第三章 金属的塑性变形
金属的塑性变形与再结晶(3)
同一滑移面上若有大量的位错移出,则在晶体表 面形成一条滑移线。
位错在晶体中移动时所需切应力很小,因为当位错中心前 进一个原子间距时,一齐移动的只是位错中心少数原子, 而且其位移量都不大,形成逐步滑移,这就比一齐移动所 需的临界切应力要小得多,这称为“位错的易动性”。
研究表明,亚晶界的存在使晶体的变形抗力增加, 是引起加工硬化的重要因素之一。
3.形变织构
在塑性变形过程中,当金属按一定的方向变形量 很大时(变形量大于70%以上),多晶体中原来任 意位向的各晶粒的取向会大致趋于一致,这种有 序化结构叫作“变形织构”,又称为“择优取 向”,
金属材料的加工方式不同形成不同类型的织构: 拉拔时形成的织构称为丝织构,其特征是各个晶 粒的某一晶向平行于拉拔方向;轧制时形成的织 构称为板织构,其特征是不仅某一晶面平行于轧 制平面,而且某一晶向也平行于轧制方向。
3.变形引起的内应力
在金属塑性变形过程中,大约有10%的能量转化为内应力而残留在金属中, 使其内能增加。
这些残留于金属内部且平衡于金属内部的应力称为残余内应力。它是由于金 属在外力作用下各部分发生不均匀的塑性变形而产生的。
内应力一般可分为三种类型:Βιβλιοθήκη (1)宏观内应力(第一类内应力)
金属材料在塑性变形时,由于各部分变形不均匀,使整个工件或在较大的 宏观范围内(如表层与心部)产生的残余应力。
3.1.2多晶体金属塑性变形的特点
大多数金属材料是由多晶体组成的。 多晶体塑性变形的实质与单晶体一样。 要考虑到晶粒彼此之间在变形过程中的约束作用,以及晶界对塑性变形的影
第三章 金属塑性变形的物理基础
(1)塑性的基本概念
什么是塑性? 塑性是金属在外力作用下产生永久变形 而不破坏其完整性的能力。
塑性与柔软性的区别是什么? 塑性反映材料产生永久变形的能力。 柔软性反映材料抵抗变形的能力。
塑性与柔软性的对立统一
铅---------------塑性好,变形抗力小
不锈钢--------塑性好,但变形抗力高 白口铸铁----塑性差,变形抗力高
塑性指标的测量方法
拉伸试验法 压缩试验法 扭转试验法 轧制模拟试验法
拉伸试验法
Lh L0 100%
L0 F0 Fh 100%
F0
式中:L0——拉伸试样原始标距长度; Lh——拉伸试样破断后标距间的长度; F0——拉伸试样原始断面积; Fh——拉伸试样破断处的断面积
%
晶粒5 晶粒4 晶粒3
晶粒2
晶粒1
位置,mm
图5-6 多晶铝的几个晶粒各处的应变量。 垂直虚线是晶界,线上的数字为总变形量
四、合金的塑性变形
单相固溶体合金的变形 多相合金的变形
§3. 2 金属塑性加工中组织和性能变化 的基本规律
一、冷塑性变形时金属组织和性能的变化 二、热塑性变形时金属组织和性能的变化
2200
N/mm2
图4-6 正压力对摩擦系数的影响
0.5
μ
0.4
0.3
0.4
0.2 0.2
0.1
0
℃
200
400
600
800
图4-7 温度对钢的摩擦系数的影响
0
400
600
800 ℃
图4-8 温度对铜的摩擦系数的影响
测定摩擦系数的方法
夹钳轧制法 楔形件压缩法 塑性加工常用摩擦系数 圆环镦粗法
第三章 塑性变形的基本规律
第三章塑性变形的基本规律1、体积不变定律的概念在金属压力加工的理论研究和实际计算中,通常认为变形前后金属的体积保持不变,它是变形计算的基本依据之一。
若设变形前金属的体积为V0,变形后的体积为V1,则有:V0 = V1 =常数2、最小阻力定律的内容实践证明:物体在变形过程中,其质点有向各个方向移动的可能时,则物体内的各质点将是沿着阻力最小的方向移动,这就是通常所讲的最小阻力定律的定义。
3、弹塑性共存定律的概念和实际意义A 概念我们把金属塑性变形在加工中一定会有弹性变形存在的情况,称之为弹塑性共存定律。
B 实际意义弹塑性共存定律在轧钢中具有很重要的实际意义,可用以指导我们生产的实践。
(1)用以选择工具(2)由于弹塑性共存,轧件的轧后高度总比预先设计的尺寸要大4、极限状态理论A 极限状态的类型第一种极限状态是屈服,第二种极限状态是破坏。
屈服是金属由弹性变形转变为塑性变形的转折点,是塑性变形的开端。
破坏则是金属塑性变形过程的终结。
B 金属屈服极限σs与金属屈服的概念(1)金属屈服极限σs的概念:它是在特定条件下测得的,即是在室温下,慢速单向拉伸或单向压缩(线应力状态)时测定的金属发生屈服时的单向拉伸或单向压缩的应力值。
(2)金属的屈服:金属发生塑性变形时所需的外力大,则我们说金属难屈服,它的变形抗力就大,即不容易变形;金属发生塑性变形时所需的外力小,则我们说金属容易屈服,它的变形抗力就小,即容易变形。
C 在线应力状态下由拉伸实验建立的屈服条件拉伸一试样,当主应力σ1的数值达到该材料的屈服极限(σ1=σs )时,试样开始发生塑性变形。
D 极限状态理论它是研究弹性变形终了、塑性变形即将开始时主应力与屈服极限间关系的理论。
E 主应力差理论(Tresca 屈服条件)Tresca 屈服条件为: (3-6) F 能量理论(Mises 屈服条件)其屈服条件表达式为:(3-7)Mises 屈服条件的简化形式:(3-8)式中的m=1~1.155。
《金属材料与热处理》第三章金属的塑性变形对组织性能
重冷塑性变形的金属,经1小时加热后能完全再结晶的 最低温度来表示。
最低再结晶温度:
T再=0.4T熔点 式中温度单位为绝对温度(K)。
8
学习情境三:金属的塑性变形对组织性能的影响 3.2
(3)再结晶温度影响因素:
1)变形程度 ➢2)金金属属再纯结度晶前:塑纯性度变越形高的, 最相低对再变结形晶量温称度为也预就先越变低形 度➢。3)预;加先热变速形度越大, 金属的晶体缺陷就越多, 组织越不 稳➢➢杂再定质结, 最和晶低合是再金一结元扩晶素散温(过度高程也熔, 需就点一越元定低素时;)间阻才碍能原完子成扩;散和晶 ➢界➢当提迁预高移先加, 可变热显形速著度度提达会高一使最定再低大结再小晶结后在晶,较最温高低度温再;度结下晶发温生度;趋于某 一➢高原稳纯始定度晶值铝粒。(越99粗.9大9,9再%结)最晶低温再度结越晶高温。度为80 ℃; ➢工业纯铝(99.0%)最低再结晶温度提高到290 ℃。
3
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、热加工晶粒大小控制措施
(1).控制较低的加工终了温度 (2).控制较大的变形程度 (3).控制较快的冷却速度
0
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、产生残余内应力 ➢定义:外力去除后,金属内部残留下来的应力。
产生原因:金属发生塑性变形时,内部变形不均匀, 位错、空位等晶体缺陷增多,会产生残余内应力。
➢1)宏观内应力 ➢2)微观残余应力 ➢3)晶格畸变应力
1
学习情境三:金属的塑性变形对组织性能的影响 3.2
3
学习情境三:金属的塑性变形对组织性能的影响 3.1
第一节 金属的塑性变形
3-1 金属的塑性变形
18
四、纤维组织
材料在压力加工中产生塑性 材料在压力加工中产生塑性 压力加工 变形时, 变形时,基体金属的晶粒形状和 沿晶界分布的杂质形状都发生了 变形,它们都将沿着变形方向被 变形, 拉长,呈纤维形状。 拉长,呈纤维形状。这种结构叫 纤维组织。 纤维组织。 纤维组织是变形后所形成的带有方向性的晶粒。 纤维组织是变形后所形成的带有方向性的晶粒。 是变形后所形成的带有方向性的晶粒
后 退
12
二、多晶体的塑性变形
多晶体是多个位向不同变形总和,除了晶内变形外, 多晶体是多个位向不同变形总和,除了晶内变形外, 是多个位向不同变形总和 还有晶间变形,及晶粒间互相移动及转动。 还有晶间变形,及晶粒间互相移动及转动。
特点: 特点:
变形过程复杂。 变形过程复杂。 变形抗力比单晶体大的多。 变形抗力比单晶体大的多。 多晶体塑变以晶内为主,晶间很小。 多晶体塑变以晶内为主,晶间很小。
5
3.挤压 3.挤压
金属坯料在挤压模内被挤出模孔而变形, 金属坯料在挤压模内被挤出模孔而变形,从 挤压模内被挤出模孔而变形 而获得所需制件的加工方法。 而获得所需制件的加工方法。 正挤压:金属流动方向与凸模送进的方向相同。 正挤压:金属流动方向与凸模送进的方向相同。 方向相同 反挤压:金属流动方向与凸模送进方向相反 方向相反。 反挤压:金属流动方向与凸模送进方向相反。 采用机械化生产方法具有很高的生产率。 采用机械化生产方法具有很高的生产率。
22
2) 金属组织的影响
纯金属和非饱和固溶体可锻性好。 纯金属和非饱和固溶体可锻性好。 可锻性好 金属化合物是硬脆的组成相, 金属化合物是硬脆的组成相,组织中的金属化合 是硬脆的组成相 物越多,可锻性越差。 物越多,可锻性越差。 比如纯铁、纯铜、纯铝、具有单相铁素 比如纯铁、纯铜、纯铝、 体或单相奥氏体的钢具有良好的可锻性, 体或单相奥氏体的钢具有良好的可锻性,但 是具有网状渗碳体的过共析钢可锻性较差。 是具有网状渗碳体的过共析钢可锻性较差。 铸铁中由于含有大量的渗碳体或石墨, 铸铁中由于含有大量的渗碳体或石墨, 其可锻性非常差,铸铁是根本不能锻造的。 其可锻性非常差,铸铁是根本不能锻造的。
《材料成型技术与基础》全套PPT电子课件教案-第03章 单晶体与多晶体的塑性变形等
拉拔时金属应力状态
第三章金属材料的塑性变形
本章小结
锻造、轧ቤተ መጻሕፍቲ ባይዱ、挤压、冲压等都是塑性变形。这些 塑性变形的目的不仅是为了得到零件的外形和尺寸, 更重要的是为了改善金属的组织和性能。
塑性变形的主要形式是滑移和孪生,是在切应力 的作用下进行的,塑性变形将产生形变强化,形成纤 维组织,具有各向异性。塑性变形后的 金属加热时会 产生回复或再结晶及晶粒长大,其形变强化现象消除。
滑移特点:①滑移是在切 应力作用下完成的;②滑 移时移动的距离是原子间 距的整数倍;③滑移的同 时由于正应力组成的力偶 作用,推动晶体转动,力 图使滑移面转向与外力一 致的方向。④滑移的实质 是位错运动的结果。因此 滑移的实际临界切应力远 远大于理论临界切应力。
第三章金属材料的塑性变形
单晶体滑移变形示意图
定义:经冷变形的金属当加热到T再时,会在变形最激 烈的区域自发形成新的细小等轴晶粒,叫做再结 晶这一过程实质上也是一个形核和长大的过程, 但晶格类型不变,只是改变了晶粒外形. T再T熔
※金属再结晶后,消除了残余应力和形变强化现象 晶粒长大 冷变形和热变形 金属纤维组织及其应用
第三章金属材料的塑性变形
第三章金属材料的塑性变形
单晶体和多晶体的塑性变形 金属的形变强化 塑性变形金属在加热时组织和性能的变化 塑性加工性能及影响因素 本章小结
第三章金属材料的塑性变形
单晶体的塑性变形 1.滑移 2.孪生 1.晶粒取向对塑性变形的影响 2.晶界对塑性变形的影响
第三章金属材料的塑性变形
锌单晶体的滑移变形示意图
第三章金属材料的塑性变形
未变形 弹性变形 弹塑性变形 塑性变形
位错运动引起的滑移变形示意图
第三章金属材料的塑性变形
金属材料塑性变形机制与特点
第三章 塑性变形
单击添加副标题
3.1金属材料塑性变形机制与特点
单击添加副标题
3.1.1 金属晶体塑性变形的机制 3.1.2 多晶体材料塑性变形特点
3.1.1 金属晶体塑性变形的机制
定义 fcc: {111} <110>; bcc: {110} {112} {123} <111> 滑移系 hcp: {0001} 定义 hcp 滑移系少,故常以孪生方式进行 fcc bcc 孪生变形量是很有限的,它的作用改变晶体取向,以便启动新的滑移系统,或使难于滑移的取向改变为易于滑移的取向。
位错运动速率与外力有强烈依存关系。
01
02
03
屈服现象产生与下述三个因素有关:
冷变形金属的真应力-应变关系
颈缩条件分析
韧性的概念及静力韧度分析
3.3真应力-应变曲线及形变强化规律
当应力超过屈服强度之后,塑性变形并不像屈服平台那样连续流变下去,而需要继续增加外力才能继续进行,于是应力-应变曲线上表现为流变应力不断上升,出现了所谓形变强化现象。材料在形变强化阶段的变形规律用其应力-应变曲线(也叫流变曲线)描述。
物理屈服现象首先在低碳钢中发现,尔后在含有微量间隙溶质原子的体心立方金属,如Fe、Mo、Nb 、Ta等,以及密排六方金属,如Cd和Zn中也发现有屈服现象。
01
对屈服现象的解释,早期比较公认的是溶质原子形成Cottrell气团对位错钉扎的理论。以后在共价键晶体如硅和锗,以及无位错晶体如铜晶须中也观察到物理屈服现象。
则定义二者的比值: α——软性系数, α↑→τmax↑→应力状态越软,金属易于 先产生塑性变形。 α↓→应力状态越硬→金属易于产生脆性 断裂。
测硬度时,其应力状态相当于三向不等压缩,因此,硬度试验时的加载方式属于很软的应力状态。
《材料力学性能》第三章塑性变形
3.4.3 弯曲试验
1、弯曲试验分为三点弯曲和四点弯曲,试样主要有矩形 截面和圆形截面。
《材料力学性能》 第三章 塑性变形
试验时,在试件跨距的中心测定绕度,绘成P~fmax关系 曲线,即弯曲图。
由左图可知,塑性材料的 力学性能由拉伸试验测定, 而不采用弯曲试验;脆性 材料根据弯曲图求得:
Mb bb ; M b Pb L 4 , Pb K 2 W 3 W d 0 32, bh2 6
生产上用得最多的是A级、B级和C级,即HRA(金钢石圆锥压头、 60kgf负荷),HRB(1/16"钢球压头、100kgf负荷)和HRC(金钢石圆 锥压头、150kgf负荷),而其中又以HRC用得最普遍。
《材料力学性能》 第三章 塑性变形
洛氏硬度的测量方法
洛氏硬度试验过程示意图
《材料力学性能》 第三章 塑性变形
2、洛氏硬度 洛氏硬度的测量原理 洛氏硬度是以压痕陷凹深度作为计量硬度值的指标。
洛氏硬度的压头分硬质和软质两种。硬质的由顶角为120°的金 钢石圆锥体制成,适于测定淬火钢材等较硬的金属材料;软质的 为直径1/16“(1.5875mm)或1/8”(3.175mm)的钢球,适于退火钢、 有色金属等较软材料硬度值的测定。洛氏硬度所加负荷根据被试 金属本身硬软不等作不同规定,随不同压头和所加不同负荷的搭 配出现了各种称号的洛氏硬度级。
《材料力学性能》 第三章 塑性变形
维氏硬度
维氏硬度试验法开始于1925年。 维氏硬度的测定原理和布氏硬 度相同,也是根据单位压痕陷凹 面积上承受的负荷,即应力值 作为硬度值的计量指标。
所不同的是维氏硬度采用锥面夹角为136°的四方 角锥体,由金钢石制成。
《材料力学性能》 第三章 塑性变形
第三章_金属冷塑性变形
图3.7 再结晶综合动力曲线
3、微量溶质原子
微量溶质原子的存在对金属的再结晶有很
大的影响。微量溶质元素会阻碍再结晶,提
高再结晶温度。不 同的溶质元素其提高再结 晶温度的程度也不相同。 微量溶质元素阻碍再结晶,其原因为何?
4、弥散相颗粒
弥散相质点对再结晶的影响主要取决于基体上弥
散相颗粒的大小及其分布。金属发生冷塑性变形时,
二、冷变形与亚结构的形成 金属晶体经充分塑性变形后,在晶粒内部出现了 许多取向不同的小区域,取向差不大,这些小区域 称为亚晶粒,这种组织称为亚结构。
图3.4 冷变形引起的亚晶模型
亚结构是如何形成的?
亚晶的大小、完整的程度和亚晶间的取向差随 材料的纯度、变形量和变形温度而异。 亚晶的特点和规律都可以从位错理论得到满意 的解释。
三储存能与微观组织结构的关系1储存能与位错密度的关系式中常数c052储存能与亚结构的关系式中常数15k是常数3储存能与取向的关系e110e111e112e100图31variationcellsize图32storedenergiescellboundarymisorientationdifferentorientationsrolledironcoldrolledironsteellocalorientation32金属组织结构的变化金属塑性变形的物理实质基本上就是位错的运动位错运动的结果就产生了塑性变形
• 塑性变形对位错的数量、分布和组态的影响是和 金属材料本身的性质以及变形温度、变形速度等 外在条件有关的。
一、冷变形与晶粒外形的改变 金属材料外形的改变必然反映在内部晶粒形状的 改变。 晶粒形状的变化与变形方式、变形程度有关; 严重变形后,金属内部组织形貌是纤维组织; 当金属内部有第二相的聚集,或杂质的偏析时, 变形会引起这些区域的伸长而呈带状组织特征。 一般由晶粒伸长而形成的纤维组织可通过退火来 消除,但由杂质或夹杂物伸长而形成的带状组织, 虽经高温退火也难完全消除。
第三章 金属的塑性变形
纯金属的最低再结晶温度 与其熔点之间的近似关系: T再≈0.4T熔 其中T再、T熔为绝对温度.
金属熔点越高, T再也越高.
T再与ε的关系
T再℃ = (T熔℃+273)×0.4–273,如Fe的T再=(1538+273)×0.4–273=451℃
影响再结晶退火后晶粒度的因素
钛合金六方相中的形变孪晶
奥氏体不锈钢中退火孪晶
二、单晶体的塑性变形 分析单晶体的塑性变形,实际上就是分析 晶内变形。 单晶体塑性变形的主要方式有滑移和孪晶。 根据晶体结构 理论,任何一块单 晶体都包含有若干 不同方向的晶面。
外 力 在 晶 面 上 的 分 解 切 应 力 作 用 下 的 变 形 锌 单 晶 的 拉 伸 照 片
580º C保温8秒后的组织
580º C保温15分后的组织 700º C保温10分后的组织
第四节
金属的热加工
• 一、冷加工与热加工的区别
• 在金属学中,冷热加工的界限是以再结晶温
度来划分的。低于再结晶温度的加工称为冷 加工,而高于再结晶温度的加工称为热加工。
轧制
模锻
拉拔
• 如 Fe 的再结晶温度为451℃,其在400℃ 以下的加 工仍为冷加工。而 Sn 的再结晶温度为-71℃,则其 在室温下的加工为热加工。 • 热加工时产生的加工硬化很快被再结晶产生的软化 所抵消,因而热加工不会带来加工硬化效果。
铁素体变形80%
碎拉长的晶粒变为完整
的等轴晶粒。
650℃加热
• 这种冷变形组织在加热
时重新彻底改组的过程
称再结晶。
670℃加热
• 再结晶也是一个晶核形成 和长大的过程,但不是相 变过程,再结晶前后新旧 晶粒的晶格类型和成分完 全相同。
第三章 金属塑性变形和加工硬化
第二阶段特征: 1)加工硬化率( Ⅱ )很高,且和应变量呈线 性关系; 2)加工硬化率对金属的种类或合金的成分(只 要为面心立方晶体)不敏感,对晶体的位向也不 敏感; 3)滑移线长度随应变量有如下规律:
2 l2
4)每根滑移线上位错数大致不变; 5)其位错结构缠结,形成胞状结构。
应力一应变曲线的另一特点是,体心立方金属的明显 屈服效应、动态形变时效现象。 原因是晶界附近最容易偏析杂质原子,由于溶质原子 特别是间隙原子与位错的相互作用强烈,柯垂尔气团 对位错的钉扎很牢,应力一应变曲线出现屈服效应现 象。当温度从室温上升时,出现动态形变时效,上下 屈服点反复出现,这种现象称为波特纹一李一沙特里 效应。
一、晶界在塑性变形中的作用
为了显示晶界对变形的影响,可将由几个晶粒 组成的大晶体承受变形并观察和测量它的变形 分布情况。如下图:
图3.6 总变形量相同时多晶铝的几个晶粒各处的实际变形量
由图可知: 1)总变形量相同时,在多晶体内,不仅各晶 粒所承受的实际变形量不同,而且每个晶粒内 部各处的实际变形程度也不一致。 2)在晶粒边界处变形程度都比晶粒内部小, 这既表明晶界处较难变形;也显示出晶界在促 进变形的不均匀分布上起很大作用。
3) 温度的影响 温度升高时,0略有降低, Ⅲ而则显著降低,
Ⅱ , Ⅲ 变短, Ⅰ 和 Ⅱ 与温度关系不大,而 Ⅲ
则随温度升高而减小。
3、FCC金属形变单晶体的表面现象
面心立方晶体研究发现,无论层错能高低,只要是 处于同一个阶段形变,都具有相同特征的表面现象。 各阶段观测研究的结果简述如下: 第1阶段;用光学显微镜一般看不到滑移线。 第Ⅱ阶段:光学显微镜在暗场下可以看到滑移线, 线长随应变的增加而递减。电镜观察到的单个滑移 线比第1阶段的粗而短。 第Ⅲ阶段:出现滑移带,带中包括靠得很近的滑移 线。应变增加时,带间不再增加新线,形变集中在 原来的带中,带端出现了碎化现象。所谓碎化现象, 系指相互连接着的滑移带的侧向移动现象。
工程材料及成型技术基础第3章 金属的塑性变形
吊钩内部的纤 维组织 (左:合理; 右:不合理, 应使纤维流线 方向与零件工 作时所受的最 大拉应力的方 向一致)
43
3)热加工常会使复相合金中的各个相沿着加工变形 方向交替地呈带状分布,称为带状组织。 带状组织会使金属材料的力学性能产生方向性,特 别是横向塑性和韧性明显降低。一般带状组织可以通过 正火来消除。
滑移面 +
滑移方向
=
滑移系
原子排列 密度最大的 晶面
滑移面和 该面上的一 个滑移方向
三种典型金属晶格的滑移系
晶格 滑移面 {110}
体心立方晶格 {111} {110}
面心立方晶格
密排六方晶格
{111}
滑移 方向
滑移系
6个滑移面
×
2个滑移方向
=
12个滑移系
BCC
4个滑移面
×
3个滑移方向
=
12个滑移系
35
这是因为此时的变形量较小,形 成的再结晶核心较少。当变形度 大于临界变形度后,则随着变形度 的增大晶粒逐渐细化。当变形度 和退火保温时间一定时,再结晶 退火温度越高,再结晶后的晶粒 越粗大。
36
再结晶晶粒大小随加热温 度增加而增加。
临界变形度处的再结晶 晶粒特别粗大
变形度大于临界变形 度后,随着变形度的增 大晶粒逐渐细化
41
(2) 出现纤维组织 在热加工过程中铸态金属的偏析、 夹杂物、第二相、晶界等逐渐沿变 形方向延展,在宏观工件上勾画出 一个个线条,这种组织也称为纤维 组织。纤维组织的出现使金属呈现 各向异性,顺着纤维方向强度高, 而在垂直于纤维的方向上强度较低。 在制订热加工工艺时,要尽可能使 纤维流线方向与零件工作时所受的 最大拉应力的方向一致。
第三章 金属材料的塑性变形
二、再结晶 1. 再结晶过程及其对金属组织、性能的影 响 变形后的金属在较高温度加热时,由于原 子扩散能力增大,被拉长(或压扁)、破碎的 晶粒通过重新生核、长大变成新的均匀、细小 的等轴晶。这个过程称为再结晶。变形金属进 行再结晶后,金属的强度和硬度明显降低,而 塑性和韧性大大提高,加工硬化现象被消除, 此时内应力全部消失,物理、化学性能基本上 恢复到变形以前的水平。再结晶生成的新的晶 粒的晶格类型与变形前、变形后的晶格类型均 一样。
二、再结晶 1. 再结晶过程及其对金属组织、性能的影 响 变形后的金属在较高温度加热时,由于原 子扩散能力增大,被拉长(或压扁)、破碎的 晶粒通过重新生核、长大变成新的均匀、细小 的等轴晶。这个过程称为再结晶。变形金属进 行再结晶后,金属的强度和硬度明显降低,而 塑性和韧性大大提高,加工硬化现象被消除, 此时内应力全部消失,物理、化学性能基本上 恢复到变形以前的水平。再结晶生成的新的晶 粒的晶格类型与变形前、变形后的晶格类型均 一样。
3.3 塑性变形后的金属在加热时组织和性能的 变化 金属经塑性变形后,组织结构和性能发生 很大的变化。如果对变形后的金属进行加热, 金属的组织结构和性能又会发生变化。随着加 热温度的提高,变形金属将相继发生回复、再 结晶和晶粒长大过程。
一、回复 变形后的金属在较低温度进行加热,会发生回复 过程。 产生回复的温度T回复为: T回复=(0.25~0.3)T熔点 式中T熔点表示该金属的熔点, 单位为绝对温度 (K)。 由于加热温度不高, 原子扩散能力不很大, 只是 晶粒内部位错、空位、间隙原子等缺陷通过移动、复 合消失而大大减少,而晶粒仍保持变形后的形态, 变 形金属的显微组织不发生明显的变化。此时材料的强 度和硬度只略有降低,塑性有增高,但残余应力则大 大降低。工业上常利用回复过程对变形金属进行去应 力退火、以降低残余内应力,保留加工硬化效果。
金属材料的塑性变形
整理课件
3
2.孪生
在切应力作用下,晶体的一部分沿一定的晶面(孪晶面)和晶 向(挛晶方向)相对于另一部分所发生的切变称为孪生。
孪生与滑移的区别是: 1)孪生所需要的临界切应力比滑移大得多,变形速度极快。 2)发生切变、位向改变的这一部分晶体称为孪晶带或孪晶。 3)孪晶中每层原子沿孪生方向的相对位移距离是原子间距的分数。
⑶形变织构的产生 当变形量很大(70%以上)时,会使绝大部分 晶粒的某一位向与外力方向趋于一致,形成特殊的择优取向。择优取
向的结果形成了具有明显方向性的组织,称为织构。
整理课件
9
3.2.3 塑性变形产生的残余应力
残余应力: 金属表层与心部的变形量不同会形成表层与心部之间的
宏观内应力; 晶粒彼此之间或晶内不同区域之间的变形不均匀会形成
⑴纤维组织形成 金属在外力作用下发生塑性变形时,随着变形 量的增加晶粒形状发生变化,沿变形方向被拉长或压扁。
当拉伸变形量很大时,晶粒变成细条状,金属中的夹杂物也被 拉长,形成所谓纤维组织。
变形前后晶粒形状变化示意图
整理课件
8
⑵亚结构形成 金属经大量的塑性变形后,大量的位错聚集在 局部地区,将原晶粒分割成许多位向略有差异的小晶块,即亚晶粒。
整理课件
4
3.1.2 多晶体的塑性变形
1.晶粒取向对塑性变形的影响
在多晶体中,各个晶粒内原 子排列的位向不一致,这样 不同晶粒的滑移系的取向就 会不同。
作用在不同晶粒滑移系 上的分切应力会有差别,分 切应力最大的那些晶粒最先 开始滑移。多晶体金属的塑 性变形将会在不同晶粒中逐 批发生.
金属塑性成形原理第三章金属塑性成形的力学基础第二节应变分析-无动画版
四、点的应变状态与应力状态的比较
6.主应变图
主应变图是定性判断塑性变形类型的图示方法。主应变图只 可能有三种形式
广义拉伸:挤压和拉拔 广义剪切:宽板弯曲、无限长板镦粗、纯剪切和轧制板带 广义压缩:展宽的轧制和自由镦粗;
一、位移和应变
对应的各阶段的相对应变为
l1 l0 01 l0
显然
l2 l1 12 l1
l3 l2 23 l2
03 01 12 23
一、位移和应变
③对数应变为可比应变,工程应变为不可比应变。
假设将试样拉长一倍,再压缩一半,则物体的变形程 L 度相同。 拉长一倍时 压缩一半时
因此,工程应变为不可比应变。
二、应变状态和应变张量
现设变形体内任一点 a(x,y,z)应变分量为
ε 。由a引一任意方向
ij
线元ab,长度为r, 方向余弦为l,m,n。 小变形前,b可视为a点无 限接近的一点,其坐标为 (x+dx,y+dy,z+dz)
四、点的应变状态与应力状态的比较
一、位移和应变
=
+
单元体变形
=
纯切应变
+
刚体转动
切应变及刚性转动 设实际偏转角为αxy,αyx,
xy yx xy xy yx xy
1 2
xy xy z yx yz z 1 z ( yx xy ) 2
四、点的应变状态与应力状态的比较
将八面体剪应变γ8 乘以系数 ,可得等效应变(广 2 义应变、应变强度)
福州大学材料科学基础课件-第三章 位错金属的塑性变形
•
实际只有5个变量是独立的。至少应有5个独立 的滑移系才能协调多晶体的塑性变形。
3. 晶粒大小的影响 多晶体的强度随其晶粒细化而提高。满足 霍尔-佩奇(Hall-Petch)关系。
是与材料有关的两个常数。 d:多晶体中各晶粒的平均直径。
0, k
§4 塑性变形对金属组织与性能的影响
一、显微组织的变化
· 单相固溶体合金塑性
变形的特点
2.应变时效
将低碳钢试样拉伸到 产生少量预塑性变形 后卸载,然后重新加 载,试样不发生屈服 现象,但若产生一定 量的塑性变形后卸载, 在室温停留几天或在 低温(如150℃)时 效几小时后再进行拉 伸,此时屈服点现象 重新出现,并且上屈 服点升高,这种现象 即应变时效
§2
单晶体的塑性变形
金属变形的主要方式:滑移、孪生、扭折 一、滑移 (一)滑移线与滑移带
(二)滑称系 晶体的滑移是沿着一定的晶面发生的,此组晶 面称为滑移面,滑移还沿着滑移面上一定的晶向 进行,称为滑移方向。 每一个滑移面和此面上的一个滑移方向合起来 叫做一个滑移系。 FCC: 滑移面{111},滑移方向<110> BCC: 低温{112} 室温{110},高温{123}, 而滑移方向都是<111> 滑移面为(0001),滑移方向为<11 2 0>
· 1.聚合型两相合金的塑性变形 (1)如果两个相都具有塑性,则合金的变形决定于两 相的体积分数。 等应变理论:假定塑性变形过程中两相应变相等。 合金产生一定应变的平均流变应力 σ a = f 1 σ 1 + f2 σ 2 : 其中:f1、f2为两个相的体积分数 f1+f2=1 σ1、σ2为两个相在此应变时的流变应力 等应力理论:假定塑性变形过程中两相应力相同。 对合金施加一定应力时,平均应变εa= f 1ε1+f 2ε2 其中:f1、f2为两个相的体积分数 ε 1,ε2为此应力下两相的应变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲变形后
残余内应力2
微观残余内应力: 多晶体的各晶粒的变形不均匀,而使各晶粒间产 生残余内应力。
残余内应力3
晶格畸变应力:金属在塑性变形后,增加了位错及空位 等晶体缺陷,使晶体中一部分原子其偏离平衡而造成晶 格畸变,从而产生的残余内应力。需要部分原子范围内 (几百,几千)来相互平衡。
残余内应力:残留金属内部用于平衡的内部应力。 类别:1、宏观残余内应力 2、微观残余内应力 3、晶格畸变应力 引起残余内应力的原因: 塑性变形、温度急剧变化、结晶、固态相变等 有害影响:1、降低工件的承载能力 2、 使工件尺寸和形状发生变化 3、降低工件的耐蚀性
2)再结晶温度的影响 再结晶是在一个温度范围内进行的,若温度过低不能发生
再结晶;若温度过高,则会发生晶粒长大,因此要获得细
小的再结晶晶粒,必须在一个合适的温度范围内进行加热 再结晶退火温度必须在T再以上,生产上实际使用的再结 晶温度通常是比T再高150~250℃,这样就既可保证完全 再结晶,又不致使晶粒粗化。 再结晶温度:纯金属 TR=0.4-0.35Tm(K) 合金:TR=0.5-0.7Tm(K)
曲轴
齿轮——
第五节 超塑性
纳米铜的室温超塑性
单晶体试样在拉伸实验时,除 了沿滑移面产生滑移外,晶体 还会产生转动。 因为晶体在拉伸过程,当滑移 面上、下两部分发生微小滑移 时,试样两端的拉力不再处于 同一直线上,于是在滑移面上 形成一力偶,使滑移面产生以 外力方向为转向,趋向于与外 力平行的转动。
滑 移 面:晶面上原子间距最小 滑移方向:原子排列密度最大 Ⅲ Ⅲ
应用:工业将金属在低温下加热, 进行“消除内应力退火” 处理, 以保留金属的变形强化性能
2 .再结晶
原理:当它被加热到较高的温度时, 原子也具有较大的活动能力,使晶粒 的外形开始变化。从破碎拉长的晶粒 变成新的等轴晶粒。和变形前的晶粒 形状相似,晶格类型相同,把这一阶 段称为“再结晶”。 再结晶过程同样是通过形核和长大两 个过程进行的。 再结晶结束后,金属中内应力全部消 除,显微组织恢复到变形前的状态, 其所有性能也恢复到变形前的数值, 消除了加工硬化。 再结晶退火消除加工硬化的热处理工 艺
发生了滑移的金属试样表面状态
二、多晶体的塑性变形
金属材料大多为位向、形状、大小不同的晶粒组 成的多晶体,因此多晶体的变形是许多单晶体变形的 综合作用的结果。
1、晶粒本身的变形(滑移变形)——主要的 2、晶粒之间的变形(晶间变形)——次要的
主要影响因素:晶界、位向 晶界: 1. 滑移的主要障碍:原子混乱排列区,较不规则→缺陷、杂质 集中。滑移不能从一个晶粒直接延续到另一个晶粒中去。 2. 协调变形:晶界自身变形→以维持相邻晶粒变形保持连续。
利 (2)利弊
弊
3.织构的形成:
随着变形量的增大,各晶粒的位向将沿着变形的方向发生转变, 当变形量足够大(70% ~ 90%)时,绝大部分晶粒的某一方向趋 向大体一致,使材料呈现各向异性,甚至退火也难消除。
丝织构
板织构
制 耳
织构的作用:(1)一般情况下,对加工 成型极为不利;(2)有些情况下,可以 利用织构的作用----硅钢片
例如,纯铁和低碳钢经70%变形度的冷轧变形后, 抗拉强度能提高400~500MPa。 高强度钢丝是将含碳量为1.0%的高碳钢处理 成细片状珠光体,然后冷拔变形90%以上,抗拉 强度可高达3000MPa。
加工硬化对力学性能的影响
强化金属的重要途径; 提高材料使用安全性; 材料加工成型的保证。 变形阻力提高,动力消耗增大; 脆断危险性提高。
压力加工方法
一、金属单晶体的塑性变形 金属单晶体的塑性变形方式有“滑移”与“孪生” ,但 一般大多数情况下都是以滑移方式进行的。 滑移:在外加切应力作用下,晶体的一部分相对于另一部 分沿一定晶面发生一定距离的移动,应力去除后不能回复 原状。
孪生:在外加切应力作用下, 晶体的一部分相对于另一部分 沿一定晶面产生一定角度的切 变,应力去除后不能回复原状
二、单晶体的滑移变形 任何应力都可以分解为: – 一个正应力( ) – 一个切应力()
正应力___伸长、断裂 切应力___滑移变形
正应力σ :仅使 晶格产生弹性伸 长,当超过原子 间结合力时,将 晶体拉断; 切应力τ :使晶 格产生弹性歪扭, 在超过滑移抗力 时引起滑移面两 侧的晶体发生相 对滑动。
2. 可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机
械性能提高; 3. 可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,形 成锻造流线forging flow line(纤维组织),产生各向异性 可提高零件使用寿命。
(a)锻造变形; (b)切削加工
——钢锭中夹杂物沿晶界被压伸长,与变形方向一致, 好似一条条细线。平行流线方向——抗拉强度、塑性好。 垂直于流线方向——抗剪切力大ห้องสมุดไป่ตู้抗拉强度低。
再结晶温度的压力加工是冷加工cold working 。 如:金属铅在室温下变形——属热加工 金属钨在1000℃时变形——属冷加工 区别:热加工变形量大,表面粗糙,无加工硬化现象,有再结晶。
冷加工变形量小,表面光滑,有加工硬化现象,无再结晶。
用途:热变形加工多用于形状较复杂的零件毛坯及大件毛 坯的锻造和热轧钢锭成钢材等。而冷变形加工多用于截面
第三节 变形金属在加热时的组织和性能的变化
回复recovery 再结晶
recrystallization
晶粒长大
冷变形后
回复
再结晶
晶粒长大
1. 回复阶段 原理:温度较低,原子的活动能 力不大,这时金属的晶粒大小和 形状没有明显的变化,只是在晶 内发生点缺陷的消失以及位错的 迁移等变化 性能变化:强度、硬度和塑性等 机械性能变化不大,内应力及电 阻率等性能显著降低。
影响再结晶粒大小的因素
1)变形度影响
当变形量很小时,由于晶格畸变很小,不足以引起再结晶; 当变形度达到某一临界值时,由于此时金属中只有部分晶粒 变形,变形极不均匀,再结晶晶核少,且晶粒极易相互吞并 长大,因而再结晶后晶粒粗大,此变形度即为临界变形度; 当变形度大于临界变形度时,随变形量的增加,越来越多的 晶粒发生了变形,变形愈趋均匀,晶格畸变大,再结晶的晶 核多,再结晶后晶粒愈来愈细。 可见冷压加工应注意避免在临界变形度范围内加工,以免再 结晶后产生粗晶粒。
工业纯铁表面的滑移带
变形前
变形后 工业纯铁变形度为80%的显微组织
2.亚结构形成,材料加工硬化(work hardened ):
加工硬化:金属材料经冷塑性变形后,随变形度增加,强度 硬度升高,塑性韧性降低的现象称为加工硬化或形变强化。加工 硬化是提高材料强度的有效手段之一。
强度、硬度↑,塑性、韧性↓
滑移系越多材料的塑性愈好,尤其是滑移方向的作用更明显!
滑移的微观机制
理论滑移力与实际滑移力(Cu)
理=6400N/mm2 实= 1.0N/mm2
τ τ τ
τ
τ
τ
晶体的塑性变形是晶体内相邻部分滑移的综合表现。 但晶体内相邻两部分之间的相对滑移,不是滑移面两 侧晶体之间的整体刚性滑动,而是由于晶体内存在位 错,因位错线两侧的原子偏离了平衡位置,这些原子 有力求达到平衡的趋势。 当晶体受外力作用时,位错(刃型位错)将垂直于受 力方向,沿着一定的晶面和一定的晶向一格一格地逐 步移动到晶体的表面,形成一个原子间距的滑移量。 一个滑移带就是上百个或更多位错移动到晶体表面所 形成的台阶。
孪生与滑移的主要区别: ①变形方式; 孪生是使一部分晶体整体发生均匀的切变;而滑移则集中在一些滑移面上。 ②变形后的位向 孪生使一个晶体的两部分沿一个公共晶面构成了 镜面对称关系;而滑移则不改变晶体的位向。 ③原子位移距离不同 孪生时,孪晶带中的原子沿孪生方向 的位移量为原子间距的的分数值;而 滑移为原子间距的整数倍。 ④孪生变形困难 一般先滑移,滑移困难后, 发生孪生,二者交替进行 。
4.内应力(金属在外力作用下各部分发生不均匀的塑性 变形所导致):
第一类内应力 宏观应力
由整个物体变形 不均匀引起
第二类内应力 微观应力
由晶粒变形 不均匀引起
第三类内应力 晶格畸变
由位错、空位等引起
变形甚至开裂
晶间腐蚀
加工硬化
5.其他性能的影响:电阻增加,耐腐蚀性能降低等
残余内应力1 宏观残余内应力: 由于金属材料各部分变形不均匀而造成的宏观 范围内残余应力。
一个滑移面和该面上的一个滑移方向构成一个滑移系, 每一个滑移系表示晶体在产生滑移时可能采取的一个空间位向。
滑移系=滑移面*滑移方向
体心立方 6*2=12
面心立方 4*3=12
密排六方 1*3=3
三种典型金属晶体结构的滑移系(密排面和密排方向)
体心立方:6个面×2个方向=12 面心立方:4个面×3个方向=12 密排六方:1个面×3个方向=3
多晶体的塑性变形过程
第二节 塑性变形对金属组织和性能的影响 经过塑性变形,可使金属的组织和性能发生一系列重大 的变化,这些变化大致可以分为如下四个方面。 1. 产生纤维组织,性能趋于各向异性; 2. 织构现象的产生 ; 3. 晶粒破碎,位错密度增加,产生加工硬化 ;
4. 残余内应力 。
1.晶粒变形,形成纤维组织: 晶粒被拉长或被压扁,当变形足够 大时,晶界变得模糊不清,不易分辨。 杂质呈细带状或链状分布。
第三章 金属的塑性变形
第一节 单晶体、多晶体的塑性变形 基本概念:金属或合金在外力作用下,都能或多或少地发生变 形,去除外力后,永远残留的那部分变形叫塑性变形。
抵抗塑性变形是一般工程构件的基本要求,不希望结构件在
承载时产生不可恢复的塑性变形; 塑性变形是金属材料的一种重要加工成形方法,在材料加工 过程中,人们希望它易于加工变形。 塑性变形还可改变材料内部组织与结构并影响其宏观性能。