高中集合数学知识点

高中集合数学知识点

高中集合数学知识点高中集合数学知识点一集合与函数概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.2、集合的中元素的三个特性:元素的确定性;元素的互异性;元素的无序性.集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射.记作“f:A B〞给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b 的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性〞,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象.学习数学的方法第一,兴趣。

高中数学中的集合与函数关系

高中数学中的集合与函数关系

高中数学中的集合与函数关系在高中数学中,集合和函数是两个重要的概念,并且它们之间存在着密切的关系。

集合是由一些确定的元素所构成的总体,而函数则描述了集合与集合之间的映射关系。

本文将就高中数学中的集合与函数关系进行探讨,以帮助读者更好地理解和应用这两个概念。

一、集合的基本概念集合是数学中一个基础而重要的概念,它是由一些确定的元素组成的整体。

数学中常用大写字母表示集合,集合中的元素用小写字母表示,并用花括号表示集合的符号。

例如,集合A可以表示为A={a, b, c},其中a、b、c为A中的元素。

集合中的元素可以是任意的数、字符、图形等。

集合可以进行不同的运算,包括并集、交集、补集等。

并集表示两个或多个集合中所有元素的集合,交集表示两个或多个集合中共同元素的集合,补集表示一个集合中不属于另一个集合的元素的集合。

通过这些运算,我们可以更方便地处理集合中的元素。

二、函数的定义与性质函数是一个把一个集合的每个元素都对应到另一个集合的元素上的规则。

一个函数从一个集合A到另一个集合B的映射关系可以表示为f:A→B,其中A为函数的定义域,B为函数的值域。

对于集合A中的每一个元素a,都存在唯一一个元素b属于B,使得f(a)=b。

函数具有一些重要的性质,包括单射、满射和双射。

如果一个函数的每一个不同的自变量都对应着不同的函数值,那么该函数就是单射。

如果一个函数的值域等于该函数的陪域,即每个函数值都对应着函数的元素,那么该函数就是满射。

如果一个函数既是单射又是满射,那么它就是双射。

三、集合与函数的关系在高中数学中,集合和函数之间有着密切的关系。

集合可以作为函数的定义域和值域,并通过函数的运算得到新的集合。

例如,如果集合A={1,2,3},函数f:A→A定义为f(x)=2x,那么函数f将集合A中的每个元素映射到另一个集合A中的元素上,即f(1)=2,f(2)=4,f(3)=6。

另外,集合和函数也可以通过函数的图像来表示和描述。

集合与函数基本概念例题和知识点总结

集合与函数基本概念例题和知识点总结

集合与函数基本概念例题和知识点总结在数学的学习中,集合与函数是非常重要的基础概念。

理解和掌握它们对于后续的数学学习至关重要。

下面我们将通过一些例题来深入理解集合与函数的基本概念,并对相关知识点进行总结。

一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。

这些对象称为集合的元素。

例如,{1, 2, 3}就是一个集合,其中 1、2、3 是这个集合的元素。

集合的表示方法有列举法、描述法和图示法。

列举法就是将集合中的元素一一列举出来,如{1, 2, 3}。

描述法是用元素所满足的条件来描述集合,比如{x | x 是小于 5 的正整数}。

图示法常用的有韦恩图,它能直观地表示集合之间的关系。

集合之间的关系有子集、真子集、相等。

如果集合 A 的所有元素都属于集合 B,那么 A 是 B 的子集,记作A ⊆ B。

如果 A 是 B 的子集,且 B 中至少有一个元素不属于 A,那么 A 是B 的真子集,记作 A ⊂ B。

如果 A 和 B 的元素完全相同,那么 A 和 B 相等,记作 A = B。

下面我们通过一个例题来加深对集合概念的理解。

例 1:已知集合 A ={1, 2, 3},B ={x | x² 5x + 6 = 0},判断A 和B 的关系。

首先,求解集合 B 中的方程 x² 5x + 6 = 0,即(x 2)(x 3) = 0,解得 x = 2 或 x = 3。

所以集合 B ={2, 3}。

因为集合 A 中的元素 1 不属于集合 B,而集合 B 的元素都属于集合A,所以 B 是 A 的真子集,即 B ⊂ A。

二、函数的基本概念函数是一种特殊的对应关系。

设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x) 和它对应,那么就称 f:A→B 为从集合 A 到集合B 的一个函数。

函数的三要素是定义域、值域和对应法则。

集合与函数的概念总结

集合与函数的概念总结

集合与函数的概念总结集合与函数是数学中的基本概念,它们在数学和其他科学领域中有着广泛的应用。

下面是对集合与函数的概念进行全面总结的1000字。

首先,我们先来介绍集合的概念。

集合是指具有某种共同性质的事物的总体,可以是物体、数或者其他数学对象的集合。

集合的表示方法可以是列举法、描述法或图示法。

例如,{1, 2, 3, 4}就是一个集合,它包含了数值为1、2、3和4的元素。

集合中的元素是无序的,且不重复。

我们通常用大写字母A, B, C等来表示集合。

在集合的运算方面,常见的有并、交和差。

集合的并(union)指的是两个或多个集合中的所有元素的总体,用符号“∪”表示。

例如,A = {1, 2},B = {2, 3},则A∪B = {1, 2, 3}。

集合的交(intersection)指的是两个或多个集合中的共有元素的总体,用符号“∩”表示。

例如,A∩B = {2}。

集合的差(difference)指的是一个集合中去掉与另一个集合共有元素后剩下的元素,用符号“-”表示。

例如,A-B = {1}。

此外,还有集合的补集、子集和幂集。

集合的补集是指某个集合中不属于另一个集合的元素的总体,用符号“’”或“-”表示。

例如,A’表示A的补集,即不属于A的元素构成的集合。

集合的子集指的是某个集合的所有元素都含在另一个集合之中,用符号“⊆”表示。

例如,A⊆B表示A是B的子集。

集合的幂集指的是一个集合的所有子集所构成的集合。

接下来,我们来介绍函数的概念。

函数是一种特殊的关系,它把一个集合中的每个元素与另一个集合中的唯一元素相对应。

函数由三个部分组成,即定义域、值域和对应关系。

定义域是指函数的输入值所属的集合,也就是函数可以接受的值的集合。

值域是指函数的输出值所属的集合,也就是函数可以返回的值的集合。

对应关系是指定义域中的每个元素与值域中的唯一元素之间的关系。

函数的表示方法有多种,其中最常见的是显式表示法和隐式表示法。

显式表示法是指用一个公式或表达式来表示函数。

高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1

高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1

❖ 本节重点:函数的概念、定义域、值域的求 法.
❖ 本节难点:(1)函数概念的理解.
❖ (2)实际应用问题中函数的定义域和复合函数 定义域.
❖ (一)对函数y=f(x)涵义的理解,应明确以 下几点:
❖ ①“A,B是非空数集”,若求得自变量取 值范围为∅,则此函数不存在.
❖ ②定义域、对应法则和值域是函数的三要 素,实际上,值域是由定义域和对应法则 决定的,所以看两个函数是否相等,只要 看这两个函数的定义域与对应法则是否相 同.
❖ (1)当每辆车的月租金定为3600元时,能租 出多少辆车?
❖ (2)当每辆车的月租金定为多少元时,租赁
[解析] (1)当每辆车的月租金为 3600 元时,未租出的 车辆数为:(3600-3000)÷50=12,所以这时租出了 88 辆车.
(2)设每辆车的月租金为 x 元,则租赁公司的月收益为: f(x)=(100-x-530000)(x-150)-x-530000×50,整理得:f(x) =-5x02 +162x-2100=-510(x-4050)2+307050.所以当 x= 4050 元时,f(x)最大,其最大值为 307050.即当每辆车的月租 金为 4050 元时,租赁公司的月收益最大,最大值为 307050 元.
❖ [分析] (1)据函数的定义:“对于集合A中的 任意一个元素,在集合B中有唯一确定的元素 与之对应”进行判断.
❖ (2)给定函数的解析式,也就给定了由定义域 到值域的对应法则,只要将自变量允许值代 入,就可以求得对应的函数值.
[解析] (1)①由 x2+y2=2 得 y=± 2-x2,因此由它不能 确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个±1.
②由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 值与之 对应,故由它可以确定 y 是 x 的函数.

高中数学知识点总结第一章

高中数学知识点总结第一章

高中数学 知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法 N 表示自然数集,N* 或N + 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B {x A A =∅=∅B A ⊆ B B ⊆B {x A A = A ∅=B A ⊇ B B ⊇A ð{x ()U A =∅ð ()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法()()()U U A B A B =痧?()()()U U A B A B =痧?(2)一元二次不等式的解法〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由yxo于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)a f xx a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈, 都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在处有定义,则.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图: ①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换 01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸 ③对称变换 ()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

集合与函数的概念

集合与函数的概念

集合与函数的概念(一)知识点归纳与典例分析一、集合有关概念1.集合的含义2.集合的元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … }集合的表示方法:列举法与描述法、Venn图。

◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R4、集合的分类:有限集、无限集、空集二、集合间的基本关系1.子集和真子集①任何一个集合是它本身的子集。

A⊆A如果 A⊆B, B⊆C ,那么 A⊆C②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)2.“相等”注意:证明两个集合相等,就是证明两个集合互相包含如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算:交集、并集、补集运算类型交集并集补集性质A I A=AA IΦ=ΦA I B=B I AA I B⊆AA I B⊆BA Y A=AA YΦ=AA Y B=B Y AA Y B⊇AA Y B⊇B(C u A) I (C u B)= C u (A Y B)(C u A) Y (C u B)= C u(A I B)A Y (C u A)=UA I (C u A)= Φ.典例分析:1.下列四组对象,能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有个3.若集合M={y|y=x2-2x+1,x∈R},N={x|x≥0},则M与N的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A ∩C=Φ,求m 的值 四、函数的有关概念1.函数的概念2.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。

数学集合与函数知识点总结

数学集合与函数知识点总结

数学集合与函数知识点总结一、集合的基本概念1.1 集合的定义集合是指具有确定的特征和个数、可以确定归属关系的一组事物的总和。

集合中的元素可以是数字、字母、符号、实际事物或抽象概念等。

1.2 集合的表示方法集合可以用两种方式表示:列举法和描述法。

列举法是将集合的元素逐个列举出来,用大括号{}括起来表示;描述法是用适当的条件来表示集合的元素(x满足某个条件),一般用符号{}或者条件表达式表示。

1.3 集合的元素关系集合中的元素之间可以存在包含关系、相等关系和互不相交关系。

1.4 集合的运算常见的集合运算有并集、交集、差集、补集、直积等。

1.5 集合的基本性质集合的基本性质包括空集的唯一性、互补律、结合律、分配律、对称律等。

二、集合的性质和应用2.1 集合的性质集合的性质包括有限集合和无限集合、有穷集合和无穷集合、空集合和非空集合等。

2.2 集合的应用集合在数学和其他学科中都有很多应用,如概率论、图论、数理逻辑、离散数学等。

三、函数的基本概念3.1 函数的定义函数是一个元素集合到另一个元素集合的映射关系。

通常用f(x)表示函数,其中x是自变量,f(x)是因变量。

3.2 函数的图像函数的图像是函数的自变量和因变量的对应关系在平面直角坐标系中的表示,常用图形表示。

3.3 函数的特性函数具有单值性、有限性、相等性等特性,其中单值性是指每个自变量在函数中对应一个确定的因变量。

3.4 函数的表示方法函数可以用解析式、图象或者映射表示。

3.5 函数的分类函数可以按照定义域、值域、解析式的形式来分类,常见的函数有多项式函数、指数函数、对数函数、三角函数等。

四、函数的性质和应用4.1 函数的性质函数的性质包括奇偶性、周期性、单调性、最值等。

4.2 函数的应用函数在数学和其他学科中有很多应用,可以用来描述现实生活中的变化规律,如物理学中的运动规律、经济学中的需求函数、生物学中的生长规律等。

五、数学集合与函数的综合应用5.1 集合与函数的关系集合与函数是数学中基本的概念,它们之间有着密切的关系。

高中数学 第一章 集合与函数概念 1.2 函数及其表示学

高中数学 第一章 集合与函数概念 1.2 函数及其表示学

1.2 函数及其表示1.2.1 函数的概念预习课本P15~18,思考并完成以下问题(1)在集合的观点下函数是如何定义?函数有哪三要素?(2)如何用区间表示数集?(3)相等函数是指什么样的函数?[新知初探]1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.[点睛] 对函数概念的3点说明(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]3.其它区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)[点睛] 关于无穷大的2点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)区间表示数集,数集一定能用区间表示.( )(2)数集{x|x≥2}可用区间表示为[2,+∞].( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( )(4)函数值域中每一个数在定义域中一定只有一个数与之对应.( )(5)函数的定义域和值域一定是无限集合.( )答案:(1)×(2)×(3)√(4)×(5)×2.函数y=1x+1的定义域是( )A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0) 答案:C3.已知f(x)=x2+1,则f ( f (-1))=( ) A.2 B.3 C.4 D.5 答案:D4.用区间表示下列集合:(1){x|10≤x≤100}用区间表示为________.(2){x|x>1}用区间表示为________.答案:(1)[10,100] (2)(1,+∞)[例1] (1)设M={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形:其中,能表示从集合M 到集合N 的函数关系的个数是( ) A .0 B .1 C .2D .3(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ① f :把x 对应到3x +1; ② g :把x 对应到|x |+1; ③ h :把x 对应到1x; ④ r :把x 对应到x .(1)[解析] ①中,因为在集合M 中当1<x ≤2时,在N 中无元素与之对应,所以①不是;②中,对于集合M 中的任意一个数x ,在N 中都有唯一的数与之对应,所以②是;③中,x =2对应元素y =3∉N ,所以③不是;④中,当x =1时,在N 中有两个元素与之对应,所以④不是.因此只有②是,故选B.[答案] B(2)[解] ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任一x ∈R,3x +1都有唯一确定的值与之对应,如x =-1,则3x +1=-2与之对应.同理,②也是实数集R 上的一个函数.③不是实数集R 上的函数.因为当x =0时,1x的值不存在.④不是实数集R 上的函数.因为当x <0时,x 的值不存在.1.判断对应关系是否为函数的2个条件 (1)A ,B 必须是非空数集.(2)A 中任意一元素在B 中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系. 2.根据图形判断对应是否为函数的方法 (1)任取一条垂直于x 轴的直线l . (2)在定义域内平行移动直线l .(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.函数的判断[活学活用]1.下列对应或关系式中是A 到B 的函数的是( ) A .A =R ,B =R ,x 2+y 2=1B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1解析:选B A 错误,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一.B 正确,符合函数的定义.C 错误,2∈A ,在B 中找不到与之相对应的数.D 错误,-1∈A ,在B 中找不到与之相对应的数.[例2] 下列各组函数中是相等函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1 C .y =2x 与y =2x (x ≥0) D .y =(x +1)2与y =x 2[解析] 对于选项A ,前者定义域为R ,后者定义域为{x |x ≠1},不是相等函数;对于选项B ,虽然变量不同,但定义域和对应关系均相同,是相等函数;对于选项C ,虽然对应关系相同,但定义域不同,不是相等函数;对于选项D ,虽然定义域相同,但对应关系不同,不是相等函数.[答案] B判断函数相等的方法判断函数是否相等,关键是树立定义域优先的原则. (1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同. [活学活用]2.下列各组式子是否表示同一函数?为什么?相等函数(1)f (x )=|x |,φ(t )=t 2; (2)y =x 2,y =(x )2;(3)y =1+x ·1-x ,y =1-x 2; (4)y =3-x2,y =x -3.解:(1)f (x )与φ(t )的定义域相同,又φ(t )=t 2=|t |,即f (x )与φ(t )的对应关系也相同,∴f (x )与φ(t )是同一函数.(2)y =x 2的定义域为R ,y =(x )2的定义域为{x |x ≥0},两者定义域不同,故y =x 2与y =(x )2不是同一函数.(3)y =1+x ·1-x 的定义域为{x |-1≤x ≤1},y =1-x 2的定义域为{x |-1≤x ≤1},即两者定义域相同.又∵y =1+x ·1-x =1-x 2,∴两函数的对应关系也相同.故y =1+x ·1-x 与y =1-x 2是同一函数.(4)∵y =3-x 2=|x -3|与y =x -3的定义域相同,但对应关系不同,∴y =3-x2与y =x -3不是同一函数.[例3] 求下列函数的定义域:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[解] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}.求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零. (2)若f (x )是偶次根式,则被开方数大于或等于零.(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合. (4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义. 求函数的定义域[活学活用]3.求下列函数的定义域: (1)y =2+3x -2; (2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0.解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1,且x ≠1}.[例4] (1)已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R),则f (2)=________,f (g (2))=________.(2)求下列函数的值域: ①y =x +1;②y =x 2-2x +3,x ∈[0,3); ③y =3x -1x +1;④y =2x -x -1.(1)[解析] ∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,求函数值和值域∴g (2)=22+2=6,∴f ( g (2))=f (6)=11+6=17.[答案] 13 17(2)[解] ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y ≠3, ∴y =3x -1x +1的值域为{y |y ∈R 且y ≠3}.④(换元法)设t =x -1,则t ≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.1.函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则. 2.求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.[活学活用]4.求下列函数的值域:(1)y =2x +1+1;(2)y =1-x21+x2.解:(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1].层级一 学业水平达标1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:选D 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:选B A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=x 2x和g (x )=x x2解析:选D A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.4.设f (x )=x 2-1x 2+1,则f 2f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35D .-35解析:选Bf 2 f ⎝ ⎛⎭⎪⎫1 2 =22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1. 5.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1解析:选B y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x2+1的值域为[1,+∞).6.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意知3a -1>a ,则a >12.答案:⎝ ⎛⎭⎪⎫12,+∞ 7.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. 解析:∵x =1,2,3,4,5, ∴f (x )=2x -3=-1,1,3,5,7. ∴f (x )的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}8.设f (x )=11-x,则f ( f ( x ))=________.解析:f ( f (x ))=11-11-x =11-x -11-x =x -1x . 答案:x -1x(x ≠0,且x ≠1) 9.已知f (x )=x 2-4x +5. (1)求f (2)的值.(2)若f (a )=10,求a 的值. 解:(1)由f (x )=x 2-4x +5, 所以f (2)=22-4×2+5=1. (2)由f (a )=10,得a 2-4a +5=10, 即a 2-4a -5=0,解得a =5或a =-1. 10.求函数y =x +26-2x -1的定义域,并用区间表示.解:要使函数解析式有意义,需满足:⎩⎪⎨⎪⎧x +2≥0,6-2x ≥0,6-2x ≠1,即⎩⎪⎨⎪⎧x ≥-2,x ≤3,x ≠52,所以-2≤x ≤3且x ≠52.所以函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤3且x ≠52. 用区间表示为⎣⎢⎡⎭⎪⎫-2,52 ∪⎝ ⎛⎦⎥⎤52,3.层级二 应试能力达标1.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6D .x =y解析:选A 对于A ,由x =y 2+1得y 2=x -1.当x =5时,y =±2,故y 不是x 的函数;对于B ,y =2x 2+1是二次函数;对于C ,x -2y =6⇒y =12x -3是一次函数;对于D ,由x =y 得y =x 2(x ≥0)是二次函数.故选A.2.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B =( ) A .[1,+∞) B .(1,+∞) C .[2,+∞)D .(0,+∞)解析:选C 集合A 表示函数y =x -1的定义域,则A ={x |x ≥1},集合B 表示函数y =x 2+2的值域,则B ={y |y ≥2},故A ∩B ={x |x ≥2}.3.若函数f (x )=ax 2-1,a 为一个正数,且f ( f (-1))=-1,那么a 的值是( ) A .1 B .0 C .-1D .2解析:选A ∵f (x )=ax 2-1,∴f (-1)=a -1,f (f (-1))=f (a -1)=a ·(a -1)2-1=-1.∴a (a -1)2=0. 又∵a 为正数,∴a =1.4.已知函数y =f (x )与函数y =x +3+1-x 是相等的函数,则函数y =f (x )的定义域是( )A .[-3,1]B .(-3,1)C .(-3,+∞)D .(-∞,1]解析:选A 由于y =f (x )与y =x +3+1-x 是相等函数,故二者定义域相同,所以y =f (x )的定义域为{x |-3≤x ≤1}.故写成区间形式为[-3,1].5.函数y =1x -2的定义域是A ,函数y =2x +6 的值域是B ,则A ∩B =________(用区间表示).解析:要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =2x +6 ≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2,或x >2}.答案:[0,2)∪(2,+∞)6.函数y =6-x|x |-4的定义域用区间表示为________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧6-x ≥0,|x |-4≠0,即⎩⎪⎨⎪⎧x ≤6,x ≠±4,∴定义域为(-∞,-4)∪(-4,4)∪(4,6]. 答案:(-∞,-4)∪(-4,4)∪(4,6] 7.试求下列函数的定义域与值域:(1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=(x -1)2+1; (3)f (x )=5x +4x -1;(4)f (x )=x -x +1.解:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}.(2)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (3)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是f (t )=t 2-1-t =⎝ ⎛⎭⎪⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y ≥-54.8.已知函数f (x )=x 21+x2. (1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值;(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016的值.解:(1)∵f (x )=x 21+x2,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1, f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x=1, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=1,f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1,…,f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=2 015.1.2.2 函数的表示法 第一课时 函数的表示法预习课本P19~21,思考并完成以下问题(1)表示两个变量之间函数关系的方法有几种?分别是什么?(2)函数的各种表示法各有什么特点?[新知初探][点睛] 列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何一个函数都可以同上述三种方法表示.( ) (2)函数f (x )=2x +1不能用列表法表示.( )(3)函数的图象一定是定义区间上一条连续不断的曲线.( ) 答案:(1)× (2)√ (3)×2.已知函数f (x )由下表给出,则f (3)等于( )x 1≤x <2 2 2<x ≤4 f (x )1 23A.1C.3 D.不存在答案:C3.函数y=f(x)的图象如图,则f(x)的定义域是( )A.RB.(-∞,1)∪(1,+∞)C.(-∞,0)∪(0,+∞)D.(-1,0)答案:C4.已知反比例函数f (x)满足f(3)=-6,f (x)的解析式为________.答案:y=-18x[例1] 某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来[解] (1)列表法:x/台1234 5y/元 3 000 6 0009 00012 00015 000x/台678910y/元18 00021 00024 00027 00030 000(2)图象法:(3)解析法:y=3 000x,x∈{1,2,3,…,10}.理解函数的表示法3个关注点(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满函数的表示法足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义. (3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.[活学活用]1.已知函数f (x ),g (x )分别由下表给出.x 1 2 3 f (x )211则f ( g (1))的值为________; 当g ( f (x ))=2时,x =________.解析:由于函数关系是用表格形式给出的,知g (1)=3,∴f ( g (1))=f (3)=1.由于g (2)=2,∴f (x )=2,∴x =1.答案:1 1[例2] 作出下列函数的图象并求出其值域. (1)y =2x +1,x ∈[0,2]; (2)y =2x,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].[解] (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分,观察图象可知,其值域为[1,5].(2)当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分,观察图象可知其值域为(0,1].(3)当-2≤x ≤2时,图象是抛物线y =x 2+2x 的一部分.x 1 2 3 g (x )321函数图象的作法及应用由图可得函数的值域是[-1,8].作函数y=f(x)图象的方法(1)若y=f(x)是已学过的基本初等函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y=f(x)不是所学过的基本初等函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y=f(x)的图象.[活学活用]2.作出下列函数的图象:(1)y=1-x(x∈Z);(2)y=x2-4x+3,x∈[1,3].解:(1)因为x∈Z,所以图象为直线y=1-x上的孤立点,其图象如图①所示.(2)y=x2-4x+3=(x-2)2-1,当x=1,3时,y=0;当x=2时,y=-1,其图象如图②所示.[例3] 求下列函数的解析式:(1)已知函数f (x+1)=x+2x,求f (x);(2)已知函数f (x)是二次函数,且f (0)=1,f (x+1)-f (x)=2x,求f (x).[解] (1)[法一换元法]设t=x+1,则x=(t-1)2(t≥1).∴f (t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1,∴f (x)=x2-1(x≥1).函数解析式的求法[法二 配凑法]∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 整理,得2ax +(a +b )=2x .由恒等式的性质,知上式中对应项的系数相等,∴⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +1.求函数解析式的4种常用求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[活学活用]3.已知f (x +1)=x 2-3x +2,求f (x ).解:法一(配凑法):∵f (x +1)=x 2-3x +2=(x +1)2-5x +1=(x +1)2-5(x +1)+6, ∴f (x )=x 2-5x +6.法二(换元法):令t =x +1,则x =t -1, ∴f (t )=(t -1)2-3(t -1)+2=t 2-5t +6, 即f (x )=x 2-5x +6.4.已知函数f (x )是一次函数,若f ( f (x ))=4x +8,求f (x )的解析式. 解:设f (x )=ax +b (a ≠0),则f ( f (x ))=f ( ax +b )=a (ax +b )+b =a 2x +ab +b .又f ( f (x ))=4x +8, ∴a 2x +ab +b =4x +8,即⎩⎪⎨⎪⎧a 2=4,ab +b =8,解得⎩⎪⎨⎪⎧a =2,b=83或⎩⎪⎨⎪⎧a =-2,b =-8.∴f (x )=2x +83或f (x )=-2x -8.5.已知f (x )+2f (-x )=x 2+2x ,求f (x ). 解:∵f (x )+2 f (-x )=x 2+2x , ① ∴将x 换成-x ,得f (-x )+2 f (x )=x 2-2x . ② ∴由①②得3 f (x )=x 2-6x ,∴f (x )=13x 2-2x .层级一 学业水平达标1.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为( )A .3B .2C .1D .0解析:选B 由函数g (x )的图象知,g (2)=1,则f (g (2))=f (1)=2.2.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1解析:选B 令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t 1-1t=1t -1,故选B.3.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3解析:选B 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧22a +b -3a +b =5,20·a +b --a +b =1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.4.设f (x )=2x +3,g (x )=f (x -2),则g (x )=( ) A .2x +1 B .2x -1 C .2x -3D .2x +7解析:选B ∵f (x )=2x +3,∴f (x -2)=2(x -2)+3=2x -1,即g (x )=2x -1,故选B.5.若f (1-2x )=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12等于( )A .1B .3C .15D .30解析:选C 令1-2x =t , 则x =1-t2(t ≠1),∴f (t )=4t -12-1(t ≠1), 即f (x )=4x -12-1(x ≠1),∴f ⎝ ⎛⎭⎪⎫12=16-1=15. 6.已知函数f (x )由下表给出,则f ( f (3))=________.x 1 2 3 4 f (x )3241=1. 答案:17.已知函数f (x )=x -m x,且此函数图象过点(5,4),则实数m 的值为________. 解析:将点(5,4)代入f (x )=x -m x,得m =5. 答案:58.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则f (x +1)=a (x +1)+b =ax +a +b , 依题设,3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23.答案:2x -239.(1)已知函数f (x )=x 2,求f (x -1); (2)已知函数f (x -1)=x 2,求f (x ). 解:(1)f ( x -1)=(x -1)2=x 2-2x +1.(2)法一(配凑法):因为f (x -1)=x 2=(x -1)2+2(x -1)+1,所以f (x )=x 2+2x +1.法二(换元法):令t =x -1,则x =t +1,可得f (t )=(t +1)2=t 2+2t +1,即f (x )=x 2+2x +1.10.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则3 f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.层级二 应试能力达标1.已知函数f (x +1)=x 2-x +3,那么f (x -1)的表达式是( ) A .f (x -1)=x 2+5x -9 B .f (x -1)=x 2-x -3 C .f (x -1)=x 2-5x +9D .f (x -1)=x 2-x +1解析:选C f (x +1)=(x +1)2-3(x +1)+5, 所以f (x )=x 2-3x +5,f (x -1)=(x -1)2-3(x -1)+5=x 2-5x +9,故选C.2.若一次函数的图象经过点A (1,6)和B (2,8),则该函数的图象还可能经过的点的坐标为( )A.⎝ ⎛⎭⎪⎫12,5 B.⎝ ⎛⎭⎪⎫14,4 C .(-1,3)D .(-2,1)解析:选A 设一次函数的解析式为y =kx +b (k ≠0),由该函数的图象经过点A (1,6)和B (2,8),得⎩⎪⎨⎪⎧k +b =6,2k +b =8,解得⎩⎪⎨⎪⎧k =2,b =4,,所以此函数的解析式为y =2x +4,只有A选项的坐标符合此函数的解析式.故选A.3.设f (x )=2x +a ,g (x )=14(x 2+3),且g (f (x ))=x 2-x +1,则a 的值为( )A .1B .-1C .1或-1D .1或-2解析:选B 因为g (x )=14(x 2+3),所以g (f (x ))=14[(2x +a )2+3]=14(4x 2+4ax +a2+3)=x 2-x +1,求得a =-1.故选B.4.函数y =f (x )(f (x )≠0)的图象与x =1的交点个数是( ) A .1 B .2 C .0或1D .1或2解析:选C 结合函数的定义可知,如果f :A →B 成立,则任意x ∈A ,则有唯一确定的B 与之对应,由于x =1不一定是定义域中的数,故x =1可能与函数y =f (x )没有交点,故函数f (x )的图象与直线x =1至多有一个交点.5.已知x ≠0,函数f (x )满足f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则f (x )=________.解析:f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,所以f (x )=x 2+2.答案:x 2+26.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.已知函数f (x )=xax +b(a ,b 为常数,且a ≠0)满足f (2)=1,且f (x )=x 有唯一解,求函数y =f (x )的解析式和f (f (-3))的值.解:因为f (2)=1,所以22a +b=1,即2a +b =2,①又因为f (x )=x 有唯一解,即x ax +b=x 有唯一解,所以ax 2+(b -1)x =0有两个相等的实数根,所以Δ=(b -1)2=0,即b =1.代入①得a =12.所以f (x )=x 12x +1=2xx +2.所以f (f (-3))=f ⎝⎛⎭⎪⎫-6-1=f (6)=2×66+2=32.8.某企业生产某种产品时的能耗y 与产品件数x 之间的关系式为:y =ax +bx.且当x =2时,y =100;当x =7时,y =35.且此产品生产件数不超过20件.(1)写出函数y 关于x 的解析式; (2)用列表法表示此函数,并画出图象.解:(1)将⎩⎪⎨⎪⎧x =2,y =100,与⎩⎪⎨⎪⎧x =7,y =35,代入y =ax +bx中,得⎩⎪⎨⎪⎧2a +b2=100,7a +b7=35⇒⎩⎪⎨⎪⎧4a +b =200,49a +b =245⇒⎩⎪⎨⎪⎧a =1,b =196.所以所求函数解析式为y =x +196x(x ∈N,0<x ≤20).(2)当x ∈{1,2,3,4,5,…,20}时,列表:x 1 2 3 4 5 6 7 8 9 10 y 197 100 68.353 44.2 38.7 35 32.5 30.8 29.6x 11 12 13 14 15 16 17 18 19 20 y28.828.328.12828.128.2528.528.929.329.8依据上表,画出函数y 的图象如图所示,是由20个点构成的点列.第二课时 分段函数与映射预习课本P21~23,思考并完成以下问题(1)什么是分段函数?分段函数是一个还是几个函数?(2)怎样求分段函数的值?如何画分段函数的图象?(3)映射的定义是什么?映射和函数的关系怎样?[新知初探]1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.[点睛] (1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.2.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.[点睛] 映射由三要素组成,集合A,B以及A到B的对应关系,集合A,B可以是非空的数集,也可以是点集或其他集合.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)映射中的两个非空集合并不一定是数集.( )(2)分段函数由几个函数构成.( )(3)函数f(x)=⎩⎪⎨⎪⎧x+1,x≤1,-x+3,x>1是分段函数.( )(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( )答案:(1)√(2)×(3)√(4)×2.已知f(x)=⎩⎪⎨⎪⎧-x,x≤0,x2,x>0.则f(-2)=( )A.2 B.4C.-2 D.2或4答案:A3.已知集合A={a,b},集合B={0,1},下列对应不是A到B的映射的是( )答案:C4.函数f(x)=⎩⎪⎨⎪⎧2,1≤x<2,3,x≥2的定义域为________.答案:[1,+∞)[例1] 下列对应是不是从A到B的映射?(1)A=B=N*,f:x→|x-3|;(2)A=N,B=Q,f:x→1x;(3)A={x|1≤x≤2},B={y|2≤y≤5},f:x→y=2x.[解] (1)当x=3∈A时,|x-3|=0∉B,即A中的元素3在B中没有元素与之对应,所以(1)不是映射.映射的概念(2)当x =0∈A 时,1x无意义,即A 中的元素0在B 中没有元素与之对应,所以(2)不是映射.(3)当1≤x ≤2时,2≤2x ≤4,而且对于A 中每一个x 值,按照对应关系y =2x ,在B 中都有唯一的元素与之对应,所以(3)是映射.判断一个对应是不是映射的2个关键(1)对于A 中的任意一个元素,在B 中是否有元素与之对应. (2)B 中的对应元素是不是唯一的.[点睛] “一对一”或“多对一”的对应才可能是映射. [活学活用]1.已知A ={1,2,3,…,9},B =R ,从集合A 到集合B 的映射f :x →x2x +1.(1)与A 中元素1相对应的B 中的元素是什么? (2)与B 中元素49相对应的A 中的元素是什么?解:(1)A 中元素1,即x =1,代入对应关系得x 2x +1=12×1+1=13,即与A 中元素1相对应的B 中的元素是13.(2)B 中元素49,即x 2x +1=49,解得x =4,因此与B 中元素49相对应的A 中的元素是4.[例2] 已知函数f (x )=⎩⎪⎨⎪⎧|x -1|-2,|x |≤1,11+x2,|x |>1.(1)求f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12的值;(2)若f (x )=13,求x 的值.[解] (1)因为f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+⎝ ⎛⎭⎪⎫-322=413.(2)f (x )=13,若|x |≤1,则|x -1|-2=13,分段函数求值得x =103或x =-43.因为|x|≤1,所以x 的值不存在;若|x |>1,则11+x 2=13,得x =±2,符合|x |>1.所以若f (x )=13,x 的值为± 2.1.求分段函数的函数值的方法(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.求某条件下自变量的值的方法先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.[活学活用]2.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +2,x ≤0,则f (-5)的值等于________.解析:f (-5)=f (-5+2)=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=2×1=2.答案:23.函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,45x ,x >2.若f (x 0)=8,则x 0=________.解析:当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6, ∴x 0=-6或x 0=6(舍去); 当x 0>2时,f (x 0)=45x 0,∴x 0=10.综上可知,x 0=-6或x 0=10. 答案:-6或10题点一:分段函数的图象的判定 1.函数f (x )=|x -1|的图象是( )分段函数的图象及应用解析:选B 法一:函数的解析式可化为y =⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1.画出此分段函数的图象,故选B.法二:由f (-1)=2,知图象过点(-1,2),排除A 、C 、D ,故选B. 题点二:分段函数图象的作法2.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1,画出f (x )的图象.解:利用描点法,作出f (x )的图象,如图所示.题点三:由函数的图象确定其解析式3.已知函数f (x )的图象如右图所示,则f (x )的解析式是________. 解析:由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧-a +b =0,b =1.∴⎩⎪⎨⎪⎧a =1,b =1.当0≤x ≤1时,设f (x )=kx ,将(1,-1)代入,则k =-1.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1题点四:分段函数的图象及应用 4.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b .则函数f (x )=x ⊙(2-x )的值域为________.解析:由题意得f (x )=⎩⎪⎨⎪⎧2-x ,x ≥1,x ,x <1,画出函数f (x )的图象得值域是(-∞,1].答案:(-∞,1]分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.层级一 学业水平达标1.下列对应关系f 中,能构成从集合A 到集合B 的映射的是( ) A .A ={x |x >0},B =R ,f :x →|y |=x 2B .A ={-2,0,2},B ={4},f :x →y =x 2C .A =R ,B ={y |y >0},f :x →y =1x2D .A ={0,2},B ={0,1},f :x →y =x2解析:选D 对于A ,集合A 中元素1在集合B 中有两个元素与之对应;对于B ,集合A 中元素0在集合B 中无元素与之对应;对于C ,集合A 中元素0在集合B 中无元素与之对应.故A 、B 、C 均不能构成映射.2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:选A ∵f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,∴f (-7)=10.f (f (-7))=f (10)=10×10=100.3.下列图形是函数y =x |x |的图象的是( )解析:选D 函数y =x |x |=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,故选D.4.已知集合M ={x |0≤x ≤4},N ={0|0≤y ≤2},按对应关系f 不能构成从M 到N 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x解析:选C 因为当x =4时,y =23×4=83∉N ,所以C 中的对应关系f 不能构成从M 到N的映射.5.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]解析:选B 先求各段上的图象,再求各段值域的并集,即为该函数的值域.6.已知f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥1,1x,x <1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=________.解析:依题意,得f ⎝ ⎛⎭⎪⎫13=113=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f (3)=32-1=8.答案:87.函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,若f (x )=3,则x 的值是________.解析:当x ≤-1时,x +2=3,得x =1舍去, 当-1<x <2时,x 2=3得x =3或x =-3(舍去). 答案: 38.在映射f :A →B 中,A =B ={(x ,y )|x ,y ∈R},且f :(x ,y )→(x -y ,x +y ),则与A 中的元素(-1,2)对应的B 中的元素为________.解析:由题意知,与A 中元素(-1,2)对应的B 中元素为(-1-2,-1+2),即(-3,1). 答案:(-3,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值; (2)若f (x 0)=8,求x 0的值. 解:(1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4.10.已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示函数f (x ); (2)画出函数f (x )的图象; (3)写出函数f (x )的值域. 解:(1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).层级二 应试能力达标1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],x 2+1,x ∈0,1],则函数f (x )的图象是( )解析:选A 当x =-1时,y =0,即图象过点(-1,0),D 错;当x =0时,y =1,即图象过点(0,1),C 错;当x =1时,y =2,即图象过点(1,2),B 错.故选A.2.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,使函数值为5的x 的值是( ) A .-2 B .2或-52C .2或-2D .2或-2或-52解析:选A 当x ≤0时,令x 2+1=5,解得x =-2;当x >0时,令-2x =5,得x =-52,不合题意,舍去.3.已知映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素在A 中都能找到元素与之对应,且对任意的a ∈A ,在B 中和它对应的元素是|a |,则集合B 中元素的个数是( )A .4B .5C .6D .7解析:选A 注意到对应法则是f :a →|a |,因此3和-3对应集合B 中的元素3;2和-2对应集合B 中的元素2;1和-1对应集合B 中的元素1;4对应集合B 中的元素4.所以B ={1,2,3,4},有4个元素.4.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水量为( )A .13立方米B .14立方米C .18立方米D .26立方米解析:选A 该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧ mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13. 5.函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≥0,2-x ,-2≤x <0,的值域是________.解析:当x ≥0时,f (x )≥1,当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).答案:[1,+∞)6.设函数f (x )=⎩⎪⎨⎪⎧ 12x -1,x ≥0,1x ,x <0,若f (a )>1,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=12a -1>1, 解得a >4,符合a ≥0;当a <0时,f (a )=1a>1,无解. 答案:(4,+∞)7.如图所示,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解:(1)直接由图中观察,可得f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,解得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .得⎩⎪⎨⎪⎧ b =4,k =-2.∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2<x ≤6).∴f (x )=⎩⎪⎨⎪⎧ -2x +4,0≤x ≤2,x -2,2<x ≤6.8.A ,B 两地相距150公里,某汽车以每小时50公里的速度从A 地到B 地,在B 地停留2小时之后,又以每小时60公里的速度返回A 地.写出该车离A 地的距离s (公里)关于时间t (小时)的函数关系,并画出函数图象.解:(1)汽车从A 地到B 地,速度为50公里/小时,则有s =50t ,到达B 地所需时间为15050=3(小时). (2)汽车在B 地停留2小时,则有s =150.(3)汽车从B 地返回A 地,速度为60公里/小时,则有s =150-60(t -5)=450-60t ,从B 地到A 地用时15060=2.5(小时). 综上可得:该汽车离A 地的距离s 关于时间t 的函数关系为s =⎩⎪⎨⎪⎧ 50t ,0≤t ≤3,150,3<t ≤5,450-60t ,5<t ≤7.5.函数图象如图所示.。

高中数学必修1知识点总结第一章 集合与函数概念

高中数学必修1知识点总结第一章 集合与函数概念

第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算B{x A A =∅=∅B A ⊆ B B ⊆ B{xA A =A ∅=B A ⊇ B B ⊇()U A =∅ð2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1(20))()()U U B A B =?)()()U U B A B =?〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈. ⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.yxo②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

高中数学集合与函数概念知识点总结及典型题

高中数学集合与函数概念知识点总结及典型题

第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同注意:B一集合。

⊆/B或反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/AB2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12xx <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

第一章 集合与函数概念

第一章 集合与函数概念

第一章集合与函数概念知识网络第一讲集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:三:集合的基本运算①两个集合的交集:A B = {}x x A x B ∈∈且; ②两个集合的并集: A B ={}x x A x B ∈∈或; ③设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。

难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。

1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{})(x f y x =、{})(x f y y =、{})(),(x f y y x =等的差别,如果对集合中代表元素认识不清,将导致求解错误:问题:已知集合221,1,9432x y x y M x N y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭则M N=( )A. Φ;B. {})2,0(),0,3(;C. []3,3-;D. {}3,2[正解] C ; 显然{}33≤≤-=x x M ,R N =,故]3,3[-=N M(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用V enn 图。

3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即A ⊆φ (2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若B A ⊆,C B ⊆,则C A ⊆ 4.集合的运算性质 (1)交集:①A B B A =;②A A A = ;③φφ= A ; ④A B A ⊆ ,B B A ⊆ ⑤B A A B A ⊆⇔= ; (2)并集:①A B B A =;②A A A = ;③A A =φ ; ④A B A ⊇ ,B B A ⊇ ⑤A B A B A ⊆⇔= ; (3)交、并、补集的关系 ①φ=A C A U ;U A C A U =②)()()(B C A C B A C U U U =;)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系 题型1:集合元素的基本特征[例1]定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )A .0;B .2;C .3;D .6[解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知A B *={}4,2,0,故应选择D题型2:集合间的基本关系[例2].数集{}Z n n X ∈+=,)12(π与{}Z k k Y ∈±=,)14(π之的关系是( )A .X Y ;B .Y X ;C .Y X =;D .Y X ≠[解析] 从题意看,数集X 与Y 之间必然有关系,如果A 成立,则D 就成立,这不可能; 同样,B 也不能成立;而如果D 成立,则A 、B 中必有一个成立,这也不可能,所以只能是C [新题导练]1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )A .B A ⊆ B.C B ⊆ C.C B A = D. A C B = [解析]D ;因为全集为A ,而C B =全集=A2.(2006•山东改编)定义集合运算:{}B y x xy y x B ∈∈+==⊗A,,z A 22,设集合{}1,0A =,{}3,2=B ,则集合B ⊗A 的所有元素之和为 [解析]18,根据B ⊗A 的定义,得到{}12,6,0A =⊗B ,故B ⊗A 的所有元素之和为18 3.(2007·湖北改编)设P 和Q 是两个集合,定义集合=-Q P {}Q x P x x ∉∈且,|,如果{}1log 3<=x x P ,{}1<=x x Q ,那么Q P -等于[解析] {}31<<x x ;因为{})3,0(1log3=<=x x P ,{})1,1(1-=<=x x Q ,所以)3,1(=-Q P4.研究集合{}42-==x y x A ,{}42-==x y y B ,{}4),(2-==x y y x C 之间的关系[解析] A 与C ,B 与C 都无包含关系,而BA ;因为{}42-==x y x A 表示42-=x y 的定义域,故R A =;{}42-==x y y B 表示函数42-=x y 的值域,),4[+∞-=B ;{}4),(2-==x y y x C 表示曲线42-=x y 上的点集,可见,BA ,而A与C ,B 与C 都无包含关系考点二:集合的基本运算[例3] 设集合{}0232=+-=x x x A ,{}0)5()1(222=-+++=a x a x x B(1) 若{}2=B A ,求实数a 的值;(2)若A B A = ,求实数a 的取值范围若{}2=B A ,[解题思路]对于含参数的集合的运算,首先解出不含参数的集合,然后根据已知条件求参数。

数学集合与函数

数学集合与函数

)一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。

υ 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c……}R| x-3∈2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn 图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x2=-5}1.填空题(1)现有:①不大于3的正有理数.②我校高一年级所有高个子的同学.③全部正方形.④全体无实根的一元二次方程.四个条件中所指对象不能组成集合的有___________.(填代号即可)(2)设集合{}{}的值时代数式、12,1,0,1,22-∈=--=x A x B A .则B 中的元素是_____________.2.选择题(1)以下四种说法中正确的是( )(A )“实数集”可记为{}R 或{}实数集(B ){}d c b a ,,,与{}a b d c ,,,是两个不同的集合.(C )“某闪数学测验后各位同学的考分”必组成一个集合()“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其对象不确定。

(2)已知2是集合{}23,,02+-=a a a M 中的元素则实数a 为( )(A )2 (B )0或3 (C )3 (D )0,2,3均可3.已知⎭⎬⎫⎩⎨⎧∈∈-=+N ,N 36x x x A 试用列举法表示集合A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数的概念龙港高中林长豪课题:§1.1 集合1.1.1 集合的含义与表示教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系、集合相等的含义;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:引入课题引例1:(数学家和牧民的故事)牧民非常喜欢数学,但不知道集合是什么,于是他请教一位数学家.集合是不定义的概念,数学家很难回答牧民的问题.有一天他来到牧场,看到牧民正把羊往羊圈里赶,等到牧民把全部羊赶入羊圈关好门.数学家灵机一动,高兴地告诉牧民:“你看这就是集合!”2:军训时当教官一声口令:“高一(14)班同学到操场集合”在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容新课教学(一)集合的有关概念集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(举例)常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;例1.(课本例1)思考2,(课本P4思考)引入描述法说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{x|x是直角三角形},…;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P5思考)强调:描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同。

辨析:这里的{ }已包含“所有”的意思,所以不必写{x|x是全体整数}。

下列写法{x|x是实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P5练习)归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

作业布置书面作业:习题1.1,第1- 4题板书设计(略)课题:§1.1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课型:新授课教学目的:(1)理解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn图表达集合间的关系;(4)理解空集的含义。

教学重点:子集与空集的概念;用Venn图表达集合间的关系。

教学难点:弄清元素与子集、属于与包含之间的区别;教学过程:一、引入课题复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2)Q;(3)-1.5 R类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A 是集合B的子集(subset)。

记作:读作:A含于(is contained in)B,或B包含(contains)A当集合A不含于集合B时,记作A B用Venn图表示两个集合间的“包含”关系集合与集合之间的“相等”关系;,则中的元素是一样的,因此即练习结论:任何一个集合是它本身的子集真子集的概念若集合,存在元素,则称集合A是集合B的真子集(proper subset)。

记作:A B(或B A)举例(由学生举例,共同辨析)空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set),记作:规定:空集是任何集合的子集,是任何非空集合的真子集。

结论:,且,则例题(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化简集合A={x|x-3>2},B={x|x5},并表示A、B的关系;课堂练习归纳小结,强化思想两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;作业布置书面作业:习题1.1 第5题提高作业:已知集合,≥,且满足,求实数的取值范围。

设集合,,试用Venn图表示它们之间的关系。

板书设计(略)课题:§1.3集合的基本运算(一)教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?观察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,2,3,4,5},B={2,5,8,9},C={2,5}(2) A={1,2,3,4,5},B={2,5,8,9},C={1,2,3,4,5,8,9}引入并集、交集概念。

新课教学并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∈A,或x∈B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题(P9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B 读作:“A交B”即:A∩B={x|∈A,且x∈B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

例题(P9-10例6、例7)拓展:求下列各图中集合A与B的并集与交集说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集求集合的并、交是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

集合基本运算的一些结论:(A∩B)A,(A∩B)B,A∩A=A,A∩=,A∩B=B∩AA(A∪B),B(A∪B),A∪A=A,A∪=A,A∪B=B∪A若A∩B=A,则AB,反之也成立若A∪B=B,则AB,反之也成立若x∈(A∩B),则x∈A且x∈B若x∈(A∪B),则x∈A,或x∈B三、课堂练习P11、1~3四、作业布置:略课题:§1.3集合的基本运算(二)教学目的:(1)理解全集以及在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的全集、补集的概念;教学难点:集合的全集、补集以及求集合中元素个数问题。

教学过程:引入课题问:我班全体同学有一部分参加了校运动会,在这个问题需关注的集合有几个?二、新课教学全集、补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,记作:CUA即:CUA={x|x∈U且x∈A}补集的Venn图表示说明:补集的概念必须要有全集的限制例题(P12例8、例9)例10、设全集U={-1,1,a2-2a-3}, A={1, |b|-3}若:CUA={5}, 求a, b的值求集合的补集运算,运算结果仍然还是集合,在处理有关交集与并集、补集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

补集的结论:(CUA)∪A=U,(CUA)∩A=4.元素个数问题:card(A∪B)=card(A)+card(B)-card(A∩B)例8、(1)开运动会时,高一某班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳和田径比赛的有3人, 同时参加游泳和球类比赛的有3人,没有人同时参加三项比赛,那么同时参加球类和田径比赛的有几人?只参加游泳一项比赛的有几人?设S={1, 2, 3, 4, 5} , A∩B={2} , (CSA)∩B={4},(CSA)∩(CSB)={1, 5},求集合A和B。

相关文档
最新文档