2017年最新高中数学必修5全册导学案及章节检测含答案
高中数学 必修五数列导学案 加课后作业及答案

必修五数列导学案§2.1 数列的概念及简单表示(一)【学习要求】1.理解数列的概念,认识数列是反映自然规律的基本数学模型. 2.探索并掌握数列的几种简单表示法.3.能根据数列的前几项写出数列的一个通项公式.【学法指导】1.在理解数列概念时,应区分数列与集合两个不同的概念. 2.类比函数的表示方法来理解数列的几种表示方法.3.由数列的前几项,写出数列的一个通项公式是本节的难点之一,突破难点的方法:把序号标在项的旁边,观察项与序号的关系,从而写出通项公式. 【知识要点】1.按照一定顺序排列的一列数称为 ,数列中的每一个数叫做这个数列的 .数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做___项),排在第二位的数称为这个数列的第2项,……,排在第n 位的数称为这个数列的第 项. 2.数列的一般形式可以写成a 1,a 2,…,a n ,…,简记为 .3.项数有限的数列叫做 数列,项数无限的数列叫做_____数列. 4.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的 公式.【问题探究】探究点一 数列的概念问题 先看下面的几组例子:(1)全体自然数按从小到大排成一列数:0,1,2,3,4,…; (2)正整数1,2,3,4,5的倒数排成一列数:1,12,13,14,15;(3)π精确到1,0.1,0.01,0.001,…的不足近似值排成一列数:3,3.1,3.14,3.141,…; (4)无穷多个1排成一列数:1,1,1,1,1,…;(5)当n 分别取1,2,3,4,5,…时,(-1)n 的值排成一列数:-1,1,-1,1,-1,…. 请你根据上面的例子尝试给数列下个定义.探究 数列中的项与数集中的元素进行对比,数列中的项具有怎样的性质? 探究点二 数列的几种表示方法问题 数列的一般形式是什么?回忆一下函数的表示方法,想一想除了列举法外,数列还有哪些表示方法? 探究 下面是用列举法给出的数列,请你根据题目要求补充完整. (1)数列:1,3,5,7,9,…①用公式法表示:a n = ; ②用列表法表示:(2)数列:1,12,13,14,15,…①用公式法表示:a n = . ②用列表法表示:③用图象法表示为(在下面坐标系中绘出): 探究点三 数列的通项公式问题 什么叫做数列的通项公式?谈谈你对数列通项公式的理解?探究 根据所给数列的前几项求其通项公式时,需仔细观察数列的特征,并进行联想、转化、归纳,同时要数列通项公式 -1,1,-1,1,… a n = 1,2,3,4,… a n = 1,3,5,7,… a n = 2,4,6,8,… a n = 1,2,4,8,… a n = 1,4,9,16,… a n = 1,12,13,14,… a n =【典型例题】例1 根据数列的通项公式,分别写出数列的前5项与第2 012项. (1)a n =cosn π2; (2)b n =11×2+12×3+13×4+…+1nn +1. 小结 由数列的通项公式可以求出数列的指定项,要注意n =1,2,3,….如果数列的通项公式较为复杂,应考虑运算化简后再求值.跟踪训练1 根据下面数列的通项公式,写出它的前4项.(1)a n =2n +1;(2)b n =2)1(1n-+例2 根据数列的前几项,写出下列各数列的一个通项公式: (1)1,-3,5,-7,9,…; (2)12,2,92,8,252,…;(3)9,99,999,9 999,…; (4)0,1,0,1,….小结 据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳.跟踪训练2 写出下列数列的一个通项公式: (1)212,414,618,8116,…;(2)0.9,0.99,0.999,0.999 9,…; (3)-12,16,-112,120,….例3 已知数列{a n }的通项公式a n =-1nn +12n -12n +1.(1)写出它的第10项;(2)判断233是不是该数列中的项.小结 判断某数列是否为数列中的项,只需将它代入通项公式中求n 的值,若存在正整数n ,则说明该数是数列中的项,否则就不是该数列中的项. 跟踪训练3 已知数列{a n }的通项公式为a n =1n n +2(n ∈N *),那么1120是这个数列的第______项.【当堂检测】1.下列叙述正确的是 ( )A .数列1,3,5,7与7,5,3,1是相同的数列B .数列0,1,2,3,…可以表示为{n }C .数列0,1,0,1,…是常数列D .数列{nn +1}是递增数列2.观察下列数列的特点,用适当的一个数填空:1,3,5,7,___,11,…. 3.已知下列数列:(1)2 000,2 004,2 008,2 012; (2)0,12,23,…,n -1n,…;(3)1,12,14,…,12n -1,…; (4)1,-23,35,…,-1n -1·n 2n -1,…;(5)1,0,-1,…,sin n π2,…; (6)6,6,6,6,6,6.其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________,周期数列是________.(将合理的序号填在横线上) 4.写出下列数列的一个通项公式: (1)a ,b ,a ,b ,…; (2)-1,85,-157,249,….【课堂小结】1.{a n }与a n 是不同的两种表示,{a n }表示数列a 1,a 2,…,a n ,…,是数列的一种简记形式.而a n 只表示数列{a n }的第n 项,a n 与{a n }是“个体”与“整体”的从属关系.2.数列的表示方法:①图象法;②列表法;③通项公式法;④递推公式法.3.由数列的前几项归纳其通项公式的关键是观察、归纳各项与对应的项数之间的联系.同时,要善于利用我们熟知的一些基本数列,通过合理的联想、转化而达到问题的解决.【课后作业】一、基础过关1.数列23,45,67,89,…的第10项是( )A .1617B .1819C .2021D .22232.数列{n 2+n }中的项不能是 ( )A .380B .342C .321D .306 3.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+14.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的应当有( )A .1个B .2个C .3个D .4个5.在数列2,2,x,22,10,23,…中,x =______. 6.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是 ____________.7.写出下列数列的一个通项公式:(可以不写过程) (1)3,5,9,17,33,…; (2)23,415,635,863,…;(3)1,0,-13,0,15,0,-17,0,….8.已知数列{n (n +2)}:(1)写出这个数列的第8项和第20项;(2)323是不是这个数列中的项?如果是,是第几项?二、能力提升9.数列0.3,0.33,0.333,0.333 3,…的一个通项公式a n 等于( )A .19(10n -1)B .13(10n -1)C .13(1-110n )D .310(10n -1)10.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( )A .12n +1B .12n +2C .12n +1+12n +2D .12n +1-12n +211.由花盆摆成以下图案,根据摆放规律,可得第5个图形中的花盆数为________.12.在数列{a n }中,a 1=2,a 17=66,通项公式a n 是n 的一次函数.(1)求{a n }的通项公式; (2)88是否是数列{a n }中的项?三、探究与拓展13.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1: (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么?(3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,有几项?若没有,说明理由.§2.1 数列的概念及简单表示(二)【学习要求】1.理解递推公式的含义,能根据递推公式求出数列的前几项. 2.能从函数的观点研究数列,掌握数列的一些简单性质.【学法指导】1.数列的递推公式是给出数列的另一重要形式.一般只要给出数列的首项或前几项以及数列的相邻两项或几项之间的运算关系,就可以依次求出数列的各项.2.由于数列可以看作是一类特殊的函数,因此许多函数的性质可以应用到数列中.例如,数列的单调性、数列的最值、数列的周期性都可以类比函数的性质.【知识要点】1.如果数列{a n }的第1项或前几项已知,并且数列{a n }的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的 公式.2.数列可以看作是一个定义域为 (或它的有限子集{1,2,3,…,n })的函数,当自变量按照从小到大的顺序依次取值时,对应的一列 .3.一般地,一个数列{a n },如果从 起,每一项都大于它的前一项,那么这个数列叫做 数列.如果从第2项起,每一项都小于它的前一项,那么这个数列叫做 数列.如果数列{a n }的各项都 ,那么这个数列叫做常数列.4.已知数列{a n }满足:a 1=1,a n +1-a n =1,则a n = ,从单调性来看,数列是单调 数列.【问题探究】公元前13世纪意大利数学家斐波那契的名著《算盘全书》中,记载了一个著名的问题,某人有一对新生的兔子饲养在围墙中,如果它们每个月生一对兔子,且新生的兔子从第三个月开始也是每个月生一对兔子,问一年后围墙中共有多少对兔子?该问题在原书中作了分析:第一个月和第二个月都是最初的一对兔子,第三个月生下一对兔子,围墙内共有两对兔子,第四个月仍是最初的一对兔子生下一对兔子,共有3对兔子.到第五个月除最初的兔子新生一对兔子外,第一个月生的兔子也开始生兔子,因此共有5对兔子.继续推下去,第12个月时最终共有144对兔子.书中还提出,每个月的兔子总数可由前两个月的兔子数相加而得.据载首先是由19世纪法国数学家吕卡将级数{a n }:1,1,2,3,5,8,13,21,34,…,a n +1=a n +a n -1命名为斐波那契数列,它在数学的许多分支中有广泛应用.数列的这种表达形式,是用前面的项来表达后面的项,我们称之为数列的递推公式,数列的递推公式有什么应用呢?这一节我们就来学习数列的递推公式. 探究点一 数列的函数特性问题 数列是一种特殊的函数,与函数相比,数列的特殊性表现在哪些方面?谈谈你的认识. 探究1 数列的单调性下面给出了一些数列的图象:a n =2n -1a n =1na n =(-1)n观察上述数列项的取值的变化规律,请类比单调函数的定义,把下列单调数列的定义补充完整.一般地,一个数列{a n },如果从第2项起,每一项都大于它前面的一项,即 ,那么这个数列叫做递增数列;如果从第2项起,每一项都小于它前面的一项,即 ,那么这个数列叫做递减数列;如果数列{a n }的各项都相等,那么这个数列叫做常数列.因此,要证明数列{a n }是单调递增数列,只需证明a n +1-a n 0;要证明数列{a n }是单调递减数列,只需证明a n +1-a n 0.探究2 数列的周期性已知数列{a n }中,a 1=1,a 2=2,a n +2=a n +1-a n ,试写出a 3,a 4,a 5,a 6,a 7,a 8,你发现数列{a n }具有怎样的规律?你能否求出该数列中的第2 012项是多少?探究点二 由简单的递推公式求通项公式问题 递推公式与通项公式,都可以用来写出数列中的任意项,都是给出数列的一种方法,那么它们究竟有什么不同呢?探究1 对于任意数列{a n },等式:a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n 都成立.试根据这一结论,求解下列问题.已知数列{a n }满足:a 1=1,a n +1-a n =2,试求通项a n .探究2 若数列{a n }中各项均不为零,则有:a 1·a 2a 1·a 3a 2·…·a na n -1=a n 成立.试根据这一结论求解下列问题.已知数列{a n }满足:a 1=1,a n a n -1=n -1n (n ≥2),试求通项a n .【典型例题】例1 在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项. 小结 已知数列递推公式求数列通项时,依次将项数n 的值代入即可.跟踪训练1 已知数列{a n }中,a 1=1,a 2=23,1a n -2+1a n =2a n -1(n ∈N *,n ≥3),求a 3,a 4.例2 已知数列{a n }的通项公式为a n =n 2n 2+1.求证:数列{a n }为递增数列.小结 数列是一种特殊的函数,因此可用函数单调性的方法来研究数列的单调性.跟踪训练2 已知数列{a n }的通项公式是a n =anbn +1,其中a 、b 均为正常数,那么a n 与a n +1的大小关系是 ( )A .a n >a n +1B .a n <a n +1C .a n =a n +1D .与n 的取值相关例3 已知a n =9nn +110n(n ∈N *),试问数列{a n }中有没有最大项?如果有,求出这个最大项;如果没有,说明理由.小结 数列的最大、最小项问题,可以通过研究数列的单调性加以解决,若求最大项a n ,n 的值可通过解不等式组⎩⎪⎨⎪⎧ a n ≥a n -1a n ≥a n +1来确定;若求最小项a n ,n 的值可通过解不等式组⎩⎪⎨⎪⎧a n ≤a n -1a n ≤a n +1来确定.跟踪训练3 在数列{a n }中,a n =n 3-an ,若数列{a n }为递增数列,试确定实数a 的取值范围.【当堂检测】1.已知a n +1-a n -3=0,则数列{a n }是 ( ) A .递增数列 B .递减数列 C .常数列 D .不能确定 2.数列1,3,6,10,15,…的递推公式是 ( ) A .a n +1=a n +n ,n ∈N * B .a n =a n -1+n ,n ∈N *,n ≥2 C .a n +1=a n +(n +1),n ∈N *,n ≥2 D .a n =a n -1+(n -1),n ∈N *,n ≥2 3.数列{a n }中,a n =-2n 2+29n +3,则此数列中最大项的值是( ) A .107B .108C .10818D .1094.已知数列{a n }满足a 1=2,a n +1-a n +1=0(n ∈N +),则此数列的通项a n 等于 ( ) A .n 2+1 B .n +1 C .1-n D .3-n【课堂小结】1.同数列的通项公式一样,数列的递推公式也是表示数列的常用方法之一.递推公式法与通项公式法统称为公式法.2.函数与数列的联系与区别一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题.另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的有限子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性,如研究单调性时,由数列的图象可知,只要这些点每个比它前面相邻的一个高(即a n >a n -1),则图象呈上升趋势,即数列递增,即{a n }递增⇔a n +1>a n 对任意的n (n ∈N *)都成立.类似地,有{a n }递减⇔a n +1<a n 对任意的n (n ∈N *)都成立.【课后作业】一、基础过关1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1B .12C .34D .582.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 ( ) A .259B .2516C .6116D .31153.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项是( )A .116B .117C .119D .1254.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是 ( ) A .9B .17C .33D .655.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,n ∈N *,则使a n >100的n 的最小值是________. 6.已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,则通项公式a n =________.7.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.8.已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列.二、能力提升9.已知数列{a n }满足a n +1=⎩⎨⎧2a n ⎝⎛⎭⎫0≤a n <12,2a n-1 ⎝⎛⎭⎫12≤a n<1.若a 1=67,则a 2 012的值为( )A .67B .57C .37D .1710.已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 3011.已知数列{a n }满足:a n ≤a n +1,a n =n 2+λn ,n ∈N *,则实数λ的最小值是________. 12.已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.三、探究与拓展13.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求{a n }的通项公式.§2.2 等差数列(一)【学习要求】1.理解等差数列的意义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题. 3.掌握等差中项的概念,深化认识并能运用.【学法指导】1.要善于通过实例的观察、分析、归纳、提炼来理解等差数列的概念,同时,还应准确理解等差数列的关键词“从第2项起”,“差是一个常数”等;要善于用归纳或叠加法探求等差数列的通项公式. 2.利用a n +1-a n =d (n ∈N +)可以帮助我们判断一个数列是否为等差数列.【知识要点】1.如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做 数列,这个常数叫做等差数列的 ,公差通常用字母d 表示.2.若三个数a ,A ,b 构成等差数列,则A 叫做a 与b 的_________,并且A = . 3.若等差数列的首项为a 1,公差为d ,则其通项a n = ________.4.等差数列{a n }中,若公差d >0,则数列{a n }为 数列;若公差d <0,则数列{a n }为 数列.【问题探究】1.1682年,英国天文学家哈雷发现一颗大彗星运动的轨迹和1531年、1607年的彗星的运动轨迹惊人地相似,便大胆断定这是同一天体的三次出现,并预言它将于76年后再度回归.这就是著名的哈雷彗星,它的回归周期大约是76年.请你查找资料,列出哈雷彗星的回归时间表,并预测它在本世纪回归的时间.哈雷彗星的回归时间表(单位:年)1607,1682,1759,1835,1910,1986,2061,…. 预测它在本世纪回归的时间是2061年.2.第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.这样举行奥运会的年份数构成一个数列,这个数列有什么特征呢?这个数列叫什么数列呢?这个数列从第2项起,每一项与它的前一项的差都等于同一个常数,像这样的数列叫做等差数列.等差数列有很多的应用,这一节我们就来学习等差数列及其通项公式. 探究点一 等差数列的概念问题1 我们先看下面几组数列: (1)3,4,5,6,7,…;(2)6,3,0,-3,-6,…; (3)1.1,2.2,3.3,4.4,5.5,…;(4)-1,-1,-1,-1,-1,….观察上述数列,我们发现这几组数列的共同特点是问题2 判断下列数列是否为等差数列,如果是,指出首项a 1和公差d ;如果不是,请说明理由: (1)4,7,10,13,16,…; (2)31,25,19,13,7,…; (3)0,0,0,0,0,…;(4)a ,a -b ,a -2b ,…; (5)1,2,5,8,11,….探究 如何准确把握等差数列的概念?谈谈你的理解. 探究点二 等差数列的通项公式问题 如果等差数列{a n }的首项是a 1,公差是d ,你能用两种方法求其通项吗?探究1 根据等差数列的定义:a n +1=a n +d ,可以依次得到a 1,a 2,a 3,a 4,…,然后观察规律,归纳概括出通项公式a n .探究2 由等差数列的定义知:a n -a n -1=d (n ≥2),可以采用叠加法得到通项公式a n . 探究点三 等差中项问题1 如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,试用x ,y 表示A . 探究 若数列{a n }满足:a n +1=a n +a n +22,求证:{a n }是等差数列. 【典型例题】例1 已知{a n }为等差数列,分别根据下列条件写出它的通项公式. (1)a 3=5,a 7=13;(2)前三项为:a,2a -1,3-a .小结 在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.跟踪训练1 若{a n }是等差数列,a 15=8,a 60=20,求a 75.例2 已知1a ,1b ,1c 成等差数列,求证:b +c a ,a +c b ,a +b c也成等差数列.跟踪训练2 已知a ,b ,c 成等差数列,那么a 2(b +c ),b 2(c +a ),c 2(a +b )是否能构成等差数列?例3 梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.跟踪训练3 在通常情况下,从地面到10 km 高空,高度每增加1 km ,气温就下降某一个固定数值.如果1 km 高度的气温是8.5℃,5 km 高度的气温是-17.5℃,求2 km ,4 km ,8 km 高度的气温.【当堂检测】1.若数列{a n }满足3a n +1=3a n +1,则数列是( )A .公差为1的等差数列B .公差为13的等差数列C .公差为-13的等差数列 D .不是等差数列2.若a ≠b ,则等差数列a ,x 1,x 2,b 的公差是( ) A .b -aB .b -a 2C .b -a 3D .b -a 43.在等差数列{a n }中,(1)已知a 1=2,d =3,n =10,则a n =___; (2)已知a 1=3,d =2,a n =21,则n =___; (3)已知a 1=12,a 6=27,则d =___; (4)已知d =-13,a 7=8,则a 1=___.4(1)你能建立一个等差数列的模型,表示甲虫的爬行距离和时间之间的关系吗? (2)利用建立的模型计算,甲虫1 min 能爬多远?它爬行49 cm 需要多长时间?【课堂小结】1.等差数列的判定关键要看a n +1-a n (n ∈N *)是否为一个与n 无关的常数.由于a n +1-a n =a n +2-a n +1⇔2a n +1=a n +a n +2,所以也可以利用2a n +1=a n +a n +2(n ∈N *)来判定等差数列.注意数列的项中含有字母时是否需要分类讨论. 2.等差数列的通项公式及其变形a n =a 1+(n -1)d =a m +(n -m )d 的应用极其灵活,公式中的四个量a 1,a n ,n ,d 中知三可求一.充分利用等差数列的函数特性可使解题过程更为简捷. 3.数列的应用题在数列中占有很重要的地位.【课后作业】一、基础过关1.已知数列{a n }满足a 1=2,a n +1-a n +1=0,则数列的通项a n 等于( )A .n 2+1B .n +1C .1-nD .3-n 2.等差数列20,17,14,11,…中第一个负数项是( )A .第7项B .第8项C .第9项D .第10项3.若5,x ,y ,z,21成等差数列,则x +y +z 的值为( )A .26B .29C .39D .52 4.{a n }是首项a 1=1,公差d =3的等差数列,若a n =2 011,则n 等于( )A .671B .670C .669D .668 5.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A .15B .30C .31D .646.已知a =13+2,b =13-2,则a 、b 的等差中项是________. 7.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值.8.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?二、能力提升9.一个首项为23,公差为整数的等差数列,第7项开始为负数,则它的公差是 ( ) A .-2B .-3C .-4D .-610.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差为d 1和d 2,则d 1d 2的值为________.11.一个等差数列{a n }中,a 1=1,末项a n =100(n ≥3),若公差为正整数,那么项数n 的取值有____种可能. 12.若1b +c ,1c +a ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列.三、探究与拓展13.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由.(2)若a p ,a q (p ,q ∈N *)是数列{a n }中的项,则2a p +3a q 是数列{a n }中的项吗?并说明你的理由.§2.2 等差数列(二)【学习要求】1.能根据等差数列的定义推出等差数列的重要性质. 2.能运用等差数列的性质解决有关问题.【学法指导】1.灵活运用等差数列的性质,可以减少计算量,因此要熟练掌握等差数列的有关性质.2.掌握等差数列与一次函数之间的关系,就能站在较高的角度整体把握等差数列的内涵和本质.【知识要点】1.等差数列的通项公式:a n = .2.等差数列的项的对称性:有穷等差数列中,与首末两项“等距离”的两项之和等于首末两项的和,即:a 1+a n =a 2+ =…=a k + . 3.等差数列的性质(1)若{a n }是等差数列,且k +l =m +n (k 、l 、m 、n ∈N *),则 .(2)若{a n }是等差数列,且公差为d ,则{a 2n -1}和{a 2n }都是等差数列,且公差为 .(3)若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p 、q 是常数)是公差为 的等差数列.【问题探究】探究点一 等差数列的常用性质问题 设等差数列{a n }的首项为a 1,公差为d ,则有下列 性质:(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . (2)若m +n =2k (m ,n ,k ∈N *),则a m +a n =2a k . 请你给出证明.探究 已知等差数列{a n }、{b n }分别是公差为d 和d ′,则由{a n }及{b n }生成的“新数列”具有以下性质,请你补充完整.①{a n }是等差数列,则a 1,a 3,a 5,…仍成等差数列(首项不一定选a 1),公差为 ;②下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N +)组成公差为 的等差数列; ③数列{λa n +b }(λ,b 是常数)是公差为 的等差数列; ④数列{a n +b n }仍是等差数列,公差为 ;⑤数列{λa n +μb n }(λ,μ是常数)仍是等差数列,公差为 . 探究点二 等差数列与一次函数的联系探究 由于等差数列{a n }的通项公式a n =dn +(a 1-d ),与一次函数对比可知,公差d 本质上是相应直线的斜率.如a m ,a n 是等差数列{a n }中的任意两项,由a n =a m +(n -m )d ,可知点(n ,a n )分布以 为斜率,以 为纵截距的直线上.请你类比一次函数的单调性,研究等差数列的单调性,并完成下表.【典型例题】例1 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值.小结 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想.跟踪训练1 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.例2 三个数成等差数列,和为6,积为-24,求这三个数.小结 利用等差数列的定义巧设未知量,从而简化计算.一般地有如下规律:当等差数列{a n }的项数n 为奇数时,可设中间一项为a ,再用公差为d 向两边分别设项:…a -2d ,a -d ,a ,a +d ,a +2d ,…;当项数为偶数项时,可设中间两项为a -d ,a +d ,再以公差为2d 向两边分别设项:…a -3d ,a -d ,a +d ,a +3d ,…,这样可减少计算量.跟踪训练2 四个数成递增等差数列,中间两数的和为2,首末两数的积为-8,求这四个数.例3 已知数列{a n },满足a 1=2,a n +1=2a na n +2.(1)数列{1a n}是否为等差数列?说明理由.(2)求a n .小结 判断一个数列是等差数列的基本方法是紧扣定义:a n +1-a n =d (d 为常数),也可以用a n +1-a n =a n -a n -1(n ≥2)进行判断.本题属于“生成数列问题”,关键是形成整体代换的思想方法,运用方程思想求通项公式. 跟踪训练3 正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n . (1)数列{a n }是否为等差数列?说明理由. (2)求a n .【当堂检测】1.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( ) A .3B .-3C .32D .-322.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d =____ 3.已知等差数列{a n }中,a 2+a 3+a 10+a 11=36,求a 5+a 84.已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,求这三个数.【课堂小结】1.判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数.2.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d .3.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.【课后作业】一、基础过关1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( )A .45B .75C .180D .3002.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 ( ) A .1B .2C .4D .63.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是 ( ) A .a n =2n -2 (n ∈N *)B .a n =2n +4 (n ∈N *)C .a n =-2n +12 (n ∈N *)D .a n =-2n +10 (n ∈N *)4.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为( ) A .0B .1C .2D .1或25.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于 ( ) A .120B .105C .90D .756.在等差数列{a n }中,已知a 1+a 2+a 3+a 4+a 5=20,那么a 3=________. 7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值.8.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.二、能力提升9.一个等差数列的首项为a 1=1,末项a n =41 (n ≥3)且公差为整数,那么项数n 的取值个数是( ) A .6B .7C .8D .不确定10.等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=______.11.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______.12.已知数列{a n }满足a 1=4,a n =4-4a n -1 (n ≥2),令b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.三、探究与拓展13.已知数列{a n }满足a 1=15,且当n >1,n ∈N *时,有a n -1a n =2a n -1+11-2a n ,设b n =1a n ,n ∈N *.(1)求证:数列{b n }为等差数列.(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项; 如果不是,请说明理由.§2.3等差数列前n 项和(一)【学习要求】1.理解等差数列前n 项和公式的推导过程.2.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个. 3.掌握等差数列前n 项和公式及性质的应用.【学法指导】1.运用等差数列的前n 项和公式的关键在于准确把握它们的结构特征,这样才能根据具体情境(已知条件和待求目标)选用恰当的公式解决问题.2.要善于从推导等差数列的前n 项和公式中,归纳总结出一般的求和方法——倒序相加法.【知识要点】1.把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做 .例如a 1+a 2+…+a 16可以记做 ;a 1+a 2+a 3+…+a n -1= (n ≥2).2.若{a n }是等差数列,则S n 可以用首项a 1和末项a n 表示为S n = ;若首项为a 1,公差为d ,则S n 可以表示为S n =3.写出下列常见等差数列的前n 项和 (1)1+2+3+…+n = . (2)1+3+5+…+(2n -1)= . (3)2+4+6+…+2n = . 4.等差数列{a n }中(1)已知d =2,n =15,a n =-10,则S n =________; (2)已知a 1=20,a n =54,S n =999,则d =________; (3)已知a 1=56,d =-16,S n =-5,则n =_______【问题探究】“数学王子”高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名.高斯十岁那年,老师布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,老师刚叙述完题目,高斯即刻把写着答案的小石板交了上去.老师起初并不在意这一举动,但当他发现全班唯一正确的答案属于高斯时,才大吃一惊.而更使人吃惊的是高斯的算法,他发现:第一个数加最后一个数的和是101,第二个数加倒数第二个数的和也是101,…共有50对这样的数,用101乘以50得到5 050,这种算法是教师未曾教过的方法,高斯自己就想出来了,那么这是一个什么样的方法呢?它用于解决什么类型的问题呢?这种方法叫倒序相加法,是等差数列求和的一种重要方法,这一节我们就来学习等差数列的求和方法. 探究点一 等差数列前n 项和公式的推导 问题 求和:1+2+3+…+100=?对于这个问题,著名数学家高斯十岁时就能很快求出它的结果.当时他的思路和解答方法是:S =1+2+3+…+99+100,把加数倒序写一遍:S =100+99+98+…+2+1.所以有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101,∴S =50×101=5 050. 请你利用“高斯的算法”求1+2+3+…+n =?探究 设等差数列{a n }的首项为a 1,公差为d ,你能利用“倒序相加法”求等差数列{a n }的前n 项和S n 吗? 探究点二 等差数列前n 项和的性质探究1 设{a n }是等差数列,公差为d ,S n 是前n 项和,易知a 1+a 2+…+a m ,a m +1+a m +2+…+a 2m ,a 2m +1+a 2m +2+…+a 3m 也成等差数列,公差为 .上述性质可以用前n 项和符号S n 表述为:若{a n }成等差数列,则S m , ,_________也成等差数列.探究2 若数列{a n }是公差为d 的等差数列,求证:数列{S nn }也是等差数列.探究3 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,证明:a n b n =S 2n -1T 2n -1.【典型例题】例1 在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .小结 在解决等差数列问题时,如已知a 1,a n ,n ,d ,S n 中任意三个,可求其余两个,这种问题在数学上常称为“知三求二”型.跟踪训练1 已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d .例2 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.小结 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练2 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .例3 甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?小结 建立等差数列的模型时,注意相遇时甲、乙两人的路程和是两个等差数列的前n 项和.跟踪训练3 现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )。
高二数学必修5全册导学案经典

第一章 解三角形1.1.1 正弦定理1.在ABC △中,已知3b =,c =,30B ∠=o ,解此三角形。
2.在ABC △中,已知∠A=45o 30B ∠=o ,C=10,解此三角形。
3.在三角形ABC 中,角A,B,C 所对的边分别为a,b,c ,且A,B为锐角,sin A sin B (1) 求A+B 的值:(2) 若,求a,b,c 得值1. 在ABC △中,已知222sin sin sin A B C +=,求证:ABC △为直角三角形2. 已知ABC △中,60A ∠=o ,45B ∠=o ,且三角形一边的长为m ,解此三角1. 正弦定理反映了三角形中各边和它的对角正弦值的比例关系,表示形式为2sin sin sin a b c R A B C ===,其中R 是三角形外接圆的半径。
2. 正弦定理的应用(1)如果已知三角形的任意两角与一边,由三角形的内角和定理可以计算出另外一个角,并由三角形的正弦定理计算书另外两边。
(2)如果已知三角形的任意两边和其中一边的对角,应用正弦定理可以计算出另外一边对角的正弦值,进而可以确定这个角(此时特别注意:一定要先判断这个三角形是锐角还是钝角)和三角形其它的边和角。
1.在ABC △中,若2sin sin cos 2A C =,B 则ABC △是( )A .等边三角形B .等腰三角形C .直角三角形D . 等腰直角三角形3. 在ABC △中,已知30B =o ,b =,150c =,那么这个三角形是( )A.等边三角形 B.直角三角形C.等腰三角形 D.等腰三角形或直角三角形4. 在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3 B .3:2:1 C .2 D .2 6.ABC △若120c b B ===o ,则a 等于 ( )A B .2 C D7. .在△ABC 中,若B A 2=,则a 等于 ( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 28.若12057A AB BC ∠===o ,,,则ABC △的面积S = .9. 在ABC △中,若此三角形有一解,则a b A ,,满足的条件为________1.1.2 余弦定理1.在三角形ABC 中,已知下列条件,解三角形。
2017-2018学年人教A版高中数学必修五全册学案

2017-2018学年人教A版高中数学必修五全册学案目录§1.1.1正弦定理(一)§1.1.1正弦定理(二)§1.1.2余弦定理(一)§1.1.2余弦定理(二)§1.2应用举例(一)§1.2应用举例(二)§1.2应用举例(三)§1习题课正弦定理和余弦定理§1章末复习提升§2 习题课数列求和§2 章末复习提升§2.1数列的概念与简单表示法(一)§2.1数列的概念与简单表示法(二)§2.2等差数列(一)§2.2等差数列(二)§2.3等差数列的前n项和(一)§2.3等差数列的前n项和(二)§2.4等比数列(一)§2.4等比数列(二)§2.5等比数列的前n项和(一)§2.5等比数列的前n项和(二)§3.1不等关系与不等式§3.2一元二次不等式及其解法(一)§3.2一元二次不等式及其解法(二)§3.3.1二元一次不等式(组)与平面区域§3.3.2简单的线性规划问题§3.4基本不等式:√ab≤(a+b)2 (一)§3.4基本不等式:√ab≤(a+b)2 (二)§3章末复习提升1.1.1 正弦定理(一)[学习目标] 1.通过对任意三角形边长和角度的关系的探索,掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形的内角和定理解决简单的解三角形问题.知识点一 正弦定理 1.正弦定理的表示文字语言 在一个三角形中,各边和它所对角的正弦的比都相等,该比值为三角形外接圆的直径符号语言在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则a sin A =b sin B =csin C=2R2.正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径. (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R(R 为△ABC 外接圆的半径).(3)三角形的边长之比等于对应角的正弦比,即a ∶b ∶c =sin A ∶sin B ∶sin C . (4)a +b +c sin A +sin B +sin C =a sin A =b sin B =csin C . (5)a sin B =b sin A ,a sin C =c sin A ,b sin C =c sin B . 3.正弦定理的证明(1)在Rt △ABC 中,设C 为直角,如图,由三角函数的定义: sin A =a c ,sin B =bc,∴c =a sin A =b sin B =c sin 90°=csin C ,∴a sin A =b sin B =c sin C.(2)在锐角三角形ABC中,设AB边上的高为CD,如图,CD=a sin__B=b sin__A,∴asin A=bsin B,同理,作AC边上的高BE,可得asin A=csin C,∴asin A=bsin B=csin C.(3)在钝角三角形ABC中,C为钝角,如图,过B作BD⊥AC于D,则BD=a sin(π-C)=a sin__C,BD=c sin__A,故有a sin C=c sin__A,∴asin A=csin C,同理,asin A=bsin B,∴asin A=bsin B=csin C.思考下列有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它所对角的正弦的比是一定值;④在△ABC 中,sin A∶sin B∶sin C=BC∶AC∶AB.其中正确的个数有()A.1 B.2 C.3 D.4答案 B解析正弦定理适用于任意三角形,故①②均不正确;由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比值也就确定了,所以③正确;由正弦定理可知④正确.故选B.知识点二解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.思考正弦定理能解决哪些问题?答案利用正弦定理可以解决以下两类有关三角形的问题:①已知两角和任意一边,求其他两边和第三个角;②已知两边和其中一边的对角,求另一边的对角,从而求出其他的边和角.题型一 对正弦定理的理解例1 在△ABC 中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则下列关于正弦定理的叙述或变形中错误的是( ) A .a ∶b ∶c =sin A ∶sin B ∶sin C B .a =b ⇔sin 2A =sin 2B C.asin A =b +c sin B +sin CD .正弦值较大的角所对的边也较大 答案 B解析 在△ABC 中,由正弦定理得a sin A =b sin B =c sin C=k (k >0),则a =k sin A ,b =k sin B ,c =k sin C ,故a ∶b ∶c =sin A ∶sin B ∶sin C ,故A 正确.当A =30°,B =60°时,sin 2A =sin 2B ,此时a ≠b ,故B 错误. 根据比例式的性质易得C 正确. 大边对大角,故D 正确. 反思与感悟 (1)定理的内容:a sin A =b sin B =c sin C=2R ,在运用正弦定理进行判断时,要灵活使用定理的各种变形. (2)如果a b =cd,那么a +b b =c +dd (b ,d ≠0)(合比定理); a -b b =c -d d (b ,d ≠0)(分比定理); a +b a -b =c +d c -d(a >b ,c >d )(合分比定理); 可以推广为:如果a 1b 1=a 2b 2=…=a n b n ,那么a 1b 1=a 2b 2=…=a n b n =a 1+a 2+…+a nb 1+b 2+…+b n .跟踪训练1 在△ABC 中,下列关系一定成立的是( ) A .a >b sin A B .a =b sin A C .a <b sin A D .a ≥b sin A 答案 D解析 在△ABC 中,B ∈(0,π),∴sin B ∈(0,1], ∴1sin B≥1,由正弦定理a sin A =b sin B 得a =b sin Asin B ≥b sin A .题型二 用正弦定理解三角形例2 (1)在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. (2)在△ABC 中,已知c =6,A =45°,a =2,解这个三角形. 解 (1)∵A =45°,C =30°,∴B =180°-(A +C )=105°, 由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. ∵sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64, ∴b =c sin B sin C =c sin (A +C )sin C =10×sin 75°sin 30°=20×2+64=52+5 6.∴B =105°,a =102,b =52+5 6. (2)∵a sin A =c sin C, ∴sin C =c sin A a =6×sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°.当C =60°时,B =75°,b =c sin Bsin C =6sin 75°sin 60°=3+1;当C =120°时,B =15°,b =c sin Bsin C =6sin 15°sin 120°=3-1.∴b =3+1,B =75°,C =60°或b =3-1,B =15°, C =120°.反思与感悟 (1)已知两角与任意一边解三角形的方法.首先由三角形内角和定理可以计算出三角形的另一角,再由正弦定理可计算出三角形的另两边.(2)已知三角形两边和其中一边的对角解三角形的方法.首先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角,当已知的角为小边所对的角时,则不能判断,此时就有两组解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边.跟踪训练2 (1)在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D .4(2)在△ABC 中,若a =2,b =2,A =30°,则C =______. 答案 (1)C (2)105°或15° 解析 (1)易知A =45°,由a sin A =b sin B得 b =a sin B sin A=8·3222=4 6. (2)由正弦定理a sin A =bsin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°. 题型三 判断三角形的形状例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断三角形的形状. 解 由已知得a 2sin B cos B =b 2sin Acos A ,由正弦定理得sin 2A sin B cos B =sin 2B sin Acos A .∵sin A 、sin B ≠0,∴sin A cos A =sin B cos B . 即sin 2A =sin 2B . ∴2A +2B =π或2A =2B . ∴A +B =π2或A =B .∴△ABC 为等腰三角形或直角三角形.反思与感悟 (1)判断三角形的形状,应围绕三角形的边角关系进行,既可以转化为边与边的关系,也可以转化为角与角的关系.(2)注意在边角互化过程中,正弦定理的变形使用,如a b =sin Asin B等.跟踪训练3 在△ABC 中,b sin B =c sin C 且sin 2A =sin 2B +sin 2C ,试判断三角形的形状. 解 由b sin B =c sin C ,得b 2=c 2, ∴b =c ,∴△ABC 为等腰三角形, 由sin 2A =sin 2B +sin 2C 得a 2=b 2+c 2, ∴△ABC 为直角三角形, ∴△ABC 为等腰直角三角形.1.在△ABC 中,AB =c ,AC =b ,BC =a ,下列等式中总能成立的是( ) A .a sin A =b sin B B .b sin C =c sin A C .ab sin C =bc sin B D .a sin C =c sin A 答案 D解析 由正弦定理a sin A =b sin B =csin C ,得a sin C =c sin A .2.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b =3,B =60°,那么A 等于( )A .135°B .90°C .45°D .30° 答案 C解析 由a sin A =b sin B 得sin A =a sin Bb =2×323=22, ∴A =45°或135°.又∵a <b ,∴A <B ,∴A =45°.3.在锐角三角形ABC 中,角A ,B 所对的边分别为a ,b ,若2a sin B =3b ,则A 等于( ) A.π12 B.π6 C.π4 D.π3 答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B , 又∵sin B ≠0,∴sin A =32. 又A 为锐角,∴A =π3.4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin A a =cos B b =cos Cc ,则△ABC是( ) A .等边三角形B .直角三角形,且有一个角是30°C .等腰直角三角形D .等腰三角形,且有一个角是30° 答案 C解析 由题a cos B =b sin A , 又由正弦定理a sin B =b sin A , ∴sin B =cos B ,又∵B ∈(0°,180°),∴B =45°. 同理C =45°.故△ABC 为等腰直角三角形.5.在△ABC 中,∠A =2π3,a =3c ,则bc =________.答案 1解析 由a sin A =c sin C 得sin C =c sin A a =13×32=12,又0<C <π3,所以C =π6,B =π-(A +C )=π6.所以b c =sin Bsin C =sin π6sin π6=1.6.在△ABC 中,若b =5,B =π4,tan A =2,则sin A =______,a =________.答案255210 解析 由tan A =2,得sin A =2cos A , 由sin 2A +cos 2A =1,得sin A =255,∵b =5,B =π4,由正弦定理a sin A =bsin B ,得a =b sin A sin B =2522=210.1.正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0).2.正弦定理的应用:①已知两角和任一边,求其他两边和一角.②已知两边和其中一边的对角,求另一边和两角.3.利用正弦定理可以实现三角形中边角关系的相互转化:一方面可以化边为角,转化为三角函数问题来解决;另一方面,也可以化角为边,转化为代数问题来解决.1.1.1 正弦定理(二)[学习目标] 1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题.2.能根据条件,判断三角形解的个数.3.能利用正弦定理、三角恒等变换、三角形面积公式解决较为复杂的三角形问题.知识点一 正弦定理及其变形1.定理内容:a sin A =b sin B =c sin C =2R .2.正弦定理的常见变形: (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin__A ,b =2R sin__B ,c =2R sin__C ; (4)sin A =a 2R ,sin B =b 2R ,sin C =c2R .知识点二 对三角形解的个数的判断已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定,现以已知a ,b 和A 解三角形为例,从两个角度予以说明: (1)代数角度由正弦定理得sin B =b sin Aa,①若b sin A a >1,则满足条件的三角形个数为0,即无解.②若b sin A a=1,则满足条件的三角形个数为1,即一解.③若b sin A a <1,则满足条件的三角形个数为1或2,即一解或两解.(2)几何角度图形关系式解的个数A为①a =b sin A ;②a ≥b一解锐角b sin A <a <b两解a <b sin A无解A 为 钝 角 或 直 角a >b一解a ≤b 无解知识点三 三角形面积公式 任意三角形的面积公式为:(1)S △ABC =12bc sin A =12ac sin B =12ab sin C ,即任意三角形的面积等于任意两边与它们夹角的正弦的乘积的一半.(2)S △ABC =12ah ,其中a 为△ABC 的一边长,而h 为该边上的高的长.(3)S △ABC =12r (a +b +c )=12rl ,其中r ,l 分别为△ABC 的内切圆半径及△ABC 的周长.(4)S △ABC =p (p -a )(p -b )(p -c )(其中p =a +b +c2).题型一 三角形解的个数的判断例1 已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答. (1)a =10,b =20,A =80°; (2)a =23,b =6,A =30°.解 (1)a =10,b =20,a <b ,A =80°<90°,讨论如下:∵b sin A =20sin 80°>20sin 60°=103, ∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°, ∵b sin A =6sin 30°=3,a >b sin A , ∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32,又∵B ∈(0°,180°),∴B 1=60°,B 2=120°.当B 1=60°时,C 1=90°,c 1=a sin C 1sin A =23sin 90°sin 30°=43;当B 2=120°时,C 2=30°,c 2=a sin C 2sin A =23sin 30°sin 30°=2 3.∴B 1=60°时,C 1=90°,c 1=43;B 2=120°时,C 2=30°,c 2=2 3.反思与感悟 已知三角形两边和其中一边的对角时,利用正弦定理求出另一边对角的正弦值后,需利用三角形中“大边对大角”来判断此角是锐角、直角还是钝角,从而确定三角形有两解还是只有一解.也可以用几何法来判断,即比较已知角的对边与另一边和该角正弦值乘积的大小来确定解的个数.跟踪训练1 (1)满足a =4,b =3,A =45°的三角形ABC 的个数为________. (2)△ABC 中,a =x ,b =2,B =45°.若该三角形有两解,则x 的取值范围是________. 答案 (1)1 (2)2<x <2 2解析 (1)因为A =45°<90°,a =4>3=b ,所以△ABC 的个数为一个. (2)由a sin B <b <a ,得22x <2<x ,∴2<x <2 2. 题型二 三角形的面积例2 在△ABC 中,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 ∵cos B 2=255,∴cos B =2cos 2B 2-1=35.∴B ∈(0,π2),∴sin B =45.∵C =π4,∴sin A =sin(B +C )=sin B cos C +cos B sin C =7210.∵a sin A =c sin C ,∴c =a sin C sin A =27210×22=107. ∴S =12ac sin B =12×2×107×45=87.反思与感悟 求三角形的面积关键在于选择适当的公式,因此,要认真分析题目中的条件,结合正弦定理,同时注意三角形内角和定理及三角恒等变换等知识的应用. 跟踪训练2 (1)在△ABC 中,若a =32,cos C =13,S △ABC =43,则b =________.(2)在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于________. 答案 (1)23 (2)32或34解析 (1)∵cos C =13,∴C ∈()0°,90°,∴sin C =1-(13)2=223,又S △ABC =12ab sin C =12·32·b ·223=43,∴b =2 3.(2)由正弦定理得sin C =AB ·sin BAC=3×121=32, 又∵C ∈(0°,180°),∴C =60°或120°,∴A =90°或30°, ∴S △ABC =12AB ·AC ·sin A =32或34.题型三 正弦定理与三角恒等变换的综合应用例3 在△ABC 中,AB =c ,BC =a ,AC =b ,若c =2+6,C =30°,求a +b 的取值范围.解 由正弦定理得c sin C =a sin A =bsin B =a +b sin A +sin B ,∵c =2+6,C =30°,∴a +b sin A +sin B =2+6sin 30°,A +B =180°-30°=150°. sin(150°-A )=sin 150°2cos 150°-2A 2+cos 150°2sin 150°-2A2,① sin A =sin150°2cos 150°-2A 2-cos 150°2sin 150°-2A 2,② 由①②得sin A +sin(150°-A )=2sin 75°cos(75°-A ), ∴a +b =2(2+6)[sin A +sin(150°-A )]=2(2+6)×2sin 75°cos(75°-A ) =2(2+6)×2×6+24cos(75°-A ) =(2+6)2cos(75°-A ). 当A =75°时,(a +b )max =8+4 3. ∵A +B =150°,∴0°<A <150°,-150°<-A <0°. ∴-75°<75°-A <75°, ∴cos(75°-A )∈(6-24,1], ∴a +b >(2+6)2×6-24=2+6, ∴2+6<a +b ≤8+4 3.综上所述,a +b ∈(2+6,8+4 3 ].反思与感悟 (1)求某个式子的取值范围,可以将其转化为一个角的三角函数,再求范围.注意不要因为忽略相应自变量的取值范围而导致错误.(2)三角形的内角和等于180°,这一特殊性质为三角恒等变换在三角形中的应用提供了一些特殊的式子,如sin A =sin(B +C ),cos A =-cos(B +C )等,解题中应注意应用.跟踪训练3 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2A =sin 2B +cos 2C +sin A sin B . (1)求角C 的大小;(2)若c =3,求△ABC 周长的取值范围.解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7.例4 在△ABC 中,已知c =6,A =π4,a =2,则b =__________.错解 由正弦定理a sin A =csin C ,得sin C =c sin A a =32,∴C =π3,∴B =5π12,∴b =a sin Bsin A =3+1.答案3+1错因分析 求得sin C =32之后,去求角C 的值时,认为C 为锐角,而忽略了C =23π的情况,导致漏解. 正解 因为6sinπ4<2<6,所以本题有两解. 因为a sin A =c sin C ,所以sin C =c sin A a =32.所以C =π3或2π3.当C =π3时,B =5π12,b =a sin Bsin A =3+1.当C =2π3时,B =π12,b =a sin Bsin A =3-1.答案3+1或3-1误区警示 已知两边和其中一边的对角解三角形时可先由正弦定理求出另一边的对角,该角可能有两解、一解、无解三种情况,故解题时应注意讨论,防止漏解.1.在△ABC 中,A =π3,BC =3,AB =6,则角C 等于( )A.π4或3π4B.3π4C.π4D.π6 答案 C解析 由正弦定理BC sin A =AB sin C 得sin C =AB ·sin ABC=6×323=22,∴C =π4或3π4.又∵AB <BC ,∴C <A ,∴C =π4. 2.已知△ABC 中,b =43,c =2,C =30°,那么此三角形( ) A .有一解 B .有两解 C .无解 D .解的个数不确定 答案 C解析 由正弦定理和已知条件得43sin B =2sin 30°,∴sin B =3>1,∴此三角形无解.3.根据下列条件,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .a =18,b =20,A =60°,有一解 C .a =5,b =2,A =90°,无解 D .a =30,b =25,A =150°,有一解 答案 D解析 对A.a =b sin A ,故有一解; 对B.b sin A <a <b ,故有两解; 对C.a >b sin A ,故有一解; 对D.A 为钝角,且a >b ,故有一解.4.在△ABC 中,AB =c ,BC =a ,AC =b ,若b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理b sin B =c sin C 得1sin B =3sin C .∵sin C =sin2π3=32,∴sin B =12. ∵C =2π3,∴B 为锐角,∴B =π6,A =π6,故a =b =1.5.在△ABC 中,lg(sin A +sin C )=2lg sin B -lg(sin C -sin A ),则此三角形的形状是________. 答案 直角三角形解析 ∵lg(sin A +sin C )=lg sin 2Bsin C -sin A,∴sin2C-sin2A=sin2B,结合正弦定理得c2=a2+b2,∴△ABC为直角三角形.6.在△ABC中,AB=3,D为BC的中点,AD=1,∠BAD=30°,则△ABC的面积S△ABC =________.答案3 2解析∵AB=3,AD=1,∠BAD=30°,∴S△ABD=12·3·1·sin 30°=34,又D是BC边中点,∴S△ABC=2S△ABD=3 2.1.已知两边和其中一边的对角,求第三边和其他两个角.首先求出另一边的对角的正弦值,当正弦值大于1或小于0时,这时三角形解的情况为无解;当正弦值大于0小于1时,再根据已知的两边的大小情况来确定该角有一个值或者两个值.2.判断三角形的形状,一般情况是判断三角形是不是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.1.1.2 余弦定理(一)[学习目标] 1.掌握余弦定理的内容与推论及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理及其证明 1.余弦定理的表示及其推论文字语言三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍 符号语言a 2=b 2+c 2-2bc cos__A ,b 2=a 2+c 2-2ac cos__B , c 2=a 2+b 2-2ab cos__C 推论cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab2.余弦定理的证明(1)课本上采用的证明方法:如图,设a =CB →,b =CA →,c =BA →,则c =b -a , ∴|c |2=c ·c =(b -a )2=a 2-2a ·b +b 2=a 2-2ab cos__C +b 2, ∴c 2=a 2+b 2-2ab cos C . (2)利用坐标法证明如图,建立平面直角坐标系,则A (0,0),B (c cos__A ,c sin__A ),C (b ,0)(写出三点的坐标).∴a =BC =(c cos A -b )2+(c sin A -0)2 =c 2-2bc cos A +b 2, ∴a 2=b 2+c 2-2bc cos A .思考1 在△ABC 中,若a 2=b 2+bc +c 2,则A =________. 答案2π3解析 由题意知,cos A =b 2+c 2-a 22bc =-bc 2bc =-12,又A ∈(0,π),∴A =2π3.思考2 勾股定理和余弦定理的联系与区别?答案 二者都反映了三角形三边之间的平方关系,其中余弦定理反映了任一三角形中三边平方间的关系,勾股定理反映了直角三角形中三边平方间的关系,是余弦定理的特例. 知识点二 用余弦定理解三角形的问题 利用余弦定理可以解决以下两类问题: (1)已知两边及其夹角解三角形; (2)已知三边解三角形.思考 已知三角形的两边及一边的对角解三角形,有几种方法? 答案 不妨设已知a ,b ,A ,方法一 由正弦定理a sin A =b sin B可求得sin B ,进而得B ,C ,最后得边c .方法二 由余弦定理a 2=b 2+c 2-2bc cos A 得边c ,而后由余弦或正弦定理求得B ,C .题型一 已知两边及其夹角解三角形例1 在△ABC 中,已知a =2,b =22,C =15°,求角A ,B 和边c 的值(cos 15°=6+24,sin 15°=6-24). 解 由余弦定理知c 2=a 2+b 2-2ab cos C =4+8-2×2×22×6+24=8-43, ∴c =8-43=(6-2)2=6- 2. 由正弦定理得sin A =a sin C c =a sin 15°c=2×6-246-2=12, ∵b >a ,∴B >A ,∴A =30°,∴B =180°-A -C =135°, ∴c =6-2,A =30°,B =135°.反思与感悟 已知三角形的两边及其夹角解三角形的方法(1)先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.(2)用正弦定理求解时,需对角的取值根据“大边对大角”进行取舍,而用余弦定理就不存在这些问题(因为在(0,π)上,余弦值对应的角是唯一的),故用余弦定理求解较好. 跟踪训练1 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A .4 B.15 C .3 D.17 答案 D解析 由三角形内角和定理可知cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×(-13)=17,所以c =17.题型二 已知三边(或三边的关系)解三角形例2 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22(6+23)(43)=32.∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab =(26)2+(6+23)2-(43)22×26×(6+23)=22,∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=712π,∴A =π6,B =712π,C =π4.反思与感悟 已知三边(或三边的关系)解三角形的方法(1)利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为0,角为直角;值为负,角为钝角.(2)方法一:两次运用余弦定理的推论求出两个内角的余弦值,确定两个角,并确定第三个角.方法二:由余弦定理的推论求一个内角的余弦值,确定角的大小;由正弦定理求第二个角的正弦值,结合“大边对大角、大角对大边”法则确定角的大小,最后由三角形内角和为180°确定第三个角的大小.(3)若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解. 跟踪训练2 将例2中的条件改为“a ∶b ∶c =26∶(6+23)∶43”,求A ,B ,C . 解 ∵a ∶b ∶c =26∶(6+23)∶43, 即a26=b 6+23=c43, 不妨设a26=k ,则a =26k ,b =(6+23)k ,c =43k ,下同例题解法.题型三 已知两边及其中一边的对角解三角形例3 在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,若a =23,b =6,A =45°,求边c .解 方法一 在△ABC 中,根据余弦定理可得 a 2=b 2+c 2-2bc cos A ,即c 2-23c -6=0, 所以c =3±3.又c >0,所以c =3+3.方法二 在△ABC 中,由正弦定理得 sin B =b sin Aa =6×2223=12,因为b <a ,所以B <A ,又B ∈(0°,180°),所以B =30°, 所以C =180°-A -B =105°,所以sin C =sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°sin 60°=6+24, 故c =a sin Csin A =23×6+2422=3+3.反思与感悟 已知三角形的两边及其中一边的对角解三角形的方法可根据余弦定理列一元二次方程求出第三边(注意边的取舍),再利用正弦定理求其他的两个角;也可以由正弦定理求出第二个角(注意角的取舍),再利用三角形内角和定理求出第三个角,最后利用正弦定理求出第三边.跟踪训练3 已知在△ABC 中,b =3,c =3,B =30°,解此三角形. 解 方法一 由余弦定理b 2=a 2+c 2-2ac cos B 得(3)2=a 2+32-2×a ×3×cos 30°, ∴a 2-33a +6=0,∴a =3或a =2 3. 当a =3时,a =b ,∴A =30°,∴C =120°; 当a =23时,由正弦定理得 sin A =a sin B b =23sin 30°3=1,又∵A ∈(0°,180°),∴A =90°,C =60°.∴C =60°,A =90°,a =23或C =120°,A =30°,a = 3. 方法二 由b <c ,B =30°,b >c sin 30°知本题有两解. 由正弦定理,得sin C =c sin B b =3×123=32,∴C =60°或120°.当C =60°时,A =90°,由勾股定理得a =b 2+c 2=23; 当C =120°时,A =30°=B ,∴a = 3.∴C =60°,A =90°,a =23或C =120°,A =30°,a = 3.1.在△ABC 中,符合余弦定理的是( ) A .c 2=a 2+b 2-2ab cos C B .c 2=a 2-b 2-2bc cos A C .b 2=a 2-c 2-2bc cos A D .cos C =a 2+b 2+c 22ab答案 A解析 由余弦定理及其推论知只有A 正确.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝⎛⎭⎫b =-13舍去,故选D. 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不确定 答案 A解析 cos 120°=a 2+b 2-c 22ab =a 2+b 2-2a 22ab =-12,∴b =5-12a <a . 4.在△ABC 中,若a 2+b 2-c 2=ab ,则角C 的大小为________. 答案π3解析 cos C =a 2+b 2-c 22ab =ab 2ab =12,又B ∈(0,π),∴B =π3.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________. 答案 56π解析 cos B =a 2+c 2-b 22ac =1+3-72×1×3=-32,又B ∈(0,π),∴B =56π.1.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角. 2.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角或已知三边能直接利用余弦定理解三角形.(2)若已知两边和一边的对角,既可以用正弦定理又可以用余弦定理解三角形,但用正弦定理时要注意不要漏解或多解.1.1.2 余弦定理(二)[学习目标] 1.熟练掌握余弦定理及其变形形式,能用余弦定理解三角形.2.能应用余弦定理判断三角形形状.3.能利用正弦、余弦定理解决解三角形的有关问题.知识点一 余弦定理及其推论1.a 2=b 2+c 2-2bc cos__A ,b 2=c 2+a 2-2ca cos__B ,c 2=a 2+b 2-2ab cos__C . 2.cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.3.在△ABC 中,c 2=a 2+b 2⇔C 为直角,c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 知识点二 正弦、余弦定理解决的问题思考 以下问题不能用余弦定理求解的是________. (1)已知两边和其中一边的对角,解三角形; (2)已知两角和一边,解三角形;(3)已知一个三角形的两条边及其夹角,解三角形; (4)已知一个三角形的三条边,解三角形. 答案 (2)题型一 利用余弦定理判断三角形的形状例1 在△ABC 中,cos 2B 2=a +c2c ,其中a ,b ,c 分别是角A ,B ,C 的对边,则△ABC 的形状为( ) A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A解析 方法一 在△ABC 中,由已知得 1+cos B 2=12+a2c , ∴cos B =a c =a 2+c 2-b 22ac,化简得c 2=a 2+b 2. 故△ABC 为直角三角形.方法二 原式化为cos B =a c =sin Asin C ,∴cos B sin C =sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴sin B cos C =0,∵B ∈(0,π),sin B ≠0,∴cos C =0, 又∵C ∈(0,π),∴C =π2,即△ABC 为直角三角形.反思与感悟 一般地,如果遇到的式子含角的余弦或是边的二次式,要考虑用余弦定理;反之,若遇到的式子含角的正弦或是边的一次式,则大多用正弦定理;若是以上特征不明显,则要考虑两个定理都有可能用.跟踪训练1 在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ) A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 答案 B解析 由余弦定理cos B =a 2+c 2-b 22ac ,代入得12=a 2+c 2-ac 2ac ,∴a 2+c 2-2ac =0, 即(a -c )2=0,∴a =c .又∵B =60°,∴△ABC 是等边三角形. 题型二 正弦、余弦定理的综合应用例2 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得: sin A sin B =sin A cos B +cos A sin B =sin(A +B ). 在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .(2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin B cos B=4.反思与感悟 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息. (2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换公式的应用.跟踪训练2 在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B ;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)由b sin A =3a cos B 及正弦定理, 得sin B =3cos B ,即tan B =3,因为B 是三角形的内角,所以B =π3.(2)由sin C =2 sin A 及正弦定理得,c =2a . 由余弦定理及b =3,得9=a 2+c 2-2ac cos π3,即9=a 2+4a 2-2a 2,所以a =3,c =2 3. 题型三 利用正弦、余弦定理证明边角恒等式例3 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2c 2=sin (A -B )sin C .证明 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴2(a 2-b 2)=2ac cos B -2bc cos A , 即a 2-b 2=ac cos B -bc cos A , ∴a 2-b 2c 2=a cos B -b cos Ac .由正弦定理得a c =sin A sin C ,b c =sin B sin C,∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C ,故等式成立.反思与感悟 (1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系. 跟踪训练3 在△ABC 中,若a cos 2C 2+c cos 2 A 2=3b2,求证:a +c =2b .解 由题a (1+cos C )+c (1+cos A )=3b , 即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc =3b ,∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.例4 已知钝角三角形的三边BC =a =k ,AC =b =k +2,AB =c =k +4,求k 的取值范围. 错解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6,①∵k 为三角形的一边长,∴k >0,② 由①②知0<k <6.错因分析 忽略隐含条件k +k +2>k +4,即k >2. 正解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0,∴k 2-4k -12<0,解得-2<k <6,① 由两边之和大于第三边得k +(k +2)>k +4, ∴k >2,② 由①②可知2<k <6.误区警示 在解与三角形的边有关的问题时,一定要注意三角形两边之和大于第三边,两边之差小于第三边.跟踪训练4 若△ABC 为钝角三角形,三边长分别为2,3,x ,则x 的取值范围是( ) A .(1,5) B .(13,5)C .(5,13)D .(1,5)∪(13,5) 答案 D解析 (1)若x >3,则x 对角的余弦值22+32-x 22×2×3<0且2+3>x ,解得13<x <5.(2)若x <3,则3对角的余弦值22+x 2-322×2×x <0且x +2>3,解得1<x < 5.故x 的取值范围是(1,5)∪(13,5).1.在△ABC 中,b cos A =a cos B ,则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .锐角三角形 答案 B解析 由题b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac,整理得a 2=b 2,∴a =b .2.在△ABC 中,sin 2A -sin 2C -sin 2B =sin C sin B ,则A 等于( ) A .60° B .45° C .120° D .30° 答案 C解析 由正弦定理得a 2-c 2-b 2=bc , 结合余弦定理得cos A =b 2+c 2-a 22bc =-12,又A ∈(0,π),∴A =120°.3.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为( )A.85B.58C.53D.35 答案 D解析 由余弦定理BC 2=AB 2+AC 2-2·AB ·AC ·cos A 得72=52+AC 2-2·5·AC ·(-12),∴AC =3或-8(舍).∴sin B sin C =AC AB =35.4.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .(8,10) B .(22,10) C .(22,10) D .(10,8) 答案 B解析 只需让3和a 所对的边均为锐角即可.故⎩⎪⎨⎪⎧12+32-a 22·1·3>012+a 2-322·1·a >01+3>a 1+a >3,解得22<a <10.5.在△ABC 中,若b =1,c =3,C =2π3,则a =________.答案 1解析 由余弦定理得c 2=a 2+b 2-2ab cos C , ∴a 2+1+a =3,即a 2+a -2=0, 解得a =1或a =-2(舍).6.已知△ABC 的三边长分别为2,3,4,则此三角形是________三角形.答案钝角解析4所对的角的余弦为22+32-422×2×3=-14<0,故该角为钝角,故该三角形为钝角三角形.1.判断三角形形状的基本思想是:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.2.解决综合问题时应考虑以下两点(1)正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时,要及时考虑另外一个定理.(2)三角函数中的公式在解决三角形问题时是不可或缺的,应该养成应用三角公式列式化简的习惯.[学习目标]利用正弦、余弦定理解决生产实践中的有关距离的测量问题.知识点一基线的定义在测量上,我们根据测量需要适当确定的线段叫做基线,一般地讲,基线越长,测量的精确度越高.知识点二有关的几个术语(1)方位角:指以观测者为中心,从正北方向线顺时针旋转到目标方向线所形成的水平角.如图所示的θ1,θ2即表示点A和点B的方位角.故方位角的范围是[0°,360°).(2)方向角:指以观测者为中心,指北或指南的方向线与目标方向线所成的小于90°的水平角,它是方位角的另一种表示形式.如图,左图中表示北偏东30°,右图中表示南偏西60°.思考上两图中的两个方向,用方位角应表示为30°(左图),240°(右图).(3)视角:观测者的两条视线之间的夹角称作视角.知识点三解三角形应用题解三角形应用题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解三角形,得到实际问题的解,求解的关键是将实际问题转化为解三角形问题.(1)解题思路。
2017年新人教A版高中数学必修五全册学案

人教A版高中数学必修5全册导学案目录1.1.1正弦定理1.1.2余弦定理1.2.1解三角形应用举例(一)1.2.2解三角形应用举例(二)1.2.3解三角形应用举例(三)1.2.3解三角形应用举例(四)2.1.1数列的概念与简单表示法(一)2.1.2数列的概念与简单表示法(二)2.2.1等差数列(一)2.2.2等差数列(二)2.3.1等差数列的前n项和(一)2.3.2等差数列的前项和(二)2.4.1等比数列(一)2.4.2等比数列(二)2.5.1等比数列的前n项和(一)2.5.2等比数列的前n项和(二)3.1.1不等关系与不等式(一)3.1.2不等关系与不等式(二)3.2.1 一元二次不等式及其解法(一)3.2.2一元二次不等式及其解法(二)3.2.3一元二次不等式及其及解法(三)3.3.1.1二元一次不等式(组)与平面区域(一)3.3.2.1简单的线性规划问题(一)3.3.2.2简单的线性规划问题(二)3.3.2.3简单的线性规划问题(三)3.3.2二元一次不等式(组)与平面区域(二)3.4.1基本不等式(一)3.4.2基本不等式(二)3.4.3基本不等式(三)1.1.1 正弦定理(寄语教师:这一节课的主要目的是运用正弦定理解斜三角形,提高学生的解题能力)我们知道,在任意三角形中有大边对大角,小边对小角的边角关系,我们是否能得到这个边、角关系准确量化的表示?)一、【学习目标】1、掌握正弦定理及其向量法推导过程;2、掌握用正弦定理与三角形内角和定理解斜三角形的两类基本问题.【学习效果】:教学目标的给出有利于学生整体的把握课堂.二、【教学内容和要求及教学过程】阅读教材第2—4页内容,然后回答问题(正弦定理)<1>在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
那么对于任意的三角形,以上关系式是否仍然成立? <2>正弦定理及正弦定理的应用?结论:<1>在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, 则sin sin sin a b c c A B C ===从而在直角三角形ABC 中,sin sin sin a b c A B C ==;当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B=, 同理可得sin sin c b C B =, 从而sin sin a b A B =sin cC=。
【范文】高二数学必修五全套导学案及答案(人教A版)

高二数学必修五全套导学案及答案(人教A版)本资料为woRD文档,请点击下载地址下载全文下载地址1.1.1正弦定理【学习目标】.掌握正弦定理的推导过程;2.理解正弦定理在讨论三角形边角关系时的作用;3.能应用正弦定理解斜三角形【重点难点】正弦定理及其应用;解三角形中知两边一对角型中解的判断。
【知识梳理】.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即===2R(R为△ABc外接圆半径)2.正弦定理的应用从理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角3.中,已知及锐角,则、、满足什么关系时,三角形无解,有一解,有两解?(见图示):⑴若A为锐角时:⑵若A为直角或钝角时:【范例分析】例1.(1)已知下列三角形的两边及其一边对角,先判断三角形是否有解?有解的作出解答。
①;②;③;④。
(2)在中,,若有两解,则的取值范围为A、B、C、D、例2.(1)在△ABc中,已知,求的值;(2)在△ABc中,已知,求的值。
例3.(1)在△ABc中,已知AB=l,∠c=50°,当∠B 多大时,Bc的长取得最大值.?(2)△ABc的三个角满足A<B<c,且2B=A+c,最大边为最小边的2倍,求三内角之比。
(2)在中,,求的外接圆半径和面积。
【规律总结】.正弦定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关涉及到三角形的其他问题中,也常会用到正弦定理。
正余弦定理的边角互换功能①,,②,,③==④2.结合正弦定理,三角形的面积公式有以下几种形式:其中分别表示的边上的高、外接圆半径。
一、选择题.在△ABc中,a=10,B=60°,c=45°,则c等于()A.B.c.D.2.在中,若,则的值为()A.B.c.D.3、已知△ABc的面积为,且,则∠A等于()A.30°B.30°或150°c.60°D.60°或120°4.△ABc中,∠A、∠B的对边分别为a,b,且∠A=60°,, 那么满足条件的△ABc()A.有一个解B.有两个解c.无解D.不能确定5.在△ABc中,已知60°,如果△ABc两组解,则x的取值范围是A.B.c.D.二、填空题6.在△ABc中,若∠A:∠B:∠c=1:2:3,则7.在△ABc中,,则此三角形的最大边长为,外接圆半径为,面积为。
高二数学必修五全套导学案及答案人教A版

高二数学必修五全套导学案及答案(人教A版)1.1.1 正弦定理【学习目标】 1.掌握正弦定理的推导过程; 2.理解正弦定理在讨论三角形边角关系时的作用; 3.能应用正弦定理解斜三角形【重点难点】正弦定理及其应用;解三角形中知两边一对角型中解的判断。
【知识梳理】 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即 = = =2R(R为△ABC外接圆半径) 2.正弦定理的应用从理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角 3.中,已知及锐角,则、、满足什么关系时,三角形无解,有一解,有两解?(见图示): ⑴若A为锐角时: ⑵若A为直角或钝角时: 【范例分析】例1.(1)已知下列三角形的两边及其一边对角,先判断三角形是否有解?有解的作出解答。
① ;② ;③ ;④ 。
(2)在中, , 若有两解, 则的取值范围为 ( ) A、B、C、D、例2.(1)在△ABC中,已知,求的值;(2)在△ABC中,已知,求的值。
例3.(1)在△ABC中,已知AB=l,∠C=50°,当∠B多大时,BC的长取得最大值.?(2)△ABC的三个角满足A<B<C,且2B=A+C,最大边为最小边的2倍 ,求三内角之比。
(2)在中,,求的外接圆半径和面积。
【规律总结】 1.正弦定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,从而使许多问题得以解决�ピ谏婕暗饺�角形的其他问题中,也常会用到正弦定理。
正余弦定理的边角互换功能① ,,② ,,③ = = ④ 2.结合正弦定理,三角形的面积公式有以下几种形式:其中分别表示的边上的高、外接圆半径。
一、选择题 1.在△ABC中,a =10,B=60°,C=45°,则c等于() A. B. C. D. 2.在中,若,则的值为() A.B. C. D. 3、已知△ABC的面积为,且,则∠A 等于() A.30° B.30°或150° C.60° D.60°或120° 4.△ABC中,∠A、∠B的对边分别为a,b,且∠A=60°, , 那么满足条件的△ABC() A.有一个解 B.有两个解 C.无解 D.不能确定 5.在△ABC中,已知60°,如果△ABC两组解,则x的取值范围是( ) A. B. C. D.二、填空题 6.在△ABC中,若∠A:∠B:∠C=1:2:3,则 7.在△ABC中,,则此三角形的最大边长为,外接圆半径为,面积为。
【同步汇编】2017-2018学年 高中数学必修5 全册习题精选 汇编 130页 北师大版(含答案)

2017-2018学年高中数学必修5 全册习题精选汇编目录第一章数列1.1数列1.1.1习题精选北师大版必修5含答案第一章数列1.1数列1.1.2习题精选北师大版必修5含答案第一章数列1.2等差数列1.2.1.1习题精选北师大版必修5含答案第一章数列1.2等差数列1.2.1.2习题精选北师大版必修5含答案第一章数列1.2等差数列1.2.2.1习题精选北师大版必修5含答案第一章数列1.2等差数列1.2.2.2习题精选北师大版必修5含答案第一章数列1.3等比数列1.3.1.1习题精选北师大版必修5含答案第一章数列1.3等比数列1.3.1.2习题精选北师大版必修5含答案第一章数列1.3等比数列1.3.2习题精选北师大版必修5含答案第一章数列1.4数列在日常经济生活中的应用习题精选北师大版必修5含答案第二章解三角形2.1正弦定理与余弦定理2.1.1习题精选北师大版必修5含答案第二章解三角形2.1正弦定理与余弦定理2.1.2习题精选北师大版必修5含答案第二章解三角形2.2三角形中的几何计算习题精选北师大版必修5含答案第二章解三角形2.3解三角形的实际应用举例习题精选北师大版必修5含答案第三章不等式3.1不等关系习题精选北师大版必修5含答案第三章不等式3.2一元二次不等式3.2.1习题精选北师大版必修5含答案第三章不等式3.2一元二次不等式3.2.2习题精选北师大版必修5含答案第三章不等式3.3基本不等式3.3.1习题精选北师大版必修5含答案第三章不等式3.3基本不等式3.3.2习题精选北师大版必修5含答案第三章不等式3.4简单线性规划3.4.1习题精选北师大版必修5含答案第三章不等式3.4简单线性规划3.4.2习题精选北师大版必修5含答案第三章不等式3.4简单线性规划3.4.3习题精选北师大版必修5含答案1.1 数列的概念课后篇巩固探究A组1.将正整数的前5个数作如下排列:①1,2,3,4,5;②5,4,3,2,1;③2,1,5,3,4;④4,1,5,3,2.则可以称为数列的是( )A.①B.①②C.①②③D.①②③④解析:4个都构成数列.答案:D2.已知数列{a n}的通项公式为a n=,则该数列的前4项依次为( )A.1,0,1,0B.0,1,0,1C.,0,,0D.2,0,2,0解析:把n=1,2,3,4分别代入a n=中,依次得到0,1,0,1.答案:B3.数列1,,…的一个通项公式是( )A.a n=B.a n=C.a n=D.a n=解析:1=12,4=22,9=32,16=42,1=2³1-1,3=2³2-1,5=2³3-1,7=2³4-1,故a n= .答案:A4.已知数列{a n}的通项公式a n=,若a k=,则a2k= ( )A. B.99 C. D.143解析:由a k=,于是k=6(k=-6舍去).因此a2k=a12=.答案:C5.已知数列,…,则三个数0.98,0.96,0.94中属于该数列中的数只有( )A.1个B.2个C.3个D.以上都不对解析:由已知可得该数列的一个通项公式a n=.令a n=0.98,解得n=49,令a n=0.96,解得n=24,令a n=0.94,解得n=∉N+.故只有0.98和0.96是该数列中的项.答案:B6.已知曲线y=x2+1,点(n,a n)(n∈N+)位于该曲线上,则a10=.解析:由题意知a n=n2+1,因此a10=102+1=101.答案:1017.数列,3,,3,…的一个通项公式是.解析:数列可化为,…,即,…,每个根号里面可分解成两数之积,前一个因式为常数3,后一个因式为2n-1,故原数列的通项公式为a n=,n∈N+.答案:a n=8.已知数列{a n}的通项公式a n=,则-3是此数列的第项.解析:令-3,得-3,解得n=9.答案:99.写出下列各数列的一个通项公式:(1)4,6,8,10,…(2),…(3),-1,,-,-,…(4)3,33,333,3 333,…解(1)各项是从4开始的偶数,所以a n=2n+2.(2)数列中的每一项分子比分母少1,而分母可写成21,22,23,24,25,…,2n,故所求数列的通项公式可写为a n=.(3)所给数列中正、负数相间,所以通项中必须含有(-1)n+1这个因式,忽略负号,将第二项1写成,则分母可化为3,5,7,9,11,13,…,均为正奇数,分子可化为12+1,22+1,32+1,42+1,52+1,62+1,…,故其通项公式可写为a n=(-1)n+1².(4)将数列各项写为,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n=(10n-1).10.已知数列{a n}的通项公式为a n=3n2-28n.(1)写出数列的第4项和第6项;(2)问-49是不是该数列的一项?如果是,应是哪一项?68是不是该数列的一项呢?解(1)a4=3³16-28³4=-64,a6=3³36-28³6=-60.(2)设3n2-28n=-49,解得n=7或n=(舍去),∴n=7,即-49是该数列的第7项.设3n2-28n=68,解得n=或n=-2.∵∉N+,-2∉N+,∴68不是该数列的项.B组1.数列2,-,4,-,…的通项公式是( )A.a n=2n(n∈N+)B.a n=(n∈N+)C.a n=(n∈N+)D.a n=(n∈N+)解析:将数列各项改写为,-,-,…,观察数列的变化规律,可得a n=(n∈N+).答案:C2.已知数列{a n}的通项公式a n=,则a n²a n+1²a n+2等于( )A. B. C. D.解析:∵a n=,a n+1=,a n+2=,∴a n²a n+1²a n+2=.答案:B3.根据下列5个图形中相应点的个数的变化规律,猜测第n个图形中有( )个点.A.n2-n+1B.2n2-nC.n2D.2n-1解析:观察图中5个图形点的个数分别为1,1³2+1,2³3+1,3³4+1,4³5+1,故第n个图形中点的个数为(n-1)n+1=n2-n+1.答案:A4.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n与所搭三角形的个数n之间的关系式可以是.解析:∵a1=3,a2=3+2=5,a3=3+2+2=7,a4=3+2+2+2=9,…,∴a n=2n+1.答案:a n=2n+15.在数列,…中,有序数对(a,b)可以是.解析:从上面的规律可以看出分母的规律是:1³3,2³4,3³5,4³6,…,分子的规律是:5,5+5,5+5+7,5+5+7+9,…,所以解得a=,b=-.答案:6.导学号33194000已知数列{a n}的通项公式a n=a²2n+b,且a1=-1,a5=-31,则a3=.解析:由已知得解得即a n=-2n+1,于是a3=-23+1=-7.答案:-77.如图,有m(m≥2)行(m+1)列的士兵队列.(1)写出一个数列,用它表示当m分别为2,3,4,5,6,…时队列中的士兵人数;(2)写出(1)中数列的第5,6项,用a5,a6表示;(3)若把(1)中的数列记为{a n},求该数列的通项公式a n;(4)求a10,并说明a10所表示的实际意义.解(1)当m=2时,表示2行3列,人数为6;当m=3时,表示3行4列,人数为12,依此类推,故所求数列为6,12,20,30,42,….(2)队列的行数比数列的序号大1,因此第5项表示的是6行7列,第6项表示7行8列,故a5=42,a6=56.(3)根据对数列的前几项的观察、归纳,猜想数列的通项公式.前4项分别为6=2³3,12=3³4,20=4³5,30=5³6.因此a n=(n+1)(n+2).(4)由(3)知a10=11³12=132,a10表示11行12列的士兵队列中士兵的人数.8.导学号33194001在数列{a n}中,a1=2,a17=66,通项公式是关于n的一次函数.(1)求数列{a n}的通项公式;(2)求a2 017;(3)是否存在m,k∈N+,满足a m+a m+1=a k?若存在,求出m,k的值,若不存在,说明理由.解(1)设a n=kn+b(k≠0),则由a1=2,a17=66得,解得所以a n=4n-2.(2)a2 017=4³2 017-2=8 066.(3)由a m+a m+1=a k,得4m-2+4(m+1)-2=4k-2,整理后可得4m=2k-1,因为m,k∈N+,所以4m是偶数,2k-1是奇数, 故不存在m,k∈N+,使等式4m=2k-1成立,即不存在m,k∈N+,使a m+a m+1=a k.1.2 数列的函数特性课后篇巩固探究A组1.数列{n2-4n+3}的图像是( )A.一条直线B.一条直线上的孤立的点C.一条抛物线D.一条抛物线上的孤立的点解析:a n=n2-4n+3是关于n的二次函数,故其图像是抛物线y=x2-4x+3上一群孤立的点.答案:D2.已知数列{a n}的通项公式是a n=,则这个数列是( )A.递增数列B.递减数列C.摆动数列D.常数列解析:∵a n+1-a n==>0,∴a n+1>a n,∴数列{a n}是递增数列.答案:A3.若数列{a n}的通项公式a n=,则在数列{a n}的前20项中,最大项和最小项分别是( )A.a1,a20B.a20,a1C.a5,a4D.a4,a5解析:由于a n==1+,因此当1≤n≤4时,{a n}是递减的,且a1>0>a2>a3>a4;当5≤n≤20时,a n>0,且{a n}也是递减的,即a5>a6>…>a20>0,因此最大的是a5,最小的是a4.答案:C4.已知{a n}的通项公式a n=n2+3kn,且{a n}是递增数列,则实数k的取值范围是( )A.k≥-1B.k>-C.k≥-D.k>-1解析:因为{a n}是递增数列,所以a n+1>a n对n∈N+恒成立.即(n+1)2+3k(n+1)>n2+3kn,整理得k>-,当n=1时,-取最大值-1,故k>-1.答案:D5.给定函数y=f(x)的图像,对任意a n∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n(n∈N+),则该函数的图像是( )解析:由a n+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图像在直线y=x的上方.答案:A6.已知数列{a n}的通项公式是a n=,其中a,b均为正常数,则a n+1与a n的大小关系是.解析:∵a n+1-a n==>0,∴a n+1-a n>0,故a n+1>a n.答案:a n+1>a n7.已知数列{a n}的通项公式为a n=2n2-5n+2,则数列{a n}的最小值是.解析:∵a n=2n2-5n+2=2,∴当n=1时,a n最小,最小为a1=-1.答案:-18.导学号33194002已知数列{a n}满足a n+1=若a1=,则a2 017=.解析:a1=,a2=2a1-1=,a3=2a2-1=,a4=2a3=,…,所以{a n}是周期为3的周期数列,于是a2 017=a672³3+1=a1=.答案:9.已知数列{a n}的通项公式为a n=n2-21n+20.(1)-60是否是该数列中的项,若是,求出项数;该数列中有小于0的项吗?有多少项?(2)n为何值时,a n有最小值?并求出最小值.解(1)令n2-21n+20=-60,得n=5或n=16.所以数列的第5项,第16项都为-60.由n2-21n+20<0,得1<n<20,所以共有18项小于0.(2)由a n=n2-21n+20=,可知对称轴方程为n==10.5.又n∈N+,故n=10或n=11时,a n 有最小值,其最小值为112-21³11+20=-90.10.已知函数f(x)=(x≥1),构造数列a n=f(n)(n∈N+).(1)求证:a n>-2;(2)数列{a n}是递增数列还是递减数列?为什么?(1)证明由题意可知a n=-2.∵n∈N+,∴>0,∴a n=-2>-2.(2)解递减数列.理由如下:由(1)知,a n=-2.∵a n+1-a n==<0,即a n+1<a n,∴数列{a n}是递减数列.B组1.若函数f(x)满足f(1)=1,f(n+1)=f(n)+3(n∈N+),则f(n)是( )A.递增数列B.递减数列C.常数列D.不能确定解析:∵f(n+1)-f(n)=3(n∈N+),∴f(n+1)>f(n),∴f(n)是递增数列.答案:A2.设函数f(x)=数列{a n}满足a n=f(n),n∈N+,且数列{a n}是递增数列,则实数a的取值范围是( )A.(1,3)B.(2,3)C.D.(1,2)答案:B3.导学号33194003若数列{a n}的通项公式为a n=7²-3²,则数列{a n}的( )A.最大项为a5,最小项为a6B.最大项为a6,最小项为a7C.最大项为a1,最小项为a6D.最大项为a7,最小项为a6解析:令t=,n∈N+,则t∈(0,1],且=t2.从而a n=7t2-3t=7.又函数f(t)=7t2-3t在上是减少的,在上是增加的,所以a1是最大项,a6是最小项.故选C.答案:C4.若数列{a n}的通项公式为a n=-2n2+13n,关于该数列,有以下四种说法:①该数列有无限多个正数项;②该数列有无限多个负数项;③该数列的最大值就是函数f(x)=-2x2+13x的最大值;④-70是该数列中的一项.其中正确的说法有.(填序号)解析:令-2n2+13n>0,得0<n<,故数列{a n}中有6项是正数项,有无限个负数项,所以①错,②正确;当n=3时,数列{a n}取到最大值,而当x=3.25时,函数f(x)取到最大值,所以③错;令-2n2+13n=-70,得n=10或n=-(舍去),即-70是该数列的第10项,所以④正确.答案:②④5.若数列中的最大项是第k项,则k=.解析:已知数列最大项为第k项,则有即由k∈N+可得k=4.答案:46.已知数列{a n}满足a n=+…+.(1)数列{a n}是递增数列还是递减数列?为什么?(2)证明:a n≥对一切正整数恒成立.(1)解因为a n=+…+,所以a n+1=+…+=+…+.所以a n+1-a n=,又n∈N+,所以.所以a n+1-a n>0.所以数列{a n}是递增数列.(2)证明由(1)知数列{a n}是递增数列,所以数列的最小项为a1=,所以a n≥a1=,即a n≥对一切正整数恒成立.7.导学号33194004已知数列{a n}的通项公式为a n=n2-n-30.(1)求数列的前三项,60是此数列的第几项?(2)n为何值时,a n=0,a n>0,a n<0?(3)该数列前n项和S n是否存在最值?说明理由.解(1)由a n=n2-n-30,得a1=1-1-30=-30,a2=22-2-30=-28,a3=32-3-30=-24.设a n=60,则n2-n-30=60.解得n=10或n=-9(舍去),即60是此数列的第10项.(2)令n2-n-30=0,解得n=6或n=-5(舍去).∴当n=6时,a n=0.令n2-n-30>0,解得n>6或n<-5(舍去).∴当n>6(n∈N+)时,a n>0.令n2-n-30<0,解得-5<n<6.又n∈N+,∴0<n<6,∴当0<n<6(n∈N+)时,a n<0.(3)由a n=n2-n-30=-30(n∈N+),知{a n}是递增数列,且a1<a2<…<a5<a6=0<a7<a8<a9<…,故S n存在最小值S5=S6,S n不存在最大值.第1课时等差数列的定义和通项公式课后篇巩固探究1.若{a n}是等差数列,则下列数列中也成等差数列的是( )A.{}B.C.{3a n}D.{|a n|}解析:设{a n}的公差为d,则3a n+1-3a n=3(a n+1-a n)=3d是常数,故{3a n}一定成等差数列.{},,{|a n|}都不一定是等差数列,例如当{a n}为{3,1,-1,-3}时.答案:C2.在等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为( )A.1B.2C.3D.4解析:∵a1+a5=10=a1+a1+4d=2(a1+2d)=2a3,∴a3=5.故d=a4-a3=7-5=2.答案:B3.已知{a n}是首项a1=2,公差为d=3的等差数列,若a n=2 018,则序号n等于( )A.670B.671C.672D.673解析:∵a1=2,d=3,∴a n=2+3(n-1)=3n-1.令3n-1=2 018,解得n=673.答案:D4.等差数列{a n}中,a1=8,a5=2,如果在每相邻两项间各插入一个数,使之成为新的等差数列,那么新的等差数列的公差是( )A. B.- C.- D.-1解析:设新数列a1,b1,a2,b2,a3,b3,a4,b4,a5,…,公差为d,则a5=a1+8d,所以d==-=-.故选B.答案:B5.已知点(n,a n)(n∈N+)都在直线3x-y-24=0上,则在数列{a n}中有( )A.a7+a9>0B.a7+a9<0C.a7+a9=0D.a7²a9=0解析:∵(n,a n)在直线3x-y-24=0,∴a n=3n-24.∴a7=3³7-24=-3,a9=3³9-24=3,∴a7+a9=0.答案:C6.在等差数列{a n}中,若a1=7,a7=1,则a5=.答案:37.在等差数列{a n}中,已知a5=10,a12>31,则公差d的取值范围是.解析:设此数列的首项为a1,公差为d,由已知得②-①,得7d>21,所以d>3.答案:d>38.在数列{a n}中,a1=3,且对任意大于1的正整数n,点()在直线x-y-=0上,则数列{a n}的通项公式为a n=.解析:由题意知(n≥2),∴{}是以为首项,以为公差的等差数列,∴+(n-1)d=(n-1)=n.∴a n=3n2.答案:3n29.已知数列{a n},{b n}满足是等差数列,且b n=n2,a2=5,a8=8,则a9=.解析:由题意得,因为是等差数列,所以可得该等差数列的公差d=-,所以=-,所以a9=-513.答案:-51310.如果在等差数列{3n-1}的每相邻两项之间插入三项后使它们构成一个新的等差数列,那么新数列的第29项是原数列的第项.解析:设a n=3n-1,公差为d1,新数列为{b n},公差为d2,a1=2,b1=2,d1=a n-a n-1=3,d2=,则b n=2+(n-1)=n+,b29=23,令a n=23,即3n-1=23.故n=8.答案:811.若一个数列{a n}满足a n+a n-1=h,其中h为常数,n≥2且n∈N+,则称数列{a n}为等和数列,h为公和.已知等和数列{a n}中,a1=1,h=-3,则a2 016=.解析:易知a n=∴a2 016=-4.答案:-412.已知a,b,c成等差数列,且它们的和为33,又lg(a-1),lg(b-5),lg(c-6)也构成等差数列,求a,b,c 的值.解由已知,得∴解得a=4,b=11,c=18或a=13,b=11,c=9.13.导学号33194005已知无穷等差数列{a n},首项a1=3,公差d=-5,依次取出项的序号被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第110项是{a n}的第几项?解(1)∵a1=3,d=-5,∴a n=3+(n-1)(-5)=8-5n.∵数列{a n}中项的序号被4除余3的项依次是第3项,第7项,第11项,…,∴{b n}的首项b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5(4n-1)=13-20n(n∈N+).∴{b n}的通项公式为b n=13-20n(n∈N+).(3)b110=13-20³110=-2 187,设它是{a n}中的第m项,则8-5m=-2 187,则m=439.14.导学号33194006已知数列{a n}满足a1=,且当n>1,n∈N+时,有,设b n=,n∈N+.(1)求证:数列{b n}为等差数列.(2)试问a1a2是否是数列{a n}中的项?如果是,是第几项?如果不是,请说明理由.(1)证明当n>1,n∈N+时,-2=2+=4⇔b n-b n-1=4,且b1==5.∴{b n}是等差数列,且公差为4,首项为5.(2)解由(1)知b n=b1+(n-1)d=5+4(n-1)=4n+1.∴a n=,n∈N+.∴a1=,a2=,∴a1a2=.令a n=,∴n=11,即a1a2=a11.∴a1a2是数列{a n}中的项,是第11项.第2课时等差数列的性质及应用课后篇巩固探究A组1.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是( )A.15B.30C.31D.64解析:∵{a n}是等差数列,∴a7+a9=a4+a12,∴a12=16-1=15.答案:A2.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于( )A.-1B.1C.3D.7解析:∵a1+a3+a5=105,∴3a3=105,解得a3=35,同理由a2+a4+a6=99,得a4=33.∵d=a4-a3=33-35=-2,∴a20=a4+(20-4)d=33+16³(-2)=1.答案:B3.若{a n}是等差数列,则下列数列中仍为等差数列的有( )①{a n+3} ②{} ③{a n+1-a n} ④{2a n} ⑤{2a n+n}A.1个B.2个C.3个D.4个解析:根据等差数列的定义判断,若{a n}是等差数列,则{a n+3},{a n+1-a n},{2a n},{2a n+n}均为等差数列,而{}不一定是等差数列.答案:D4.已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有( )A.a1+a101>0B.a2+a100<0C.a3+a100≤0D.a51=0解析:由题设a1+a2+a3+…+a101=101a51=0,得a51=0.答案:D5.若等差数列的前三项依次是x-1,x+1,2x+3,则其通项公式为( )A.a n=2n-5B.a n=2n-3C.a n=2n-1D.a n=2n+1解析:∵x-1,x+1,2x+3是等差数列的前三项,∴2(x+1)=x-1+2x+3,解得x=0.∴a1=x-1=-1,a2=1,a3=3,∴d=2.∴a n=-1+2(n-1)=2n-3,故选B.答案:B6.在等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=.解析:由等差数列的性质,得(a1+a4+a7)+(a3+a6+a9)=2(a2+a5+a8),即39+(a3+a6+a9)=2³33,故a3+a6+a9=66-39=27.答案:277.若lg 2,lg(2x-1),lg(2x+3)成等差数列,则x的值是.解析:由题意,知2lg(2x-1)=lg 2+lg(2x+3),则(2x-1)2=2(2x+3),即(2x)2-4²2x-5=0,∴(2x-5)(2x+1)=0,∴2x=5,∴x=log25.答案:log258.已知一个等差数列由三个数构成,这三个数之和为9,平方和为35,则这三个数构成的等差数列为.答案:1,3,5或5,3,19.在等差数列{a n}中,a1+a4+a7=15,a2a4a6=45,求数列{a n}的通项公式.解∵a1+a7=2a4=a2+a6,∴a1+a4+a7=3a4=15,∴a4=5,∴a2+a6=10,a2a6=9.∴a2,a6是方程x2-10x+9=0的两根.∴若a2=1,a6=9,则d==2,∴a n=2n-3.若a2=9,a6=1,则d==-2,∴a n=13-2n.∴数列{a n}的通项公式为a n=2n-3或a n=13-2n.10.已知f(x)=x2-2x-3,等差数列{a n}中,a1=f(x-1),a2=-,a3=f(x),求:(1)x的值;(2)通项a n.解(1)由f(x)=x2-2x-3,得a1=f(x-1)=(x-1)2-2(x-1)-3=x2-4x,a3=x2-2x-3,又因为{a n}为等差数列,所以2a2=a1+a3,即-3=x2-4x+x2-2x-3,解得x=0或x=3.(2)当x=0时,a1=0,d=a2-a1=-,此时a n=a1+(n-1)d=-(n-1);当x=3时,a1=-3,d=a2-a1=,此时a n=a1+(n-1)d=(n-3).B组1.在数列{a n}中,若a2=2,a6=0,且数列是等差数列,则a4等于( )A. B. C. D.解析:令b n=,则b2=,b6==1.由题意知{b n}是等差数列,∴b6-b2=(6-2)d=4d=,∴d=.∴b4=b2+2d=+2³.∵b4=,∴a4=.答案:A2.已知数列{a n}为等差数列,且a1+a7+a13=4π,则tan(a2+a12)的值为( )A. B.± C.- D.-解析:∵{a n}为等差数列,∴a1+a7+a13=3a7=4π.∴a7=,tan(a2+a12)=tan 2a7=tan=-.答案:D3.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A.1升B.升C.升D.升解析:设所构成的等差数列{a n}的首项为a1,公差为d,由题意得解得所以a5=a1+4d=.答案:B4.导学号33194007在等差数列{a n}中,如果a2+a5+a8=9,那么关于x的方程x2+(a4+a6)x+10=0( )A.无实根B.有两个相等实根C.有两个不等实根D.不能确定有无实根解析:∵a4+a6=a2+a8=2a5,即3a5=9,∴a5=3.又a4+a6=2a5=6,∴关于x的方程为x2+6x+10=0,则判别式Δ=62-4³10<0,∴无实数解.答案:A5.已知log a b,-1,log b a成等差数列,且a,b为关于x的方程x2-cx+d=0的两根,则d=.解析:由已知,得log a b+log b a=-2,即=-2,从而有(lg a+lg b)2=0,可得lg a=-lg b=lg,即ab=1.故由根与系数的关系得d=ab=1.答案:16.导学号33194008已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=.解析:由题意设这4个根为+d,+2d,+3d.可得=2,∴d=.∴这4个根依次为.∴n=,m=或n=,m=.∴|m-n|=.答案:7.两个等差数列5,8,11,…和3,7,11,…都有100项,那么它们共有多少相同的项?解在数列{a n}中,a1=5,公差d1=8-5=3.∴a n=a1+(n-1)d1=3n+2.在数列{b n}中,b1=3,公差d2=7-3=4,∴b n=b1+(n-1)d2=4n-1.令a n=b m,则3n+2=4m-1,∴n=-1.∵m,n∈N+,∴m=3k(k∈N+),又解得0<m≤75.∴0<3k≤75,∴0<k≤25,∴k=1,2,3, (25)∴两个数列共有25个公共项.8.导学号33194009已知数列{a n}中,a1=,a n a n-1+1=2a n-1(n≥2,n∈N+).数列{b n}中,b n=(n∈N+).(1)求证:{b n}是等差数列;(2)求数列{a n}的通项公式,并求其最大、最小项.(1)证明由a n a n-1+1=2a n-1,得a n a n-1-a n-1=a n-1-1,∴=b n,又b n-1=,∴b n-b n-1==1(n≥2,n∈N+).∵b1==-,∴数列{b n}是以-为首项,1为公差的等差数列.(2)解由(1)知b n=n-3.5,又由b n=得a n=1+=1+.点(n,a n)在函数y=+1的图像上.显然,在区间(3.5,+∞)上,y=+1递减且y>1;在区间(0,3.5)上,y=+1递减且y<1. 因此,当n=4时,a n取得最大值3;当n=3时,a n取得最小值-1.第1课时等差数列的前n项和课后篇巩固探究A组1.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于( )A.13B.35C.49D.63解析:S7==49.答案:C2.设S n是等差数列{a n}的前n项和,S5=10,则a3的值为( )A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=³10=2.答案:C3.已知数列{a n}的通项公式为a n=2n-37,则S n取最小值时n的值为( )A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{a n}的前n项和为S n(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是( )A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{a n},{b n}的前n项和分别为A n与B n,且满足(n∈N+),则的值是( )A. B. C. D.解析:因为,所以.答案:C6.已知{a n}是等差数列,S n为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{a n}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=-2,a1=20,∴S10=10a1+d=200-90=110.答案:1107.在等差数列{a n}中,前n项和为S n,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是³3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶-S奇=30-15=15,于是d=3.答案:39.若等差数列{a n}的公差d<0,且a2²a4=12,a2+a4=8.(1)求数列{a n}的首项a1和公差d;(2)求数列{a n}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=-2.(2)S10=10³a1+d=-10.10.导学号33194010已知数列{a n}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为S n,求S n的最大值;(3)当S n是正数时,求n的最大值.解(1)∵数列{a n}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得-<d<-,又d∈Z,∴d=-4.(2)∵d<0,∴{a n}是递减数列.又a6>0,a7<0,∴当n=6时,S n取得最大值,即S6=6³23+³(-4)=78.(3)S n=23n+³(-4)>0,整理得n(25-2n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{a n}为等差数列,公差d=-2,S n为其前n项和,若S10=S11,则a1=( )A.18B.20C.22D.24解析:因为S11-S10=a11=0,a11=a1+10d=a1+10³(-2)=0,所以a1=20.答案:B2.(2017全国1高考)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①³3-②,得(21-15)d=24,即6d=24,所以d=4.答案:C3.等差数列{a n}的前n项和记为S n,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是( )A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{a n}的通项公式是a n=1-2n,其前n项和为S n,则数列的前11项和为( ) A.-45 B.-50 C.-55 D.-66解析:∵S n=,∴=-n,∴的前11项和为-(1+2+3+…+11)=-66.故选D.答案:D5.已知等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k=.解析:设等差数列{a n}的公差为d,则a n=1+(n-1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=-.又a4=1+3³,a k=1+(k-1)d,由a k+a4=0,得+1+(k-1)d=0,将d=-代入,可得k=10.答案:106.已知数列{a n}为等差数列,其前n项和为S n,且1+<0.若S n存在最大值,则满足S n>0的n的最大值为.解析:因为S n有最大值,所以数列{a n}单调递减,又<-1,所以a10>0,a11<0,且a10+a11<0.所以S19=19³=19a10>0,S20=20³=10(a10+a11)<0,故满足S n>0的n的最大值为19.答案:197.导学号33194012在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.解数列{a n}的公差d==3,∴a n=a1+(n-1)d=-60+(n-1)³3=3n-63.由a n<0得3n-63<0,解得n<21.∴数列{a n}的前20项是负数,第20项以后的项都为非负数.设S n,S n'分别表示数列{a n}和{|a n|}的前n项和,当n≤20时,S n'=-S n=-=-n2+n;当n>20时,S n'=-S20+(S n-S20)=S n-2S20=-60n+³3-2³n2-n+1260.∴数列{|a n|}的前n项和S n'=8.导学号33194013设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为b n=,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{a n}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以a n=1+(n-1)³2=2n-1,S n=n³1+³2=n2.(2)由(1)知b n=,所以b1=,b2=,b m=.若b1,b2,b m(m≥3,m∈N)成等差数列,则2b2=b1+b m,所以,即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)(1+t)(3+t),整理得(m-3)t2-(m+1)t=0,因为t是正整数,所以(m-3)t-(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列.第2课时a n与S n的关系及裂项求和法课后篇巩固探究A组1.已知数列{a n}的前n项和S n=,则a5的值等于( )A. B.- C. D.-解析:a5=S5-S4==-.答案:B2.已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为( )A. B. C. D.解析:∵S5==15,∴a1=1,∴d==1,∴a n=1+(n-1)³1=n,∴.设的前n项和为T n,则T100=+…+=1-+…+=1-.答案:A3.设{a n}(n∈N+)是等差数列,S n是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )A.d<0B.a7=0C.S9>S5D.S6和S7均为S n的最大值解析:由S5<S6得a1+a2+…+a5<a1+a2+…+a5+a6,∴a6>0.又S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,故B正确;同理由S7>S8,得a8<0,又d=a7-a6<0,故A正确;由C选项中S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0.而由a7=0,a8<0,知2(a7+a8)>0不可能成立,故C错误;∵S5<S6,S6=S7>S8,∴S6与S7均为S n的最大值,故D正确.故选C.答案:C4.数列的前n项和S n为( )A.B.C.D.解析:,于是S n=.答案:C5.设函数f(x)满足f(n+1)=(n∈N+),且f(1)=2,则f(20)为( )A.95B.97C.105D.192解析:∵f(n+1)=f(n)+,∴f(n+1)-f(n)=.∴f(2)-f(1)=,f(3)-f(2)=,……f(20)-f(19)=,∴f(20)-f(1)==95.又f(1)=2,∴f(20)=97.答案:B6.已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<8,则k=.解析:a n=S n-S n-1=(n2-9n)-[(n-1)2-9(n-1)]=2n-10(n≥2),又a1=S1=-8符合上式,所以a n=2n-10.令5<2k-10<8,解得<k<9.又k∈N+,所以k=8.答案:87.设数列{a n}的前n项和为S n,S n=,且a4=54,则a1=.解析:因为a4=S4-S3==27a1,所以27a1=54,解得a1=2.答案:28.数列1,,…,,…的前n项和S n=.解析:因为==2,所以S n=1++…+=2=2.答案:9.正项数列{a n}满足-(2n-1)a n-2n=0.(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n.解(1)由-(2n-1)a n-2n=0,得(a n-2n)(a n+1)=0,即a n=2n或a n=-1,由于{a n}是正项数列,故a n=2n.(2)由(1)知a n=2n,所以b n=,故T n=.10.导学号33194014已知等差数列{a n}的前n项和为S n,n∈N+,且a3+a6=4,S5=-5.(1)求a n;(2)若T n=|a1|+|a2|+|a3|+…+|a n|,求T5的值和T n的表达式.解(1)设{a n}的首项为a1,公差为d,易由a3+a6=4,S5=-5得出a1=-5,d=2.∴a n=2n-7.(2)当n≥4时,a n=2n-7>0;当n≤3时,a n=2n-7<0,∴T5=-(a1+a2+a3)+a4+a5=13.当1≤n≤3时,T n=-(a1+a2+…+a n)=-n2+6n;当n≥4时,T n=-(a1+a2+a3)+a4+a5+…+a n=n2-6n+18.综上所述,T n=B组1.若等差数列{a n}的通项公式为a n=2n+1,则由b n=所确定的数列{b n}的前n项之和是( )A.n(n+2)B.n(n+4)C.n(n+5)D.n(n+6)解析:由题意知a1+a2+…+a n==n(n+2),∴b n==n+2.于是数列{b n}的前n项和S n=n(n+5).答案:C2.已知一个等差数列共n项,且其前四项之和为21,末四项之和为67,前n项和为286,则项数n为( )A.24B.26C.25D.28解析:设该等差数列为{a n},由题意,得a1+a2+a3+a4=21,a n+a n-1+a n-2+a n-3=67,又a1+a n=a2+a n-1=a3+a n-2=a4+a n-3,∴4(a1+a n)=21+67=88,∴a1+a n=22.∴S n==11n=286,∴n=26.答案:B3.已知数列{a n}满足a1=1,a n=a n-1+2n(n≥2),则a7= ( )A.53B.54C.55D.109解析:∵a n=a n-1+2n,∴a n-a n-1=2n.∴a2-a1=4,a3-a2=6,a4-a3=8,…,a n-a n-1=2n(n≥2).∴a n=1+4+6+…+2n=1+=n2+n-1.∴a7=72+7-1=55.答案:C4.已知数列{a n}为,…,+…+,…,如果b n=,那么数列{b n}的前n项和S n为( )A. B. C. D.解析:∵a n=,∴b n==4,∴S n=4=4.答案:B5.已知数列{a n}的前n项和为S n=n2+n+1,则a n=.解析:当n=1时,a1=S1=3;当n≥2时,a n=S n-S n-1=n2+n+1-[(n-1)2+(n-1)+1]=2n.此时,当n=1时,2n=2≠3.所以a n=答案:6.导学号33194015设S n是等差数列{a n}的前n项和,已知S6=36,S n=324,若S n-6=144(n>6),则数列的项数n为.解析:由题意可知由①+②,得(a1+a n)+(a2+a n-1)+…+(a6+a n-5)=216,∴6(a1+a n)=216,∴a1+a n=36.∴S n==18n=324,∴n=18.答案:187.设数列{a n}的前n项和为S n,a1=1,a n=+2(n-1)(n∈N+).(1)求证:数列{a n}为等差数列,并求a n与S n;(2)是否存在自然数n,使得S1++…+-(n-1)2=2 019?若存在,求出n的值;若不存在,请说明理由.(1)证明由a n=+2(n-1),得S n=na n-2n(n-1)(n∈N+).当n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即a n-a n-1=4,故数列{a n}是以1为首项,4为公差的等差数列.于是,a n=4n-3,S n==2n2-n.(2)解存在自然数n使得S1++…+-(n-1)2=2 019成立.理由如下:由(1),得=2n-1(n∈N+),所以S1++…+-(n-1)2=1+3+5+7+…+(2n-1)-(n-1)2=n2-(n-1)2=2n-1.令2n-1=2 019,得n=1 010,所以存在满足条件的自然数n为1 010.8.导学号33194016数列{a n}的前n项和S n=100n-n2(n∈N+).(1)求证{a n}是等差数列;(2)设b n=|a n|,求数列{b n}的前n项和.(1)证明a n=S n-S n-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n(n≥2).∵a1=S1=100³1-12=99=101-2³1,∴数列{a n}的通项公式为a n=101-2n(n∈N+).又a n+1-a n=-2为常数,∴数列{a n}是首项a1=99,公差d=-2的等差数列. (2)解令a n=101-2n≥0,得n≤50.5.∵n∈N+,∴n≤50(n∈N+).①当1≤n≤50时a n>0,此时b n=|a n|=a n,∴{b n}的前n项和S n'=100n-n2;②当n≥51时a n<0,此时b n=|a n|=-a n,由b51+b52+…+b n=-(a51+a52+…+a n)=-(S n-S50)=S50-S n,得数列{b n}的前n项和为S n'=S50+(S50-S n)=2S50-S n=2³2 500-(100n-n2)=5 000-100n+n2.由①②得数列{b n}的前n项和为S n'=第1课时等比数列的定义和通项公式课后篇巩固探究1.若{a n}是等比数列,则下列数列不是等比数列的是( )A.{a n+1}B.C.{4a n}D.{}答案:A2.在等比数列{a n}中,2a4=a6-a5,则公比是( )A.0B.1或2C.-1或2D.-1或-2解析:设公比为q(q≠0),由已知得2a1q3=a1q5-a1q4,∴2=q2-q,∴q2-q-2=0,∴q=-1或q=2.答案:C3.若一个等比数列的首项为,末项为,公比为,则这个数列的项数为( )A.3B.4C.5D.6解析:在等比数列中,∵,∴n-3=1,即n=4,故选B.答案:B4.若数列{a n}满足a n+1=4a n+6(n∈N+)且a1>0,则下列数列是等比数列的是( )A.{a n+6}B.{a n+1}C.{a n+3}D.{a n+2}解析:由a n+1=4a n+6可得a n+1+2=4a n+8=4(a n+2),因为a1>0,所以a n>0,从而a n+2>0(n∈N+),因此=4,故{a n+2}是等比数列.答案:D5.在等比数列{a n}中,若a5²a6²a7=3,a6²a7²a8=24,则a7²a8²a9的值等于( )A.48B.72C.144D.192解析:设公比为q,由a6²a7²a8=a5²a6²a7²q3,得q3==8.所以a7²a8²a9=a6²a7²a8²q3=24³8=192.6.数列{a n}是公差不为0的等差数列,且a1,a3,a7为等比数列{b n}的连续三项,则数列{b n}的公比为( )A. B.4 C.2 D.解析:∵a1,a3,a7为等比数列{b n}中的连续三项,∴=a1²a7.设{a n}的公差为d,则d≠0,∴(a1+2d)2=a1(a1+6d),∴a1=2d.∴公比q==2,故选C.答案:C7.(2017全国3高考)设等比数列{a n}满足a1+a2=-1,a1-a3=-3,则a4=.解析:设{a n}的公比为q,则由题意,得解得故a4=a1q3=-8.答案:-88.设数列{a n}是等比数列,公比q=2,则的值是.解析:∵q=2,∴2a1=a2,2a3=a4,∴.答案:9.已知数列{a n}满足a9=1,a n+1=2a n(n∈N+),则a5=.解析:由a n+1=2a n(n∈N+)知,数列{a n}是公比q==2的等比数列.所以a5=a1q4=.答案:10.若数列{a n}为等差数列,且a2=3,a5=9,则数列一定是数列(填“等差”或“等解析:设{a n}的公差为d,则解得于是a n=2n-1,从而=2²,设b n=2²,则,故一定是等比数列.答案:等比11.导学号33194017在等比数列{a n}中,a1²a9=256,a4+a6=40,则公比q=. 解析:∵a1a9=q8,a4a6=a1q3²a1q5=q8,∴a1a9=a4a6.可得方程组解得∴q2=或q2==4.∴q=±或q=±2.答案:-2,2,-12.在等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式.解(1)设{a n}的公比为q(q≠0),由已知得16=2²q3,解得q=2,∴a n=a1²q n-1=2³2n-1=2n.(2)由(1)得a3=8,a5=32,则b3=8,b5=32,设{b n}的公差为d,则有解得∴b n=-16+12(n-1)=12n-28.13.导学号33194018已知关于x的二次方程a n x2-a n+1x+1=0(n∈N+)的两根α,β满足6α-2αβ+6β=3,且a1=1.(1)试用a n表示a n+1;(2)求证:数列为等比数列;(3)求数列{a n}的通项公式.(1)解因为α,β是方程a n x2-a n+1x+1=0(n∈N+)的两根,所以又因为6α-2αβ+6β=3,所以6a n+1-3a n-2=0.所以a n+1=a n+.(2)证明因为a n+1=a n+⇒a n+1-a n-为常数,且a1-,所以为等比数列.(3)解令b n=a n-,则{b n}为等比数列,公比为,首项b1=a1-,所以b n=.所以a n=b n+.所以数列{a n}的通项公式为a n=.14.导学号33194019容积为a L(a>1)的容器盛满酒精后倒出1 L,然后加满水,再倒出1 L混合溶液后又用水加满,如此继续下去,问第n次操作后溶液的浓度是多少?当a=2时,至少应倒出几次后才可能使酒精浓度低于10%?解开始的浓度为1,操作一次后溶液的浓度是a1=1-.设操作n次后溶液的浓度是a n,则操作n+1次后溶液的浓度是a n+1=a n.所以{a n}构成以a1=1-为首项,q=1-为公比的等比数列.所以a n=,即第n次操作后溶液的浓度是.当a=2时,由a n=,得n≥4.因此,至少应倒4次后才可以使酒精浓度低于10%.第2课时等比数列的性质及应用课后篇巩固探究A组1.在等比数列{a n}中,a5=3,则a2²a8=( )A.3B.6C.8D.9解析:a2²a8==32=9.答案:D2.若1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值等于( )A.-B.C.±D.解析:∵=1³4=4,∴b2=2或b2=-2(舍去).又a2-a1==1,∴=-.答案:A3.若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a等于( )A.4B.2C.-2D.-4解析:由解得a=-4或a=2.又当a=2时,b=2,c=2,与题意不符,故a=-4.答案:D4.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m=( )A.9B.10C.11D.12解析:因为{a n}是等比数列,所以a1a5=a2a4=,于是a1a2a3a4a5=.从而a m==(q2)5=q10=1³q11-1,故m=11.答案:C5.在正项等比数列{a n}中,=81,则等于( )A. B.3 C.6 D.9解析:∵=81,∴=81,∴=81.∵数列各项都是正数,∴=9.答案:D6.在等差数列{a n}中,公差d≠0,且a1,a3,a9成等比数列,则=.解析:由题意知a3是a1和a9的等比中项,∴=a1a9,∴(a1+2d)2=a1(a1+8d),得a1=d,∴.答案:7.在1和100之间插入n个正数,使这(n+2)个数成等比数列,则插入的这n个正数的积为.解析:设插入的n个正数为a1,a2,…,a n.设M=1²a1²a2²…²a n²100,则M=100²a n²a n-1²…²a1²1,∴M2=(1³100)n+2=100n+2,∴M=10=10n+2,∴a1²a2²…²a n=10n.答案:10n8.导学号33194020在表格中,每格填上一个数字后,使每一横行成等差数列,每一纵行成等比数列,所有公比相等,则a+b+c的值为.解析:设公比为q,由题意知q=,q2=.第四行最后一个数为.因为每一行成等差数列,所以2³2=1+,即bc=6.因为,所以所以所以q=.又=q3=,所以a=8,a+b+c=.答案:9.三个互不相等的实数成等差数列,如果适当排列这三个数,又可成为等比数列,且这三个数的和为6,求这三个数.解由题意,这三个数成等差数列,可设这三个数分别为a-d,a,a+d(d≠0),∴a-d+a+a+d=6,∴a=2, ∴这三个数分别为2-d,2,2+d.若2-d为等比中项,则有(2-d)2=2(2+d).解得d=6或d=0(舍去),此时三个数分别为-4,2,8;若2+d是等比中项,则有(2+d)2=2(2-d),解得d=-6或d=0(舍去),此时三个数分别为8,2,-4.10.已知等比数列{b n}与数列{a n}满足b n=(n∈N+).(1)判断{a n}是何种数列;(2)若a8+a13=m,求b1²b2²…²b20.解(1)设数列{b n}的公比为q,则q>0.∵b n=,∴b1=,∴b n=²q n-1,∴²q n-1=. ①将两边取以3为底的对数得a n=log3(²q n-1)=a1+(n-1)log3q=log3b1+(n-1)log3q.∴数列{a n}是以log3b1为首项,log3q为公差的等差数列.(2)∵a1+a20=a8+a13=m,∴a1+a2+…+a20==10m,∴b 1²b2²…²b20=²…²==310m.B组1.已知0<a<b<c,且a,b,c成等比数列,n为大于1的整数,则log a n,log b n,log c n( )A.成等差数列B.成等比数列C.各项倒数成等差数列D.以上都不对解析:∵a,b,c成等比数列,∴b2=ac,又=log n a+log n c=log n ac=log n b2=2log n b=,∴log a n,log b n,log c n的各项倒数成等差数列.故选C.答案:C2.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A.13B.12C.11D.10解析:设该等比数列为{a n},其前n项积为T n,则由已知得a1²a2²a3=3,a n-2²a n-1²a n=9,(a1²a n)3=3³9=33,∴a1²a n=3,又T n=a1²a2²…²a n-1²a n,T n=a n²a n-1²…²a2²a1,∴=(a1²a n)n,即7292=3n,∴n=12.答案:B3.在等比数列{a n}中,|a1|=1,a5=-8a2,且a5>a2,则a n等于( )A.(-2)n-1B.-(-2)n-1C.±(-2)n-1D.-(-2)n解析:∵|a1|=1,∴a1=1或a1=-1.∵a5=-8a2=a2²q3,∴q3=-8,∴q=-2.又a5>a2,即a2q3>a2,∴a2<0.而a2=a1q=a1²(-2)<0,∴a1=1.故a n=a1²(-2)n-1=(-2)n-1.答案:A4.已知等比数列{a n}满足a n>0,n=1,2,…,且a5²a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=( )。
高中数学必修五导学案

高中数学必修五导学案第一节:概率1.1 概率的基本概念概率是描述事件发生可能性大小的数学工具。
在实际问题中,通过概率可以预测事件发生的可能性,帮助我们做出合理的决策。
1.2 概率的计算方法概率的计算方法主要包括古典概率和几何概率两种。
古典概率适用于等可能事件的情况,计算公式为P(A) = n(A) / n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间中事件总数。
几何概率适用于连续事件的情况,计算公式为P(A) = S(A) / S(S),其中S(A)表示事件A 所占的面积,S(S)表示整个样本空间的面积。
1.3 概率的性质概率的性质包括互斥事件概率的加法性、对立事件概率的互补性、独立事件的乘法性等。
掌握这些性质可以帮助我们更好地理解概率的运算规律。
第二节:三角函数2.1 三角函数的定义正弦函数、余弦函数、正切函数等是常见的三角函数。
它们可以描述角度和边长之间的关系,是解决三角形相关问题的重要工具。
2.2 三角函数的性质三角函数具有周期性、奇偶性、单调性等性质。
这些性质在解决三角函数的图像、方程和不等式等问题时起着重要作用。
2.3 三角函数的应用三角函数在实际问题中有着广泛的应用,如在航空航天、地理测量、物理运动等领域中都可以看到三角函数的身影。
掌握三角函数的基本知识和运用方法对我们理解和解决实际问题具有重要意义。
第三节:导数3.1 导数的概念导数是描述函数变化率的重要工具,可以揭示函数在某一点的切线斜率和函数的增减性。
通过求导数,我们可以得到函数的极值点、凹凸性等重要信息。
3.2 导数的计算方法导数的计算方法包括使用基本导数公式、利用导数的性质、使用导数的定义等。
熟练掌握这些计算方法可以帮助我们快速、准确地求出函数的导数。
3.3 导数的应用导数在实际问题中有着广泛的应用,如在物理学、经济学、生物学等领域中都可以看到导数的应用。
通过导数,我们可以解决函数的最值、曲线的切线问题等,为实际问题的求解提供了有力的支持。
新人教版高中数学必修五导学案(全册)

新人教版高中数学必修五导学案(全册)目录1.1.1正弦定理 (2)1.1.2余弦定理 (4)1.1 正弦定理和余弦定理习题课 (6)1.2 应用举例 (8)2.1数列的概念与简单表示法 (11)2.2等差数列 (14)2.3等差数列的前n项和 (17)2.4等比数列 (20)2.4等比数列的性质 (22)2.5等比数列的前n项和(1) (24)2.5等比数列的前n项和(2) (26)3.1不等关系与不等式 (28)3.2一元二次不等式及其解法 (30)3.3.1二元一次不等式组与平面区域 (33)3.3.2简单的线性规划问题(1) (36)3.3.2简单的线性规划问题(2) (38)3.4基本不等式:2ba ab +≤(学案1) (40)3.4基本不等式:2ba ab +≤(学案2) (42)1.1.1正弦定理课前预习学案一、 预习目标了解正弦定理的内容及解三角形的概念 二、预习内容 1、推导正弦定理正弦定理: 变形: 正弦定理可用于两类:(1)已知三角形的任意两个角与一边,求其他两边与另一角;(2)已知三角形的任意两边与其中一边的对角,计算其他的角与边.2、了解“解三角形”的概念 三、提出困惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案课标要求: 掌握正弦定理,并能解决一些简单的三角度量问题和实际问题。
一、学习目标:掌握三角形中边长和角度之间的数量关系在已有知识基础上,通过对任意三角形边角关系的探究,掌握正弦定理. 通过对本节的学习,能够运用正弦定理等知识,解决一些与测量和几何计算有关的实际问题.重点:正弦定理的证明和解三角形. 难点:正弦定理的证明. 二、学习过程例1:在ABC ∆中,已知3=b , 60=B ,1=c ,求C A a 及,例2:在ABC ∆中,已知10,30,45===c C A,b a B 及,求三、当堂检测(1)在ABC ∆中,已知45,32,22===A b a ,则=B (2) 在ABC ∆中,已知45,32,62===A b a ,则=B (3)在ABC ∆中,已知120,32,22===A b a ,则=B(4)在ABC ∆中,若abB A =cos cos ,则ABC ∆是 三角形小结:课后练习与提高案 1.已知△ABC 中,sinA:sinB:sinC =1∶3∶2,则A ∶B ∶C 等于 ( ) A .1∶2∶3 B .2∶3∶1 C .1∶3∶2D .3∶1∶22.在△ABC 中,若B A sin sin >,则A 与B 的大小关系为( )A. B A >B. B A <C. A ≥BD. A 、B 的大小关系不能确定 3. 在ABC 中,若2cosBsinA=sinC,则ABC 一定是( )A. 等腰三角形B. 等边三角形C. 直角三角形D.等腰直角三角形 4.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60°D .60°或120°1.1.2余弦定理课前预习学案一、预习目标了解余弦定理的内容二、预习内容探究:如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判定方法,此三角形是大小、形状完全确定的三角形.仍然从量化的角度来研究这个问题,已知两个边和它们的夹角,如何计算出三角形的另外一边和另外两个角的问题?已知△ABC中的边b,c,∠A,则边a如何用它们表示出来呢?通过什么方法呢?余弦定理:变形:余弦定理的用途:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其它两角;(3)判断三角形的形状.三、提出困惑课内探究学案课标要求:掌握余弦定理,并能解决一些简单的三角度量问题和实际问题。
高中数学必修5导学案(全套)

必修五 第一章 §5-1正 余弦定理【课前预习】阅读教材P-完成下面填空1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有 = = = = 2R2、正弦定理的变形公式:2sin a R =A ,2sin b R =B ,2sin c R C =;sin A = ,sin B = ,sin C = ;::a b c = ;sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3、三角形面积公式:C S ∆AB = = =4、余弦定理:在C ∆AB 中,有2a = ,2b = , 2c = .5、余弦定理的推论:cos A = ,cos B = ,cos C = .6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:若222a b c +=,则90C =;若222a b c +>,则90C <; 若222a b c +<,则90C >.【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1、在△ABC 中,a=7,c=5,则sinA :sinC 的值是( ) A 、75 B 、57 C 、127 D 、125 2、在△ABC 中,已知a=8,B=600,C=750,则b=( )A 、24B 、34C 、64D 、3323、在△ABC 中,已知b=1,c=3,A=600,则 S △ABC = 。
4、在△ABC 中,已知a=6, b=8,C=600,则c= 。
强调(笔记):【课中35分钟】边听边练边落实5.在△ABC 中,若=++=A c bc b a 则,222_________。
6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090 B .0120 C .0135 D .01507.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
2017-2018学年高中数学人教B版必修5 同步导学案 第1章

1.1.1正弦定理学案
一、预习问题:
1、在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。
那么斜三角形怎么办?确定一个直角三角形或斜三角形需要几个条件?
2、正弦定理:在一个三角形中,各边和它所对角的 的比相等,即 。
3、一般地,把三角形的三个角C B A ,,和它们所对的边c b a ,,叫做三角形的 ,已知三角形的几个元素求其它元素的过程叫做 。
4、用正弦定理可解决下列那种问题
① 已知三角形三边;②已知三角形两边与其中一边的对角;③已知三角形两边与第三边的对
角;④已知三角形三个内角;⑤已知三角形两角与任一边;⑥已知三角形一个内角与它所对边之外的两边。
5、上题中运用正弦定理可求解的问题的解题思路是怎样的?
二、实战操作:
例1、已知:在ABC ∆中, 45=∠A , 30=∠C ,10=c ,解此三角形。
例2、已知:在ABC ∆中, 45=∠A ,6=AB ,2=BC ,解此三角形。
高中必修五导学案 第二章 数列(含答案)

第二章 数列§2.1数列的概念与简单表示法【学习目标】1. 理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式;2. 了解数列的递推公式,明确递推公式与通项公式的异同;会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法.【学习过程】1、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?2、新课导学探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 来表示,那么 就叫做这个数列的通项公式. 反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?5.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.6.通项公式法:试试:上图中每层的钢管数n a 与层数n 之间关系的一个通项公式是 .7.图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y 轴的 侧,而点的个数取决于数列的 .从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.8. 递推公式法:递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.试试:上图中相邻两层的钢管数n a 与1n a +之间关系的一个递推公式是 .9. 列表法:试试:上图中每层的钢管数n a 与层数n 之间关系的用列表法如何表示?反思:所有数列都能有四种表示方法吗?【学习评价】1.数列{}n a ,()n a f n =是一个函数,则它的定义域为( ) A. 非负整数集 B. 正整数集C. 正整数集或其子集D. 正整数集或{}1,2,3,4,,n2.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第( )项. A. 9 B. 10 C. 11 D. 12 3.数列,10,6,3,1……的一个通项公式是( ).A.12+-n n B.2)1(+n n C.2)1(-n n D.321-+n 4.以下通项公式中,不是数列3,5,9,……的通项公式的是( ) A 21n n a =+ B 23n a n n =-+C 21n a n =+D 1.5(2)(3)5(1)(3) 4.5(1)(2)n a n n n n n n =-----+-- 5.已知数列{}n a 满足12a =,111nn na a a ++=-(*n ∈N ),则3a 的值为( ) A. 12-B. 12C. 13-D. 136.在数列{}n a 中,12n n n a a a ++=+,122,5a a ==,则6a 的值是 ( ) A.3- B.11- C.5- D.19 7.正方形按照下图中的规律排列,每个图形中的小正方形的个数构成数列}{n a 有以下结论,①155=a ;②620a =;③数列}{n a 的递堆公式),(11*+∈++=N n n a a n n 其中正确的是( )A .①②B .①③C .②③D .①②③8.记数列{}n a 的前n 项和为n S ,且)1(2-=n n a S ,则=2a AA .4B .2C .1D .2-9.{}n a 满足1111,1,2n n a a a -==-则9a 的值为 ( ) A.12B.1- C .2 D.2- 10.试探究下列一组数列的基本规律:0,2,6,14,30,…,根据规律写出第6个符合规律的数,这个数是( )A.60B.62C.64D.94【总结与提升】※ 学习小结1. 对于比较简单的数列,会根据其前几项写出它的一个通项公式;2. 会用通项公式写出数列的任意一项.3. 数列的递推公式. ※ 知识拓展数列可以看作是定义域为正整数集的特殊函数. n 刀最多能将比萨饼切成几块? 意大利一家比萨饼店的员工乔治喜欢将比萨饼切成形状各异的小块,以便出售. 他发现一刀能将饼切成两块,两刀最多能切成4块,而三刀最多能切成7块(如图).请你帮他算算看,四刀最多能将饼切成多少块?n 刀呢?解析:将比萨饼抽象成一个圆,每一刀的切痕看成圆的一条弦. 因为任意两条弦最多只能有一个交点,所以第n 刀最多与前n -1刀的切痕都各有一个不同的交点,因此第n 刀的切痕最多被前n -1刀分成n 段,而每一段则将相应的一块饼分成两块. 也就是说n 刀切下去最多能使饼增加n 块. 记刀数为1时,饼的块数最多为1a ,……,刀数为n 时,饼的块数最多为n a ,所以n a =1n a n -+.由此可求得n a =1+2)1(+n n .、§2.2等差数列【学习目标】1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.【学习过程】1、课前准备(预习教材P36 ~ P39 ,找出疑惑之处)复习1:什么是数列?复习2:数列有几种表示方法?分别是哪几种方法?2、新课导学※学习探究探究任务一:等差数列的概念问题1:请同学们仔细观察,看看以下四个数列有什么共同特征?① 0,5,10,15,20,25,…② 48,53,58,63③ 18,15.5,13,10.5,8,5.5④ 10072,10144,10216,10288,10366新知:1.等差数列:一般地,如果一个数列从第项起,每一项与它一项的等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的,常用字母表示.2.等差中项:由三个数a,A,b组成的等差数列,这时数叫做数和的等差中项,用等式表示为A=探究任务二:等差数列的通项公式问题2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得: 21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+43a a -= ,即:431a a d a =+=+……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a . .【学习评价】1.已知等差数列:5,3,1,1,---.则下列不是该数列的项的是 ( )A.11B.29n -C.45n -D.522.{an}是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( )A .24B .27C .30D .33 3.在正整数100至500之间能被11整除的个数为( )A .34B .35C .36D .374.等差数列{an}中,已知a 1=-6,a n =0,公差d ∈N*,则n (n ≥3)的最大值为( )A .5B .6C .7D .8 5.设{a n }为等差数列,则下列数列中,成等差数列的个数为( )①{a n 2} ②{pa n } ③{pa n +q } ④{na n }(p 、q 为非零常数)A .1B .2C .3D .4 6.已知c b 、、a 成等差数列,则二次函数c bx ax ++=2y 2的图像与x 轴交点的个数是( )A .0B .1C .2D .1或27.由1a =1,131nn n a a a +=+给出的数列{}n a 的第34项为( )A 、10334 B 、100 C 、1001 D 、1041 8.已知数列的通项公式是()()3122n n n a n n ⎧+⎪=⎨-⎪⎩是奇数是偶数,则23a a ⋅等于( )A.70B.28C.20D.89.已知数列{}n a ,25n a n =-+,它的前n 项的和最大时,n 的值为( )A .2B .3C .12D .1310.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列【总结与提高】※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).3. 在等差数列中,若m +n =p +q ,则m n p q a a a a +=+注意:m n m n a a a ++≠,左右两边项数一定要相同才能用上述性质.4. 在等差数列中,公差m na a d m n-=-.※ 知识拓展1. 等差数列通项公式为1(1)n a a n d =+-或()n m a a n m d =+-. 分析等差数列的通项公式,可知其为一次函数,图象上表现为直线1(1)y a x d =+-上的一些间隔均匀的孤立点.2. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++3.判别一个数列是否等差数列的三种方法,即: (1)1n n a a d +-=;(2)(0)n a pn q p =+≠; (3)2n S an bn =+.§2.3 等差数列的前n 项和【学习目标】1. 掌握等差数列前n 项和公式及其获取思路;2. 会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.【学习过程】1、课前准备(预习教材P 42 ~ P 44,找出疑惑之处)复习1:什么是等差数列?等差数列的通项公式是什么?复习2:等差数列有哪些性质?2、新课导学 ※ 学习探究探究:等差数列的前n 项和公式问题:1. 计算1+2+…+100=?2. 如何求1+2+…+n =?新知:数列{}n a 的前n 项的和:一般地,称 为数列{}n a 的前n 项的和,用n S 表示,即n S =小结:1. 用1()2n n n a a S +=,必须具备三个条件: . 2. 用1(1)2n n n dS na -=+,必须已知三个条件: .等差数列前n 项和公式就是一个关于11n a a n a n d 、、或者、、的方程,已知几个量,通过解方程,得出其余的未知量.3.数列通项n a 和前n 项和n S 关系为n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a . 等差数列前项和的最大(小)值的求法.(1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值;当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.【学习评价】1.已知等差数列{a n }中,a 1=1,d=1,则该数列前9项和S 9等于( ) A.55 B.45 C.35 D.252.已知等差数列{an}的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )A .180B .-180C .90D .-903.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为( )A .9B .10C .19D .294. 等差数列{a n }的通项公式是a n =1-2n ,其前n 项和为S n ,则数列{nS n}的前11项和为 ( )A.-45B.-50C.-55D.-66 5.将棱长相等的正方体按下图所示的形状摆放,从上往下依次为第1层,第2层,第3层,……. 则第2008层正方体的个数是( ).A .4011B .4009C .2017036D .2009010 6.已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( )A.18B.27C.36D.457.某乡建设线路,有48根电线杆,最近一根竖直离电线杆堆放处1000m ,以后每隔50m 竖一根,如果一辆车一次能运6根,全部运完返回,这辆车共走了( ).A .18400mB .18450mC .36800mD .36900m 8.等差数列{}n a 的前n 项和n n S n 32+=.则此数列的公差=d .9. 数列{a n },{b n }满足a n b n =1, a n =n 2+3n +2,则{b n }的前10次之和为 10.已知整数对排列如: ()()()()()()()1,1,1,2,2,1,1,32,2,3,1,1,4,()2,3,()()3,2,4,1,()()1,5,2,4,,则第60个整数对是_______________.【总结与提升】※ 学习小结1. 等差数列前n 项和公式的两种形式;2. 两个公式适用条件,并能灵活运用;3. 等差数列中的“知三求二”问题,即:已知等差数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个. ※ 知识拓展1. 若数列{}n a 的前n 项的和2n S An Bn =+(A 0≠,A 、B 是与n 无关的常数),则数列{}n a 是等差数列.2. 已知数列{},n a 是公差为d 的等差数列,S n 是其前n 项和,设232,,,k k k k k k N S S S S S +∈--也成等差数列,公差为2k d .3.等差数列奇数项与偶数项的性质如下: (1)若项数为偶数2n ,则S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=;(2)若项数为奇数2n +1,则1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;S n 偶奇=.…… ……§2.4等比数列【学习目标】1.理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2.能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3.体会等比数列与指数函数的关系.4.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;5. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.【学习过程】1、课前准备(预习教材P 48 ~ P 51,找出疑惑之处) 复习1:等差数列的定义?复习2:等差数列的通项公式n a = , 等差数列的性质有:2、新课导学 ※ 学习探究观察:①1,2,4,8,16,…②1,12,14,18,116,…③1,20,220,320,420,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1n n aa -= (q ≠0)2. 等比数列的通项公式:21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … …∴ 11n n a a q a -==⋅ 等式成立的条件3. 等比数列中任意两项n a 与m a 的关系是:【学习评价】1. 设{}n a 是由正数组成的等比数列,且公比不为1,则18a a +与45a a +的大小关系为( ) A .1845a a a a +>+ B .1845a a a a +<+ C . 1845a a a a +=+ D .与公比的值有关 2.已知{}n a 是等比数列,且0n a >,243546225a a a a a a ++=,那么35a a +=( ) A . 10 B . 15 C . 5 D .6 3.设{}n a 是正数组成的等比数列,公比2q =,且30123302a a a a =,那么36930a a a a =( )A . 102 B . 202 C . 162 D .1524.三个数成等比数列,其和为44,各数平方和为84,则这三个数为( ) A .2,4,8 B .8,4,2 C .2,4,8,或8,4,2 D .142856,,333- 5.等比数列{}n a 的首项为1,公比为q ,前n 项的和为S ,由原数列各项的倒数组成一个新数列1{}n a ,由1{}na 的前n 项的和是( ) A .15 B . 1n q S C .1n S q- D .n q S7.一个直角三角形三边的长成等比数列,则( ) A .三边边长之比为3:4:5,B .三边边长之比为,CD.较大锐角的正弦为12, 8.等比数列1a 2a 3a 的和为定值m(m>0),且其公比为q<0,令123t a a a =,则t 的取值范围是( )A . 3[,0)m -B . 3[,)m -+∞C . 3(0,]mD .3(,]m -∞ 9.若数列是等比数列,下列命题正确的个数是( ) ①2{}n a ,2{}n a 是等比数列 ②{lg }n a 成等差数列 ③1{}na ,{}n a 成等比数列 ④{}n ca ,{}n a k ±(0)k ≠成等比数列。
2016-2017学年高中数学新课标必修5同步学案:3.4(第1课时)理解、证明基本不等式 含答案

3。
4第一课时 理解、证明基本不等式一、课前准备 1.课时目标(1)理解两个不等式的证明和区别,并会证明基本不等式.(2)理解“当且仅当a=b 时取等号”的数学内涵2。
基础预探(1)对于任意实数a 都有2a 0,当且仅当a = 时等号成立。
(2)对于任意R b a ∈,,都有22b a + ab 2,当且仅当 时等号成立.(3)我们把 叫做正数a b ,的算术平均数,把叫正数a b ,的几何平均数。
(4)对于任意正实数b a ,ab2a b+当且仅当 时等号成立。
(5)由2a bab +≤知,两个正数的 不大于它们的 .(6)对于任意正实数b a ,都有ab 2()4a b +,当且仅当 时等号成立.二、基本知识习题化1.已知a 、b ∈(0,1)且a ≠b,下列各式中最大的是( ) A.a 2+b 2 B.2abC.2a b D.a +b2.已知f(x )=x +错误!-2(x <0),则f(x)有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-43.若正数a 、b 满足错误!+错误!=2,则ab 的最小值为________. 4。
当0>x 时,当___=x ,xx 4+取得最小值为_____。
三、学习引领1.重要不等式:如果R b a ∈,,那么ab b a 222≥+(当且仅当a=b 时,取“=”号) 几点说明:(1)不等式中的a 、b 是任意实数,它们既可以是具体的某个数,也可以是一个代数式。
(2) “当且仅当”的含义是充要条件.(3)取等的条件是a=b,如果a ,b 不能相等,则ab b a 222≥+中的等号不能成立.(4)重要不等式可变形为:ab ≤222b a +,2()2a b ab +≤,2242,ab a b ab ≤++ 2222()()a b a b +≥+等.2。
基本不等式 (1)定义2a b +≤(a>0,b>0)称为基本不等式,其中称2a b + 为a ,b的算术平均数,a ,b 的几何平均数.因而,这一基本不等式又可叙述为:两个正数的算术平均数不小于它们的几何平均数.(2)证明:除课本集合证明法之外,还有以下代数证明法:证法1:可以将基本不等式看作是重要不等式的推论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年高中数学必修五全册导学案及章节检测目 录1.1.1 正弦定理(一) ............................................................................................................. 1 1.1.1 正弦定理(二) ................................................................................................................ 5 1.1.2 余弦定理(一) ............................................................................................................. 9 1.1.2 余弦定理(二) ........................................................................................................... 13 1.2 应用举例(一) ................................................................................................................. 18 1.2 应用举例(二) ................................................................................................................. 24 第一章 解三角形章末复习课 ............................................................................................... 30 第一章 解三角形章末检测(A ) ........................................................................................ 35 第一章 解三角形章末检测(B ) ........................................................................................ 42 2.1 数列的概念与简单表示法(一) ................................................................................... 50 2.1 数列的概念与简单表示法(二) ................................................................................... 54 2.2 等差数列(一) ............................................................................................................... 59 2.2 等差数列(二) ............................................................................................................... 63 2.3 等差数列的前n 项和(一) ........................................................................................... 67 2.4 等比数列(一) ............................................................................................................... 76 2.4 等比数列(二) ............................................................................................................... 80 2.5 等比数列的前n 项和(二) ........................................................................................... 88 数列复习课检测试题 ............................................................................................................. 93 数列习题课(1)检测试题 ................................................................................................... 98 数列习题课(2)新人教A 版必修5 .................................................................................. 102 数列章末检测(A )新人教A 版必修5 .............................................................................. 106 数列章末检测(B )新人教A 版必修5 .............................................................................. 112 第二章 数 列 章末检测(B) 答案 ............................................................................. 115 3.1 不等关系与不等式 ...................................................................................................... 120 3.2 一元二次不等式及其解法(一) ................................................................................... 125 3.2 一元二次不等式及其解法(二) ................................................................................... 130 3.3.1 二元一次不等式(组)与平面区域 ......................................................................... 134 3.3.2 简单的线性规划问题(一) . (140)3.3.2 简单的线性规划问题(二) (146)3.4 ≤a +b2(二) (157)第三章 不等式复习课 ......................................................................................................... 161 第三章 不等式章末检测(A ) .......................................................................................... 167 第三章 不等式章末检测(B ) (174)1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60°C .45°D .135° 答案 C解析 由a sin A =b sin B 得sin B =b sin Aa=2sin 60°3=22. ∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C , ∴AB =BC sin C sin A =1×sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin2π3=1sin B ,∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb=2×222=12. 又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=B +C -sin C cos B A +C -sin C cos A =sin B cos C sin A cos C =sin Bsin A=右边.所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+32-1322×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC =22,∴sin C =22. ∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,代入已知条件得 a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角,解三角形.(2)已知三边求三角形的任意一角.2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0, ∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________.答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=A -Bsin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=A -B sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵·=-21,∴·=21.∴· = ||·||·cosB = accosB = 21.∴ac=35,∵cosB = 53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设·BC =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =A +C sin 2B =sin B sin 2B =1sin B =477.(2)由·BC =23得ca ·cosB = 23 由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°. 由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin∠ACBsin ∠ABC =50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BCsin ∠CAB=ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126×2232=24(n mile). (2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 45°=34+616-2×32×64×22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km. 能力提升 13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2×20t ×40·cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解. 2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,403 3 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,203 3 m 答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60-=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC-α=BCα-β,∴AC =BC cos αα-β=h cos αα-β.在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βα-β.即山高CD 为h cos αsin βα-β.12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3.。