第二章达标检测卷(一)
人教版五年级数学下册第2单元达标检测卷附答案 (1)
人教版五年级数学下册第二单元达标检测卷一、填空。
(第8小题3分,其余每空1分,共30分)1.在42÷7=6中,()是()的因数,()是()的倍数。
2.24的因数有(),50以内9的倍数有()。
3.一个两位数,既是3的倍数,又有因数5,这个两位数最小是(),最大是()。
4.三个连续的奇数,中间一个是a,另外两个分别表示为(),()。
5.一个三位数,百位上是最小的质数,十位上是最小的合数,个位上是最小的偶数,这个数是()。
6.王阿姨买来十几个苹果,3个3个地数少2个,王阿姨最多买来()个苹果。
7.同时是2、3的倍数的最小三位数是();同时是2、3、5的倍数的最大三位数是()。
8.用质数填空,所用的质数不能重复。
26=()×()=()+()=()-()9.从0,1,3,5四个数字中选出三个,组成三位数,其中最大的奇数是(),最小的偶数是(),最小的3的倍数是()。
10.92既是2的倍数,也有因数3,里应填();19既有因数3,又是5的倍数,这个四位数最小是()。
11.两个质数的和是30,差是4,这两个质数分别是()和()两个质数的和是22,积是85,这两个质数分别是()和()。
12.既是偶数又是质数的数是(),既是奇数又是合数的最小两位数是()。
13.一个质数是两位数,个位和十位上的数字之和是16,这个两位数可能是(),也可能是()。
二、选择。
(将正确答案的字母填在括号里。
每小题2分,共20分) 1.下面的说法中,不正确的是()。
A.含有因数2的数一定是偶数B.所有非0自然数的最小因数都是1C.一个自然数如果不是2的倍数,就一定是奇数D.一个合数只有两个因数2.在1~20中,是偶数但不是质数的数有()个。
A.2 B.8 C.9 D.10 3.一个数的因数一定()它的倍数。
A.小于B.大于C.等于D.小于或等于4.如果a×b=c(a、b、c都是不等于0的自然数),那么()。
Unit2达标检测卷1
Unit 2达标检测卷时间:40分钟满分:100分+10分题号一二三四五六七八九十十一口语总分得分听力部分(30分)一、听录音,选出你所听到的单词或短语。
(5分)()1. A. far B. car C. after()2. A. hour B. near C. hear()3. A. go to school B. come to school C. walk to the park ()4. A. by bus B. by car C. by bike()5. A. far from B. on foot C. get off二、听录音,给下列图片排序。
(5分)三、听录音,选出合适的答句。
(10分)()1. A. I come to school at seven.B. I come to school by bike.C. I come to school with my friend.()2. A. Yes. It's my school.B. No. It's near my school.C. No. It's far from my school.()3. A. Yes,he goes to work every day.B. He goes to work at six.C. He goes to work on foot.()4. A. Yes, I do.B. I live far from school.C. No. I live near school.()5. A. We come to school on foot.B. Ten.C. No, they don't.四、听录音,根据录音内容在表格中适当的位置打“√”。
(10分)笔试部分(70分)五、单项选择。
(10分)()1. The library is far ________my home.A. fromB. atC. to ()2. He lives ________ Green Street.A. toB. atC. on ()3. I go to the library ________foot.A. byB. withC. on ()4. You can go to the cinema ________underground.A. takeB. byC. on ()5. They come to school by________.A. a busB. busC. buses ()6. The children walk ________ the zoo together.A. /B. toC. on()7. Peter ________the train to Beijing.A. takesB. hasC. gets ()8. Peter and Joe get off the bus ________Park Street Station.A. withB. toC. at ()9. After________ hour,they meet at the station and take the train.A. a halfB. half anC. half a ()10. There are many people ________ the bus stop.A. atB. ofC. in六、用所给单词的适当形式填空。
北师大版七年级数学下册 第二章相交线与平行线 达标检测卷 (1)
北师大版七年级数学下册第二章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若∠A与∠B互为补角,∠A=40°,则∠B=( )A.50° B.40° C.140° D.60°2.(芝罘区期末)如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,下列用几何知识解释其道理中正确的是( ) A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线第2题图第3题图3.(安化县期末)如图所示,直线a,b被直线c所截,则∠1与∠2是( ) A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )A.120° B.110° C.100° D.80°5.下列作图是∠α余角的作图是( )6.如图,AB,CD,EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠DOG的度数是( )A.20° B.30° C.35° D.40°第6题图第7题图7.如图,下列条件中,不能判断直线a∥b的是( )A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠38.★如图,把长方形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( ) A.150° B.80° C.100° D.115°第8题图第9题图9.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )A.2条 B.3条 C.4条 D.5条10.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的大小为( )A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.已知∠1的对顶角为123°,则∠1的度数为 .12.(曲阜期末)如图,若满足条件,则有AB∥CD.(要求:不再添加辅助线,只需填一个答案即可)第12题图13.在同一平面内的三条直线l1,l2,l3,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是 .14.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B之间建一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么B地按南偏西度的方向施工,才能使铁路在山腰中准确接通.第14题图15.如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC = .第15题图第16题图16.如图所示,OB∥CE,OA∥CF,则图中与∠C相等的角一共有 .个.17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= .18.★(南岗区校级期中)已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD 平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE= .三、解答题(共66分)19.(6分)(1)一个角的余角比这个角少20°,则这个角的补角为多少度;(2)如图,已知∠1=∠2,∠D=60°,求∠B的度数.20.(8分)如图,已知△ABC,点D为AB的中点,动手操作,解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据;(2)度量DE,BC的长度,发现DE,BC之间有何数量关系?21.(8分)已知:如图,∠ABE+∠DEB=180°,∠1=∠2,则∠F与∠G的大小关系如何?请说明理由.22.(8分)如图,在三角形ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.23.(10分)已知:如图,BC∥AD,BE∥AF.(1)试说明:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.24.(12分)如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请判断他的发现是否正确,并说明理由.25.(14分)如图,已知直线AC∥BD,直线AB,CD不平行,点P在直线AB上,且和点A,B不重合.(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A,B两点之间运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?并说明理由.(4)如图③,④当点P在线段BA延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)参考答案一、选择题(每小题3分,共30分)1.若∠A与∠B互为补角,∠A=40°,则∠B=( C)A.50° B.40° C.140° D.60°2.(芝罘区期末)如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,下列用几何知识解释其道理中正确的是( B)A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线第2题图第3题图3.(安化县期末)如图所示,直线a,b被直线c所截,则∠1与∠2是( C)A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( C)A.120° B.110° C.100° D.80°5.下列作图是∠α余角的作图是 ( A)6.如图,AB,CD,EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠DOG的度数是 ( C)A.20° B.30° C.35° D.40°第6题图第7题图7.如图,下列条件中,不能判断直线a∥b的是 (D) A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠38.★如图,把长方形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( D) A.150° B.80° C.100° D.115°第8题图第9题图9.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有 ( D)A.2条 B.3条 C.4条 D.5条10.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的大小为( D)A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.已知∠1的对顶角为123°,则∠1的度数为__123°__.12.(曲阜期末)如图,若满足条件__∠A=∠3(答案不唯一)__,则有AB∥CD.(要求:不再添加辅助线,只需填一个答案即可)第12题图13.在同一平面内的三条直线l1,l2,l3,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是__相互平行__.14.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B 之间建一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么B地按南偏西__63__度的方向施工,才能使铁路在山腰中准确接通.第14题图15.如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=__40°__.第15题图第16题图16.如图所示,OB∥CE,OA∥CF,则图中与∠C相等的角一共有__3__个.17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__120°.18.★(南岗区校级期中)已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD 平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=__110°或70°__.三、解答题(共66分)19.(6分)(1)一个角的余角比这个角少20°,则这个角的补角为多少度;解:设这个角的度数为x度,则x-(90-x)=20,解得x=55,即这个角的度数为55°,所以这个角的补角为180°-55°=125°.(2)如图,已知∠1=∠2,∠D=60°,求∠B的度数.解:设∠2的对顶角为∠3,∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AB∥CD,∴∠D+∠B=180°.∵∠D=60°,∴∠B=120°.20.(8分)如图,已知△ABC,点D为AB的中点,动手操作,解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据;(2)度量DE,BC的长度,发现DE,BC之间有何数量关系?解:(1)同位角相等,两直线平行.(2)DE =12BC.21.(8分)已知:如图,∠ABE +∠DEB =180°,∠1=∠2,则∠F 与∠G 的大小关系如何?请说明理由.解:∠F =∠G.理由:∵∠ABE +∠DEB =180°,∴AC ∥ED ,∴∠CBE =∠DEB.∵∠1=∠2,∴∠CBE -∠1=∠DEB -∠2,即∠FBE =∠GEB ,∴BF ∥EG ,∴∠F =∠G.22.(8分)如图,在三角形ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,试比较∠EDF 与∠BDF 的大小,并说明理由.解:∠EDF=∠BDF.理由:∵AC∥ED,∴∠ACE=∠DEC.∵CE⊥AB,DF⊥AB,∴∠AEC=∠AFD=90°,∴DF∥CE,∴∠BDF=∠BCE,∠EDF=∠DEC,∴∠EDF=∠ACE.∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠EDF=∠BDF.23.(10分)已知:如图,BC∥AD,BE∥AF.(1)试说明:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.解:(1)∵BC∥AD,∴∠B=∠DOE.又BE∥AF,∴∠DOE=∠A,∴∠A=∠B.(2)∵∠DOB=∠EOA,由BE∥AF得∠EOA+∠A=180°.又∠DOB=135°,∴∠A=45°.24.(12分)如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请判断他的发现是否正确,并说明理由.解:(1)∵∠BOD=28°,∴∠AOC=∠BOD=28°.∵OE⊥CD,∴∠EOC=90°,∴∠AOE=∠EOC-∠AOC=62°.(2)正确,设∠BOD=x,则∠AOC=∠BOD=x,∠BOC=180°-x.∵OF 平分∠AOC ,∴∠FOC =12x , ∴∠EOF =90°-∠FOC =90°-12x , ∴∠EOF =12∠BOC.25.(14分)如图,已知直线AC ∥BD ,直线AB ,CD 不平行,点P 在直线AB 上,且和点A ,B 不重合.(1)如图①,当点P 在线段AB 上时,若∠PCA =20°,∠PDB =30°,求∠CPD 的度数;(2)当点P 在A ,B 两点之间运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P 在线段AB 延长线上运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?并说明理由.(4)如图③,④当点P 在线段BA 延长线上运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?(直接写出答案)解:(1)如图①,过点P 作PE ∥AC 交CD 于点E ,∵AC ∥BD ,∴PE ∥BD ,∴∠CPE =∠PCA =20°,∠DPE =∠PDB =30°,∴∠CPD=∠CPE+∠DPE=50°.(2)∠CPD=∠PCA+∠PDB.(3)∠CPD=∠PCA-∠PDB.理由:如图②,过点P作PE∥BD交CD于点E,∵AC∥BD,∴PE∥AC,∴∠CPE=∠PCA,∠DPE=∠PDB,∴∠CPD=∠CPE-∠DPE=∠PCA-∠PDB. (4)∠CPD=∠PDB-∠PCA;∠CPD=∠PCA-∠PDB.。
鲁教版八年级数学上册第二章达标检测卷附答案
鲁教版八年级数学上册第二章达标检测卷一、选择题(本大题共12道小题,每小题3分,满分36分)1.下列代数式属于分式的是( )A.a 2b cB.xy πC.m +n 21D.322.无论x 取何值,下列分式总有意义的是( )A.x -1x 2B.22x +3C.1x 2+2D.3x -13.下列分式中,属于最简分式的是( )A.63xB.x 2+y 2x +y C.x -1x 2-1 D.1-x x -14.分式a a 2-1和1a 2-a的最简公分母是( ) A .(a 2-1)(a 2-a ) B .(a 2-a ) C .a (a 2-1) D .a (a 2-1)(a -1)5.如果分式|x |-3x +3的值为0,那么x 的值为( ) A .-3 B .3 C .-3或3 D .3或06.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A.x +1y -1B.2x y 2C.x x -yD.2x -1x +y7.中国首列商用磁浮列车的平均速度为a km/h ,计划提速20 km/h ,已知从甲地到乙地的路程为360 km ,那么提速后从甲地到乙地节约的时间为( )A.7 200a (a +20) hB. 3 600a (a +20) hC. 3 600a (a -20) hD.7 200a (a -20)h 8.计算⎝ ⎛⎭⎪⎫-a b 2÷⎝ ⎛⎭⎪⎫2a 25b 2·a 5b的结果为( ) A.125b 4a 3 B.54ab C .-125b 4a 3 D .-54ab9.若关于x 的方程m x +1-2x =0的解为正数,则m 的取值范围是( ) A .m <2 B .m <2且m ≠0 C .m >2 D .m >2且m ≠410.若关于x的方程3x+axx+1=2-3x+1有增根为-1,则2a-3的值为()A.2 B.3 C.4 D.611.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空.据了解学生还需3倍于售出数量的这种计算器,于是又用2 580元购进所需计算器.由于量大每个进价比上次优惠1元,但该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.56012.已知关于x的分式方程2x+3x-2=k(x-2)(x+3)+2的解满足-4<x<-1,且k为整数,则符合条件的所有k值的乘积为()A.正数B.负数C.零D.无法确定二、填空题(本大题共6道小题,每小题3分,满分18分)13.若m为实数,分式x(x+2)x2+m不是最简分式,则m=________.14.若分式x2x-1□xx-1的运算结果为x,则在“□”中添加的运算符号为________.(请从“+、-、×、÷”中选择填写)15.若x2+3x=-1,则x-1x+1=________.16.方程32-x=x-3x-2的解为________.17.若关于x的分式方程3-2xx-3+2-nx3-x=-1无解,则常数n的值是________.18.某自来水公司水费计算办法如下:若每户每月用水不超过5 m3,则每立方米收费1.5元;若每户每月用水超过5 m3,则超出部分每立方米收取较高的费用.1月份,张家用水量是李家用水量的23,张家当月水费是17.5元,李家当月水费是27.5元,则超出5 m3的部分每立方米收费________元.三、解答题(本大题共7道小题,满分66分)19.(8分)计算:(1)x -1x +2÷x 2-2x +1x 2-4+1x -1; (2)12x -1x +y ·⎝ ⎛⎭⎪⎫x +y 2x -x -y .20.(8分)先化简a 2+2a +1a +2÷⎝ ⎛⎭⎪⎫a -2+3a +2,然后从-2,-1,1,2四个数中选择一个合适的数作为a 的值代入求值.21.(10分)解方程:(1)x +1x -1+4x 2-1=1; (2)x -2x +2-16x 2-4=1.22.(8分)若关于x 的方程x +1x 2-x -13x =1+k 3x -3有增根,求k 的值.23.(10分)已知关于x 的方程x +3x -3+ax 3-x=1有正整数解,且关于y 的不等式组⎩⎨⎧2y -55<2,a -y -1≤0至少有两个奇数解,求满足条件的整数a 的值.24.(10分)如图,A 玉米试验田是半径为R m 的圆去掉宽为1 m 的出水沟后剩下的部分,B 玉米试验田是半径为R m 的圆中间去掉半径为1 m 的圆后剩下的部分,两块试验田的玉米都收了450 kg.(1)哪块试验田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?25.(12分)爱民药店库存一批N95和普通医用两种类型口罩,N95口罩的进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%作为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量的4倍还多4个.(1)求两种口罩的进价分别是多少元.(2)该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨了20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1 500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2 000元(不考虑其他因素),则这次至少购进N95口罩多少个?答案一、1.A 2.C 3.B 4.C 5.B 6.C7.A 8.B9.C 【点拨】解方程m x +1-2x =0,去分母,得mx -2(x +1)=0,整理,得(m -2)x =2.∵方程有解,∴x =2m -2.∵分式方程的解为正数,∴2m -2>0,解得m >2.而x ≠-1且x ≠0,则2m -2≠-1,2m -2≠0,解得m ≠0,m ≠2,综上可知:m 的取值范围是m >2.故选C.10.B 【点拨】方程两边都乘x (x +1),得3(x +1)+ax 2=2x (x +1)-3x ,∵原方程有增根为-1,∴当x =-1时,a =3,故2a -3=3.故选B.11.B 【点拨】设第一次购进计算器x 个,则第二次购进计算器3x 个,根据题意得:880x =2 5803x +1,解得x =20,经检验x =20是原方程的解,则这笔生意该店共盈利:[50×(20+20×3-4)+4×50×90%]-(880+2 580)=520(元).故选B.12.A 【点拨】解2x +3x -2=k (x -2)(x +3)+2,得x =k 7-3. ∵-4<x <-1,(x -2)(x +3)≠0,∴-4<k 7-3<-1,k 7⎝ ⎛⎭⎪⎫k 7-5≠0, 解得-7<k <14且k ≠0.又∵k 为整数,∴k =-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,8,9,10,11,12,13.∴符合条件的所有k 值的乘积为正数.故选A.二、13.0或-414.-或÷ 15.-2 16.x =017.1或53 【点拨】两边都乘x -3,得3-2x +nx -2=-x +3,解得x =2n -1.当n =1时,整式方程无解,分式方程无解;∵当x =3时分母为0,方程无解,即2n -1=3,∴n =53时方程无解.故答案为1或53. 18.2 【点拨】设超出5 m 3的部分每立方米收费a 元,由题意得17.5-1.5×5a +5=⎝ ⎛⎭⎪⎫27.5-1.5×5a +5×23, 解得a =2.经检验a =2是原方程的根.三、19.解:(1)x -1x +2÷x 2-2x +1x 2-4+1x -1=x -1x +2·x 2-4x 2-2x +1+1x -1=x -1x +2·(x +2)(x -2)(x -1)2+1x -1=x -2x -1+1x -1=x -2+1x -1=x -1x -1=1; (2)12x -1x +y ·⎝ ⎛⎭⎪⎫x +y 2x -x -y =12x -1x +y ·⎣⎢⎡⎦⎥⎤x +y 2x -(x +y ) =12x -12x +1=1.20.解:a 2+2a +1a +2÷⎝ ⎛⎭⎪⎫a -2+3a +2 =(a +1)2a +2÷a 2-4+3a +2=(a +1)2a +2÷a 2-1a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1. 当a =-2或1或-1时,分式无意义,故a 只能取2.当a =2时,原式=2+12-1=3. 21.解:(1)原方程为x +1x -1+4(x +1)(x -1)=1.方程两边都乘(x +1)(x -1),得(x +1)2+4=(x +1)(x -1).解得x =-3.检验:当x =-3时,(x +1)(x -1)≠0,∴x =-3是原方程的解.∴原方程的解是x =-3.(2)方程两边都乘(x +2)(x -2),得x 2-4x +4-16=x 2-4.解得x =-2.当x =-2时,(x +2)(x -2)=0,∴x =-2不是原方程的根,即分式方程无解.22.解:原方程化为x +1x (x -1)-13x =1+k 3(x -1). 方程两边都乘3x (x -1),得3x +3-x +1=x +kx .由分式方程有增根,得3x (x -1)=0.解得x =0或x =1.把x =0代入整式方程,得4=0,矛盾,舍去;把x =1代入整式方程,得k =5.∴k 的值是5.23.解:根据题意解不等式组⎩⎪⎨⎪⎧2y -55<2,a -y -1≤0,得a -1≤y <152.∵关于y 的不等式组至少有两个奇数解,∴a -1≤5,解得a ≤6.由x +3x -3+ax 3-x=1,解得x =6a . ∵x -3≠0,∴6a ≠3,即a ≠2.∵方程有正整数解,且a 为整数,∴a =1,3,6.24.解:(1)A 玉米试验田的面积是π(R -1)2 m 2,单位面积产量是450π(R -1)2kg/m 2;B 玉米试验田的面积是π(R 2-12)m 2,单位面积产量是450π(R 2-12) kg/m 2. ∵(R 2-12)-(R -1)2=2(R -1)>0,∴0<(R -1)2<R 2-12.∴450π(R 2-12)<450π(R -1)2. ∴A 玉米试验田的单位面积产量高.(2)∵450π(R -1)2÷450π(R 2-12) =450π(R -1)2×π(R +1)(R -1)450 =R +1R -1, ∴高的单位面积产量是低的单位面积产量的R +1R -1倍. 25.解:(1)设普通医用口罩的进价为x 元,则N95口罩的进价为5x 元,由题意,得84(1+50%)x =4×84(1+40%)×5x+4,解得x =2. 经检验,x =2是原方程的解,且符合题意,∴5x =10.∴普通医用口罩的进价为2元,N95口罩的进价为10元.(2)设这次购进N95口罩m 个,则购进普通医用口罩(1 500-m )个,由题意,得[10×(1+40%)-10×(1+20%)]m +[2×(1+50%)×(1+20%)-2×(1+30%)](1 500-m )≥2 000,解得m ≥500.∴这次至少购进N95口罩500个.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x 2x -1+11-x 的结果是( ) A .x +1 B.1x +1 C .x -1 D.x x -18.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是( )A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -30 10.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32 B.32 C .-2 D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( )A .1B .2C .3D .4(第11题) (第12题) 12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( )A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a+1a B.aa-1C.aa+1D.a-1a14.以下命题的逆命题为真命题的是() A.对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F ,∴△ABC ≌△EFD (ASA).∴AC =DE =7.∴AD =AE -DE =10-7=3.7.A 8.D 9.C 10.A 11.B 12.B13.A 【点拨】∵△÷a 2-1a =1a -1, ∴△=1a -1·a 2-1a=a +1a . 14.B 15.D 16.A二、17.ASA 18.26.83;0.026 8319.12030+x =6030-x;10 【点拨】根据题意可得12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解,所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x .移项、合并同类项,得x =7.经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6.去括号,得2-4x -3-6x =-6,移项、合并同类项,得-10x =-5.解得x =12.经检验,x =12是原方程的增根,∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0.解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2.(1)x +y =6+(-2)=4,∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0, ∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的.23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO .在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA).(2)∵△ABO ≌△DCO ,∴BO =CO .∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC .在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
最新人教版六年级下册数学第二单元检测卷3套
最新人教版六年级下册数学第二单元检测卷3套六下第二单元达标测试卷(一)一、填空题。
(1题5分,其余每题2分,共23分)1.3÷4=()12=12()=( )%=( )折=( )(填成数) 2.“八五折”是指现价是原价的( ),“七五折”出售,就是优惠了( )%。
3.一个书包打九折后,便宜了6元,这个书包原价( )元。
4.一家汽车4S 店今年三月份汽车销量比去年同期增加一成五。
今年三月份汽车销量是去年三月份销量的( )%。
5.某小学有学生2300人,只有一成的学生没有购买平安保险,购买了平安保险的学生有( )人。
6.欣欣超市上个月的营业额是12万元,如果按营业额的5%缴纳营业税,欣欣超市上个月要缴纳营业税( )元。
7.张叔叔上月的收入是4800元,按规定超出3500元的部分按3%缴纳个人所得税,张叔叔上月应缴纳个人所得税( )元。
8.妈妈将20000元钱存入银行,定期三年,年利率为2.75%,到期后妈妈可取回本息( )元。
9.明明将3000元压岁钱存入银行,定期两年,到期后明明取回了3126元,定期两年的年利率是( )%。
10.一种商品,标价500元,商场开展优惠活动“满300元减100元”,这件商品实际是打( )折出售。
二、判断题。
(每题1分,共5分)1.“买一送一”就是打五折。
( )2.利率一定,同样多的钱,存期越长,得到的利息就越多。
( )3.“减少三成”与“打三折”表示的意义相同。
( )4.税率是指应纳税额与各种收入(销售额、营业额……)的比率。
() 5.一件商品先涨价10%,后又打九折出售,价格不变。
()三、选择题。
(每题1分,共8分)1.某乡去年粮食产量是11万吨,比前年增产一成,前年的粮食产量是()万吨。
A.1.1 B.12.1 C.9.9 D.102.李叔叔买彩票中了10万元的大奖。
按规定缴纳20%的个人所得税,李叔叔实际得到了()元。
A.8 B.20000 C.80000 D.900003.一种电吹风原来要80元,现在打七折出售,现在买可以节约()元。
鲁教版六年级数学上册第二章达标检测卷附答案
鲁教版六年级数学上册第二章第二章达标检测卷一、选择题(每题3分,共30分)1.冰箱冷藏室的温度是零上5℃,记作+5℃,冷冻室的温度是零下18℃,记作( )A .18 ℃B .-18 ℃C .13 ℃D .-13 ℃ 2.下列各数中,为负数的是( )A .-(-3)B .|-3|C .13 D .-3 3.下列各对数中,互为相反数的是( )A .11与|-11|B .23与(-3)2C .(-7)2与72D .(-1)4与(-1)3 4.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1 C .(-3)2÷(-2)2=32 D .0-7-2×5=-17 5.春节红包为人们欢度节日增添了许多乐趣,据统计,某年春节共有768 000 000人选择使用微信红包传递新年祝福.将768 000 000用科学记数法表示为( )A .76.8×107B .7.68×109C .7.68×108D .768×106 6.有理数a ,b 在数轴上的对应点的位置如图所示,则下列说法错误的是( )A .a >0B .|a |>|b |C .ab <0D .b <-2 7.已知|x |=5,|y |=2,且x +y <0,则xy 的值为( )A .10或-10B .10C .-10D .以上都不对 8.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.下列说法正确的是( )A .3.4万用科学记数法表示为3×104B .3.6万精确到个位C .5.078精确到千分位D .3 000精确到千位10.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,…,由以上等式可推知3+32+33+34+…+32 021的结果的末位数字是( )A .0B .9C .3D .2二、填空题(每题3分,共24分)11.a 的相反数是710,则a 的倒数是________.12.一只虫子从数轴上表示-2的点A 出发,沿着数轴爬行了4个单位长度到达点B ,则点B 表示的数是________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2) g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多 相差________.14.若x ,y 互为相反数,且3x -y =4,则xy 的值为________. 15.若x ,y 为有理数,且(5-x )4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 021=________.16.在数轴上与表示-1的点相距4个单位长度的点表示的数是________. 17.按如图所示的程序进行计算,若第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n ,其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 021=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分)19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6· 正数集合:{ …}; 负分数集合:{ …}; 非负整数集合:{ …}; 有理数集合:{ …}. 20.计算:(1)-12+20-(-2)+(-3);(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)(-2)3×⎣⎢⎡⎦⎥⎤-0.75+⎝ ⎛⎭⎪⎫-38-|-3|2÷(-32);(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.已知a 是平方等于本身的正数,b 是立方等于本身的负数,c 是相反数等于本身的数,d 是绝对值等于本身的数.求(a ÷b )2 020-3ab + 2(cd )2 121的值.22.如图,A ,B ,C 三点在数轴上,A 表示的数为-10,B 表示的数为14,点C 在点A 与点B 之间,且AC =BC . (1)求A ,B 两点间的距离; (2)求C 点对应的数;(3)甲、乙分别从A ,B 两点同时相向运动,甲的速度是1个单位长度/秒,乙的速度是2个单位长度/秒,求相遇点D 对应的数.23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a |=2,|b |=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.某种水果的包装标准质量为每箱10 kg,现抽取8箱样品进行检测,称重如下(单位:kg):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2.为了求得这8箱样品的总质量,我们可以选取一个恰当的基准质量进行简化运算.(1)你认为选取的这个恰当的基准质量为________kg.(2)根据你选取的基准质量,用正、负数填写下表.(3)这8箱样品的总质量是多少?25.已知|2-xy|+(1-y)2=0.(1)求y2 021+(-y)2 021的值;(2)求1xy+1(x+1)(y+1)+1(x+2)(y+2)+…+1(x+2 021)(y+2 021)的值.答案一、1.B2.D3.D4.D5.C6.B7.A8.C9.C点拨:A.3.4万用科学记数法表示为3.4×104,故本选项错误;B.3.6万精确到千位,故本选项错误;C.5.078精确到千分位,故本选项正确;D.3 000精确到个位,故本选项错误.10.C二、11.-10712.2或-613.0.6 g14.-1点拨:因为x,y互为相反数,所以x+y=0,即x=-y,因为3x-y=4,所以-3y-y=4,解得y=-1,所以x=1,所以xy=1×(-1)=-1.15.-116.3或-517.32018.1 009三、19.解:正数集合:{15,0.81,227,171,3.14,π,1.6▪,…};负分数集合:{-12,-3.1,…};非负整数集合:{15,171,0,…};有理数集合:{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6▪,…}.20.解:(1)原式=8+2-3=7.(2)原式=-1+32×24+38×24-712×24=-1+36+9-14=30.(3)原式=-8×(-98)-9÷(-9)=9+1=10.(4)原式=|-49-59|-1-8×(2.45+2.55)=1-1-8×5=-40.21.解:因为a是平方等于本身的正数,b是立方等于本身的负数,c是相反数等于本身的数,d是绝对值等于本身的数,所以a=1,b=-1,c=0,d≥0,所以(a÷b)2 020-3ab+2(cd)2 121=[1÷(-1)]2 020-3×1×(-1)+2(0×d)2 121=(-1)2 020+3+0=1+3+0=4.22.解:(1)A,B两点间的距离为24.(2)C点对应的数为2.(3)相遇点D对应的数为-2.23.解:由ab2<0,知a<0.因为a+b>0,所以b>0.又因为|a|=2,|b|=3,所以a=-2,b=3.所以|a-13|+(b-1)2=|-2-13|+(3-1)2=213+4=61 3.24.解:(1)10(2)填表如下:(3)这8箱样品的总质量是10×8+(0.2-0.1-0.2+0.1-0.4+0.1-0.3+0.2)=80-0.4=79.6(kg).25.解:因为|2-xy|+(1-y)2=0,而|2-xy|≥0,(1-y)2≥0,所以2-xy=0①,1-y=0②.由②得y=1.把y=1代入①得2-x=0,故x=2.(1)y2 021+(-y)2 021=12 021+(-1)2 021=1+(-1)=0.(2)1xy+1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 021)(y +2 021)=11×2+12×3+13×4+…+12 022×2 023 =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+(13-14)+…+⎝ ⎛⎭⎪⎫12 022-12 023 =1-12+12-13+13-14+…+12 022-12 023=1+⎝ ⎛⎭⎪⎫-12+12+⎝ ⎛⎭⎪⎫-13+13+⎝ ⎛⎭⎪⎫-14+14+…+(-12 022+12 022)-12 023=1-12 023 =2 0222 023.点拨:①若|A |+B 2=0,则有A =0且B =0;②1n (n +k )=1k ⎝⎛⎭⎪⎫1n -1n +k .。
鲁教版九年级数学上册第二章达标检测卷附答案
鲁教版九年级数学上册第二章达标检测卷一、选择题(每题3分,共30分)1.已知cos A =32,则锐角A 的度数为( )A .30°B .45°C .50°D .60°2.如图,在△ABC 中,sin B =13,tan C =2,AB =3,则AC 的长为( )A. 2B.52C. 5D .23.在锐角三角形ABC 中,若⎝ ⎛⎭⎪⎫sin A -322+⎪⎪⎪⎪⎪⎪22-cos B =0,则∠C 等于( )A .60°B .45°C .75°D .30°4.如图,△ABC 的顶点在正方形网格的格点上,则tan A 的值为( )A.12B.22C .2D .2 25.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =5,AC =6,则tan B 的值为( ) A.45B.35C.34D.436.如图,某地修建高速公路,要从B 地向C 地修一条隧道(B ,C 在同一水平面上).为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则B ,C 两地之间的距离为( )A .100 3 mB .50 2 mC .50 3 m D.1003 3 m7.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边上的点F 处.已知AB =4,BC =5,则cos ∠EFC 的值为( ) A.34B.43C.35D.458.如图所示,从热气球C处测得地面A,B两点的俯角分别为30°,45°,如果此时热气球的高度CD为100 m,点A,D,B在同一直线上,则A,B两点之间的距离是()A.200 m B.200 3 m C.220 3 m D.100(3+1)m9.如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=12S2B.S1=72S2C.S1=85S2D.S1=S210.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B .3+118 C.3+36 D.3+16二、填空题(每题3分,共24分) 11.cos 60°=________.12.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为5033,则∠A=_______.13.如图,正方形ABCD的边长为4,点M在边DC上,M,N两点关于对角线AC所在的直线对称,若DM=1,则tan∠ADN=________.14.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=____.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE ⊥AD,斜坡AB长26 m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移________m时,才能确保山体不滑坡.(取tan 50°≈1.2)16.如图是某商场营业大厅自动扶梯示意图,自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4 m.则自动扶梯的垂直高度BD=________m.(结果保留根号)17.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,连接AD′,那么tan∠BAD′=________. 18.如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为________海里.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)3sin 60°-2cos 45°+3 8;(2)12-3+4cos 60°·sin 45°-(tan 60°-2)2.20.a,b,c是△ABC的三边,且满足等式b2=c2-a2,5a-3c=0,求sin A+sin B的值.21.如图,在△ABC中,∠C=90°,tan A=33,∠ABC的平分线BD交AC于点D,CD=3,求AB的长.22.为建设“宜居宜业宜游”山水园林城市,工作人员正在对某城市河段进行区域性景观打造.某施工单位为测得河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河边取两点B和C,在B处测得点A在北偏东30°方向上,在C 处测得点A在西北方向上,如图,量得BC长为200 m,求该河段的宽度.(结果保留根号)23.沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD,高DH=12 m,斜坡CD的坡度i=1:1.此处大堤的正上方有高压电线穿过,PD表示高压线上的点与堤面AD的最近距离(P、D、H在同一直线上),在点C处测得∠DCP =26°.(1)求斜坡CD的坡角α;(2)电力部门要求此处高压线离堤面AD的安全距离不低于18 m,请问此次改造是否符合电力部门的安全要求?(参考数据:sin 26°≈0.44,tan 26°≈0.49,sin 71°≈0.95,tan 71°≈2.90)24.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B 处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:2≈1.414,3≈1.732)25.某校教学楼后面紧邻着一个土坡,坡上面是一块平地,BC∥AD,斜坡AB 长为22 m,坡角∠BAD=68°.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离.(结果精确到0.1 m)(2)为了确保安全,学校计划改造时保持坡的根部A不动,坡顶B沿BC前进到F点处,问BF至少是多少?(结果精确到0.1 m)(参考数据:sin 68°≈0.927 2,cos 68°≈0.374 6,tan 68°≈2.475 1,sin 50°≈0.766 0,cos 50°≈0.642 8,tan 50°≈1.191 8)答案一、1.A2.B 【点拨】过点A 作AD ⊥BC 于点D ,如图,则∠ADC =∠ADB =90°.∵tan C =2=AD DC ,sin B =13=AD AB , ∴AD =2DC ,AB =3AD . ∵AB =3, ∴AD =1,DC =12.在Rt △ADC 中,由勾股定理得AC =AD 2+DC 2=12+⎝ ⎛⎭⎪⎫122=52.故选B. 3.C 【点拨】由题意,得sin A -32=0,22-cos B =0.所以sin A =32,cos B=22.所以∠A =60°,∠B =45°,所以∠C =180°-∠A -∠B =180°-60°-45°=75°.4.A 【点拨】如图,连接BD ,由网格的特点可得,BD ⊥AC ,AD =22+22=22,BD =12+12=2,∴tan A =BD AD =222=12.故选A.5.C 6.A 7.D8.D 【点拨】由题意可知,∠A =30°,∠B =45°,tan A =CD AD ,tan B =CDDB ,又CD =100 m ,因此AB =AD +DB =CD tan A +CD tan B =100tan 30°+100tan 45°=1003+100=100(3+1)(m).9.D 【点拨】如图,过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥EF ,交FE 的延长线于点N .在Rt △ABM 中,∵sin B =AM AB ,∴AM =3×sin 50°,∴S 1=12BC ·AM =12×7×3×sin 50°=212sin 50°.在Rt △DEN 中,∠DEN =180°-130°=50°.∵sin ∠DEN =DN DE ,∴DN =7×sin 50°,∴S 2=12EF ·DN =12×3×7×sin 50°=212sin 50°,∴S 1=S 2.故选D.10.D 二、11.1212.60° 【点拨】∵BC =10,∴S △ABC =BC ·AC 2=10·AC 2=5033,∴AC =1033,∴tan A =BC AC =101033=3,∴∠A =60°.13.43 14.1215.10 【点拨】如图,在BC 上取点F ,使∠F AE =50°,过点F 作FH ⊥AD 于H .∵BF ∥EH ,BE ⊥AD ,FH ⊥AD , ∴四边形BEHF 为矩形, ∴BF =EH ,BE =FH . ∵斜坡AB 的坡比为12:5, ∴BE AE =125,设BE=12x m,则AE=5x m,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得x=2(负值舍去),∴AE=10 m,BE=24 m,∴FH=BE=24 m.在Rt△F AH中,tan ∠F AH=FH AH,∴AH=FHtan 50°≈20 m,∴BF=EH=AH-AE≈10 m.∴坡顶B沿BC至少向右移10 m时,才能确保山体不滑坡.16.23【点拨】∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,∴∠ABC=∠BCD-∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4 m.在Rt△BDC中,sin∠BCD=BD BC,∴sin 60°=BD4=32,∴BD=2 3 m.17.2【点拨】由题意知BD′=BD=2 2.在Rt△ABD′中,tan ∠BAD′=BD′AB=222= 2.18.202【点拨】如图,过点A作AC⊥BD于点C.根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20海里,在Rt △ABC 中,AC =BC =AB ·sin 45°=20×22=102(海里), ∵在Rt △ACD 中,∠ADC =30°, ∴AD =2AC =202海里.即此时轮船与小岛的距离AD 为202海里. 三、19.解:(1)原式=3×32-2×22+2=32-1+2=52.(2)原式=-(2+3)+4×12×22-(3-2)2=-2-3+2-(2-3) =-2.20.解:由b 2=c 2-a 2,得a 2+b 2=c 2, ∴△ABC 为直角三角形,∠C =90°. ∵5a -3c =0, ∴a c =35,即sin A =35. 设a =3k ,则c =5k , ∴b =(5k )2-(3k )2=4k . ∴sin B =b c =45, ∴sin A +sin B =35+45=75.21.解:在Rt △ABC 中,∠C =90°, tan A =33, ∴∠A =30°, ∴∠ABC =60°.∵BD 是∠ABC 的平分线, ∴∠CBD =∠ABD =30°. 又∵CD =3,∴BC=CDtan 30°=3.在Rt△ABC中,∠C=90°,∠A=30°,∴AB=BCsin 30°=6.故AB的长为6.22.解:如图,过点A作AD⊥BC于点D.根据题意,知∠ABC=90°-30°=60°,∠ACD=45°,∴∠CAD=45°. ∴AD=CD.∴BD=BC-CD=200-AD.在Rt△ABD中,tan ∠ABD=AD BD,∴AD=BD·tan ∠ABD=(200-AD)·tan 60°=3(200-AD).∴AD+3AD=200 3.∴AD=20033+1=(300-1003)(m).故该河段的宽度为(300-1003)m. 23.解:(1)∵斜坡CD的坡度i=1:1,∴tan α=DHCH=1,∴α=45°.答:斜坡CD的坡角α为45°.(2)∵DH⊥BC,α=45°,∴CH=DH=12 m,∠PCH=∠PCD+α=26°+45°=71°. 在Rt△PCH中,∵tan ∠PCH =PH CH =PD +1212≈2.90,∴PD ≈22.8 m.∵22.8>18,∴此次改造符合电力部门的安全要求.24.解:(1)由题意得,∠P AB =90°-60°=30°,∠ABP =90°+45°=135°, ∴∠APB =180°-∠P AB -∠ABP =180°-30°-135°=15°.(2)作PH ⊥AB 于H ,如图.易得△PBH 是等腰直角三角形,∴BH =PH .设BH =PH =x 海里,由题意得AB =40×3060=20(海里).在Rt △APH 中,tan ∠P AB =tan 30°=PH AH =33,即x 20+x=33, 解得x =103+10≈27.32.∵27.32>25,∴海监船继续向正东方向航行安全.25.解:(1)如图,过点B 作BE ⊥AD ,E 为垂足,则BE =AB ·sin 68°=22×sin 68°≈22×0.927 2≈20.4(m).即改造前坡顶与地面的距离约为20.4 m.(2)如图,过点F作FG⊥AD,G为垂足,连接F A.由题易得∠F AG=50°,易得四边形BFGE是矩形,即FG=BE,FB=GE.∴AG=FGtan 50°≈20.41.191 8≈17.12(m),∵Rt△ABE中,∠BAD=68°,∴AE=AB·cos 68°≈22×0.374 6≈8.24(m),∴BF=GE=AG-AE≈8.9 m,即BF至少是8.9 m.。
教科版九年级物理上册 第二章达标检测卷
义务教育基础课程初中教学资料第二章达标检测卷(100分,60分钟) 题 号一二三四总 分得 分一、选择题(每题3分,共36分)1.一瓶酒精用掉一半,关于剩下的酒精,下列判断正确的是( )A.密度变为原来的一半B.热值变为原来的一半C.质量变为原来的一半D.比热容变为原来的一半2.用铝壶在天然气灶上烧水的过程中( )A.水的温度越高,水分子运动越剧烈B.是通过做功的方式改变水的内能C.铝的比热容比水小,铝的吸热能力比水强D.天然气燃烧越充分,热值越大3.如图所示是某老师的自制教具。
他在矿泉水瓶的侧壁上钻一个孔,把电火花发生器紧紧塞进孔中,实验时从瓶口喷入酒精并盖上锥形纸筒,按动电火花发生器的按钮,点燃瓶内酒精后,纸筒即刻飞出。
关于此实验,分析不正确的是( )A.酒精不完全燃烧时热值不变B.能闻到酒精的气味说明分子在永不停息地做无规则运动C.燃气推动纸筒飞出的过程相当于内燃机的压缩冲程D.纸筒飞出后瓶内气体的内能减小,温度降低(第3题图)(第4题图)(第6题图)4.实验装置如图所示,加热试管使水沸腾。
对观察到的现象分析正确的是( )A.玻璃管口冒出“白气”是水汽化成的水蒸气B.加热使水升温是通过做功的方式改变水的内能C.小叶轮的转动说明永动机是可以实现的D.小叶轮转动,水的内能转化为叶轮的机械能5.四冲程内燃机工作时,哪个冲程将机械能转化为内能( )A.压缩冲程B.做功冲程C.吸气冲程D.排气冲程6.如图为四冲程汽油机工作过程中的某冲程示意图,该冲程为( )A.吸气冲程B.压缩冲程C.做功冲程D.排气冲程7.关于“热机”,下列说法中错误的是( )A.通过技术改进,可以使热机的效率达到100%B.减少城市热岛效应的措施之一就是倡导“绿色出行”C.用水而不用其他循环物质降低热机的温度,主要是利用水的比热容较大的特性D.严寒的冬天,人们晚上把热机水箱中的水放出,是防止气温降低时,水凝固而胀坏水箱8.汽油机吸气冲程吸入汽缸内的物质是( )A.柴油B.汽油和空气C.汽油D.空气9.如图所示的实验或机器均改变了物体的内能,其中与另外三个改变内能方法不同的是( )10.目前,汽车发动机的汽缸都采用金属材料制作,这主要利用了金属耐高温、耐摩擦等性质。
2023年初中物理九年级第二章达标测试卷(一)打印版含答案
2023年初中物理九年级第二章达标测试卷(一)一、选择题(每题3分,共33分)1.如图所示的四幅图中,不能产生声音的是()2.14个无声世界的孩子在中央电视台《经典咏流传》的舞台上,用一个啊字唱出了整个春天。
如图是嘉宾和孩子用手指放在对方的喉结附近正在相互感知发出“啊”的情景。
用这种方式让听不到声音的孩子感知到发出“啊”,这是利用了()A.声音是由物体振动产生的B.声音是通过空气传播的C.固体传声比气体快D.声音的音色可以用手感觉3.在纪念五四运动100周年暨庆祝新中国成立70周年的合唱比赛中,同学们用歌声表达了“青春心向党,建功新时代”的远大志向。
合唱中“高音声部”和“低音声部”中的“高”和“低”,指的是声音的()A.音调B.音色C.响度D.振幅4.生活中,有人用眼睛看,更有人用耳朵“看”,因为声音向我们传递着很多信息,一名有经验的锅炉工发现,向瓶里灌开水,开始时,水的落差大,撞击力大,瓶里空气多,发出的声音大并且是低沉的“咚、咚”声,水将满时情况相反,发出的声音小并且是尖细的“吱、吱”声,则该工人判断灌水多少的依据是()A.音色和音调B.音色C.响度D.响度和音调5.在医院、学校和科学研究部门附近,有如图所示的禁鸣喇叭标志,在下列方法中,与这种控制噪声的方法相同的是()A.工人戴上防噪声耳罩B.在道路旁设置隔声板C.上课时关闭教室的门窗D.在摩托车上安装消声器6.声能够传递“信息”和“能量”。
下面事例中,主要利用声传递“能量”的是() A.利用超声波给金属工件探伤B.医生通过听诊器给病人诊病C.通过声学仪器接收到的次声波等信息判断地震的方位和强度D.利用超声波除去人体内的结石7.下列成语中,形容声音响度大的是()A.鸦雀无声B.窃窃私语C.宛转悠扬D.声如洪钟8.远古时代,鼓被赋予神秘色彩。
如图是湖北崇阳出土的商代铜鼓,迄今有3 000多年历史。
关于鼓声,下列说法正确的是()A.鼓声能在真空中传播B.鼓面振动的幅度越大,响度越大C.鼓声的音色与鼓的材料、结构无关D.区分鼓声和其他乐器声是根据音调不同9.下列有关声现象中,能改变响度的是()10.下列有关声现象的实验中,能用来探究决定音调高低因素的是()11.下列说法不正确的是()A.在建筑方面,设计、建造大礼堂时,必须把回声现象作为重要因素加以考虑B.动画片的配音常用慢录快放的方式,把成年人的声音变成小孩的声音,这样能够使声音音调变高C.超声波能将一般情况下不能混合的液体混合在一起,而次声波人耳听不到,能量很小,破坏力不大D.广播里播放“考生开始答题”的声音是通过空气传入同学们耳朵的二、填空题(每空1分,共14分)12.把一根长管的一头插入水中,另一头放入耳中,就能听到远处船只航行的声音,这说明______________、______________能够传声,还可以说明声能够传递______________。
第二章 整式的加减单元达标检测卷(含解析)
人教版七年级上册第2章整式的加减单元达标检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列代数式书写规范的是( )A.B.5÷h C.9+x千克D.3y2.代数式﹣2x的意义可以是( )A.﹣2与x的和B.﹣2与x的差C.﹣2与x的积D.﹣2与x的商3.单项式3xy2z4次数是( )A.2B.4C.6D.74.在下列给出的四个多项式中,为三次二项式的多项式是( )A.a2﹣3B.a3+2ab﹣1C.4a3﹣b D.4a2﹣3b+25.下列各式:﹣mn,m,8,,x2+2x+6,,,y2﹣5y+中,整式有( )A.3个B.4个C.6个D.7个6.下列各组单项式中,是同类项的是( )A.﹣x2与2yx2B.2m与3nC.acb2与D.﹣m2n与2n2m7.下列运算正确的是( )A.2xy﹣yx=xy B.5a﹣3a=2C.3x+5y=8xy D.x+2x=2x28.下列运算中“去括号”正确的是( )A.a+(b﹣c)=a﹣b﹣c B.a﹣(b+c)=a﹣b﹣cC.m﹣2(p﹣q)=m﹣2p+q D.x2﹣(﹣x+y)=x2+x+y9.若a2﹣4a﹣12=0,则2a2﹣8a﹣8的值为( )A.24B.20C.18D.1610.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为( )A.0B.﹣2C.2D.1二.填空题(共8小题,满分24分,每小题3分)11.单项式的系数是 .12.多项式2x3+3x2﹣1的二次项系数是 .13.计算a﹣(2a﹣b)的结果为 .14.把多项式6x﹣7x2+9按字母x的降幂排列为 .15.单项式3x a﹣1y3﹣b与4x2y是同类项,则a b= .16.若|m﹣3|+(2n﹣1)2=0,则的值为 .17.弟弟今年m岁,比哥哥小三岁,10年后,哥哥的年龄是 岁.18.某个数值转换器原理如图所示:若开始输入的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2023次输出的结果是 .三.解答题(共8小题,满分66分)19.(8分)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)20.(6分)已知m为自然数,且多项式是严格按字母x的升幂排列的.(1)求m的值;(2)将多项式按字母y的升幂排列.21.(7分)先化简,再求值:4a2b+(﹣2ab2+5a2b)﹣2(3a2b﹣ab2),其中a=﹣,b=2.22.(7分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).23.(8分)小琦同学在自习课准备完成以下题目时:化简(□x2﹣6x+5)﹣(﹣6x+5x2﹣2)发现系数“□”印刷不清楚.(1)他把“□”猜成2,请你化简(2x2﹣6x+5)﹣(﹣6x+5x2﹣2);(2)老师见到说:“你猜错了,我看到该题标准答案的结果是常数”,请你通过计算说明原题中“□”是几.24.(10分)观察下列一系列单项式的特点:y,﹣x2y2,x2y3,﹣x2y4,…(1)写出第8个单项式;(2)猜想第n(n大于0的整数)个单项式是什么?并指出它的系数和次数.25.(10分)已知:A=(2x﹣3)﹣(3x﹣5).(1)化简整式A;(2)若2A+B=﹣x+6,①求整式B;②在“A□B”的“□”内,填入“+,﹣,×,÷”中的一个运算符号,经过计算发现,结果是不含一次项的整式,请你写出一个符合要求的算式,并计算出结果.26.(10分)一个三位数的百位数字是a,十位数字是b,个位数字是c(a≠0,c≠0).(1)列式表示这个三位数;(2)将该数的个位数字移到百位上,得到一个新的三位数;①列式表示这个新三位数;②计算新三位数与原三位数之差的绝对值,该绝对值能被9整除吗?说明理由.第2章整式的加减参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据代数式的书写要求判断各项.【解答】解:A、书写规范,故此选项符合题意;B、除法运算要写成分数的形式,故此选项不符合题意;C、代数和后面写单位,代数和要加括号,故此选项不符合题意;D、带分数要写成假分数的形式,故此选项不符合题意.故选:A.2.【分析】根据代数式的意义进行解答即可.【解答】解:代数式﹣2x的意义是﹣2与x的积.故选:C.3.【分析】根据单项式次数的定义作出判断.【解答】解:单项式3xy2z4次数是7,故选:D.4.【分析】根据多项式的次数和项数即可得出答案.【解答】解:A选项是二次二项式,故该选项不符合题意;B选项是三次三项式,故该选项不符合题意;C选项是三次二项式,故该选项符合题意;D选项是二次三项式,故该选项不符合题意;故选:C.5.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有,m,8,x2+2x+6,,,一共6个.故选:C.6.【分析】根据同类项的定义即可求解,所含字母相同,且相同字母的指数也相同的两个单项式是同类项.【解答】解:A、﹣x2与2yx2,字母不同,不是同类项,故该选项不正确,不符合题意;B、2m与3n,字母不同,不是同类项,故该选项不正确,不符合题意;C、acb2与,是同类项,故该选项正确,符合题意;D、﹣m2n与2n2m,对应字母的次数不同,不是同类项,故该选项不正确,不符合题意.故选:C.7.【分析】根据合并同类项法则进行判断即可.【解答】解:A.2xy﹣yx=xy,正确,不符合题意;B.5a﹣3a=2a,原计算错误,不符合题意;C.3x与5y不是同类项,不能合并,不符合题意;D.x+2x=3x,原计算错误,不符合题意.故选:A.8.【分析】原式各项变形得到结果,即可作出判断.【解答】解:A、原式=a+b﹣c,错误;B、原式=a﹣b﹣c,正确;C、原式=m﹣2p+2q,错误;D、原式=x2+x﹣y,错误,故选:B.9.【分析】由已知条件可得a2﹣4a=12,然后将2a2﹣8a﹣8变形后代入数值计算即可.【解答】解:∵a2﹣4a﹣12=0,∴a2﹣4a=12,∴2a2﹣8a﹣8=2(a2﹣4a)﹣8=2×12﹣8=24﹣8=16,故选:D.10.【分析】原式去括号合并后,根据结果与字母x无关,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.二.填空题(共8小题,满分24分,每小题3分)11.【分析】利用单项式的次数的确定方法分析得出答案.【解答】解:单项式的系数是.故答案为:.12.【分析】由多项式知道二次项为3x2,从而得到二次项系数.【解答】解:多项式2x3+3x2﹣1的二次项为:3x2,系数为:3.故答案为:3.13.【分析】直接去括号,再合并同类项得出答案.【解答】解:a﹣(2a﹣b)=a﹣2a+b=﹣a+b.故答案为:﹣a+b.14.【分析】根据多项式的定义解决此题.【解答】解:∵多项式6x﹣7x2+9含3项,分别是6x、﹣7x2、9,x的指数分别是1、2、0,∴多项式6x﹣7x2+9按字母x的降幂排列为﹣7x2+6x+9.故答案为:﹣7x2+6x+9.15.【分析】根据同类项的概念“所含字母相同,相同字母的指数也相同的单项式叫同类项”解答即可.【解答】解:根据同类项的定义可得:a﹣1=2,3﹣b=1,解得:a=3,b=2.所以a b=32=9.故答案为:9.16.【分析】利用非负数的性质求出m与n的值,原式去括号合并后代入计算即可求出值.【解答】解:∵|m﹣3|+(2n﹣1)2=0,∴m﹣3=0,2n﹣1=0,解得:m=3,n=,则原式=3m2n﹣2m2n+5mn2+mn2=m2n+6mn2,当m=3,n=时,原式=32×+6×3×()2=+=9.故答案为:9.17.【分析】先求出哥哥今年的年龄是(m+3)岁,再求出10年后哥哥的年龄即可.【解答】解:哥哥今年(m+3)岁,所以10年后哥哥的年龄是(m+3)+10=(13+m)岁.故答案为:(13+m).18.【分析】由第1、2、3、4次输出结果可以判断:输出结果每三次一个循环,由2023=3×674+1即可得出答案.【解答】解:第1次输出:x=1时,x+3=4;第2次输出:x=4时,;第3次输出:x=2时,,第4次输出:x=1时,x+3=4,从而,可以得出每三次一个循环.∵2023=3×674+1,∴第2023次输出的结果是4.故答案为:4.三.解答题(共8小题,满分66分)19.【分析】(1)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.20.【分析】(1)根据按多项式中x的升幂排列可以得出m的值;(2)先分清多项式的各项,然后按多项式中y的升幂排列的定义排列.【解答】解:(1)因为已知m为自然数,且多项式是严格按字母x的升幂排列的,所以m+1=3,所以m=4,即m的值是4;(2)当m=4时,原多项式为x2y5+x3y3﹣3x4y2.按字母y的升幂排列得:﹣3x4y2+x3y3+x2y5.21.【分析】先去括号,再合并同类项,然后将a=﹣1,b=2代入计算即可.【解答】解:4a2b+(﹣2ab2+5a2b)﹣2(3a2b﹣ab2)=4a2b﹣2ab2+5a2b﹣6a2b+2ab2=3a2b.当时,原式=.3×(﹣)2×2=3××2=22.【分析】(1)观察可得空地的面积=长方形的面积﹣圆的面积,把相关数值代入即可;(2)把所给数值代入(1)得到的代数式求值即可.【解答】解:(1)空地的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,空地的面积=400×100﹣π×102=(40000﹣100π)(平方米).23.【分析】(1)先去括号,再合并同类项即可;(2)结果为常数,则其他项的系数为0,据此可求解.【解答】解:(1)(2x2﹣6x+5)﹣(﹣6x+5x2﹣2)=2x2﹣6x+5+6x﹣5x2+2=﹣3x2+7;(2)设“□”是m,则有:(mx2﹣6x+5)﹣(﹣6x+5x2﹣2)=mx2﹣6x+5+6x﹣5x2+2=(m﹣5)x2+7,∵答案的结果是常数,∴m﹣5=0,解得:m=5,即“□”=5.24.【分析】(1)根据观察,可发现规律:系数是(﹣1)n+1×()n,字母部分是x2y n,可得答案;(2)根据观察,可发现规律:系数是(﹣1)n+1×()n,字母部分是x2y n,可得答案.【解答】解:由观察下列单项式:y,﹣x2y2,x2y3,﹣x2y4,…,得系数是(﹣1)n+1×()n,字母部分是x2y n,第8个单项式﹣()8x2y8;(2)由观察下列单项式:y,﹣x2y2,x2y3,﹣x2y4,…,得第n个单项式是(﹣1)n+1×()n x2y n,系数是(﹣1)n+1×()n,字母部分是x2y n,次数n+2.25.【分析】(1)去括号,合并同类项即可解答;(2)由等式2A+B=﹣x+6,变形得到等式B=﹣x+6﹣2A,再把表示A的式子代入即可解答;(3)用“+,﹣,×,÷”四种运算都计算出结果,就可以找到符合题意的运算.【解答】解:(1)A=(2x﹣3)﹣(3x﹣5)=2x﹣3﹣3x+5=﹣x+2;(2)①∵2A+B=﹣x+6,∴B=﹣x+6﹣2A=﹣x+6﹣2(﹣x+2)=﹣x+6+2x﹣4=x+2;②∵A+B=(﹣x+2)+(x+2)=4,是不含一次项的整式,A﹣B=(﹣x+2)﹣(x+2)=﹣2x,是含有一次项的整式,A×B=(﹣x+2)(x+2)=4﹣x2,是不含一次项的整式,A÷B=(﹣x+2)÷(x+2)=﹣是分式,不是整式,所以A和B相加或相乘时不含一次项的整式,结果分别是:4和4﹣x2.26.【分析】(1)根据三位数的数的特征列式进行表示;(2)①根据三位数的数的特征列式进行表示;②先列式,然后去括号,合并同类项,最后根据数的整除的概念进行分析判断.【解答】解:(1)∵一个三位数的百位数字是a,十位数字是b,个位数字是c(a≠0,c≠0),∴这个三位数为:100a+10b+c;(2)①由题意,这个新的三位数,其百位数字是c,十位数字是b,个位数字是a,∴这个新三位数为:100c+10b+a;②新三位数与原三位数之差的绝对值能被9整除,理由如下:∵|(100c+10b+a)﹣(100a+10b+c)|=|99c﹣99a|=99|c﹣a|.∵a,c均为整数,∴|c﹣a|为整数,∴99|c﹣a|能被9整除,∴新三位数与原三位数之差的绝对值能被9整除.。
人教精通版六年级英语上册-Unit 2达标检测卷 附答案 (1)
人教精通版六年级英语上册Unit 2达标检测卷时间:40分钟满分:100分题号一二三四五六七八九十十一十二总分得分听力部分(30分)一、听录音,选出你所听到的单词。
(5分)()1. A. happy B. hobby C. have()2. A. shop B. stop C. stamp()3. A. computer B. picture C. super()4. A. listening B. reading C. speaking()5. A. make B. cook C. take二、听录音,判断下列图片与所听内容是(T)否(F)相符。
(5分)三、听录音,判断下列句子与所听内容是(T)否(F)相符。
(10分)()1. The photo is about Kate's family.()2. Kate's grandma likes cooking.()3. Kate's grandma is cooking breakfast.()4. Kate's grandpa is interested in fishing.()5. Kate is a nice girl.四、听录音,写单词,补全对话。
(10分)We all have 1. ________. Some people like collecting 2. ________,and others 3. ________ playing basketball.Gao Wei's hobby is collecting toy buses. Gao Wei and Jim are in the 4. ________shop.Gao Wei:Jim, there is a new kind of toy buses. I will buy one.Jim :Do you like 5. ________ toys?Gao Wei:Yes, my hobby is collecting toy buses. What's your hobby? Jim :My hobby is collecting maps.Gao Wei:Wow, it's wonderful!笔试部分(70分)五、选择下列单词或短语的英文释义。
【人教版教材适用】初一数学上册《第2章达标检测卷》(附答案)
人教版初一数学上册第二章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各式中,是单项式的是( )A .x 2-1B .a 2bC .πa +bD .x -y 3 2.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D .13,4 3.下列各组是同类项的是( )A .xy 2与-12x 2yB .3x 2y 与-4x 2yzC .a 3与b 3D .-2a 3b 与12ba 3 4.若多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,则( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.已知m -n =100,x +y =-1,则式子(n +x)-(m -y)的值是( )A .99B .101C .-99D .-1017.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元8.如图,阴影部分的面积是( )(第8题)A .112xyB .132xy C .6xy D .3xy 9.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确结果是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.下列图形都是由同样大小的长方形按一定的规律组成的,其中第1个图形的面积为2 cm 2,第2个图形的面积为8 cm 2,第3个图形的面积为18 cm 2……则第10个图形的面积为( )(第10题)A .196 cm 2B .200 cm 2C .216 cm 2D .256 cm 2二、填空题(每题3分,共30分)11.用式子表示“比a 的平方的一半小1的数”是________.12.多项式4x -23x 2y 2-x 3y +5y 3-7是________次________项式,按x 的降幂排列是________________.13.按照如图所示的操作步骤,若输入x 的值为-4,则输出的值为________.(第13题)14.已知15 m x n 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________. 15.已知有理数a ,b ,c 在数轴上对应的点的位置如图所示,化简|a +c|-|c -b|-|a +b|的结果为________.(第15题)16.当多项式2+(x +1)2取最小值时,多项式1-x 2-x 3的值为________.17.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________cm .18.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.19.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是:每分钟降低a 元,再下调25%;乙公司推出的优惠措施是:每分钟下调25%,再降低a 元.若甲、乙两公司原来每分钟收费标准相同,则推出优惠措施后收费较便宜的是________公司.20.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2 017个格子中的整数是________.三、解答题(23题8分,26题12分,其余每题10分,共60分)21.先去括号,再合并同类项:(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.22.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝⎛⎭⎫32x 2-5xy +y 2-⎣⎡⎦⎤-3xy +2⎝⎛⎭⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.23.已知A=y2-ay-1,B=2by2-4y-1,且2A-B的值与字母y的取值无关,求2(a2b -1)-3a2b+2的值.24.A,B两家公司都准备向社会招聘,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元,问:A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?25.小华做一道数学题:“已知整式10x9+9x8+8x7+7x6+6x5+5x4+4x3+3x2+2x+1,当x=-1时,求整式的值.”由于将整式中某一项前的“+”号看成“-”号,误求得整式的值为7,问小华同学看错了哪一项前的符号?26.有一个长方形大型娱乐场所,其设计方案如图所示,其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少?(2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是长方形娱乐场所的长和宽的一半,他的设计符合要求吗?为什么?(第26题)参考答案及解析一、1.B 2.B 3.D4.C 点拨:由题意得a -2=0,b =3,解得a =2.5.C 6.D 7.A 8.A9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确结果为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.B二、11.12a 2-1 12.四;五;-x 3y -23x 2y 2+4x +5y 3-7 13.-614.13 点拨:因为15m x n 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.15.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0.所以原式=-(a +c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b=2b -2c.16.117.2x 2 点拨:三角形的周长为(2x +1)+(x 2-2)+(x 2-2x +1)=2x 2(cm ).18.4 点拨:(2x 3-8x 2+x -1)+(3x 3+2mx 2-5x +3)=5x 3+(2m -8)x 2-4x +2.因为和不含二次项,所以2m -8=0,即m =4.19.乙 点拨:设甲、乙两公司原来的收费为每分钟b 元(0.75b >a),则推出优惠措施后,甲公司每分钟的收费为(b -a)×75%=0.75b -0.75a (元),乙公司每分钟的收费为(0.75b -a )元,0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.20.-4 点拨:因为任意三个相邻格子中所填整数之和都相等,所以-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,所以,数据从左到右依次为-4,6,b ,-4,6,b ,….又第9个数与第3个数相同,即b =-2,所以,每3个数“-4,6,-2”为一个循环组依次循环.因为2 017÷3=672……1,所以第2 017个格子中的整数与第1个格子中的整数相同,为-4.故答案为-4.三、21.解:(1)2a -(5a -3b)+(4a -b)=2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn=3m 2n +3mn -4mn +8m 2n +mn =11m 2n.22.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1)=-a 2-4a +3a 2-5a 2-2a +1=-3a 2-6a +1.当a =-23时,原式=-3×⎝⎛⎭⎫-232-6×⎝⎛⎭⎫-23+1=113. (2)(32x 2-5xy +y 2)-[-3xy +2⎝⎛⎦⎤14x 2-xy )+23y 2 =32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2 =x 2+13y 2. 因为|x -1|+(y +2)2=0,所以x -1=0且y +2=0,所以x =1,y =-2.所以原式=12+13×(-2)2=73. 23.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1)=2y 2-2ay -2-2by 2+4y +1=(2-2b)y 2+(4-2a)y -1.由题意知2-2b =0,4-2a =0,即a =2,b =1.所以2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.24.解:A 公司第n 年的年薪为:200 000+4 000(n -1)=(196 000+4 000n)元,B 公司第n 年的年薪为:100 000×2+2(n -1)×2 000+2 000=(198 000+4 000n)元, 因为198 000+4 000n >196 000+4 000n ,所以从经济角度考虑,选B 公司有利.25.解:把x =-1代入10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1中,得-10+9-8+7-6+5-4+3-2+1=-5.因为误求得整式的值为7,比-5大12,12÷2=6,系数为6,所以看错了五次项前的符号.26.解:(1)游泳池的面积为mn ;休息区的面积为12×π×⎝⎛⎭⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2. (3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b.所以⎝⎛⎭⎫ab -mn -18πn 2-12ab =38b 2-π32b 2>0, 所以ab -mn -18πn 2>12ab. 小亮设计的游泳池符合要求.。
苏科版九年级数学上册第2章达标检测卷附答案
苏科版九年级数学上册第2章达标检测卷一、选择题(每题3分,共24分)1.若⊙O 的面积为25π,在同一平面内有一个点P ,且点P 到圆心O 的距离为4.9,则点P 与⊙O 的位置关系为( )A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定 2.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是( )A .70°B .60°C .50°D .30°3.如图,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =( )A .5B .7C .9D .114.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =7,点D 在边BC 上,CD =3,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径r 的取值范围是( )A .1<r <4B .2<r <4C .1<r <8D .2<r <8 5.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A .45°B .50°C .55°D .60°6.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为( ) A.π3 B.3π3 C.2π3 D .π7.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A .60°B .90°C .120°D .180° 8.如图,点A 、B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A.2+1 B.2+12 C .22+1 D .22-12 二、填空题(每题2分,共20分)9.如图,在圆内接四边形ABCD 中,若∠A 、∠B 、∠C 的度数之比为4:3:5,则∠D 的度数是________.10.如图,P A 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,∠P =60°,则AB ︵的长为________.11.如图,⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为________. 12.如图,AB 是⊙O 的直径,BD 、CD 分别是过⊙O 上点B 、C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是________.13.如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8,AB =10,则CD 与AB 之间的距离是________.14.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°. 15.一个圆锥形漏斗,某同学用三角板(部分)测得其高度的尺寸如图所示(单位:cm),则该圆锥形漏斗的侧面积为________cm2.16.据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为________尺.(结果用最简根式表示)17.如图,AC⊥BC,AC=BC=4,以BC长为直径作半圆,圆心为点O.以点C 为圆心,BC长为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是________.18.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径是7,则GE+FH的最大值是________.三、解答题(19~22题每题6分,其余每题8分,共56分)19.如图,AB是⊙O的直径,点C是圆上一点,连接AC和BC,过点C作CD ⊥AB于点D,且CD=4,BD=3,求⊙O的周长.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC.(2)若⊙O的半径为4,∠BAC=60°,求DE的长.21.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D.(1)如图①,求证:AC=CD;(2)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.22.“不在同一条直线上的三个点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.23.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O 上一点,连接BP并延长,交直线l于点C,恰有AB=AC.(1)求证:AB是⊙O的切线;(2)若PC=25,OA=5,求⊙O的半径.24.如图,AB与⊙O相切于点C,OA、OB分别交⊙O于点D、E,CD=CE.(1)求证:OA=OB;(2)已知AB=43,OA=4,求阴影部分的面积.25.如图,一座拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径.(2)现有一艘宽60米,顶部截面为长方形且高出水面9米的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.26.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时,如图①,连接OC,求∠DOC的度数.(2)当直线CD与半圆O相交时,如图②,设另一交点为E,连接AE,OC,若AE∥OC.①试猜想AE与OD的数量关系,并说明理由;②求∠ODC的度数.答案一、1.C 2.B 3.A 4.B 5.B6.B【点拨】∵∠ACB=90°,∠ABC=30°,AB=2,∴AC=12AB=1.∴BC=AB2-AC2=22-12= 3.∴点B转过的路径长为60π·3180=3π3.7.C8.B【点拨】如图,∵点C为坐标平面内一点,BC=1,∴C在以B为圆心,半径为1的圆上,取OD=OA=2,连接CD,又∵AM=CM,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,CD最大,而当D,B,C三点共线,且C在DB的延长线上时,CD最大,即OM最大,∵OB=OD=2,∠BOD=90°,∴BD=22,∴CD=22+1,∴OM=12CD=2+12,即OM的最大值为2+12.二、9.120°10.43π11.65°12.35°13.3【点拨】过点O作OH⊥CD于H,连接OC,则CH=DH=12CD=4,在Rt△OCH中,OH=52-42=3,所以CD与AB之间的距离是3.14.215【点拨】∵A,B,C,D四点共圆,∴∠B+∠ADC=180°.又∵A,C,D,E四点共圆,∴∠E+∠ACD=180°.∴∠ACD+∠ADC+∠B+∠E=360°.∵∠ACD+∠ADC=180°-35°=145°,∴∠B+∠E=360°-145°=215°.15.15π16.42【点拨】如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE 为直径,∠ECD =45°,由题意得AB =2.5,∴CE =2.5-0.25×2=2, ∴CD =CE 22=2,∴正方形CDEF 的周长为42尺.17.53π-23 【点拨】如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ,以点C 为圆心,BC 为半径作弧AB , ∴∠ACB =90°,OB =OC =OD =2,BC =CE =4. 又∵OE ∥AC , ∴∠COE =90°. ∵OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =2 3.∴S 阴影=S 扇形CBE -S 扇形OBD -S △OCE =60π×42360-14π×22-12×2×23=5π3-2 3.18.10.5 【点拨】当GH 为⊙O 的直径时,GE +FH 有最大值.易知当GH 为直径时,E 点与O 点重合,∴AC 也是直径,AC =14.∵∠ABC 是直径上的圆周角,∴∠ABC =90°,∵∠C =30°,∴AB =12AC =7.∵点E 、F 分别为AC 、BC 的中点,∴EF =12AB =3.5,∴GE +FH =GH -EF =14-3.5=10.5.三、19.解:∵AB 是⊙O 的直径,∴∠ACB =90°,在Rt △CBD 中,∵CD =4,BD=3,∴BC=CD2+BD2=42+32=5.设AD=x,则42+x2=(x+3)2-52,解得x=16 3.∴AB=163+3=253,∴⊙O的周长是253π,20.(1)证明:如图,连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵DC=BD,∴AB=AC.(2)解:由(1)知AB=AC,∵∠BAC=60°,∠ADB=90°,∴△ABC是等边三角形,∠BAD=30°. ∴∠C=60°.在Rt△BAD中,∠BAD=30°,AB=8,∴BD=4,∴DC=4.∵DE⊥AC,∴∠DEC=90°,∴∠CDE=30°,∴CE=12DC=2.∴DE=CD2-CE2=2 3.21.(1)证明:∵直线AC与⊙O相切,∴OA⊥AC,∴∠OAC=90°,即∠OAB+∠CAB=90°. ∵OC⊥OB,∴∠BOC=90°,∴∠B+∠ODB=90°.而∠ODB =∠ADC , ∴∠ADC +∠B =90°. ∵OA =OB , ∴∠OAB =∠B ,∴∠ADC =∠CAB ,∴AC =CD . (2)解:∵∠BOC =90°,OB =OE , ∴△OBE 为等腰直角三角形, ∴∠OEB =45°. ∵BE ∥OA ,∴∠AOC =∠OEB =45°, ∴△OAC 为等腰直角三角形, ∴AC =OA =1,OC =2OA =2, 而CD =CA =1, ∴OD =OC -CD =2-1.22.解:设经过A ,B 两点的直线对应的函数关系式为y =kx +b . ∵A (2,3),B (-3,-7), ∴⎩⎨⎧2k +b =3,-3k +b =-7.解得⎩⎨⎧k =2,b =-1.∴经过A ,B 两点的直线对应的函数关系式为y =2x -1. 当x =5时,y =2×5-1=9≠11, ∴点C (5,11)不在直线AB 上, 即A ,B ,C 三点不在同一条直线上.∴平面直角坐标系内的三个点A (2,3),B (-3,-7),C (5,11)可以确定一个圆. 23.(1)证明:如图,连接OB . ∵OA ⊥l , ∴∠P AC =90°, ∴∠APC +∠ACP =90°. ∵AB =AC ,OB =OP ,∴∠ABC =∠ACB ,∠OBP =∠OPB .∵∠BPO =∠APC ,∴∠ABC +∠OBP =90°,即∠OBA =90°, ∴OB ⊥AB , ∴AB 是⊙O 的切线.(2)解:设⊙O 的半径为r ,则AP =5-r ,OB =r . 在Rt △OBA 中,AB 2=OA 2-OB 2=52-r 2, 在Rt △APC 中,AC 2=PC 2-AP 2=(25)2-(5-r )2. ∵AB =AC ,∴52-r 2=(25)2-(5-r )2, 解得r =3,即⊙O 的半径为3. 24.(1)证明:连接OC . ∵AB 与⊙O 相切于点C ,∴OC ⊥AB .∴∠ACO =∠BCO =90°. ∵CD =CE , ∴∠AOC =∠BOC . 在△AOC 和△BOC 中,⎩⎨⎧∠AOC =∠BOC ,OC =OC ,∠ACO =∠BCO ,∴△AOC ≌△BOC ,∴OA =OB .(2)解:∵△AOC ≌△BOC ,∴AC =BC =12AB =2 3.∵OB =OA =4,且△OCB 是直角三角形,∴根据勾股定理,得OC =OB 2-BC 2=2,∴OC=12OB,∴∠B=30°,∴∠BOC=60°.∴S阴影=S△BOC-S扇形OCE=12×2×23-60π×22360=23-23π.25.解:(1)如图,设点E是桥拱所在圆的圆心.过点E作EF⊥AB于点F,延长EF交⊙E于点C,连接AE,则CF=20米.由垂径定理知,F是AB的中点,∴AF=FB=12AB=40米.设圆E的半径是r米,由勾股定理,得AE2=AF2+EF2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50.∴桥拱的半径为50米.(2)这艘轮船能顺利通过.理由如下:如图,设MN=60米,MN∥AB,EC与MN的交点为D,连接EM,易知DE⊥MN,∴MD=30米,∴DE=EM2-DM2=502-302=40(米).∵EF=EC-CF=50-20=30(米),∴DF=DE-EF=40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过.26.解:(1)∵直线CD与半圆O相切,∴∠OCD=90°.∵OC=OA,CD=OA,∴OC=CD,∴∠DOC=∠ODC=45°,即∠DOC的度数是45°.(2)①AE=OD.理由如下:如图,连接OE.∵OC=OA,CD=OA,∴OC=CD,∴∠COD=∠CDO.∴∠OCE=2∠CDO,∵AE∥OC,∴∠EAD=∠COD,∴∠EAD=∠CDO,∴AE=DE.∵OA=OE,∴∠OAE=∠OEA,∴∠DOE=2∠EAD,∴∠DOE=∠OCE.∵OC=OE,∴∠DEO=∠OCE,∴∠DOE=∠DEO,∴OD=DE,∴AE=OD.②由①得,∠DOE=∠DEO=2∠ODC. ∵∠DOE+∠DEO+∠ODC=180°,∴2∠ODC+2∠ODC+∠ODC=180°,∴∠ODC=36°.九年级数学上册期末达标检测卷一、选择题(每题4分,共40分)1.已知a,d,c,b是成比例线段,其中a=3 cm,b=2 cm,c=6 cm,则d的长度为()A.4 cm B.1 cm C.9 cm D.5 cm2.在反比例函数y=k-1x图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k<0 B.k>0 C.k<1 D.k>13.对于抛物线y=-12(x+2)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x=2;③顶点坐标为(-2,3);④当x>2时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.44.如图,在▱ABCD中,E是AD边的中点,连接BE并延长交CD的延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:55.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=5,BC =2,则sin∠ACD的值为()A.52 B.2 55 C.53 D.236.如图,P为线段AB上一点,AD与BC相交于点E,∠CPD=∠A=∠B,BC 交PD于点F,AD交PC于点G,则图中相似三角形有()A.1对B.2对C.3对D.4对7.如图,在直角平面坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的相似比为13的位似图形△OCD ,则点C 的坐标为( )A .(-1,-1) B.⎝ ⎛⎭⎪⎫-43,-1 C.⎝ ⎛⎭⎪⎫-1,-43 D .(-2,-1) 8.如图,在笔直的海岸线l 上有A ,B 两个观测站,且AB =2 km.从A 站测得船C 在北偏东45°方向,从B 站测得船C 在北偏东22.5°方向,且tan 22.5°=2-1,则船C 离海岸线l 的距离(即CD 的长)为( ) A .4 kmB .(2+2)kmC .2 2 kmD .(4-2)km9.如图,已知边长为4的正方形EFCD 截去一角成为五边形ABCDE ,其中AF=2,BF =1.在AB 上找一点P ,使得矩形PNDM 有最大面积,则矩形PNDM 面积的最大值为( ) A .8B .12C.252D .1410.如图,在平面直角坐标系中,抛物线y =-x 2+2 3x 的顶点为A ,且与x轴的正半轴交于点B ,点P 为该抛物线对称轴上一点,则OP +12AP 的最小值为( ) A.3+2214B.3+232C .3D .2 3二、填空题(每题5分,共20分)11.如图,在由边长相同的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是________.12.如图,点P 是反比例函数y =43x (x >0)图象上一动点,在y 轴上取点Q ,使得以P ,Q ,O 为顶点的三角形是含有30°角的直角三角形,则符合条件的点Q 的坐标是________________.13.如图是二次函数y =ax 2+bx +c (a ≠0)的图象,其与x 轴的交点的横坐标分别为x 1,x 2,其中-2<x 1<-1,0<x 2<1,下列结论:①abc >0;②4a -2b +c <0;③2a -b <0.其中正确的有____________(填序号).14.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,使点C 恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,使点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG .其中正确的有____________(填序号).三、解答题(15~18题每题8分;19,20题每题10分;21,22题每题12分;23题14分,共90分)15.计算:(-1)2 022-6tan30°+⎝ ⎛⎭⎪⎫12-2+|1-3|.16.已知抛物线y =12x 2-4x +7与直线y =12x 交于A ,B 两点(点A 在点B 左侧).(1)求A ,B 两点的坐标;(2)求抛物线顶点C 的坐标,并求△ABC 的面积.17.如图,在△ABC中,AB=43,AC=10,∠B=60°,求△ABC的面积.18.如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.19.如图,已知在正方形ABCD中,BE平分∠DBC,交CD边于点E,将△BCE 绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG·BG=4,求BE的长.20.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数表达式,并画出这个函数的图象;(2)若反比例函数y2=kx的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.21.如图,某大楼DE的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:3,AB=8米,AE=12米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2≈1.414,3≈1.732)22.某公司经销一种绿茶,每千克成本为50元.经市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体表达式为w=-2x+240.设这种绿茶在这段时间内的销售利润为y元,解答下列问题:(1)求y与x的函数表达式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少?23.矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图①,已知折痕与边BC交于点O.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.答案一、1.B 2.D3.C【点拨】∵a<0,∴抛物线的开口向下,①正确;抛物线y=-12(x+2)2+3的对称轴为直线x=-2,②错误;顶点坐标为(-2,3),③正确;④抛物线开口向下,当x>2时,图象是下降趋势,y随x的增大而减小,④正确.故选C.4.A【点拨】在▱ABCD中,AD=BC,AD∥BC,∵E是AD的中点,∴DE=12AD=12BC.由AD∥BC可得,△EDF∽△BCF.它们的周长比等于相似比,∴周长比等于ED BC=12BC:BC=1:2.故选A.5.C【点拨】∵在Rt△ABC中,∠ACB=90°,AC=5,BC=2,∴AB =AC 2+BC 2=(5)2+22=3. ∵∠ACB =90°,CD ⊥AB , ∴∠ACD +∠BCD =90°,∠B +∠BCD =90°,∴∠ACD =∠B , ∴sin ∠ACD =sin B =AC AB =53. 故选C.6.C 【点拨】∵∠CPD =∠A ,∠D =∠D ,∴△ADP ∽△PDG ,∴∠APD =∠PGD ,∴∠FPB =∠AGP .∵∠CPF =∠B ,∠C =∠C ,∴△CPF ∽△CBP ,∴∠CFP =∠CPB ,∴∠PFB =∠APG ;在△AGP 和△BPF 中,∠AGP =∠BPF ,∠APG =∠BFP ,∴△AGP ∽△BPF .故选C. 7.B 8.B9.B 【点拨】延长NP 交EF 于点G ,设PG =x ,则PN =4-x . ∵PG ∥BF ,∴△APG ∽△ABF , ∴AG AF =PG BF ,即AG 2=x 1, 解得AG =2x ,∴PM =EG =EA +AG =2+2x ,∴S 矩形PNDM =PM ·PN =(2+2x )(4-x )=-2x 2+6x +8=-2⎝ ⎛⎭⎪⎫x -322+252(0≤x ≤1),当x =1时,矩形PNDM 的面积最大,最大值为12.故选B .10.C 【点拨】连接AB ,过点P 作PC ⊥AB 于点C .设抛物线的对称轴与x 轴的交点为点D .易求出抛物线的对称轴为直线x =3,顶点A (3,3),故BD =OD =3,AD =3,在Rt △ABD 中,tan ∠BAD =BD AD =33,∴∠BAD =30°,∴PC =12AP .当O ,P ,C 三点共线时,OP +PC 的长最短,最短距离为sin ∠OBC ·OB =sin 60°×2 3=3.∴OP +12AP 的最小值为3.故选C.二、11.212.(0,23)或(0,2)或⎝ ⎛⎭⎪⎫0,833或(0,8) 13.①②③ 【点拨】①∵图象开口向下, ∴a <0,∵图象的对称轴在y 轴左侧, ∴-b2a <0,而a <0,∴b <0, ∵图象与y 轴的交点在正半轴上, ∴c >0,∴abc >0,故结论正确. ②∵-2<x 1<-1,∴当x =-2时,y =4a -2b +c <0,故结论正确. ③∵-2<x 1<-1,0<x 2<1, ∴-b2a >-1,∵a <0, ∴2a -b <0,故结论正确. 故正确的结论有①②③.14.①③④ 【点拨】∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处, ∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10, ∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确.HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AGDF ,∴△ABG 与△DEF 不相似,∴②错误.∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确.∵AG +DF =3+2=5,而FG =5,∴AG +DF =FG ,∴④正确.三、15.解:原式=1-6×33+4+3-1=4- 3.16.解:(1)联立⎩⎪⎨⎪⎧y =12x 2-4x +7,y =12x ,解得⎩⎨⎧x =2,y =1或⎩⎪⎨⎪⎧x =7,y =72.∴A (2,1),B ⎝ ⎛⎭⎪⎫7,72.(2)∵y =12x 2-4x +7=12(x -4)2-1, ∴顶点C 的坐标为(4,-1).过顶点C 作CD ∥x 轴交直线y =12x 于点D ,如图.在y =12x 中,令y =-1,得12x =-1,解得x =-2,∴CD =6,∴S △ABC =S △BCD -S △ACD =12×6×⎝ ⎛⎭⎪⎫72+1-12×6×(1+1)=7.5.17.解:过点A 作AD ⊥BC 于点D .在Rt △ABD 中,AD =AB ·sin B =4 3×32=6,BD =AB ·cos B =4 3×12=2 3.在Rt △ACD 中,CD =AC 2-AD 2=102-62=8, ∴BC =BD +CD =2 3+8.∴S △ABC =12BC ·AD =12×(23+8)×6=63+24. 18.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6.19.(1)证明:∵BE 平分∠DBC , ∴∠DBG =∠CBE ,根据旋转的性质,得∠EDG =∠CBE , ∴∠DBG =∠EDG , 又∵∠DGB =∠EGD , ∴△BDG ∽△DEG .(2)解:由(1)知△BDG ∽△DEG , ∴BG DG =DGEG ,∴DG 2=EG ·BG . ∵EG ·BG =4,∴DG 2=4, ∴DG =2(负值舍去).∵∠EDG =∠CBE ,∠DEG =∠BEC , ∴∠BGD =∠BCE =90°. ∴∠BGF =∠BGD =90°.又∵BG =BG ,∠DBG =∠FBG , ∴△DBG ≌△FBG .∴DG =FG ,∴DF =2DG =4, 由题意可知,BE =DF , ∴BE =4.20.解:(1)由题意得,y 1=||x ,即y 1=||x =⎩⎨⎧x ,x ≥0,-x ,x <0.函数图象如图所示.(2)①∵点A的纵坐标为2,点A在函数y1的图象上,∴||x=2,即x=±2.∴点A 的坐标为(2,2)或(-2,2).∴k=±4.②当k=4时,图象如图①,当y1>y2时,x的取值范围为x<0或x>2;当k=-4时,图象如图②,当y1>y2时,x的取值范围为x<-2或x>0. 21.解:(1)过点B作BG⊥DE于点G,如图.在Rt△ABH中,tan ∠BAH=13=33,∴∠BAH=30°,∴BH=12AB=4(米).∴点B距水平面AE的高度BH为4米.(2)由(1)知BH=4(米),∴GE=BH=4(米),AH=4 3(米).∴BG=HE=AH+AE=(4 3+12)米.在Rt△BGC中,∠CBG=45°,∴CG=BG=(4 3+12)米.在Rt△ADE中,∠DAE=60°,AE=12米,∴DE=AE·tan ∠DAE=12·tan 60°=12 3(米).∴CD=CG+GE-DE=4 3+12+4-12 3=16-8 3≈16-8×1.732≈2.1(米).∴广告牌CD的高度约为2.1米.22.解:(1)由题意得y=(x-50)·w=(x-50)·(-2x+240)=-2x2+340x-12 000,∴y与x的函数表达式为y=-2x2+340x-12 000.(2)y=-2x2+340x-12 000=-2(x-85)2+2 450,∴当x=85时,y的值最大.(3)当y=2 250时,可得-2(x-85)2+2 450=2 250,解这个方程,得x1=75,x2=95,根据题意知,x=95不合题意,故舍去,∴销售单价应定为75元/千克.23.(1)①证明:如图,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°, ∴∠1+∠3=90°.由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°. ∴∠3=∠2. 又∵∠C =∠D , ∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA , ∴OP P A =CP DA =12.∴CP =12AD =4,AP =2OP . 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42. 解得x =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不变.作MQ ∥AN ,交PB 于点Q ,如图.∵AP =AB ,MQ ∥AN ,∴∠APB=∠ABP=∠MQP.∴MP=MQ.又∵BN=PM,∴BN=QM.∵MQ∥AN,∴∠QMF=∠BNF,∠MQF=∠FBN,∴△MFQ≌△NFB.∴QF=FB.∴QF=12QB.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∴EF=EQ+QF=12PQ+12QB=12PB.∵PC=4,BC=8,∠C=90°. ∴PB=82+42=4 5,∴EF=12PB=2 5.∴动点M,N在移动的过程中,线段EF的长度不变,恒为2 5.。
必刷提高练【第2章《整式的加减》章节达标检测】(原卷版 解析版)(人教版)
2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第2章《整式的加减》章节达标检测考试时间:120分钟试卷满分:100分姓名:__________ 班级:__________考号:__________第Ⅰ卷(选择题)评卷人得分一.选择题(共9小题,满分18分,每小题2分)1.(2分)(2022•公安县模拟)式子﹣a+(﹣2b)﹣(﹣c+2a)去掉括号后等于()A.﹣3a﹣2b﹣c B.a﹣2b+c C.﹣3a﹣2b+c D.﹣3a+2b+c2.(2分)(2022•馆陶县三模)等号左右两边一定相等的一组是()A.﹣(a+b)=﹣a+b B.a3=a+a+aC.﹣2(a+b)=﹣2a﹣2b D.﹣(a﹣b)=﹣a﹣b3.(2分)(2022•莲池区校级一模)已知两个等式m﹣n=4,p﹣2m=﹣5,则p﹣2n的值为()A.﹣3 B.3 C.6 D.﹣64.(2分)(2022•河北二模)数学实践活动课上,陈老师准备了一张边长为a和两张边长为b(a>b)的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为l1,右上阴影矩形的周长为l2.陈老师说,如果l1﹣l2=6,求a或b的值.下面是四位同学得出的结果,其中正确的是()A.甲:a=6,b=4 B.乙:a=6,b的值不确定C.丙:a的值不确定,b=3 D.丁:a,b的值都不确定5.(2分)(2022春•青岛期中)现有甲、乙两个正方形纸片,将甲、乙并列放置后得到图1,已知点H为AE 的中点,连结DH,FH.将乙纸片放到甲的内部得到图2.已知甲、乙两个正方形边长之和为8,图2的阴影部分面积为6,则图1的阴影部分面积为()A.19 B.28 C.77 D.216.(2分)(2021秋•漳州期末)若代数式a2﹣3a的值是4,则a2﹣a﹣5的值是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.(2分)(2021秋•庐阳区校级期末)有五张大小相同的长方形卡片(如图①):现按图②的放法将它们平铺放置在一个长方形(长比宽多2)的纸板上,每张长方形卡片的宽为a、长为b,纸板未被卡片覆盖的部分用阴影表示,则图②中阴影部分的周长可用a、b表示为()A.10a+4b B.14a+4b C.4a+14b﹣8 D.14a+4b﹣88.(2分)(2021秋•江北区期末)在一个长方形中,按如图所示的方式放入三个正方形①、②、③,若要求出两个阴影部分的周长之差、只需测量一个小正方形的边长即可,则这个小正方形是()A.①B.②C.③D.不能确定9.(2分)如图,有三张正方形纸片A,B,C,它们的边长分别为a,b,c,将三张纸片按图1,图2两种不同方式放置于同一长方形中,记图1中阴影部分周长为l1,面积为S1,图2中阴影部分周长为l2,面积为S2.若S2﹣S1=()2,则b:c的值为()A.B.2 C.D.3第Ⅱ卷(非选择题)评卷人得分二.填空题(共10小题,满分20分,每小题2分)10.(2分)(2022•永州)若单项式3x m y与﹣2x6y是同类项,则m=.11.(2分)(2022•岳池县模拟)按如图所示的程序进行计算,计算按箭头指向循环进行,当初始输入为5时,第2022次计算的结果为.12.(2分)(2022•武进区一模)已知a2﹣3a﹣1=0,则代数式2a2﹣6a+1的值为.13.(2分)(2022•石景山区一模)已知m>0,n>0,若m2+4n2=13,mn=3,请借助如图直观分析,通过计算求得m+2n的值为.14.(2分)(2021秋•秀屿区校级期末)已知a+3b=2,则3a+9b+3的值为.15.(2分)(2021秋•雁塔区校级期末)如图所示的运算程序中,若开始输入的x值为6,则第2022次输出的结果为.16.(2分)(2021秋•昌江区校级期末)(2x﹣1)5=a5x5+a4x4+…+a1x+a0,则a2+a4=.17.(2分)(2021秋•通川区期末)当x=2021时,代数式ax5+bx3+cx﹣3的值为2018,则当x=﹣2021时代数式ax5+bx3+cx﹣1的值为.18.(2分)(2021秋•博兴县期末)若多项式2x2+3x+2的值为5,则多项式6x2+9x﹣1的值为.19.(2分)(2018秋•灌阳县期中)如图.将面积为a2的小正方形与面积为b2的大正方形放在一起(a>0,b>0)则三角形ABC的面积是评卷人得分三.解答题(共9小题,满分62分)20.(6分)(2022•息烽县二模)解答下列问题:(1)已知3a m b4与﹣5a4b n﹣1是同类项,求的值;(2)已知,求代数式a2+6a﹣2(1+3a﹣a2)的值.21.(6分)(2022春•信阳期中)甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购买100元后,超出100元的部分按90%收费;在乙商场累计购买超过50元后,超过50元的部分按95%收费.设累计购物x元.(1)若x=80,顾客到商场购物花费少.(填“甲”或“乙”)(2)当x>100时.①顾客到甲商场购物,花费元,到乙商场购物,花费元.(用含x的式子表示)②顾客到哪家商场购物花费少?22.(6分)(2022•滦南县模拟)已知整式(a2﹣2ab)﹣(■ab﹣4b2),其中“■”处的系数被墨水污染了.当a=﹣2,b=1时,该整式的值为16.(1)则■所表示的数字是多少?(2)小红说该代数式的值是非负数,你认为小红的说法对吗?说明理由.23.(6分)(2022•仙居县校级开学)我们规定:若有理数a,b满足a+b=ab,则称a,b互为“特征数”,其中a叫做b的“特征数”,b也叫a的“特征数”.例如:因为2+2=4,2×2=4,所以2+2=2×2,则2与2互为“特征数”.请根据上述规定解答下列问题:(1)有理数﹣1的“特征数”是;(2)有理数1 (填“有”或“没有”)“特征数”;(3)若m的“特征数”是3,n的“特征数”是﹣2,求4m+21n的值.24.(8分)(2022春•埇桥区校级期中)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分).(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=30米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.25.(8分)(2021秋•包河区校级期末)如图,甲、乙两人(看成点)分别在数轴上表示﹣3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是(填“谁对谁错”);(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为.(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是.26.(6分)(2021秋•双牌县期末)长方形ABCD的长是a,宽是b,分别以A,C为圆心,长方形的宽为半径画弧,得到如图所示的图形.(1)请你用代数式表示阴影部分的周长和面积(结果中保留π);(2)当a=4,b=1时,求阴影部分的面积是多少?(π取3.14)27.(8分)(2021秋•石狮市期末)图1是2022年1月份的日历,用图2所示的“九方格”在图1中框住9个日期,并把其中被阴影方格覆盖的四个日期分别记为a、b、c、d.(1)直接填空:a+d b+c;(填“>”、“<”或“=”)(2)当图2在图1的不同位置时,代数式a﹣2b+4c﹣3d的值是否为定值?若是,请求出它的值,若不是,请说明理由.28.(8分)(2021秋•翠屏区期末)某校为了丰富学生的课余生活:计划购买一些乒乓球拍和乒乓球,已知一副乒乓球拍的标价为50元,一盒乒乓球的标价是20元.现了解到两家文具店都在做促销活动,甲文具店:买一副乒乓球拍送一盒乒乓球;乙文具店:所有商品均打八折,若学校计划购买乒乓球拍10副,乒乓球x(x>10)盒.(1)用含x的代数式分别表示在甲、乙两家文具店购买球拍和球的总费用;(2)若学校计划购买乒乓球40盒,选择在甲、乙其中一家文具店购买,请问在哪家购买合算;(3)在(2)的条件下,若还可以选择在甲、乙两家文具店同时购买,请你设计种最省钱的购买方案.2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第二章《整式的加减》章节达标检测考试时间:120分钟试卷满分:100分一.选择题(共9小题,满分18分,每小题2分)1.(2分)(2022•公安县模拟)式子﹣a+(﹣2b)﹣(﹣c+2a)去掉括号后等于()A.﹣3a﹣2b﹣c B.a﹣2b+c C.﹣3a﹣2b+c D.﹣3a+2b+c解:﹣a+(﹣2b)﹣(﹣c+2a)=﹣a﹣2b+c﹣2a=﹣3a﹣2b+c,故选:C.2.(2分)(2022•馆陶县三模)等号左右两边一定相等的一组是()A.﹣(a+b)=﹣a+b B.a3=a+a+aC.﹣2(a+b)=﹣2a﹣2b D.﹣(a﹣b)=﹣a﹣b解:A、原式=﹣a﹣b,原去括号错误,故此选项不符合题意;B、a3=a•a•a,a+a+a=3a,原式左右两边不相等,故此选项不符合题意;C、原式=﹣2a﹣2b,原去括号正确,故此选项符合题意;D、原式=﹣a+b,原去括号错误,故此选项不符合题意.故选:C.3.(2分)(2022•莲池区校级一模)已知两个等式m﹣n=4,p﹣2m=﹣5,则p﹣2n的值为()A.﹣3 B.3 C.6 D.﹣6解:∵m﹣n=4①,p﹣2m=﹣5②,∴①×2+②得:2m﹣2n+p﹣2m=8﹣5,整理得:p﹣2n=3.故选:B.4.(2分)(2022•河北二模)数学实践活动课上,陈老师准备了一张边长为a和两张边长为b(a>b)的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为l1,右上阴影矩形的周长为l2.陈老师说,如果l1﹣l2=6,求a或b的值.下面是四位同学得出的结果,其中正确的是()A.甲:a=6,b=4 B.乙:a=6,b的值不确定C.丙:a的值不确定,b=3 D.丁:a,b的值都不确定解:设左下阴影矩形的宽为x,则AB=CD=a+x,∴右上阴影矩形的宽为a+x﹣2b,∴左下阴影矩形的周长l1=2(a+x),右上阴影矩形的周长为l2=2(a+x﹣2b+b)=2(a+x﹣b),∴l1﹣l2=2(a+x)﹣2(a+x﹣b)=2b=6,解得b=3,此时a的值不确定.故选:C.5.(2分)(2022春•青岛期中)现有甲、乙两个正方形纸片,将甲、乙并列放置后得到图1,已知点H为AE的中点,连结DH,FH.将乙纸片放到甲的内部得到图2.已知甲、乙两个正方形边长之和为8,图2的阴影部分面积为6,则图1的阴影部分面积为()A.19 B.28 C.77 D.21解:设甲正方形边长为x,乙正方形边长为y,则AD=x,EF=y,AE=x+y=8,∴(x+y)2=64,∴x2+y2+2xy=64,∵点H为AE的中点,∴AH=EH=4,∵图2的阴影部分面积=(x﹣y)2=x2+y2﹣2xy=6,∴(x+y)2+(x﹣y)2=64+6,∴x2+y2=35,∴图1的阴影部分面积=x2+y2﹣×4•x﹣×4•y=x2+y2﹣2(x+y)=35﹣2×8=35﹣16=19,故选:A.6.(2分)(2021秋•漳州期末)若代数式a2﹣3a的值是4,则a2﹣a﹣5的值是()A.﹣2 B.﹣3 C.﹣4 D.﹣5解:∵代数式a2﹣3a的值为4,∴a2﹣3a=4,∴=(a2﹣3a)﹣5==2﹣5=﹣3.故选:B.7.(2分)(2021秋•庐阳区校级期末)有五张大小相同的长方形卡片(如图①):现按图②的放法将它们平铺放置在一个长方形(长比宽多2)的纸板上,每张长方形卡片的宽为a、长为b,纸板未被卡片覆盖的部分用阴影表示,则图②中阴影部分的周长可用a、b表示为()A.10a+4b B.14a+4b C.4a+14b﹣8 D.14a+4b﹣8解:设图②中大长方形的长为x,则宽为x﹣2,阴影部分的周长为:2x+2(x﹣2﹣2a)+2(x﹣2﹣b)=2x+2x﹣4﹣4a+2x﹣4﹣2b=6x﹣4a﹣2b﹣8,又∵x=3a+b,∴6x﹣4a﹣2b﹣8=6(3a+b)﹣4a﹣2b﹣8=18a+6b﹣4a﹣2b﹣8=14a+4b﹣8,故选:D.8.(2分)(2021秋•江北区期末)在一个长方形中,按如图所示的方式放入三个正方形①、②、③,若要求出两个阴影部分的周长之差、只需测量一个小正方形的边长即可,则这个小正方形是()A.①B.②C.③D.不能确定解:如图:设正方形①的边长为a,正方形②的边长为b,正方形③边长为c,BE=FG=x,BG=EF=y,则矩形ABCD的周长为2(b+c﹣x)+2(a﹣y)=2a+2b+2c﹣2x﹣2y,矩形MNFH的周长为2(a﹣x)+2(b﹣y)=2a+2b﹣2x﹣2y,∴两个阴影部分的周长之差是:2a+2b+2c﹣2x﹣2y﹣(2a+2b﹣2x﹣2y)=2a+2b+2c﹣2x﹣2y﹣2a﹣2b+2x+2y=2c,∴若要求出两个阴影部分的周长之差、只需测量小正方形③的边长即可,故选:C.9.(2分)如图,有三张正方形纸片A,B,C,它们的边长分别为a,b,c,将三张纸片按图1,图2两种不同方式放置于同一长方形中,记图1中阴影部分周长为l1,面积为S1,图2中阴影部分周长为l2,面积为S2.若S2﹣S1=()2,则b:c的值为()A.B.2 C.D.3解:设大长方形的宽短边长为d,∴由图2知,d=b﹣c+a,∴l1=2(a+b+c)+(d﹣a)+(d﹣c)+(a﹣b)+(b﹣c)=2a+2b+2d,S1=d(a+b+c)﹣a2﹣b2﹣c2,l2=a+b+c+d+a+c+(a﹣b)+(b﹣c)=3a+b+c+d,S2=d(a+b+c)﹣a2﹣b2+bc,∴S2﹣S1=bc+c2,l1﹣l2=b﹣c﹣a+d,∴bc+c2=,∴bc+c2=(b﹣c)2,∴3bc=b2,∴b=3c,∴b:c的值为3,故选:D.二.填空题(共10小题,满分20分,每小题2分)10.(2分)(2022•永州)若单项式3x m y与﹣2x6y是同类项,则m= 6 .解:∵3x m y与﹣2x6y是同类项,∴m=6.故答案为:6.11.(2分)(2022•岳池县模拟)按如图所示的程序进行计算,计算按箭头指向循环进行,当初始输入为5时,第2022次计算的结果为 4 .解:当x=5时,3x+1=16,当x=16时,=8,当x=8时,=4,当x=4时,=2,当x=2时,=1,当x=1时,3x+1=4,当x=4时,=2,当x=2时,=1,从第3次开始,结果依次是4,2,1不断循环,(2022﹣2)÷3=673……1,∴第2022次计算的结果为4.故答案为:4.12.(2分)(2022•武进区一模)已知a2﹣3a﹣1=0,则代数式2a2﹣6a+1的值为 3 .解:∵a2﹣3a﹣1=0,∴a2﹣3a=1,∴2a2﹣6a+1=2(a2﹣3a)+1=2×1+1=3.故答案为:3.13.(2分)(2022•石景山区一模)已知m>0,n>0,若m2+4n2=13,mn=3,请借助如图直观分析,通过计算求得m+2n的值为 5 .解:如图,由图形可得:(m+2n)2=m2+4n2+4mn,∴(m+2n)2=13+12=25,∵m>0,n>0,∴m+2n=5.故答案为:5.14.(2分)(2021秋•秀屿区校级期末)已知a+3b=2,则3a+9b+3的值为9 .解:∵a+3b=2,∴原式=3(a+3b)+3=3×2+3=6+3=9.故答案为:9.15.(2分)(2021秋•雁塔区校级期末)如图所示的运算程序中,若开始输入的x值为6,则第2022次输出的结果为 6 .解:第1次输出的结果为3,第2次输出的结果为8,第3次输出的结果为4,第4次输出的结果为2,第5次输出的结果为1,第6次输出的结果为6,第7次输出的结果为3,第8次输出的结果为8,第9次输出的结果为4,…,则从第1次开始,以3、8、4、2、1、6为一个循环组循环出现,∵2022÷6=367,∴第2022次输出的结果为6.故答案为:6.16.(2分)(2021秋•昌江区校级期末)(2x﹣1)5=a5x5+a4x4+…+a1x+a0,则a2+a4=﹣120 .解:当x=1时,(2×1﹣1)5=a5+a4+a3+a2+a1+a0.①当x=﹣1时,(﹣1×2﹣1)5=﹣a5+a4﹣a3+a2﹣a1+a0.②①+②得:1+(﹣243)=2(a4+a2+a0).∴a2+a4+a0=﹣121.将x=0代入题中等式得:(﹣1)5=a0,∴a0=﹣1.∴a2+a4=﹣121﹣(﹣1)=﹣120.故答案为:﹣120.17.(2分)(2021秋•通川区期末)当x=2021时,代数式ax5+bx3+cx﹣3的值为2018,则当x=﹣2021时代数式ax5+bx3+cx﹣1的值为﹣2022 .解:∵x=2021时,代数式ax5+bx3+cx﹣3的值是2018,∴20215a+20213b+2021c﹣3=2018,∴20215a+20213b+2021c=2021,∴当x=﹣2021时,代数式ax5+bx3+cx﹣1=(﹣2021)5a﹣20213b﹣2021c﹣1=﹣(20215a+20213b+2021c)﹣1=﹣2021﹣1=﹣2022.故答案为:﹣2022.18.(2分)(2021秋•博兴县期末)若多项式2x2+3x+2的值为5,则多项式6x2+9x﹣1的值为8 .解:∵2x2+3x+2=5,∴2x2+3x=3,∴6x2+9x=9,∴6x2+9x﹣1=9﹣1=8,故答案为:8.19.(2分)(2018秋•灌阳县期中)如图.将面积为a2的小正方形与面积为b2的大正方形放在一起(a>0,b>0)则三角形ABC的面积是b2解:延长FA交HB的延长线于E,则HE=a+b,=cf,EB=a,AE=b﹣a,则AE⊥BE,由三角形的面积公式得:S△ABC=S矩形EFCH﹣S△AEB﹣S△BHC﹣S△AFC=(a+b)b﹣(b﹣a)a﹣b•b﹣(a+b)a,=b2.另解:连接AG,则有BC∥AG,三角形ABC面积可转换为三角形BCG面积,即可求得结果.故答案为:b2.三.解答题(共9小题,满分62分)20.(6分)(2022•息烽县二模)解答下列问题:(1)已知3a m b4与﹣5a4b n﹣1是同类项,求的值;(2)已知,求代数式a2+6a﹣2(1+3a﹣a2)的值.解:(1)∵3a m b4与﹣5a4b n﹣1是同类项,∴m=4,n﹣1=4,解得:m=4,n=5,则原式=×4+5=2+5=7;(2)原式=a2+6a﹣2﹣6a+2a2=3a2﹣2,当a=﹣时,原式=3×(﹣)2﹣2=3×﹣2=﹣2=﹣.21.(6分)(2022春•信阳期中)甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购买100元后,超出100元的部分按90%收费;在乙商场累计购买超过50元后,超过50元的部分按95%收费.设累计购物x元.(1)若x=80,顾客到乙商场购物花费少.(填“甲”或“乙”)(2)当x>100时.①顾客到甲商场购物,花费0.9x+10 元,到乙商场购物,花费0.95x+2.5 元.(用含x的式子表示)②顾客到哪家商场购物花费少?解:(1)x=80,顾客到甲商场应花费80元,到乙商场应花费50+(80﹣50)×95%=78.5(元),∵78.5<80,∴顾客到乙商场购物花费少,故答案为:乙;(2)①当x>100时,顾客到甲商场应花费100+(x﹣100)×90%=(0.9x+10)元,到乙商场应花费50+(x﹣50)×95%=(0.95x+2.5)元),故答案为:0.9x+10,0.95x+2.5;②由0.9x+10<0.95x+2.5,得x>150,∴当x>150时,到甲商场花费少;由0.9x+10=0.95x+2.5,得x=150,∴当x=150时,到两个商场花费相同;由0.9x+10>0.95x+2.5,得x<150,∴当100<x<150时,到乙商场花费少.答:当x>150时,到甲商场花费少;当x=150时,到两个商场花费相同;当100<x<150时,到乙商场花费少.22.(6分)(2022•滦南县模拟)已知整式(a2﹣2ab)﹣(■ab﹣4b2),其中“■”处的系数被墨水污染了.当a=﹣2,b=1时,该整式的值为16.(1)则■所表示的数字是多少?(2)小红说该代数式的值是非负数,你认为小红的说法对吗?说明理由.解:(1)当a=﹣2,b=1时,(a2﹣2ab)﹣(■ab﹣4b2)=a2﹣2ab﹣■ab+4b2=(﹣2)2﹣2×(﹣2)×1﹣■(﹣2)×1+4×12=4+4+2■+4=12+2■=16,解得:■=2;(2)小红的说法正确,理由如下:由(1)求得的结果可得该整式为:(a2﹣2ab)﹣(2ab﹣4b2)=a2﹣2ab﹣2ab+4b2=a2﹣4ab+4b2=(a﹣2b)2≥0,故小红的说法正确.23.(6分)(2022•仙居县校级开学)我们规定:若有理数a,b满足a+b=ab,则称a,b互为“特征数”,其中a叫做b的“特征数”,b也叫a的“特征数”.例如:因为2+2=4,2×2=4,所以2+2=2×2,则2与2互为“特征数”.请根据上述规定解答下列问题:(1)有理数﹣1的“特征数”是;(2)有理数1 没有(填“有”或“没有”)“特征数”;(3)若m的“特征数”是3,n的“特征数”是﹣2,求4m+21n的值.解:(1)设﹣1的”特征数“是x,则:﹣1+x=﹣1×x,∴x=,故答案为:.(2)假设1的”特征数“是x,则:1+x=1×x,∴0=1 不成立,∴1没有“特征数”.故答案为:没有.(3)由题意得:m+3=3m,n﹣2=﹣2n,∴m=,n=.∴4m+21n=6+14=20.24.(8分)(2022春•埇桥区校级期中)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分).(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=30米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.解:(1)(2x+y)(x+2y)﹣2y2=2x2+4xy+xy+2y2﹣2y2=2x2+5xy;(2)∵y=3x=30米,∴x=10(米),2x2+5xy=2×100+5×10×30=1700(平方米),20×1700=34000(元).答:铺完这块草坪一共要34000元.25.(8分)(2021秋•包河区校级期末)如图,甲、乙两人(看成点)分别在数轴上表示﹣3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是甲对乙错(填“谁对谁错”);(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为 4 .(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k 的值是3或5 .解:(1)∵甲、乙两人(看成点)分别在数轴﹣3和5的位置上,∴甲乙之间的距离为8.∵若甲乙都错,则甲向东移动1个单位,在同时乙向西移动1个单位,∴第一次移动后甲的位置是﹣3+1=﹣2,停在了数轴的负半轴上,∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴第一次移动后甲的位置是﹣3+4=1,停在了数轴的正半轴上,∵若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位,∴第一次移动后甲的位置是﹣3﹣2=﹣5,停在了数轴的负半轴上.故答案为:甲对乙错.(2)①∵乙猜对n次,∴乙猜错了(10﹣n)次.∵甲错乙对,乙向西移动4个单位,∴猜对n次后,乙停留的数字为:5﹣4n.∵若甲对乙错,乙向东移动2个单位,∴猜错了(10﹣n)次后,乙停留的数字为:5﹣4n+2(10﹣n)=25﹣6n;②∵n为正整数,∴当n=4时该位置距离原点O最近.故答案为:4;(3)k=3 或k=5.由题意可得刚开始两人的距离为8,∵若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位,∴若都对或都错,移动后甲乙的距离缩小2个单位.∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴若甲对乙错,移动后甲乙的距离缩小2个单位.∵若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位,∴若甲错乙对,移动后甲乙的距离缩小2个单位.∴甲乙每移动一次甲乙的距离缩小2个单位.∵甲与乙的位置相距2个单位,∴甲乙共需缩小6个单位或10个单位.∵6÷2=3,10÷2=5,∴k的值为3或5.故答案为:3或5.26.(6分)(2021秋•双牌县期末)长方形ABCD的长是a,宽是b,分别以A,C为圆心,长方形的宽为半径画弧,得到如图所示的图形.(1)请你用代数式表示阴影部分的周长和面积(结果中保留π);(2)当a=4,b=1时,求阴影部分的面积是多少?(π取3.14)解:(1)∵四边形ABCD是长方形,∴AB=CD,∴,∴,∴S阴影=S长方形ABCD﹣S半圆=ab﹣;(2)将a=4,b=1代入ab﹣得:4﹣=4﹣1.57=2.43.27.(8分)(2021秋•石狮市期末)图1是2022年1月份的日历,用图2所示的“九方格”在图1中框住9个日期,并把其中被阴影方格覆盖的四个日期分别记为a、b、c、d.(1)直接填空:a+d=b+c;(填“>”、“<”或“=”)(2)当图2在图1的不同位置时,代数式a﹣2b+4c﹣3d的值是否为定值?若是,请求出它的值,若不是,请说明理由.解:(1)设“九方格”中间的数为x,则a=x﹣8,b=x+6,c=x﹣6,d=x+8,∴a+d=x﹣8+x+8=2x,b+c=x+6+x﹣6=2x,∴a+d=b+c,故答案为:=;(2)代数式a﹣2b+4c﹣3d的值是定值,理由如下:设“九方格”中间的数为x,则a=x﹣8,b=x+6,c=x﹣6,d=x+8,∴a﹣2b+4c﹣3d=x﹣8﹣2(x+6)+4(x﹣6)﹣3(x+8)=x﹣8﹣2x﹣12+4x﹣24﹣3x﹣24=﹣68,∴a﹣2b+4c﹣3d的值为定值,其定值为﹣68.28.(8分)(2021秋•翠屏区期末)某校为了丰富学生的课余生活:计划购买一些乒乓球拍和乒乓球,已知一副乒乓球拍的标价为50元,一盒乒乓球的标价是20元.现了解到两家文具店都在做促销活动,甲文具店:买一副乒乓球拍送一盒乒乓球;乙文具店:所有商品均打八折,若学校计划购买乒乓球拍10副,乒乓球x(x>10)盒.(1)用含x的代数式分别表示在甲、乙两家文具店购买球拍和球的总费用;(2)若学校计划购买乒乓球40盒,选择在甲、乙其中一家文具店购买,请问在哪家购买合算;(3)在(2)的条件下,若还可以选择在甲、乙两家文具店同时购买,请你设计种最省钱的购买方案.解:(1)甲店购买需付款50×10+(x−10)×20=(20x+300)元;乙店购买需付款(20x+50×10)×80%=(16x+400)元;(2)当x=40时,甲店需20×40+300=1100元;乙店需16×40+400=1040元;∵1100>1040∴在乙店购买合算;(3)先在甲店购买10副球拍,送10盒乒乓球需10×50=500(元),另外30盒乒乓球在乙店购买需30×20×80%=480(元),共需980元。
人教版七年级数学上册第二章达标检测卷附答案
人教版七年级数学上册第二章达标检测卷一、选择题(每题3分,共30分)1.下列各式中,是单项式的是()A.x2-1 B.a2b C.πa+bD.x-y32.若-x3y a与x b y是同类项,则a+b的值为() A.2 B.3 C.4 D.53.下列说法中正确的是()A.-10不是单项式B.单项式-13ab的系数是13,次数是2C.-13xy是二次单项式D.2πab2的系数是2,次数是44.下列去括号运算中,错误的是()A.a2-(a-b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5C.3a-13(3a2-2a)=3a-a2+23a D.a3-[a2-(-b)]=a3-a2-b5.已知m-n=100,x+y=-1,则式子(n+x)-(m-y)的值是() A.99 B.101 C.-99 D.-1016.按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=17.某淘宝店家为迎接“双十一”抢购活动,在甲批发市场以每件a元的价格进了40件童装,又在乙批发市场以每件b元(a>b)的价格进了同样的60件童装.如果店家以每件a+b2元的价格卖出这款童装,全部卖完后,这家店()A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是()A.2mnB.(m+n)2C.(m-n)2D.m2-n29.当1<a<2时,式子|a-2|+|1-a|的值是()A.-1 B.1 C.3 D.-310.把灰色三角形按如图所示的规律拼图案,其中第①个图案中有1个灰色三角形,第②个图案中有3个灰色三角形,第③个图案中有6个灰色三角形,……,按此规律排列下去,则第⑤个图案中灰色三角形的个数为() A.10B.15C.18D.21二、填空题(每题3分,共30分)11.用式子表示“比a的平方的一半小1的数”是________.12.单项式-xy23的系数是________,次数是________.13.按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.如果单项式-x3y与x a y b-1是同类项,那么(a-b)2 022=________.15.已知a,b在数轴上的位置如图所示,化简|a|+|b-a|-2|a+b|的结果是________.16.若a+b=2 023,则当x=1时,多项式ax3+bx+1的值是________.17.一根铁丝的长为(5a+4b)m,剪下一部分围成一个长为a m,宽为b m的长方形,则这根铁丝还剩下_________m.18.小明在求一个多项式减去x 2-3x +5的结果时,误算成这个多项式加上x 2-3x +5,得到的结果是5x 2-2x +4,则正确的结果是__________. 19.随着通信市场竞争的日益激烈,为了占领市场,甲公司推出的话费优惠措施是:每分钟降低a 元,再下调25%;乙公司推出的话费优惠措施是:每分钟下调25%,再降低a 元.若甲、乙两公司原来话费每分钟收费标准相同,则推出优惠措施后收费较便宜的是________公司.20.如图,每幅图中有若干个大小不同的平行四边形,第1幅图中有1个平行四边形,第2幅图中有3个平行四边形,第3幅图中有5个平行四边形,若第n 幅图中有2 021个平行四边形,则n =________.三、解答题(23题8分,26题12分,其余每题10分,共60分) 21.先去括号,再合并同类项:(1)(5a -3a 2+1)-(4a 3-3a 2);(2)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab ].22.先化简,再求值:(1)3m +4n -[2m +(5m -2n )-3n ],其中m =1n =2;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.23.已知一个多项式(2x 2+ax -y +6)-(2bx 2-3x +5y -1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2-ab+b2)-(3a2+ab+b2),再求它的值.24.一名同学做一道题,已知两个多项式A,B,计算2A-B,他误将“2A-B”看成“A-2B”,求得的结果为9x2-2x+7,已知B=x2+3x-2,求2A-B 的正确答案.25.李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.26.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x 把椅子.(1)若x=100,请计算哪种方案省钱;(2)若x>100,请用含x的式子分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.答案一、1.B2.C3.C4.B5.D6.D7.A8.C9.B10.B点拨:因为第①个图案中灰色三角形的个数为1,第②个图案中灰色三角形的个数为3,且3=1+2,第③图案中灰色三角形的个数为6,且6=1+2+3,…所以第⑤个图案中灰色三角形的个数为1+2+3+4+5=15.二、11.12a2-112.-13;313.-614.115.3b点拨:由题图可知a<0,b>0,且|a|>|b|,所以b-a>0,a+b <0,所以原式=-a+(b-a)+2(a+b)=-a+b-a+2a+2b=3b.16.2 02417.(3a+2b)18.3x2+4x-619.乙点拨:设甲、乙两公司原来的收费为每分钟b元(0.75b>a),则推出优惠措施后,甲公司每分钟的收费为(b-a)×75%=0.75b-0.75a(元),乙公司每分钟的收费为(0.75b-a)元,0.75b-a<0.75b-0.75a,所以乙公司收费较便宜.20.1 011三、21.解:(1)原式=5a-3a2+1-4a3+3a2=-4a3+5a+1.(2)原式=-2ab+6a2-2b2+5ab+a2-2ab=7a2+ab-2b2.22.解:(1)原式=3m+4n-2m-5m+2n+3n=-4m+9n.当m=1n=2,即m=2,n=12时,原式=-4m+9n=-4×2+9×12=-72.(2)(32x2-5xy+y2)-[-3xy+2⎝⎛⎦⎥⎤14x2-xy)+23y2=32x2-5xy+y2+3xy-12x2+2xy-23y2=x2+13y 2.因为|x-1|+(y+2)2=0,所以x-1=0且y+2=0,所以x=1,y=-2.所以原式=x2+13y2=12+13×(-2)2=73.23.解:(1)(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x -5y+1=(2-2b)x2+(a+3)x-6y+7,由结果与x的取值无关,得a+3=0,2-2b=0,解得a=-3,b=1.(2)原式=3a2-3ab+3b2-3a2-ab-b2=-4ab+2b2,当a=-3,b=1时,原式=-4ab+2b2=-4×(-3)×1+2×12=14.24.解:A=(9x2-2x+7)+2(x2+3x-2)=9x2-2x+7+2x2+6x-4=11x2+4x +3.所以2A-B=2(11x2+4x+3)-(x2+3x-2)=22x2+8x+6-x2-3x+2=21x2+5x+8.25.解:(1)这套新房的面积为2x+x2+4×3+2×3=x2+2x+12+6=x2+2x+18(m2).(2)当x=6时,这套新房的面积是x2+2x+18=62+2×6+18=36+12+18=66(m2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.26.解:(1)当x=100时,方案一:100×200=20 000(元),方案二:100×(200+80)×80%=22 400(元),因为20 000<22 400,所以方案一省钱.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000,方案二:(100×200+80x)×80%=64x+16 000.(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32 800(元), 36 000>35 200>32 800,则先按方案一购买100张课桌,同时送100把椅子; 再按方案二购买200把椅子最省钱.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012 B .1.339×1011 C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( ) A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________. 14.如果规定符号“*”的意义是a *b =aba +b,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:售出套数7 6 7 8 2售价(元) +5 +1 0 -2 -5则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
部编版语文五年级(上)第二单元达标测试卷1含答案
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!新人教部编版语文五年级上册第二单元基础测试卷时间:90分钟满分:100分一、基础训练营(38分)1.下面加点字的读音完全相同的一项是()(2分)A.即.刻上卿.鲫.鱼既.然B.开辟.墙壁.完璧.归赵逃避.C.宾.馆滨.江五彩缤.纷兵.法D.冠.军冠.名夺冠.三连冠.2.查字典,完成练习。
(2分)“瑟”用部首查字法,先查部首____,再查____画。
“瑟”是古代弦乐器,像琴。
叠词“瑟瑟”的意思有:①拟声词,形容轻微的声音;②形容颤抖。
“秋风瑟瑟”中的“瑟瑟”取第______种意思;“瑟瑟发抖”中的“瑟瑟”取第______种意思。
鲁教版七年级数学上册第二章达标检测卷附答案
鲁教版七年级数学上册第二章达标检测卷一、选择题(本大题共12道小题,每小题3分,共36分)1.下面所给的图形是轴对称图形的是()2.如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2 020次碰到长方形边上的点为图中的()A.A点B.B点C.C点D.D点3.如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B′的度数为()A.110°B.70°C.90°D.30°4.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴5.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边上的高的交点处B.AC,BC两边上的中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处6.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°7.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图所示,那么哥哥球衣上的号码实际是()A.25 B.52 C.55 D.228.如图,将长方形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD按箭头方向向下对折,然后剪下一个小三角形.将纸片打开,则打开后的图形是()9.如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC于点E,连接BE,则△BEC的周长为()A.11 B.12 C.13 D.1410.如图所示的轴对称图形中,对称轴的总数量是()A.16条B.15条C.14条D.13条11.如图,3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形共有()A.1个B.2个C.3个D.4个12.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°二、填空题(本大题共6道小题,每小题3分,共18分)13.如图,△ABC中,∠ACB=90°,BC=6,AC=8,AB=10,动点P在边AB上运动(不与端点重合),点P关于直线AC,BC对称的点分别为P1,P2.则在点P的运动过程中,线段P1P2的长的最小值是________.14.在等腰三角形ABC中,AB=AC,腰AB上的高与AC的夹角为40°,则该等腰三角形顶角的度数为____________.15.如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线.点P是EF上的动点,则|P A-PB|的最大值为________.16.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC 的面积为12,则图中阴影部分的面积是________.17.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD =2,AC=7,那么△ADC的面积等于________.18.如图,∠ABC=30°,点D是∠ABC内的一点,且DB=9,若点E,F分别是射线BA,BC上异于点B的动点,则△DEF的周长的最小值是________.三、解答题(本大题共7道小题,19-21题每题8分,22-24题每题10分,25题12分,共66分)19.作图题:(不写画法,保留作图痕迹)如图,在小河的同旁有甲、乙两个村庄,现计划在河岸AB上建一个水泵站,向甲、乙两村供水,用以解决村民用水问题.(1)如果要求水泵站到甲、乙两个村庄的距离相等,请你在图①中,确定水泵站M在河岸AB上建造的位置;(2)如果要求水泵站到甲、乙两个村庄的供水管道使用的材料最省,请你在图②中,确定水泵站M在河岸AB上建造的位置.20.如图,在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE.求∠CDE的度数.21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.如图,在四边形ABCD中,AC与BD互相垂直平分,垂足为点O.(1)四边形ABCD是不是轴对称图形?如果是,它的对称轴是什么?(2)图中有哪些相等的线段?(3)作出点O到∠BAD两边的垂线段,并说明它们的大小关系.24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________.(填“大”或“小”)(2)当DC等于多少时,△ABD≌△DCE?请说明理由.(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.25.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于D,点P是BA 延长线上一点,点O是线段AD上一点,OP=OC.(1)求∠APO+∠DCO的度数;(2)试说明:AC=AO+AP.答案一、1.A 2.D3.A【点拨】因为△ABC与△A′B′C′关于直线l对称,所以∠B′=∠B.因为∠B=180°-∠A-∠C=180°-50°-20°=110°,所以∠B′=110°.4.C 5.C 6.A7.A8.D9.C10.B【点拨】图①有4条对称轴,图②有3条对称轴,图③有4条对称轴,图④有4条对称轴,所有图形共有15条对称轴.11.C【点拨】将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形如图所示,共有3个.12.D【点拨】如图,作A关于BC和CD的对称点A′,A″,连接A′A″,交BC 于E,交CD于F,连接AE,AF,则A′A″的长即为△AEF的周长的最小值.连接AC.因为∠ABC+∠BCA+∠BAC=180°,∠ADC+∠DCA+∠DAC=180°,∠ABC =90°,∠ADC=90°,∠BCA+∠DCA=50°,所以∠BAC+∠DAC=130°,即∠DAB=130°.所以∠A′+∠A″=180°-∠DAB=50°.又易知∠A′=∠EAA′,∠F AD=∠A″,所以∠EAA′+∠A″AF=50°.所以∠EAF=130°-50°=80°.二、13.9.6【点拨】如图所示,连接CP.因为点P关于直线AC,BC对称的点分别为P1,P2,所以P1C=PC=P2C.所以线段P1P2的长等于2CP.当CP⊥AB时,CP的长最小,此时线段P1P2的长最小.因为∠ACB=90°,BC=6,AC=8,AB=10,所以CP=AC·BCAB=4.8.所以线段P1P2的长的最小值是9.6.14.50°或130°【点拨】当顶角为锐角时,如图①,CD⊥AB,∠CDA=90°,∠ACD=40°,所以∠A=90°-∠ACD=90°-40°=50°;当顶角为钝角时,如图②,CE⊥AB交BA的延长线于点E,∠CEA=90°,∠ACE=40°,所以∠CAE=90°-∠ACE=90°-40°=50°.所以∠BAC=180°-50°=130°.15.3【点拨】如图,延长BA交EF于P′,此时|P A-PB|的值最大,则|P′A-P′B|=AB=3.16.6【点拨】因为AB=AC,AD⊥BC,所以△ABC关于直线AD对称.所以S△BEF=S△CEF.因为△ABC的面积为12,所以图中阴影部分的面积=12S△ABC=6.17.7【点拨】过点D作DE⊥AC于点E. 因为AD平分∠BAC,所以DE=BD=2.所以S△ADC=12AC·DE=12×7×2=7.18.9【点拨】如图所示,作D关于BA,BC的对称点M,N.连接BM,BN,MN,则当E,F是MN与BA,BC的交点时,△DEF的周长最短,最短的值是MN的长.因为D,M关于BA对称,所以BM=BD,∠ABM=∠ABD.同理可得∠NBC=∠DBC,BN=BD.所以∠MBN=2∠ABC=60°,BM=BN.所以△BMN是等边三角形.所以MN=BM=BD=9.所以△DEF的周长的最小值是9.三、19.解:(1)如图①所示.(2)如图②所示.20.解:因为AB=AC,AD⊥BC,所以AD平分∠BAC.所以∠CAD=∠BAD=40°.因为AD=AE,所以∠ADE=12(180°-∠CAD)=70°.因为AD⊥BC,所以∠ADC=90°.所以∠CDE=∠ADC-∠ADE=90°-70°=20°. 21.解:同意.理由如下:如图,连接OE,OF.由题意,知BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°. 易得∠EOF =60°,∠OEF =60°,∠OFE =60°. 所以△OEF 是等边三角形.所以OE =OF =EF .所以EF =BE =CF . 所以E ,F 是BC 的三等分点. 22.解:(1)因为AD ⊥BC ,CE ⊥AB ,所以∠AEF =∠CEB =90°,∠AFE +∠EAF =90°,∠CFD +∠ECB =90°. 又因为∠AFE =∠CFD , 所以∠EAF =∠ECB . 在△AEF 和△CEB 中,⎩⎨⎧∠AEF =∠CEB ,AE =CE ,∠EAF =∠ECB ,所以△AEF ≌△CEB (ASA ). (2)由△AEF ≌△CEB ,得EF =EB , 所以∠EBF =∠EFB .在△ABC 中,AB =AC ,AD ⊥BC , 所以BD =CD .所以FB =FC . 所以∠FBD =∠FCD .因为∠EFB =180°-∠BFC =∠FBD +∠FCD =2∠FBD , 所以∠EBF =2∠FBD , 即∠ABF =2∠FBD .23.解:(1)四边形ABCD 是轴对称图形,对称轴是AC 所在直线和BD 所在直线.(2)相等的线段有:AB =BC =CD =AD ,AO =OC ,OB =OD . (3)如图,分别过点O 作OE ⊥AD 于点E ,OF ⊥AB 于点F .易知AO 平分∠BAD , 又因为OE ⊥AD ,OF ⊥AB , 所以OE =OF .24.解:(1)25;115;小(2)当DC =2时,△ABD ≌△DCE . 理由如下:因为DC =2,AB =2, 所以DC =AB .因为AB =AC ,∠B =40°, 所以∠C =∠B =40°.因为∠ADB =180°-∠ADC =∠DAC +∠C ,∠DEC =180°-∠AED =∠DAC +∠ADE ,且∠C =40°,∠ADE =40°, 所以∠ADB =∠DEC . 在△ABD 和△DCE 中,⎩⎨⎧∠ADB =∠DEC ,∠B =∠C ,AB =DC ,所以△ABD ≌△DCE (AAS ).(3)存在.∠BDA =110°或∠BDA =80°. 25.解:(1)连接BO ,如图①所示.因为AB=AC,AD⊥BC,所以BD=CD.所以OB=OC.所以∠DBO=∠DCO.又因为OP=OC,所以OB=OP.所以∠APO=∠ABO.所以∠APO+∠DCO=∠ABO+∠DBO=∠ABC. 因为∠BAC=120°,AB=AC,所以∠ABC=∠ACB=30°,所以∠APO+∠DCO=30°;(2)过点O作OH⊥BP于点H,如图②所示.因为∠BAC=120°,AB=AC,AD⊥BC,所以∠HAO=∠CAD=60°.又因为OH⊥BP,所以∠OHA=90°.所以∠HOA=30°.所以AO=2AH.因为BO=PO,OH⊥BP,所以BH=PH.又因为HP=AP+AH,所以BH =AP +AH . 又因为AB =BH +AH , 所以AB =AP +2AH .又因为AB =AC ,AO =2AH , 所以AC =AP +AO .七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元 2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( )A.23B .2C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________. 14.如果规定符号“*”的意义是a *b =aba +b,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2.10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65.15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414. 17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17. (3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12.18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9,由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16=-3+8+4×6=-3+8+24=29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元).答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130.23.解:(1)如图所示.(第23题)(2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下:根据题意得CA =(4+4t )-(-2+t )=6+3t (cm),AB =(-2+t )-(-5-2t )=3+3t (cm),所以CA -AB =(6+3t )-(3+3t )=3(cm),所以CA -AB 的值不会随着t 的变化而改变.。