高中数学 3.4.2基本不等式学案 新人教A版必修5

合集下载

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A版必修5

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A版必修5

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A 版必修5【学习目标】1学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.通过实例探究抽象基本不等式;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣【自主学习】阅读教材P97—98,找出疑惑之处。

问题1: 对于任意实数 a 、b ,我们有22b a + ab 2,当且仅当 时,等号成立。

你能给出它的证明吗?问题2:对于任意正实数 a 、b ,我们有b a + ab 2,当且仅当 时,等号成立。

(的算术平均数,为正数称b a b a ,2+ . , 的几何平均数为正数b a ab ) 你能给出它不同的证明方法吗?问题3:0x >时,当x 取何值时,1x x+的值最小?最小值是多少?【合作探究】例1、(1)用篱笆围一个面积为1002m 的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。

最大面积是多少?【目标检测】(A 级、全体学生做)1、已知x >0,若xx 81+的值最小,则x 为 2、若实数a 、b 满足,2=+b a 则b a 33+的最小值为3、已知直角三角形的面积等于50,两条直角边各为多少时,两条直角边的和最小,最小是多少?4、用20cm 长的铁丝折成一积个面最大的矩形,应当怎样折?(B 级选做题)当1->x 时,求函数113)(2++-=x x x x f 的值域。

学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些没学懂?3.4基本不等式2b a ab +≤(第二课时) 【学习目标】1 、会应用基本不等式求某些函数的最值,能够解决一些简单的实际问题;2 、能综合运用函数关系,不等式知识解决一些实际问题.【自主学习】)0,0(>>b a ,当 时等号成立。

新人教A版必修5高中数学第三章3.4基本不等式(一)导学案

新人教A版必修5高中数学第三章3.4基本不等式(一)导学案
答案B
解析x2+ax+1≥0在x∈上恒成立
⇔ax≥-x2-1⇔a≥max.
∵x+≥2,∴-≤-2,∴a≥-2.
二、填空题
7.若a<1,则a+有最______值,为________.
答案大 -1
解析∵a<1,∴a-1<0,
∴-=(1-a)+≥2(a=0时取等号),
∴a-1+≤-2,∴a+≤-1.
8.若lgx+lgy=1,则+的最小值为________.
3.设a,b∈R,且a≠b,a+b=2,则必有()
A.1≤ab≤B.ab<1<
C.ab<<1 D.<ab<1
答案B
解析∵ab≤2,a≠b,∴ab<1,
又∵>>0,
∴>1,∴ab<1<.
4.已知正数0<a<1,0<b<1,且a≠b,则a+b,2,2ab,a2+b2,其中最大的一个是()
A.a2+b2B.2C.2abD.a+b
答案2
解析∵lgx+lgy=1,∴xy=10,x>0,y>0,
A.B.bC.2abD.a2+b2
答案B
解析∵ab<2,∴ab<,∴2ab<.
∵>>0,∴>,
∴a2+b2>.
∵b-(a2+b2)=(b-b2)-a2=b(1-b)-a2
=ab-a2=a(b-a)>0,∴b>a2+b2,∴b最大.
6.若不等式x2+ax+1≥0对一切x∈恒成立,则a的最小值为()
A.0 B.-2C.-D.-3
3.基本不等式的常用推论
(1)ab≤2≤(a,b∈R);
(2)当x>0时,x+≥2;当x<0时,x+≤-2.

人教高中 数学 必修五 3.4 基本不等式教学设计

人教高中 数学 必修五 3.4  基本不等式教学设计

人教高中数学必修五 3.4 基本不等式教学设计《基本不等式》教学设计教材:人教版《普通高中课程标准实验教科书·数学(A版)》必修5课题:3.4 基本不等式(第一课时)一、教材分析《基本不等式》是高中教材人教A版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一。

就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想。

本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习时再次得到加强。

基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分。

本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式222(,)+≥∈。

a b ab a b R在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式。

其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力。

这就使得不等式的证明成为本节课的核心内容。

二、教学重难点教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。

教学难点:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值。

三、教学目标《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题。

根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些国际数学家大会被誉为是数学界的奥林匹克盛会,每次大会上都会宣布菲尔兹奖获奖名单。

3.4.2基本不等式课件(人教A版必修5)

3.4.2基本不等式课件(人教A版必修5)

4 3 求函数y sin 其中 0, ] ( sin 2 的最小值。 4 4 解:y sin 2 sin sin sin 4,函数的最小值为4。
用均值不等式求最值,必须注意 “相等” 的条 件. 如果取等的条件不成立,则不能取到该最值.
4800 z 150 120( 2 3 x 2 3 y ) =240000+720(x+y) 3
由容积为4800m3 ,可得3xy=4800,
因此xy=1600,
由基本不等式与不等式性质,可得 240000+720(x+y)≥ 240000+720×2 xy 即:z≥240000+720×2 xy =297600
2 ( x 1) x 1 1 3
(1)x=2 (2)x=1/2
思考:取到最值时x的值呢?
构造法
变式:(1)已知x>-2,求
1 x 的最小值; x2
(2)已知0<x<1/2,求x(1-2x)的最大值.
1 变式:(1)已知x>-2,求 x 的最小值;0 x2 (2)已知0<x<1/2,求x(1-2x)的最大值. 1 8
解:设矩形菜园的长为x m,宽为y m 则 2(x+y)=36,x+y=18 由
xy x y 18 9 2 2
矩形菜园的面积为xy m2 xy≤81
可得
等号当且仅当x=y时成立,这时x=y=9.
因此,这个矩形的长、宽都为9m时,菜园的 面积最大,最大面积为81m2
例6 某工厂要建造一个长方形无盖贮水池,其容 积为4800m3,深为3 m。如果池底每平方米的造价为 所以,将水池的地面设计成边长为40 m的正方形 150元,池壁每平方米的造价为120元,怎样设计水池能 时总造价最低,最低造价为297600元 使总造价最低?最低造价为多少元? 解:设底面的长为x m,宽为y m, 水池总造价为z元,根据题意,有

人教A版高中数学必修五《基本不等式》精品教案

人教A版高中数学必修五《基本不等式》精品教案

《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。

②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。

③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。

让学生享受学习数学带来的情感体验和成功喜悦。

二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。

教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。

三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。

以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。

以多媒体作为教学辅助手段,加深学生对基本不等式的理解。

四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。

2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。

教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。

2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。

)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。

五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。

新人教A版必修5高中数学《3.4 基本不等式》导学案(3)

新人教A版必修5高中数学《3.4 基本不等式》导学案(3)

高中数学《3.4 基本不等式》导学案(3)新人教A 版必修5学习目标1.理解并掌握基本不等式及变形应用. 2.会用基本不等式求最值问题 ※ 学习重点、难点:1.利用基本不等式求最值.(重点)2.利用基本不等式求最值时的变形转化(难点)1、若x >0,则34x x+的最小值为 2、若a,b 均为大于1的正数,且ab =100,则lga ·lgb 的最大值是3、设0<x<32,求函数y =x(3-2x)的最大值;一层练习 4、若a <1,则a +1a -1有最___值,为________.5、设0>x ,求xx y 133--=的最大值二层练习 6、求)0(112<-+=x xx y 的最大值7、求)0(123≠+=x xx y 的值域8、求函数y =x +1x的值域.9、求)1(1622>-++=x x x x y 的最小值求函数y =x 2+3x 2+2的最小值.二、合作探究题型四 利用基本不等式解有条件的最值问题1、已知,0,0>>b a 且,4=ab 求b a 23+的最小值2、已知,0,0>>b a 且,14=+b a 求ab 的最大值3、已知x>0,y>0,且 1x +9y =1,求x +y 的最小值.4、已知,0,0>>y x 且124++=y x xy 求xy 的最小值5、设x ,y 都是正数,且1x +2y=3求2x +y 的最小值;6、若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .(3)设x>0,y>0,且2x +8y =xy ,求x +y 的最小值.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值52B .最小值54C .最大值1D .最小值1已知x <54,求函数f (x )=4x -2+14x -5的最大值.1.函数y =log 2⎝⎛⎭⎪⎫x +1x -1+5 (x >1)的最小值为( ) A .-3 B .3 C .4 D .-42.已知点P (x ,y )在经过A (3,0),B (1,1)两点的直线上,则2x +4y的最小值为( ) A .2 2 B .4 2 C .16 D .不存在6.函数y =log a (x +3)-1 (a >0,a ≠1)的图象恒过点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.(2)设x >-1,求y =x +x +x +1的最小值.4.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-36.若lg x +lg y =1,则2x+5y的最小值为________.8.设正数x ,y 满足x +y ≤a ·x +y 恒成立,则a 的最小值是______. 2已知2a +b =1,a >0,b >0,则11a b+的最小值是( )A .B .3-C .3+D .33(2011·安徽合肥一模)若M =24a a+(a ∈R ,a ≠0),则M 的取值范围为( )A .(-∞,-4]∪[4,+∞)B .(-∞,-4]C .[4,+∞)D .[-4,4]1函数y =3x +32-x的最小值为__________.4. 若14<<-x ,则22222-+-x x x 的最小值为( )(1).11120,0的最小值,求且yx y x y x +=+>> ; (2) 设x 、y 是正实数,且x+y=5,则lgx+lgy 的最大值是_______________________. 2、已知正数a ,b 满足ab =a +b +3.求a +b 的最小值.达标练习课后练习。

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

3.4 基本不等式:ab≤a+b 2[目标] 1.了解基本不等式的代数式和几何背景;2.会用基本不等式进行代数式大小的比较及证明不等式;3.会用基本不等式求最值和解决简单的实际问题.[重点] 基本不等式的简单应用.[难点] 基本不等式的理解与应用.知识点一 两个不等式[填一填]1.重要不等式:对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b2,当且仅当a =b 时,等号成立.其中a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.知识点二 基本不等式与最值[填一填]已知x ,y 都是正数,(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.[答一答]2.利用基本不等式求最值时,我们应注意哪些问题?提示:(1)在利用基本不等式具体求最值时,必须满足三个条件:①各项均为正数;②含变数的各项的和(或积)必须是常数;③当含变数的各项均相等时取得最值.三个条件可简记为:一正、二定、三相等.这三个条件极易遗漏而导致解题失误,应引起足够的重视.(2)记忆口诀:和定积最大,积定和最小.3.在多次使用基本不等式求最值时,我们应注意什么问题?提示:在连续多次应用基本不等式时,我们要注意各次应用时不等式取等号的条件是否一致,若不能同时取等号,则需换用其他方法求出最值.4.两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如sin x 与4sin x ,x ∈(0,π2),两个都是正数,乘积为定值.但是由0<sin x <1,且sin x +4sin x 在(0,1)上为减函数,所以sin x +4sin x >1+41=5,等号不成立,取不到最小值.类型一 利用基本不等式证明不等式[例1] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手.[证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ),即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .(2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 ≥2bc a ·2ac b ·2ab c=8.当且仅当a =b =c =13时,等号成立.1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练1] 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.证明:因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号. 类型二 利用基本不等式求最值[例2] (1)若x >0,求f (x )=4x +9x 的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[分析] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0,∴由基本不等式得 f (x )=4x +9x≥24x ·9x=236=12, 当且仅当4x =9x,即x =32时,f (x )=4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92. 当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.当且仅当x -2=4x -2,即x =4时,x +4x -2取最小值6.(4)∵x >0,y >0,1x +9y =1,∴x +y =(x +y )⎝⎛⎭⎫1x +9y =10+y x +9x y ≥10+29=16.当且仅当y x =9x y 且1x +9y =1时等号成立.即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.求最值问题第一步就是“找”定值,观察、分析、构造定值是问题的突破口.找到定值后还要看“=”是否成立,不管题目是否要求写出符号成立的条件,都要验证“=”是否成立.[变式训练2] (1)已知lg a +lg b =2,求a +b 的最小值; (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. 解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100=20, 当且仅当a =b =10时,a +b 取到最小值20.(2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,且2x +3y =6时等号成立, 即x =32,y =1时,xy 取到最大值32.类型三 基本不等式的实际应用[例3] 特殊运货卡车以每小时x 千米的速度匀速行驶130千米,按规定限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而送货卡车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时140元.(1)求这次行车总费用y 关于x 的表达式.(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(小时),y =130x ×6×⎝⎛⎭⎫2+x 2360+140×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×152x +13x 6,x ∈[50,100].(2)y =130×152x +13x 6≥525703,当且仅当130×152x =13x6,即x =4570∈[50,100]时,等号成立.故当x =4570千米/时,这次行车的总费用最低,最低费用的值为525703元.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.[变式训练3] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的总造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ×10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元).1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab ≥2,故只须a 、b 同号即可.所以①、③、④均可以.2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b >2abD .b a +ab≥2解析:∵a ,b ∈R ,且ab >0, ∴b a >0,ab>0,∴b a +a b ≥2b a ×a b=2. 当且仅当b a =ab,即a =b 时取等号.3.设a ,b 为实数,且a +b =3,则2a +2b 的最小值为( B ) A .6 B .4 2 C .2 2 D .8解析:2a +2b ≥22a +b =223=4 2.4.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解析:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.5.已知a >0,b >0,c >0,求证: (1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abc abc=8(当且仅当a =b =c 时取“=”).——本课须掌握的两大问题1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 2.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即(1)一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;(2)二定:化不等式的一边为定值;(3)三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.。

高中数学第三章不等式3.4.2基本不等式的应用素养评价检测含解析5

高中数学第三章不等式3.4.2基本不等式的应用素养评价检测含解析5

基本不等式的应用(20分钟35分)1。

某车间分批生产某种产品,每批的生产准备费用为800元。

若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A。

60件B。

80件 C.100件D。

120件【解析】选B.设每件产品的平均费用为y元,由题意得y=+≥2=20.当且仅当=(x>0),即x=80时“="成立.2.若xy是正数,则+的最小值是()A.3 B。

C.4 D。

【解析】选C.+=x2+y2+++=+++≥1+1+2=4。

当且仅当x=y=或x=y=-时取等号.3。

已知m〉0,n〉0,+=1,若不等式m+n≥—x2+2x+a对已知的m,n及任意实数x恒成立,则实数a的取值范围是()A.[8,+∞)B。

[3,+∞)C。

(—∞,3] D.(—∞,8]【解析】选D。

因为m+n=(m+n)=5++≥5+2=9,当且仅当=,即m=3,n=6时等号成立,所以—x2+2x+a≤9,即a≤x2-2x+9=(x-1)2+8,所以a≤8。

4。

已知x>0,y>0,且+=1,则3x+4y的最小值是.【解析】因为x〉0,y〉0,+=1,所以3x+4y=(3x+4y)=13++≥13+3×2=25(当且仅当x=2y=5时取等号),所以(3x+4y)min=25。

答案:255.若a,b均为正实数,且满足a+2b=1,则的最小值为.【解析】a+2b=1,则===+,则(a+2b)=4+3++≥7+2=7+4,当且仅当=,即a=b时取等号.答案:4+76。

共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用.据市场分析,每辆单车的营运累计收入f(x)(单位:元)与营运天数x(x∈N*)满足f(x)=—x2+60x—800.(1)要使营运累计收入高于800元,求营运天数的取值范围;(2)每辆单车营运多少天时,才能使每天的平均营运收入最大?【解析】(1)要使营运累计收入高于800元,则f(x)>800⇒-x2+60x—800>800⇒(x—40)(x—80)<0⇒40〈x〈80,所以要使营运累计收入高于800元,营运天数应该在(40,80)内取值.(2)每辆单车每天的平均营运收入为y===—x—+60≤-2+60=20,当且仅当x=时等号成立,解得x=40,即每辆单车营运40天,可使每天的平均营运收入最大。

【数学】3.4《基本不等式》教案(新人教A版必修5)(3课时)

【数学】3.4《基本不等式》教案(新人教A版必修5)(3课时)

课题: §3.4基本不等式2a b ab +≤第1课时授课类型:新授课 【教学目标】1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b ab +≤的证明过程;【教学难点】 基本不等式2a b ab +≤等号成立条件【教学过程】1.课题导入基本不等式2a b ab +≤的几何背景:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。

这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。

当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.1)从几何图形的面积关系认识基本不等式2a b ab +≤特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b ab +≤2)从不等式的性质推导基本不等式2a b ab +≤用分析法证明:要证2a b ab +≥ (1)只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。

高中数学第三章不等式3.4基本不等式(第2课时)课件新人教A版必修5

高中数学第三章不等式3.4基本不等式(第2课时)课件新人教A版必修5

4 1 9 ( 2)已 知a b 0, a b 1, 则 的最小值为 ___ a b 2b
方法点拨:常数“1”的代换
例题讲解
1 4 例3.对 任 意 的 (0, ),不 等 式 2 2x 1 2 2 sin cos 恒成立 ,则 实 数 x的 取 值 范 围 是 ( D ) A. 3,4 B.0,2 3 5 C . , 2 2 D. 4,5
a7 a6 2a5 , 若 存 在 两 项 am , an , 使 得 am an 4a1 , 1 4 3 5 9 25 则 的最小值为 ( A ) A. B. C . D. m n 2 3 4 6
变题
改条件 am an 2a1,则最小值在计算时有 何不同?
课堂小结
基本不等式
ab 若a , b 0, 则 ab (当 且 仅 当 a b时, 等 号 成 立 ) 2
基本不等式及其应用的运用的原则: (1)结构为王 (2)配凑变形为辅(3)成立条件 保障
(备用例题)
1.设已知实数a, b R, 若a 2 ab b 2 3, 则 (1 ab) 2 的值域为_______ 2 2 a b 1
作业:
配套练习
例题讲解 例1. 试着构造一个最小值为2的函数, “□”内 可填入常数或是x相关的式子
f ( x)

x 2
2
x 1
( x 1)
x 1 2 f ( x) ( x 1) 2 x 1 x f ( x) x 2 ( x 1) x 1 x2 f ( x) 2( x 1) x 1

例题讲解
例4.关 于x的 二 次 不 等 式 ax2 2 x b 0的 解 集 为 1 a 2 b2 2 2 的最小值为 ________ x x , 且a b, 则 a ab

人教A版高中数学必修5第三章 不等式3.4 基本不等式教案(3)

人教A版高中数学必修5第三章 不等式3.4 基本不等式教案(3)

基本不等式目的要求: 复习与掌握基本不等式及其运用。

重点难点: 利用基本不等式的运用技巧。

教学设计: 一、引入:我们已经学习过重要不等式 a²+b²≥2ab ,下面将它以定理的形式给出. 二、定理1 如果a, b ∈R, 那么a²+b²≥2ab.当且仅当a=b 时等号成立。

让学生自己给出证明.探究: 你能从几何的角度解释定理1吗?分析:a²与b²的几何意义是正方形面积,ab 的几何意义是矩形面积,可考虑从图形的面积角度解释定理。

几何意义:如图把实数a ,b 作为线段长度,以a ≥b 为例,在正方形ABCD 中,AB=a ;在正方形CEFG 中,EF=b.则 S 正方形ABCD+S 正方形CEFG=a ²+b ².2ab S S CEFG BCGH =+矩形矩形,其值等于图中有阴影部分的面积,它不大于正方形ABCD 与正方形CEFG 的面积和。

即a ²+b ²≥2ab.当且仅当a=b 时,两个矩形成为正方形,此时有 a ²+b ²=2ab 。

三、定理2:将定理1做简单变形即可得到定理2,如下:如果a,b>0,那么ab ba ≥+2,当且仅当a=b 时,等号成立.证明:因为 ()()ab b a b a b a 2222=≥+=+所以ab ba ≥+2, 上式当且仅当b a =,即a=b 时,等号成立。

其中2ba +为a,b 的算术平均,ab a,b 的几何平均,于是基本不等式可以表述为:两个正数的算术平均不小于它们的几何平均。

几何意义为:如图在直角三角形中,CO 、CD 分C别是斜边上的中线和高,设AD=a ,DB=b ,则由图形可得到基本不等式的几何解释。

四、.教学例题例3 求证:(1)在所有周长相同的矩形中,正方形的面积最大;(2)在所有面积相同的矩形中,正方形的周长最短。

2018版高中数学第三章不等式3.4基本不等式:√ab≤(a+b)2(二)学案新人教A版必修5

2018版高中数学第三章不等式3.4基本不等式:√ab≤(a+b)2(二)学案新人教A版必修5

3.4 基本不等式:√ab≤(a+b)2(二)[学习目标] 1.熟练掌握基本不等式及其变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点一基本不等式求最值1.理论依据:(1)设x,y为正实数,若x+y=s(和s为定值),则当x=y时,积xy有最大值,且这个值为s2 4 .(2)设x,y为正实数,若xy=p(积p为定值),则当x=y时,和x+y有最小值,且这个值为2p.2.基本不等式求最值的条件:(1)x,y必须是正数;(2)求积xy的最大值时,应看和x+y是否为定值;求和x+y的最小值时,应看积xy是否为定值.(3)等号成立的条件是否满足.3.利用基本不等式求最值需注意的问题:(1)各数(或式)均为正.(2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性.知识点二基本不等式在实际中的应用基本不等式在实际中的应用是指利用基本不等式解决生产、科研和日常生活中的问题.解答不等式的应用题一般可分为四步:(1)阅读并理解材料;(2)建立数学模型;(3)讨论不等关系;(4)作出结论.题型一利用基本不等式求最值例1 (1)已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1(2)已知t >0,则函数y =t 2-4t +1t的最小值为____.(3)已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为____.答案 (1)D (2)-2 (3)3解析 (1)f (x )=x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1x -2≥1.当且仅当x -2=1x -2,即x =3时,等号成立. (2)y =t 2+1-4t t =t +1t-4≥2-4=-2,当且仅当t =1t,即t =1或t =-1(舍)时,等号成立,∴y 的最小值为-2.(3)xy =12·⎝ ⎛⎭⎪⎫x 3·y 4≤12·⎝ ⎛⎭⎪⎪⎫x 3+y 422=12·⎝ ⎛⎭⎪⎫122=3, 当且仅当x 3=y 4=12,即x =32,y =2时,等号成立,∴xy 的最大值为3.反思与感悟 在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1 (1)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( )A .1B .2C .3D .4(2)已知x ,y 为正数,且2x +y =1,则1x +1y的最小值为________.答案 (1)D (2)3+2 2 解析 (1)a 2+1ab+1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab≥2+2=4.当且仅当a (a -b )=1且ab =1, 即a =2,b =22时取“=”. (2)由2x +y =1,得1x +1y =2x +y x +2x +yy=3+y x+2xy ≥3+2 y x ·2xy=3+22, 当且仅当y x =2xy,即x =2-22,y =2-1时,等号成立.题型二 基本不等式的综合应用例2 (1)已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值 eC .有最小值eD .有最小值 e 答案 C解析 由题意得⎝ ⎛⎭⎪⎫142=14ln x ln y ,∴ln x ln y =14,∵x >1,y >1,∴ln x ln y >0, 又ln(xy )=ln x ln y ≥2ln x ln y =1, ∴xy ≥e ,即xy 有最小值为e. (2)若对任意x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.解 设f (x )=x x 2+3x +1=1x +1x +3,∵x >0,∴x +1x≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.反思与感悟将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有: (1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .跟踪训练2 (1)设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .2B .4C .1 D.12(2)函数y =kx +2k -1的图象恒过定点A ,若点A 又在直线mx +ny +1=0上,则mn 的最大值为________. 答案 (1)B (2)18解析 (1)由题意得,3a·3b=(3)2,即a +b =1, ∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab =4, 当且仅当b a =a b ,即a =b =12时,等号成立.(2)y =k (x +2)-1必经过(-2,-1),即点A (-2,-1), 代入得-2m -n +1=0, ∴2m +n =1,∴mn =12(2mn )≤12·⎝ ⎛⎭⎪⎫2m +n 22=18,当且仅当2m =n =12时,等号成立.题型三 基本不等式的实际应用例3 要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm ,请确定广告的高与宽的尺寸(单位:cm),使矩形广告面积最小,并求出最小值. 解 设矩形栏目的高为a cm ,宽为b cm ,ab =9 000.① 广告的高为a +20,宽为2b +25,其中a >0,b >0. 广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500 =18 500+25a +40b ≥18 500+225a ×40b =18 500+2 1 000ab =24 500.当且仅当25a =40b 时,等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500,故广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小,最小值为24 500 cm 2. 反思与感悟 利用基本不等式解决实际问题的步骤(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,应用基本不等式求出函数的最大值或最小值. (4)正确写出答案.跟踪训练3 一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时. 答案 8解析 设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝ ⎛⎭⎪⎫v 202v=400v +16v 400≥2 400v ×16v400=8(小时), 当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时.1.下列函数中,最小值为4的函数是( ) A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x+4e -xD .y =log 3x +log x 81 答案 C解析 A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C.2.函数y =x 2-x +1x -1(x >1)在x =t 处取得最小值,则t 等于( )A .1+ 2B .2C .3D .4 答案 B 解析 y =x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. 3.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a+b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C. 4.函数f (x )=x (4-2x )的最大值为________. 答案 2解析 ①当x ∈(0,2)时,x ,4-2x >0, f (x )=x (4-2x )≤12⎣⎢⎡⎦⎥⎤2x +(4-2x )22=2,当且仅当2x =4-2x ,即x =1时,等号成立. ②当x ≤0或x ≥2时,f (x )≤0,故f (x )max =2.5.当x <54时,函数y =4x -2+14x -5的最大值为________.答案 1解析 ∵x <54,∴4x -5<0,∴y =4x -5+14x -5+3=-⎣⎢⎡⎦⎥⎤(5-4x )+15-4x +3 ≤-2(5-4x )·15-4x+3=1当且仅当5-4x =15-4x,即x =1时,等号成立.1.用基本不等式求最值(1)利用基本不等式求最值要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数y =x +px(p >0)的单调性求得函数的最值. 2.求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答.。

高中数学 3.4基本不等式ab≤a+b2(一)导学案(无答案)新人教版必修5 学案

高中数学 3.4基本不等式ab≤a+b2(一)导学案(无答案)新人教版必修5 学案

3.4 基本不等式ab ≤a +b 2(一) 学习目标理解基本不等式及证明;熟练运用基本不等式来比较大小;能运用基本不等式证明简单的不等式. 预习篇1.如果a ,b ∈R ,那么a2+b22ab(当且仅当时取“=”).2.若a ,b 都为数,那么a +b 2ab(当且仅当ab 时,等号成立),称上述不等式为不等式,其中称为a ,b 的算术平均数,称为a ,b 的几何平均数.3.基本不等式的常用推论(1)ab≤⎝⎛⎭⎫a +b 22≤a2+b22 (a ,b ∈R);(2)当x>0时,x +1x ≥;当x<0时,x +1x ≤. (3)当ab>0时,b a +a b ≥;当ab<0时,b a +a b≤.(4)a2+b2+c2ab +bc +ca ,(a ,b ,c ∈R). 4.当a>0,b>0且a≠b 时,a +b 2,ab ,21a +1b ,a2+b22按从小到大的顺序排列为. 课堂篇探究点一 基本不等式的证明问题1 利用作差法证明:a ∈R ,b ∈R ,a2+b2≥2ab.问题2 当a>0,b>0时,a =(a)2,b =(b)2.据此证明:a>0,b>0时,a +b≥2ab.探究 下面是基本不等式ab ≤a +b 2的一种几何解释,请你补充完整. 如图所示,AB 为⊙O 的直径,AC =a ,CB =b ,过点C 作CD ⊥AB 交⊙O 上半圆于点D ,连接AD ,BD.由射影定理可知,CD =,而OD =,因为ODCD ,所以 a +b 2ab,当且仅当C 与O ,即时,等号成立.探究点二 当a>0,b>0时,21a +1b ≤ab ≤a +b 2≤ a2+b22这是一条重要的基本不等式链,请证明.典型例题例1 已知正数0<a<1,0<b<1,且a≠b ,则a +b ,2ab ,2ab ,a2+b2,其中最大的一个是( ) A .a2+b2 B .2abC .2ab D .a +b例2 设a ,b ,c 都是正数,求证:b +c a +c +a b +a +bc ≥6.例3 a>b>c ,n ∈M 且1a -b +1b -c ≥na -c ,求n 的最大值巩固篇1.若0<a<b ,则下列不等式一定成立的是( )A .a>a +b 2>ab>bB .b>ab>a +b2>aC .b>a +b 2>ab>a D .b>a>a +b 2>ab2.设a 、b 是实数,且a +b =3,则2a +2b 的最小值是( )A .6B .42C .26D .83.若不等式x2-ax +1≥0对一切x ∈(0,1]恒成立,则a 的取值X 围是________.4.a ,b ,c ∈R ,求证:a2+b2+c2≥ab +bc +ca.。

2015-2016学年高中数学 3.4第2课时 基本不等式的应用-证明与最值问题课件 新人教A版必修5

2015-2016学年高中数学 3.4第2课时 基本不等式的应用-证明与最值问题课件 新人教A版必修5

课堂探究学案
“1”的代换
1 设 a,b,c 都是正数且 a+b+c=1,求证:a+ 1 1 b+c ≥9.
[分析] 本题考查利用均值不等式证明不等式.将a+b+c
=1代入所证式子的左边,然后拆、配成均值不等式的形式.
1 1 1 a+b+c a+b+c a+b+c [证明] 由题意, 得a+b+c = a + b + c b a c a c b =3+(a+b)+(a+c )+(b+c ). b a c a c b 又∵a+b≥2,a+c ≥2,b+c ≥2, 1 b a c a c b 当且仅当a=b,a=c ,b=c ,即 a=b=c=3时,等号成立, 1 1 1 ∴a+b+c ≥3+2+2+2=9. [方法规律总结 ] 在对代数式进行变换时,并不是只能将
b-c a-b 当且仅当 = ,即当 2b=a+c 或 a=c(舍去)时,等 a-b b-c 号成立,∴m≤4.
[ 方法规律总结 ]
1. 恒成立问题求参数的取值范围,常用
“分离参数”转化为函数最值问题求解; 2.解题思路来源于细 致的观察,丰富的联想和充分的知识、技能的储备,要注意总 结记忆.
已知函数f(x)在定义域(-∞,1]上是减函数,是否存在实数
[证明] 由 a>b>c,知 a-b>0,a-c>0,b-c>0. a-c a-c 因此,原不等式等价于 + ≥m, a-b b-c a-c a-c a-b+b-c a-b+b-c b-c + = + =2 + + a-b b-c a-b b-c a-b a-b ≥2+2 b-c b-c a-b · =4. a-b b-c
成才之路 ·数学
人教A版 ·必修5
路漫漫其修远兮 吾将上下而求索
第三章 不等式

人教A版高中数学必修5第三章 不等式3.4 基本不等式导学案(1)

人教A版高中数学必修5第三章 不等式3.4 基本不等式导学案(1)

基本不等式中不等式在各种题型中均有出现,渗透在各类考试试卷中;基本不等式是不等式中高频考点之一,其应用、变形等是考试热点.本节将针对于基本不等式及其常见母题进行解答技巧的讲解与归纳.1.基本不等式ab ≤a +b2基本不等式的使用条件:① 一正:a >0,b >0,即:所求最值的各项必须都是正值;② 二定:ab 或a +b 为定值,即:含变量的各项的和或积必须是常数; ③ 三相等:当且仅当a =b 时取等号;即:等号能否取得.在应用基本不等式求最值时,要把握不等式成立的三个条件,若忽略了某个条件,就会出现错误. 2.由公式a 2+b 2≥2ab 和ab ≤a +b2可以引申出的常用结论(1)b a +a b ≥2(a ,b 同号); (2)b a +a b≤-2(a ,b 异号); (3)21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0) ⎝ ⎛⎭⎪⎫或ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a >0,b >0).3.利用基本不等式求最大、最小值问题(1)如果x >0,y >0,且xy =P (定值).那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x >0,y >0,且x +y =S (定值).那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)类型一、直接应用类此类问题较为基础,利用基本不等式求最值时应注意:①非零的各数(或式)均为正;②和或积为定值;③等号能否成立,即“一正、二定、三相等”,这三个条件缺一不可.解答技巧一:直接应用【母题一】若x >0,y >0,且x +y =18,则xy 的最大值是________. 【解析】由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81.【答案】81 【变式】1.已知f (x )=x +1x-2(x <0),则f (x )有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4【解析】∵x <0,∴f (x )=-⎣⎢⎡⎦⎥⎤-x +1-x -2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.【答案】C2.已知0<x <1,则x (3-3x )取得最大值时x 的值为 ( ) A .13 B .12 C .34D .23【解析】∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.【答案】B3.(2014·成都诊断)已知定义在(0,+∞)上的函数f (x )=3x,若f (a +b )=9,则f (ab )的最大值为__________.【解析】∵3a +b=9,∴a +b =2≥2ab ,得ab ≤1,∴f (ab )=3ab≤3.【答案】34.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.【解析】依题意得a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20.【答案】20类型二、配凑定值类(恒等变形类)此类问题一般不能直接使用基本不等式,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,凑项,凑系数等.不论条件怎么变形,都需要根据条件:凑和为定值时求积最大、凑积为定值求和最小.解答技巧二:拆项【母题二】已知t >0,则函数y =t 2-4t +1t的最小值为________.【解析】∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2,且在t =1时取等号.【答案】-2解答技巧三:凑项【母题三】若x >2,则函数y =x +1x -2的最小值为________. 【解析】∵x >2,∴y =(x -2)+1x -2+2≥2+2=4,当且仅当x =3时取等号. 【答案】4 解答技巧四:凑系数【母题四】若0<x <83,则函数y =x (8-3x )的最大值为________.【解析】∵x >2,∴y =13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当x =43时取等号. 【答案】163【变式】1.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2【解析】∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2x -1⎝ ⎛⎭⎪⎫3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.【答案】A2.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 【解析】∵x >1,∴x -1>0.又x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立.则a ≤3,所以a 的最大值为3.【答案】33.(2014·潍坊一模)已知a >b >0,ab =1,则a 2+b 2a -b的最小值为________.【解析】a 2+b 2a -b =a -b 2+2ab a -b =a -b 2+2a -b =(a -b )+2a -b≥22.当且仅当a -b =2时,取等号.【答案】2 2 4.已知函数f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 【解】(1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号. 由已知f (x )≤t 对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎢⎡⎭⎪⎫66,+∞.类型三、条件最值类利用基本不等式求最值的方法及注意点(1)知和求积的最值:求解此类问题的关键:明确“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:明确“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.技巧五:换衣(“1”)(或整体代换)【母题五】已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.【解析】∵a >0,b >0,a +b =1,∴1a +1b =a +b a+a +b b =2+b a +ab≥2+2b a ·ab=4, 即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 【答案】4 【变式】1.本例的条件不变,则⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b 的最小值为________.【解析】⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫1+a +b a ⎝⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎪⎫2+b a ·⎝⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号. 【答案】92.本例的条件和结论互换即:已知a >0,b >0,1a +1b=4,则a +b 的最小值为________.【解析】由1a +1b =4,得14a +14b =1.∴a +b =⎝ ⎛⎭⎪⎫14a +14b (a +b )=12+b 4a +a 4b ≥12+2b 4a +a4b=1.当且仅当a =b =12时取等号.【答案】13.若本例条件变为:已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.【解析】由a +2b =3得13a +23b =1,∴2a +1b =⎝ ⎛⎭⎪⎫13a +23b ⎝ ⎛⎭⎪⎫2a +1b =43+a 3b +4b 3a ≥43+2a 3b ·4b 3a =83.当且仅当a =2b =32时,取等号.【答案】834.本例的条件变为:已知a >0,b >0,c >0,且a +b +c =1,则1a +1b +1c的最小值为________.【解析】∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +ca+a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9.当且仅当a =b =c =13时,取等号. 【答案】95.若本例变为:已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =22a 1,则1m +4n的最小值为________.【解析】设公比为q (q >0),由a 7=a 6+2a 5⇒a 5q 2=a 5q +2a 5⇒q 2-q -2=0(q >0)⇒q =2.a m ·a n =22a 1⇒a 12m -1·a 12n -1=8a 21⇒2m -1·2n -1=8⇒m +n -2=3⇒m +n =5,则1m +4n =15⎝ ⎛⎭⎪⎫1m +4n (m +n )=15⎣⎢⎡⎦⎥⎤5+⎝ ⎛⎭⎪⎫n m +4m n ≥15(5+24)=95,当且仅当n =2m =103时等号成立.【答案】956.(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245B .285C .5D .6【解析】∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号).【答案】C7.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值是( )A .2B .4C .6D .8【解析】(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2a ,∴当1+a +2a ≥9时不等式恒成立,故a +1≥3,a ≥4.【答案】B技巧六:构造一元二次不等式在运用该方式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.思考方式还能以保留“和(a +b )”还是“积(ab )”来确定公式的运用方向.【变式】1.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C .92D .112【解析】依题意,得2xy =-(x +2y )+8≤⎝ ⎛⎭⎪⎫x +2y 22,当且仅当⎩⎪⎨⎪⎧x =2y ,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴(x +2y )2+4(x +2y )-32≥0,解得x +2y ≥4或x +2y ≤-8(舍去),∴x +2y 的最小值是4.【答案】B2.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A .23B .223C .33D .233【解析】对于x 2+3xy -1=0可得y =13(1x -x ),∴x +y =2x 3+13x ≥229=223(当且仅当2x 3=13x,即x =22时等号成立). 【答案】B3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 【解析】x 2+y 2+xy =1⇔(x +y )2-xy =1⇔(x +y )2-1=xy ≤(x +y2)2,解得-233≤x +y ≤233. 【答案】233类型四、基本不等式的应用1.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.【解析】设x 为仓库与车站距离,由已知y 1=20x,y 2=0.8x .费用之和y =y 1+y 2=0.8x +20x≥20.8x ·20x =8,当且仅当0.8x =20x,即x =5时等号成立.【答案】52.创新题规定记号“⊙”表示一种运算,即a ⊙b =ab +a +b (a ,b 为正实数).若1⊙k =3,则k 的值为________,此时函数f (x )=k ⊙xx的最小值为________.【解析】1⊙k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍),∴k =1.f (x )=k ⊙x x =x +x +1x =1+x +1x ≥1+2=3,当且仅当x =1x,即x =1时等号成立.【答案】1;33.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b的最小值是( )A .4B .92C .8D .9【解析】∵AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).若A ,B ,C 三点共线,则有AB →∥AC →, ∴(a -1)×2-1×(-b -1)=0,∴2a +b =1,又a >0,b >0,∴2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab≥5+22b a ×2a b=9,当且仅当⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.【答案】D4.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值为( )A .0B .1C .94D .3【解析】由已知得z =x 2-3xy +4y 2(*),则xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.【答案】B5.已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是________.【解析】要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),即a ≤(x +y )+1x +y恒成立.由x +y +3=xy ,得x +y +3=xy ≤⎝ ⎛⎭⎪⎫x +y 22,即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y =t +1t .设f (t )=t +1t,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t 的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,376. 【答案】⎝⎛⎦⎥⎤-∞,376【总结】对使用基本不等式时等号取不到的情况,可考虑使用对勾函数y =x +mx(m >0)的单调性.1.小王从甲地到乙地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b2【解析】设甲、乙两地之间的距离为s .∵a <b ,∴v =2s s a +s b=2sab a +b s =2ab a +b <2ab2ab=ab .又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a . 【答案】A2.函数y =x 4+3x 2+3x 2+1的最小值是( )A .2 3B .2C .3D .5【解析】y =x 4+3x 2+3x 2+1=(x 2+1)2+(x 2+1)+1x 2+1=(x 2+1)+1 x 2+1+1≥2+1=3,当且仅当(x 2+1)=1x 2+1,即x =0时,取等号. 【答案】C3.(2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为________.【解析】⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时,等号成立. 【答案】94.(2014·贵阳适应性监测)已知向量m =(2,1),n =(1-b ,a )(a >0,b >0).若m ∥n ,则ab 的最大值为__________.【解析】依题意得2a =1-b ,即2a +b =1(a >0,b >0),因此1=2a +b ≥22ab ,即ab ≤18,当且仅当2a =b =12时取等号,因此ab 的最大值是18.【答案】185.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.【解】(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. ∴xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.1.(2012·福建)下列不等式一定成立的是 ( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D .1x 2+1>1(x ∈R ) 【解析】当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎪⎫x 2+14≥lg x (x >0),故选项A 不正确;而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;当x =0时,有1x 2+1=1,故选项D 不正确. 【答案】C2.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A .72 B .4 C .92D .5【解析】依题意,得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b ·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b,即a =23,b =43时取等号,即1a +4b 的最小值是92.【答案】C3.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是 ( )A .43 B .53 C .2D .54【解析】由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.【答案】C4.已知a >b >0,则a 2+16ba -b的最小值是________. 【解析】∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a 2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16b a -b取得最小值16.【答案】165.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【解】(1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x-200≥212x ·80 000x-200=200, 当且仅当12x =80 000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为 200元. (2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.1.函数y =x 2+7x +10x +1(x >-1)的最小值是( )A .9B .2 3C .10D .2【解析】∵x >-1,∴x +1>0.∴y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2x +1⎝ ⎛⎭⎪⎫4x +1+5=9.当且仅当x +1=4x +1,即x =1时,取等号.【答案】A2.(2015·金华十校模拟)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6【解析】由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.【答案】B3.(2015·西安模拟)设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =23,则1x +1y的最大值为( )A .2B .32 C .1D .12【解析】由a x =b y=3,得x =log a 3,y =log b 3,则1x +1y =1log a 3+1log b 3=lg a +lg b lg 3=lg ab lg 3.又a >1,b >1,所以ab ≤(a +b 2)2=3,所以lg ab ≤lg 3,从而1x +1y ≤lg 3lg 3=1,当且仅当a =b =3时等号成立.【答案】C4.已知x >0,y >0,且2x +y =1,则1x +2y的最小值是_____________.【解析】∵1x +2y=(2x +y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4x y =8,当且仅当y =12,x =14时,等号成立. 【答案】C5.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.【解】(1)∵x >0,y >0,由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25yx ·2x y =7+21020, 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x=2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020.1.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C .92D .112【解析】依题意,得(x +1)(2y +1)=9,∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立. ∴x +2y 的最小值是4.【答案】B2.若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是( ) A .0 B .1 C .2D .52【解析】∵a >1,b >1,∴lg a >0,lg b >0.lg a ·lg b ≤lg a +lg b24=lg ab 24=1.当且仅当a =b =10时取等号.【答案】B3.已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m+1n的最小值为( ) A .4 2 B .8 C .9D .12【解析】易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b =-1,2m +n =1,2m +1n =(2m +n )(2m+1n )=5+2m n +2n m ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n的最小值为9. 【答案】C4.(2014·成都诊断)函数f (x )=lgx2-x,若f (a )+f (b )=0,则3a +1b的最小值为_________.【解析】依题意得0<a <2,0<b <2,且lg ⎝ ⎛⎭⎪⎫a 2-a ·b 2-b =0,即ab =(2-a )(2-b ),a +b 2=1,3a +1b =a +b 2⎝ ⎛⎭⎪⎫3a +1b =12⎝ ⎛⎭⎪⎫4+3b a +a b ≥12(4+23)=2+3,当且仅当3b a =ab ,即a =3-3,b =3-1时取等号,因此3a +1b的最小值是2+3.【答案】2+ 35.(2014·泰安期末考试)小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)【解】(1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ),由-x 2+20x -50>0,解得10-52<x <10+52.而2<10-52<3,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝⎛⎭⎪⎫x +25x ,而19-⎝⎛⎭⎪⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时等号成立,即小王应当在第5年将大货车出售,才能使年平均利润最大.1.若a ,b ∈R 且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2abB .1a +1b>2abC .b a +ab≥2D .a 2+b 2>2ab【解析】∵ab >0,∴b a >0,a b >0.由基本不等式得b a +a b ≥2,当且仅当b a =a b,即a =b 时等号成立. 【答案】C2. 函数y =log a (x +3)-1 (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为( )A .2B .4C .8D .16【解析】点A (-2,-1),所以2m +n =1.所以1m +2n=(2m +n )⎝ ⎛⎭⎪⎫1m +2n =4+n m +4m n≥8,当且仅当n =2m ,即m =14,n =12时等号成立.【答案】C3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值为________.【解析】由x 2+y 2+xy =1,得(x +y )2-xy =1,即xy =(x +y )2-1≤(x +y )24,所以34(x +y )2≤1,故-233≤x +y ≤233,当x =y 时等号成立,所以x +y 的最大值为233. 【答案】2334.已知x >0,y >0,且满足x 3+y4=1,则xy 的最大值为________.【解析】∵x >0,y >0且1=x 3+y 4≥2xy12,∴xy ≤3,当且仅当x 3=y4时取等号.【答案】35.(2014·重庆卷)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是__________.【解析】由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴4a +3b =1,∴a +b =(a +b )·(4a+3b)=7+(3ab+4ba)≥7+23ab·4ba=7+43,当且仅当3ab=4ba时取等号.【答案】7+4 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式(二)
一、 自主学习
预习与反馈
1.已知x ,y 都是整数,
(1)若x y s +=(和为定值),则当x y =时,积xy 取得 (2)若xy p =(积为定制),则当x y =时,和x y +取得 上述命题可归纳为口诀:积定和最小,和定积最大。

2.设x,y 满足440x y +=,且x,y 都是正数,则lg lg x y +的最大值是( ) A .40 B .10 C .4 D .2 3.在下列函数中,最小值为2的是( )
A.1y x x
=+
B. 33x x y -=+
C. 1
lg (110)lg y x x x
=+
<< D. 1sin (0)sin 2y x x x π=+
<< 4. 若4x >,则函数1
4
y x x =+
-( ) A .有最大值-6. B.有最小值6 C 有最大值-2 D.有最小值2 5.已知lg lg 1x y +=,则
52
x y
+的最小值为 ★利用均值不等式求最值时,应注意的问题
①各项均为正数,特别是出现对数式、三角数式等形式时,要认真考虑。

②求和的最小值需积为定值,求积的最大值需和为定值。

③确保等号成立。

以上三个条件缺一不可,可概括“一正、二定、三相等”。

二、 学习探究
【题型一】利用不等式求函数的最值
已知54x <,求函数14245
y x x =-+-的最大值。

变式 已知0<x<1
3
,求函数y=x(1-3x)的最大值。

【题型二】含条件的最值求法
已知整数x,y满足81
1
x y
+=,求x+2y的最小值。

变式:已知0,0
x y
>>,满足21
x y
+=,求11
x y
+的最小值.
【题型三】利用不等式解应用题
某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
知识拓展
1. 基本不等式的变形:
222
()_____2a b a b ++;222()____
22a b a b ++;22___2
a b ab +;2___()2a b ab +;2()____4a b ab +
2. 一般地,对于n 个正数12,,,(2)n a a a n ≥ ,都有,12n a a a n
++≥ 当12n a a a === 时取等号)
3. 222(,,)a b c ab ac bc a b c R ++≥++∈当且仅当a b c ==时取等号)
巩固练习
1.设x>0,y>0,x+y=1,则使m ≥
m 的最小值是( )
2
C.2 D 2.设x,y 满足x+4y=40,且想,且x,y R +
∈,则lg lg x y +的最大值是( ) A .40 B 。

10 C 。

4 D 。

2
3.已知正项等差数列{}n a 的前20项和为100,则516a a 的最大值为( ) A .100 B 。

75 C 。

50 D 。

25
4.函数()f x =
( )
A .
25 B 。

12 C D 。

1 5. 设x>0,则y=3-3x-
1
x
的最大值是 6. 函数f(x)=3x+lgx+
4
lg x
(0<x<1)的最大值为 7. 求226
()1
x x f x x -+=+(x>-1)的最小值。

8.某单位建造一间背面靠墙的小房,地面面积为122m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元. 如果墙高为3m ,且不计房屋背面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价是多少?
名题赏析
(2010上海文数)21.(本题满分14分)本题共有2个小题,第一个小题满分6分,第2个小题满分8分。

已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*
n N ∈
(1)证明:{}1n a -是等比数列;
(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n .
解析:(1) 当n =1时,a 1=-14;当n ≥2时,a n =S n -S n -1=-5a n +5a n -1+1,所以15
1(1)6
n n a a --=-,
又a 1-1=-15≠0,所以数列{a n -1}是等比数列; (2) 由(1)知:1
51156n n a -⎛⎫
-=-⋅ ⎪
⎝⎭,得1
51156n n a -⎛⎫
=-⋅ ⎪
⎝⎭
,从而
1
575906n n S n -⎛⎫
=⋅+- ⎪
⎝⎭
(n ∈N *);
由S n +1>S n ,得1
5265n -⎛⎫
<

⎝⎭
,5
6
2
log 114.925n >+≈,最小正整数n =15.。

相关文档
最新文档