中考数学一轮复习第4讲 分式(讲练案)(原卷版)

合集下载

中考数学第一轮基础复习 第4讲 分式课件

中考数学第一轮基础复习 第4讲 分式课件
∴f(2)+f12=1,f(3)+f13=1,…, ∴f(n)+…+f(1)+f(12)+…+f1n=f(1)+(n-1), ∴f(2012)+f(2011)+…+f(2)+f(1)+f12+…+f20112 =f(1)+(2012-1)=12+2011=2011.5.
第十五页,共20页。
此类问题一般是通过观察计算结果变化规律,猜想一般性的结论 (jiélùn),再利用分式的性质及运算予以证明.
第九页,共20页。
(1)在应用(yìngyòng)分式基本性质进行变形时,要注意“都”, “同一个”,“不等于0”这些字眼的意义,否则容易出现错误.
(2)在进行通分和约分时,如果分式的分子或分母是多项式时 ,则先要将这些多项式进行因式分解.
第十页,共20页。
► 类型(lèixíng)之三 分式的化简与求值
_a__×___d_____= ad (b≠b0÷,dc≠0,
db≠0) c
bc
第四页,共20页。
分式 法则 的乘 方 公式
分式 法则 的混 合运 算 特别
说明
分式乘方是把分子、分母各自乘方
=b_a_nn ______(n为整数)
在分式的混合运算中,应先算乘方,再 将除法化为乘法,进行约分化简,最后 进行加减运算,遇有括号,先算括号里 面的
通分
的值,把异分母化成同分
个分式的公分母
母的分式,这样的分式变
形叫做分式的通分
最简公分 异分母的分式通分时,通常取各分母所有因式的最高次幂

的积作为公分母,这样的公分母叫做最简公分母
第三页,共20页。
考点3
分式 的加 减
分式 的乘 除
分式(fēnshì)的运算
同分母分式 相加减

中考数学第一轮复习讲义4分式

中考数学第一轮复习讲义4分式

第四讲:分式姓名:_________ 日期:_________1.若使分式xx -2意义,则x 的取值范围是( )A .x ≠2B .x ≠﹣2C .x >﹣2D .x <22.若分式x 2x 2+2x -3的值为0,则( )A .x =±3B .x =3C .x =-3D .x 取任意值 3.下列等式从左到右的变形正确的是( )A .11++=a b a bB .am bm a b =C .2a ab a b =D .23ab a b =4.使代数式x2x -1有意义的x 的取值范围是_________.5.先化简,再求值.① a 2a 2+2a - a 2-2a +1a +2÷a 2-1a +1,其中a =2-2.②2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.6.当x =______时,分式x 2-2x -3x -3的值为零.7.化简:x 2-1x +1÷x 2-2x +1x 2-x =_________;222m m m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=_________. 8.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.一、分式的概念若A ,B 表示两个整式,且B 中含有 那么式子 就叫做分式 ①若 则分式AB无意义。

②若分式AB=0,则应 且 。

二、分式的基本性质1、分式的分子分母都乘以(或除以)同一个 的整式,分式的值不变。

..a ma m= , a m b m ÷÷= (m≠0)分式的变号法则b a-= b= 。

2、约分:根据 把一个分式分子和分母的 约去叫做分式的约分。

约分的关键是确定分式的分子和分母中的 , 约分的结果必须是 分式或整式。

3、通分:根据 把几个异分母的分式化为 分母分式的过程叫做分式的通分,通分的关键是确定各分母的 。

中考数学一轮复习PPT课件:第4讲┃分式

中考数学一轮复习PPT课件:第4讲┃分式
例 1 (1)[2013·成都] 要使分式x-5 1有意义,则 x 的取值
范围是( A ) A.x≠1 B.x>1 C.x<1 D.x≠-1
(2)[2013·温州] 若分式xx-+34的值为 0,则 x 的值是( A )
A.x=3 B.x=0 C.x=-3 D.x=-4
第4讲┃分式
解 析 (1)∵分式有意义, ∴x-1≠0,∴x≠1. (2)分式值为0的条件为x-3=0,x+4≠0,解得x=3.
除法法则 分位__ba式置__除后__以,__分与×式被__dc,除__把式__除相__式乘=的,a分即d/子bc、(ab分b/≠dc母0颠, 倒=
c≠0, d≠0)
考点聚焦
归类探究
回归教材
中考预测
第4讲┃分式
分式 法则 的乘 方 公式
分式 法则 的混 合运 算 特别
说明
分式乘方是把分子、分母各自乘方
2. 例3
分式[的20混13合·运江算西及] 化先简化求简值,再.求值:x2-24xx+4÷x2-x22x
+1,在 0,1,2 三个数中选一个合适的,代入求值.

原式=(x-2x2)2·x(xx-2 2)+1
=x-2 2+1
=x2.
当 x=1 时,原式=12.
第4讲┃分式
分式化简求值题的一般解题思路为:(1)利用因式 分解、通分、约分等相关知识对原复杂的分式进行化 简;(2)选择合适的字母取值代入化简后的式子计算 得结果.注意字母取值时一定要使原分式有意义,而 不是只看化简后的式子.
=___ba_nn____(n为整数)
在分式的混合运算中,应先算乘方,再 将除法化为乘法,进行约分化简,最后 进行加减运算,遇有括号,先算括号里 面的

2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练【含解析】

2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练【含解析】

2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练(原卷版)一、单项选择题1.设a,b均为非零实数且a<b,则下列结论中正确的是()A.1a>1bB.a2<b2C.1a2<1b2D.a3<b32.已知实数a>b>0>c,则下列结论一定正确的是()A.ab>acBC.1a<1cD.a2>c23.已知a>0,b>0,若直线l1:ax+by-2=0与直线l2:2x+(1-a)y+1=0垂直,则a+2b的最小值为()A.1B.3C.8D.94.已知x>0,y>0,且1x+2+1y=23,若x+y>m2+3m恒成立,则实数m的取值范围是()A.(-4,6)B.(-3,0)C.(-4,1)D.(1,3)5.(2023·深圳罗湖期末)某科技企业开发生产一种智能产品,该产品每年的固定成本是25万元,每生产x万件该产品,需另投入成本ω(x)万元.其中ω(x)2+10x,0<x≤40,x+10000x-945,x>40,若该公司一年内生产的该产品全部售完,每件的售价为70元,则该企业每年利润的最大值为()A.720万元B.800万元C.875万元D.900万元二、多项选择题6.下列结论中,正确的有()A.若a>b,则ac2>b c2B.若ab=4,则a2+b2≥8C.若a>b,则ab<a2D.若a>b,c>d,则a-d>b-c7.(2023·曲靖一模)已知a>0,b>0,且a+b=4,则下列结论一定正确的有()A.(a+2b)2≥8ab B.1a+1b≥2abC.ab有最大值4D.1a+4b有最小值98.设a>0,b>0,且a+2b=2,则() A.ab的最大值为12B.a+b的最小值为1C.a2+b2的最小值为45D.a-b+2ab的最小值为9 2三、填空题9.已知实数a,b满足-3≤a+b≤-2,1≤a-b≤4,则3a-5b的取值范围是___.10.已知a>0,b>0,且ab=a+b+3,则a+b的最小值为___.11.若a>0,b>0,a+b=9,则36a+ab的最小值为____.四、解答题12.已知a,b为正实数,且4a2+b2=2.(1)求ab的最大值,并求此时a,b的值;(2)求a1+b2的最大值,并求此时a,b的值.13.已知a>1,b>2.(1)若(a-1)(b-2)=4,求1a-1+1b-2的最小值及此时a,b的值;(2)若2a+b=6,求1a-1+1b-2的最小值及此时a,b的值;(3)若1a+1b=1,求1a-1+1b-2的最小值及此时a,b的值.14.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C(单位:万元)与设备占地面积x之间的函数关系为C(x)=20x+5(x>0).将该企业的净水设备购置费与安装后4年需缴水费之和合计为y(单位:万元).(1)要使y不超过7.2万元,求设备占地面积x的取值范围;(2)设备占地面积x为多少时,y的值最小?2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练(解析版)一、单项选择题1.设a ,b 均为非零实数且a <b ,则下列结论中正确的是(D )A .1a >1b B .a 2<b 2C .1a 2<1b2D .a 3<b 3【解析】对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a 2=b 2,B 错误;对于C ,取a =-1,b =1,则1a 2=1b 2,C 错误;对于D ,由a <b ,可得b 3-a 3=(b -a )·(b 2+ab +a 2)=(b -a +12a +34a2>0,所以a 3<b 3,D 正确.2.已知实数a >b >0>c ,则下列结论一定正确的是(A )A .a b >ac B C .1a <1cD .a 2>c 2【解析】对于A ,因为a >b >0>c ,所以a b >0>ac ,故A 正确;对于B ,因为函数y 在R 上单调递减,且a >c ,故B 错误;对于C ,因为a >0>c ,则1a >0>1c ,故C 错误;对于D ,若a =1,c =-2,满足a >0>c ,但a 2<c 2,故D 错误.3.已知a >0,b >0,若直线l 1:ax +by -2=0与直线l 2:2x +(1-a )y +1=0垂直,则a +2b 的最小值为(D )A .1B .3C .8D .9【解析】由题可知两条直线的斜率一定存在,因为两直线垂直,所以斜率乘积为-1,即-a b×1,即2a +b =ab ,整理得2b +1a =1,所以a +2b=(a +2b =2a b +1+4+2ba ≥5+22a b ·2ba=9,当且仅当a =b =3时等号成立.因此a +2b 的最小值为9.4.已知x >0,y >0,且1x +2+1y =23,若x +y >m 2+3m 恒成立,则实数m 的取值范围是(C)A .(-4,6)B .(-3,0)C .(-4,1)D .(1,3)【解析】因为x >0,y >0,且1x +2+1y =23,所以x +2+y =32(x +2+y+y x +2+x +2y ++6,当且仅当y x +2=x +2y,即y=3,x =1时取等号,所以x +y ≥4.因为x +y >m 2+3m 恒成立,所以m 2+3m <4,即(m -1)(m +4)<0,解得-4<m <1.所以实数m 的取值范围是(-4,1).5.(2023·深圳罗湖期末)某科技企业开发生产一种智能产品,该产品每年的固定成本是25万元,每生产x 万件该产品,需另投入成本ω(x )万元.其中ω(x )2+10x ,0<x ≤40,x +10000x-945,x >40,若该公司一年内生产的该产品全部售完,每件的售价为70元,则该企业每年利润的最大值为(C)A .720万元B .800万元C .875万元D .900万元【解析】该企业每年利润为f (x )=x -(x2+10x +25),0<x ≤40,xx +10000x-945+x >40,当0<x ≤40时,f (x )=-x 2+60x -25=-(x -30)2+875,当x =30时,f(x )取得最大值875;当x >40时,f (x )=920920-2x ·10000x=720,当且仅当x =100时等号成立,即在x=100时,f (x )取得最大值720.由875>720,可得该企业每年利润的最大值为875万元.二、多项选择题6.下列结论中,正确的有(BD )A .若a >b ,则a c 2>bc 2B .若ab =4,则a 2+b 2≥8C .若a >b ,则ab <a 2D .若a >b ,c >d ,则a -d >b -c【解析】对于A ,若c =0,则a c 2,bc 2无意义,故A 错误;对于B ,若ab =4,则a 2+b 2≥2ab =8,当且仅当a =b =±2时等号成立,故B 正确;对于C ,由于不确定a 的符号,故无法判断,例如a =0,b =-1,则ab =a 2=0,故C 错误;对于D ,若a >b ,c >d ,则-d >-c ,所以a -d >b -c ,故D 正确.7.(2023·曲靖一模)已知a >0,b >0,且a +b =4,则下列结论一定正确的有(AC)A .(a +2b )2≥8abB .1a +1b ≥2ab C .ab 有最大值4D .1a +4b有最小值9【解析】对于A ,(a +2b )2=a 2+4b 2+4ab ≥2·a ·2b +4ab =8ab ,故A 正确;对于B ,找反例,当a =b =2时,1a +1b =2,2ab =4,1a +1b<2ab ,故B 错误;对于C ,因为a +b =4≥2ab ,所以ab ≤4,当且仅当a =b =2时取等号,故C 正确;对于D ,1a +4b =a +b )+4+b a ++=94,当且仅当a =43,b =83时取等号,故D 错误.8.设a >0,b >0,且a +2b =2,则(ACD )A .ab 的最大值为12B .a +b 的最小值为1C.a2+b2的最小值为45D.a-b+2ab的最小值为9 2【解析】对于A,a>0,b>0,22ab≤a+2b=2⇒ab≤12,当且仅当a=1,b=12时取等号,故A正确;对于B,a+b=2-b,a=2-2b.因为a>0,b>0,所以0<b<1,1<a+b<2,故B错误;对于C,a2+b2=(2-2b)2+b2=5b2-8b+4=+45≥45,当且仅当a=25,b=45时取等号,故C正确;对于D,a-b+2ab=a-b+a+2bab=2a+bab=2b+1a=·(a+2b)·12=+2b a++=92,当且仅当2ba=2ab,即a=b=23时取等号,故D正确.三、填空题9.已知实数a,b满足-3≤a+b≤-2,1≤a-b≤4,则3a-5b的取值范围是__[6,19]__.【解析】因为3a-5b=-(a+b)+4(a-b),由-3≤a+b≤-2,得2≤-(a +b)≤3,由1≤a-b≤4,得4≤4(a-b)≤16,所以6≤3a-5b≤19,即3a-5b 的取值范围是[6,19].10.已知a>0,b>0,且ab=a+b+3,则a+b的最小值为__6__.【解析】因为ab=a+b+3≤14(a+b)2,所以(a+b)2-4(a+b)-12≥0,即(a+b-6)(a+b+2)≥0,解得a+b≥6或a+b≤-2.因为a>0,b>0,所以a+b≥6(当且仅当a=b=3时取等号).11.若a>0,b>0,a+b=9,则36a+ab的最小值为__8__.【解析】36a+ab=4(a+b)a+ab=4+4ba+ab≥4+24ba·ab=8,当且仅当a=6,b=3时取等号,故36a+ab的最小值为8.四、解答题12.已知a,b为正实数,且4a2+b2=2.(1)求ab的最大值,并求此时a,b的值;【解答】由不等式4a2+b2≥4ab,解得ab≤12,当且仅当2a=b=1时取等号,所以ab的最大值为12,此时a=12,b=1.(2)求a1+b2的最大值,并求此时a,b的值.【解答】由4a2+b2=2,得4a2+(1+b2)=3.由4a2+(1+b2)≥24a2·(1+b2)=4a1+b2,得a1+b2≤34,当且仅当4a2=1+b2,即a=64,b=22时取等号,所以a1+b2的最大值为34,此时a=64,b=22.13.已知a>1,b>2.(1)若(a-1)(b-2)=4,求1a-1+1b-2的最小值及此时a,b的值;【解答】因为a>1,b>2,所以a-1>0,b-2>0,所以1a-1+1b-2=a-1)(b-2)=14[(b-2)+(a-1)]≥14×2(b-2)(a-1)=1,当且仅-2=a-1,a-1)(b-2)=4,即a=3,b=4时等号成立,所以1a-1+1b-2的最小值为1,此时a=3,b=4.(2)若2a+b=6,求1a-1+1b-2的最小值及此时a,b的值;【解答】由2a+b=6,得2(a-1)+(b-2)=2,所以(a-1)+b-22=1,所以1a-1+1b-2=(a-1)+b-22=32+a-1b-2+b-22(a-1)≥3+222,当-2=2(a-1),a-1)+(b-2)=2,即a=3-2,b=22时等号成立,所以1a-1+1b-2的最小值为3+222,此时a=3-2,b=2 2.(3)若1a+1b=1,求1a-1+1b-2的最小值及此时a,b的值.【解答】因为b>2,由1a+1b=1,可得a=bb-1,所以a-1=1b-1,所以1a-1+1b-2=b-2+1b-2+1≥3,当且仅当a=32,b=3时等号成立,所以1a-1+1b-2的最小值为3,此时a=32,b=3.14.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C(单位:万元)与设备占地面积x之间的函数关系为C(x)=20x+5(x>0).将该企业的净水设备购置费与安装后4年需缴水费之和合计为y(单位:万元).(1)要使y不超过7.2万元,求设备占地面积x的取值范围;【解答】由题意得y=0.2x+80x+5x>0).由y≤7.2,得0.2x+80x+5≤7.2,整理得x2-31x-220≤0,解得11≤x≤20,即设备占地面积x的取值范围为[11,20].(2)设备占地面积x为多少时,y的值最小?【解答】y=0.2x+80x+5=x+55+80x+5-1≥2x+55×80x+5-1=7,当且仅当x+55=80x+5,即x=15时等号成立.所以设备占地面积为15平方米时,y的值最。

河北省2020届中考数学一轮复习讲义第四节 分式

河北省2020届中考数学一轮复习讲义第四节 分式
第四节 分 式(仅2011年未考,2~8分)
玩转河北10年中考真题
考点特训营


核心素养提升
玩转河北10年中考真题
命题点 1 分式化简(10年6考)
1.
(2017河北13题2分)若
3 2x x1
(
A. -1
B. -2
)
x
1 1
,则(
C. -3
D. 任意实数
2. (2010河北7题2分)化简 a2 b2 的结果是( B )
m m
1 1
4m m2
1
的过程,共五步.
其中错误的一步是( D ) A. 第二步 C. 第四步
B. 第三步 D. 第五步
例2
(2018秦皇岛一模)已知:1 1 2,则代数式
xy
2x 14xy 2 y x 2xy y
9
的值为____2____.
练习 1 A. 1
(2018邯郸二模)化简 (a b)2 (a b)2 的结果是( A )
乘方运算:( A)n
B
An
__B_n_
混合运算:同实数的运算顺序,结果一定要化为最简分式或整式
【满分技法】1.可以因式分解的一定要先因式分解,再约分,化 为最简分式或整式; 2.当整式与分式进行加减运算时,要将整式看作分母为 1的分 式,然后进行通分
重难点突破
分式化简及求值
例1
(2019石家庄藁城区模拟)下面是刘涛同学计算
性 基本性质:分式的分子和分母同乘(或除以)一个不等于 0的整式,分式 质
的值_不___变__,即 A A M , A A M , 其中 M是不等于 0的整式
B BM B BM
通分、 约分

2024年中考数学一轮复习考点精讲及专题精练—分式

2024年中考数学一轮复习考点精讲及专题精练—分式

2024年中考数学一轮复习考点精讲及专题精练—分式→➊考点精析←一、分式1.分式的定义(1)一般地,整式A 除以整式B,可以表示成AB的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母.【注意】①若B≠0,则AB有意义;②若B=0,则AB无意义;③若A=0且B≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A,B,C 均为整式.3.约分及约分法则(1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式.4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式.5.通分及通分法则(1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:((nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.→➋真题精讲←考向一分式的有关概念1.分式的三要素:(1)形如AB的式子;(2),A B 均为整式;(3)分母B 中含有字母.2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B ≠.(2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.1.(2020·湖南衡阳·中考真题)要使分式11x -有意义,则x 的取值范围是()A .1x >B .1x ≠C .1x =D .0x ≠【答案】B【分析】根据分式有意义的条件即可解答.【解析】根据题意可知,10x -≠,即1x ≠.故选:B .【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为0是解决问题的关键.2.(2020·浙江金华·中考真题)分式52x x +-的值是零,则x 的值为()A .5B .2C .-2D .-5【答案】D【分析】分式的值为零:分子等于零,且分母不等于零.【解析】解:依题意,得x+5=0,且x-2≠0,解得,x=-5,且x≠2,即答案为x=-5.故选:D .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.(2020·湖南郴州·中考真题)若分式11x +的值不存在,则x =__________.【答案】-1【分析】根据分式无意义的条件列出关于x 的方程,求出x 的值即可.【解析】∵分式11x +的值不存在,∴x+1=0,解得:x=-1,故答案为:-1.【点睛】本题考查的是分式无意义的条件,熟知分式无意义的条件是分母等于零是解答此题的关键.4.(2020·湖北黄石·中考真题)函数13y x =+-的自变量x 的取值范围是()A .2x ≥,且3x ≠B .2x ≥C .3x ≠D .2x >,且3x ≠【答案】A【分析】根据分式与二次根式的性质即可求解.【解析】依题意可得x-3≠0,x-2≥0解得2x ≥,且3x ≠故选A .【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.考向二分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.5.分式233x yxy+中的x 、y 的值都扩大到原来的2倍,则分式的值为A .扩大为原来2倍B .缩小为原来的12倍C .不变D .缩小为原来的14倍【答案】B【解析】∵若x 、y 的值都扩大到原来的2倍,则为()()()223462312312432323x y x y x y x yxy xy xy xy++++===⋅∴把分式233x y xy +中的x 、y 的值都扩大到原来的2倍,则分式的值为原来的12,故选B .【点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.6.(2019·江苏扬州·中考真题)分式13-x 可变形为()A .13x+B .-13x+C .31-x D .1-3x -【答案】D【分析】根据分式的基本性质逐项进行判断即可.【解析】A.13x +≠13-x ,故A 选项错误;B.-13x +=13-x -≠13-x,故B 选项错误;C.65x ==-13-x ,故C 选项错误;D.1-3x -=1x-3)-(=13-x,故D 选项正确,故选D.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.考向三分式的约分与通分约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.7.关于分式的约分或通分,下列哪个说法正确A .211x x +-约分的结果是1x B .分式211x -与11x -的最简公分母是x-1C .22xx 约分的结果是1D .化简221x x --211x -的结果是1【答案】D 【解析】A 、211x x +-=11x -,故本选项错误;B 、分式211x -与11x -的最简公分母是x2-1,故本选项错误;C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D .【点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.8.(2023·湖南·统考中考真题)已知5x =,则代数式2324416x x ---的值为________.【答案】13【分析】先通分,再根据同分母分式的减法运算法则计算,然后代入数值即可.【详解】解:原式=()()()()()34244444x x x x x +--+-+()()31244x x x -=-+34x =+ 5x =333145493∴===++x 故答案为:13.【点睛】本题主要考查了分式通分计算的能力,解决本题的关键突破口是通分整理.9.(2023·四川遂宁·统考中考真题)先化简,再求值:2221111x x x x -+⎛⎫⋅+ ⎪-⎝⎭,其中112x -⎛⎫= ⎪⎝⎭.【答案】1x x-,12【分析】先根据平方差公式,完全平方公式和分式的运算法则对原式进行化简,然后将1122x -⎛⎫== ⎪⎝⎭代入化简结果求解即可.【详解】解:2221111x x x x -+⎛⎫⋅+ ⎪-⎝⎭()()()21111x x x x x-+=⋅+-1x x-=,当1122x -⎛⎫== ⎪⎝⎭时,原式21122-==.【点睛】本题考查了分式的化简求值,掌握平方差公式,完全平方公式和分式的运算法则是解题关键.10.(2020.成都市中考模拟)关于分式的约分或通分,下列哪个说法正确A .211x x +-约分的结果是1xB .分式211x -与11x -的最简公分母是x-1C .22xx约分的结果是1D .化简221x x --211x -的结果是1【答案】D 【解析】A 、211x x +-=11x -,故本选项错误;B 、分式211x -与11x -的最简公分母是x2-1,故本选项错误;C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D .【点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.11.(2020·内蒙古呼和浩特·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________.【答案】()2x x -x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解.【解析】解:∵()222x x x x -=-,∴分式22x x -与282x x-的最简公分母是()2x x -,方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-,移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4.【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法.考向四分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.12.(2023·广东·统考中考真题)计算32a a+的结果为()A .1aB .26a C .5aD .6a【答案】C【分析】根据分式的加法运算可进行求解.【详解】解:原式5a=;故选:C .【点睛】本题主要考查分式的运算,熟练掌握分式的运算是解题的关键.13.(2023·天津·统考中考真题)计算21211x x ---的结果等于()A .1-B .1x -C .11x +D .211x -【答案】C【分析】根据异分母分式加减法法则进行计算即可.【详解】解:()()()()21212111111x x x x x x x +-=----+-+()()1211x x x +-=-+()()111x x x -=-+11x =+;故选:C .【点睛】本题考查了异分母分式加减法法则,解答关键是按照相关法则进行计算.14.(2023·内蒙古赤峰·统考中考真题)化简422x x +-+的结果是()A .1B .224x x -C .2x x +D .22x x +【答案】D【分析】根据分式的加减混合运算法则即可求出答案.【详解】解:422x x +-+()()4222x x x ++-=+22x x =+.故选:D.【点睛】本题考查了分式的化简,解题的关键在于熟练掌握分式加减混合运算法则.15.(2023·湖北武汉·统考中考真题)已知210x x --=,计算2221121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是()A .1B .1-C .2D .2-【答案】A【分析】根据分式的加减运算以及乘除运算法则进行化简,然后把21x x =+代入原式即可求出答案.【详解】解:2221121-⎛⎫-÷⎪+++⎝⎭x x x x x x =()()()()2121111x x x x x x x x x ⎡⎤-+-÷⎢⎥+++⎢⎥⎣⎦=()()()21111x x x x x x +-⋅+-=21x x +,∵210x x --=,∴21x x =+,∴原式=21x x +=1,故选:A.【点睛】本题考查分式的混合运算及求值.解题的关键是熟练运用分式的加减运算以及乘除运算法则.16.(2023·黑龙江绥化·统考中考真题)化简:2222142442x x x x x x x x x+--⎛⎫-÷= ⎪--+-⎝⎭_______.【答案】12x -【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简即可求解.【详解】解:2222142442x x x x x x x x x+--⎛⎫-÷ ⎪--+-⎝⎭()()()()()2221242x x x x x x x x x +----=⨯--()()2222442x x x x xx x x ---+=⨯--12x =-;故答案为:12x -.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.17.(2020·山西中考真题)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++2(3)(3)21(3)2(3)x x x x x +-+=-++第一步32132(3)x x x x -+=-++第二步2(3)212(3)2(3)x x x x -+=-++第三步26(21)2(3)x x x --+=+第四步26212(3)x x x --+=+第五步526x =-+第六步任务一:填空:①以上化简步骤中,第_____步是进行分式的通分,通分的依据是____________________或填为_____________________________;②第_____步开始出现错误,这一步错误的原因是_____________________________________;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;任务二:726x -+;任务三:最后结果应化为最简分式或整式,答案不唯一,详见解析.【分析】先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,按照同分母分式的加减法进行运算,注意最后的结果必为最简分式或整式.【解析】任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;任务二:解;229216926x x x x x -+-+++2(3)(3)21(3)2(3)x x x x x +-+=-++32132(3)x x x x -+=-++2(3)212(3)2(3)x x x x -+=-++26(21)2(3)x x x --+=+26212(3)x x x ---=+726x =-+.任务三:解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【点睛】本题考查的是有理数的混合运算,分式的化简,掌握以上两种以上是解题的关键.考向五分式化简求值18.(2023·广东深圳·统考中考真题)先化简,再求值:22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭,其中3x =.【答案】1x x +,34【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭()()()21111x x x x x +-=÷--111x x x x -=⨯-+1xx =+∵3x =∴原式33314==+.【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(2023·四川眉山·统考中考真题)先化简:214111x x x -⎛⎫-÷ ⎪--⎝⎭,再从2,1,1,2--选择中一个合适的数作为x 的值代入求值.【答案】12x +;1【分析】先根据分式混合运算法则进行计算,然后再代入数据求值即可.【详解】解:214111x x x -⎛⎫-÷ ⎪--⎝⎭()()2211111x x x x x x +--⎛⎫-÷ ⎪---⎝⎭=()()()12122x x x x x =--⋅-+-12x =+,∵1x ≠,2±,∴把=1x -代入得:原式1112==-+.【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.20.(2023·山东烟台·统考中考真题)先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数.【答案】33a a -+;12-【分析】先根据分式混合运算法则进行化简,然后求出不等式的解集,得出正整数a 的值,再代入数据计算即可.【详解】解:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭()()()23225222a a a a a a -+-⎡⎤=÷+⎢⎥---⎣⎦()2234522a a a a --+=÷--()()()232233a a a a a --=⋅-+-33a a -=+,解不等式112a -≤得:3a ≤,∵a 为正整数,∴1a =,2,3,∵要使分式有意义20a -≠,∴2a ≠,∵当3a =时,552320223a a ++=++=--,∴3a ≠,∴把1a =代入得:原式131132-==-+.【点睛】本题主要考查了分式化简求作,分式有意义的条件,解不等式,解题的关键是熟练掌握分式混合运算法则,准确计算.21.(2023·江西·统考中考真题)化简2111x x x x x x-⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x x x x x x x⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式221111x x x x x x x x--=⋅+⋅+-……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③;(2)见解析【分析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【详解】(1)解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;(2)解:甲同学的解法:原式()()()()()()21111111x x x x x x x x x x⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦()()()()221111x x x x x x x x x =⋅+++---+()()()()211112x x x x x x =⋅+-+-2x =;乙同学的解法:原式221111x x x x x x x x--=⋅+⋅+-()()()()111111x x x x x x x x x x=⋅+⋅+-+--+11x x =-++2x =.【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.22.(2023·山东枣庄·统考中考真题)先化简,再求值:222211a a a a a ⎛⎫-÷ ⎪--⎝⎭,其中a 的值从不等式组1a -<<的解集中选取一个合适的整数.【答案】21a a a --,12【分析】先根据分式的混合运算法则,进行化简,再选择一个合适的整数,代入求值即可.【详解】解:原式222223111a a a a a a a ⎛⎫=-÷ ⎪-⎝⎭---()2222111a a aa a a =⋅----21a aa =--;∵220,10a a ≠-≠,∴0,1a a ≠≠±,23=<=,∴1a -<<0,1,2,∵0,1a a ≠≠±,∴2a =,原式2122221--==.【点睛】本题考查分式的化简求值,求不等式组的整数解.熟练掌握相关运算法则,正确的进行计算,是解题的关键.23.(2023·山东滨州·统考中考真题)先化简,再求值:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭,其中a 满足1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝.【答案】244a a -+;1【分析】先根据分式的加减计算括号内的,然后将除法转化为乘法,再根据分式的性质化简,根据负整数指数幂,特殊角的三角函数值,求得2430a a -+=的值,最后将2430a a -+=代入化简结果即可求解.【详解】解:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭()()()()()22221422a a a a a a a a a a ⎡⎤+---=÷⎢⎥--⎢⎥⎣⎦()()()()222142a a a a a a a a +----=÷-()222244a a a a a a a--=⨯--+()22a =-244a a =-+;∵1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝,即2430a a -+=,∴原式2=431011a a -++=+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则以及负整数指数幂,特殊角的三角函数值进行求解.24.(2023·湖北荆州·统考中考真题)先化简,再求值:222222x y x xy y x y x y x y x y ⎛⎫--+--÷ ⎪+-+⎝⎭,其中112x -⎛⎫= ⎪⎝⎭,0(2023)y =-.【答案】-x x y,2【分析】根据分式的运算法则,先将分式进行化简,再将x 和y 的值代入即可求出答案.【详解】解:222222x y x xy y x y x y x y x y⎛⎫--+--÷ ⎪+-+⎝⎭()()()22x y x y x y x y x y x y x y⎡⎤--+=-⋅⎢⎥++--⎢⎥⎣⎦2x y x y x y x y x y x y⎛⎫--+=-⋅ ⎪++-⎝⎭x x y x y x y+=⋅+-xx y=-1122x -⎛⎫== ⎪⎝⎭,0(2023)1y =-=∴原式2221x x y ===--.故答案为:-x x y ,2.【点睛】本题考查了分式的化简求值问题,解题的关键在于熟练掌握分式的运算法则、零次幂、负整数次幂.。

专题04分式(学案)-备战2023年中考数学一轮复习专题精讲精练学案(全国通用)

专题04分式(学案)-备战2023年中考数学一轮复习专题精讲精练学案(全国通用)

中考数学一轮复习学案04 分式考点课标要求考查角度1分式的概念①了解分式的概念,明确分式与整式的区别,会确定使分式有意义的字母的取值范围;②会求分式值为零时x的值.考查分式的意义和分式值为零的情况.常以选择、填空题为主.2分式的运算①掌握分式的基本性质,会进行分式的约分、通分;②能熟练地进行分式的加、减、乘、除运算及混合运算,并能解决相关的化简求值问题.考查分式的基本性质和分式的运算.常以选择、填空题、解答题的形式命题.中考命题说明思维导图1.分式:如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.分式AB中,A叫做分子,B叫做分母.三个条件缺一不可:①是形如AB的式子;②A,B为整式;③分母B中含有字母.特别说明:11aa-+也可以表示为(a-1)÷(a+1),但(a-1)÷(a+1)不是分式,因为它不符合AB的形式.判断一个式子是不是分式,不能把原式化简后再判断,而只需看原式的本来“面目”是否符合分式的定义,与分子中的字母无关.比如,4aa就是分式.2.有意义的条件:分母B的值不为零(B≠0).3. 分式的值为零的条件:当分子为零,且分母不为零时,分式的值为零.(A=0且B≠0)【例1】(2022•怀化)代数式25x,1π,224x+,223x-,1x,12xx++中,属于分式的有()A.2个B.3个C.4个D.5个【考点】分式的定义【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式AB叫做分式判断即可.【解答】解:分式有:22 4x+,1x,12xx++,整式有:25x,1π,223x-,分式有3个,故选:B.知识点1:分式的相关概念知识点梳理典型例题【点评】本题考查了分式的定义,掌握一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式是解题的关键,注意π是数字. 【例2】(2022•凉山州)分式13x+有意义的条件是( ) A .x =-3B .x ≠-3C .x ≠3D .x ≠0【考点】分式有意义的条件【分析】根据分式有意义的条件:分母不为0,可得3+x ≠0,然后进行计算即可解答. 【解答】解:由题意得: 3+x ≠0, ∴x ≠-3, 故选:B .【点评】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键. 【例3】(2022•广西)当x = 时,分式22xx +的值为零. 【考点】分式的值为零的条件【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x =0且x +2≠0,然后进行计算即可解答. 【解答】解:由题意得: 2x =0且x +2≠0, ∴x =0且x ≠-2, ∴当x =0时,分式22xx +的值为零, 故答案为:0.【点评】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.1.分式的基本性质:A A MB B M⨯=⨯,A A M B B M ÷=÷ (M 为不等于零的整式). 2.约分:把一个分式的分子与分母的公因式约去,叫做分式的约分.知识点2:分式的基本性质知识点梳理3.最简分式:分子与分母没有 公因式 的分式叫做最简分式.4.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式 相等 的同分母的分式,叫做分式的通分.5. 最简公分母:几个分式中,各分母的所有因式的最高次幂的积.6. 变号法则:A A A AB B B B--=-=-=--.【例4】(3分)(2020•河北7/26)若a ≠b ,则下列分式化简正确的是( )A .22a a b b+=+ B .22a ab b-=- C .22a ab b= D .1212aa b b = 【考点】分式的基本性质【分析】根据a ≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【解答】解:∵a ≠b , ∴22a ab b+≠+,故选项A 错误; 22a ab b-≠-,故选项B 错误; 22a ab b≠,故选项C 错误; 1212aa b b =,故选项D 正确; 故选:D .【点评】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.熟练掌握分式的基本性质是解题的关键. 【例5】若把分式3xyx y-(x ,y 均不为0)中的x 和y 都扩大3倍,则原分式的值是( ) A .扩大3倍 B .缩小至原来的13C .不变D .缩小至原来的16典型例题【分析】若把分式3xyx y-(x,y均不为0)中的x和y都扩大3倍,则分子扩大了3×3=9倍,分母的x和y均扩大3倍,可用提取公因数法将3提到前面,9÷3=3,故原分式的值扩大了3倍.故选A.【答案】A.【例6】下列分式变形中,正确的是()A.22a ba ba b+=++B.1x yx y-+=-+C.a amb bm=D.32()()n mn mm n-=--【例7】约分:2332415a ba b-=()A.85baB.285ba-C.85ba-D.283ab11112242222(2)(2)(2)(2)x x B x x x x x x x x ---=+=-==-+-+-+-+-, 故A =-B. 【答案】C .1.分式的乘除法: (1)乘法法则:(0)a c acbd b d bd=≠; (2)除法法则:a b ÷c d =a b ·d c =adbc .(bcd ≠0)2.分式的加减法: (1)同分母分式相加减:a b a bc c c±±=(c ≠0) (2)异分母分式相加减:a b ±c d =ad ±bcbd.(bd ≠0)3. 分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭. (n 为整数,b ≠0)4. 分式的混合运算:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算,如果有括号,先算括号里面的.①实数的各种运算律也适用于分式的运算;②分式运算的结果要化成最简分式或整式.【例9】(2022•济南)若m -n =2,则代数式222m n mm m n-⋅+的值是( ) A .-2B .2C .-4D .4【考点】分式的乘除法【分析】根据分式的乘除运算法则把原式化简,把m -n 的值代入计算即可. 【解答】解:原式()()2m n m n mm m n+-=⋅+ =2(m -n ).知识点3:分式的运算知识点梳理典型例题当m -n =2时.原式=2×2=4. 故选:D .【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键. 【例10】(2022•山西)化简21639a a ---的结果是( ) A .13a + B .a -3 C .a +3 D .13a - 【考点】分式的加减法【分析】根据异分母分式的加减法法则,进行计算即可解答. 【解答】解:21639a a --- 36(3)(3)(3)(3)a a a a a +=-+-+- 36(3)(3)a a a +-=+-3(3)(3)a a a -=+-13a =+, 故选:A .【点评】本题考查了分式的加减法,熟练掌握异分母分式的加减法法则是解题的关键. 【例11】(3分)(2021•包头14/26)化简:2211()422m m m m +÷=--+ . 【考点】分式的混合运算【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可. 【解答】解:原式2(2)(2)(2)(2)m m m m m -+=⋅++-2=12m m -=-.故答案为1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.【例12】(5分)(2021•重庆B 卷19(2)/26)计算:22293()211x x x x x x --÷++++. 【考点】分式的混合运算【分析】先将被除式分子、分母因式分解,同时计算括号内分式的加法,再将除法转化为乘法,继而约分即可.【解答】解:原式222(3)(3)3()(1)11x x x x x x x x +-+-=÷++++2(3)(3)3(1)1x x x x x +-+=÷++ 2(3)(3)1(1)3x x x x x +-+=⋅++ 31x x -=+. 【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序及其运算法则.【例13】(6分)(2020•安徽17/23)观察以下等式: 第1个等式:121(1)2311⨯+=-,第2个等式:321(1)2422⨯+=-,第3个等式:521(1)2533⨯+=-,第4个等式:721(1)2644⨯+=-.第5个等式:921(1)2755⨯+=-.⋯按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明. 【考点】规律型:数字的变化类;列代数式【分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n 表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可. 【解答】解:(1)第6个等式:1121(1)2866⨯+=-; (2)猜想的第n 个等式:2121(1)22n n n n-⨯+=-+. 证明:∵左边21221122n n n n n n n-+-=⨯==-=+右边, ∴等式成立. 故答案为:1121(1)2866⨯+=-;2121(1)22n n n n-⨯+=-+.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式,并证明猜想的正确性.1. 分式的化简求值:分式通过化简后,代入适当的值解决问题,注意代入的值要使分式的分母不为0.灵活应用分式的基本性质,对分式进行通分和约分,一般要先分解因式.化简求值时,一要注意整体思想,二要注意解题技巧,三要注意代入的值要使分式有意义.2. 分式的自选代值:分式的化简求值题型中,自选代值多会设“陷阱”,因此代值时要注意:当分式运算中不含除法运算时,自选字母的值要使原分式的分母不为0;当分式运算中含有除法运算时,自选字母的值不仅要使原分式的分母不为0,还要使除式不为0.【例14】(2022•内蒙古)先化简,再求值:2344(1)11x x x x x -+--÷--,其中x =3. 【考点】分式的化简求值【分析】先通分算括号内的,把除化为乘,化简后将x =3代入计算即可. 【解答】解:原式223(1)11(2)x x x x ---=⋅-- 2(2)(2)11(2)x x x x x +--=-⋅-- 22x x +=--, 当x =3时, 原式3232+=-- =-5. 【点评】本题考查分式化简求值,解题的关键是掌握分式的性质,将所求式子化简. 【例15】(2022•菏泽)若a 2-2a -15=0,则代数式244()2a a aa a --⋅-的值是 .【考点】分式的化简求值【分析】利用分式的相应的法则对分式进行化简,再把相应的值代入运算即可.知识点4:分式的化简求值知识点梳理典型例题【解答】解:244()2a a a a a --⋅- 22442a a a a a -+=⋅- 22(2)2a a a a -=⋅- 22a a =-,∵a 2-2a -15=0, ∴a 2-2a =15, ∴原式=15. 故答案为:15.【点评】本题主要考查分式的化简求值,解答的关键是对相应的运算法则的掌握.【例16】(2022•黄石)先化简,再求值:2269(1)11a a a a +++÷++,从-3,-1,2中选择合适的a 的值代入求值. 【考点】分式的化简求值【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a 的值代入原式即可求出答案.【解答】解:原式23(3)11a a a a ++=÷++ 2311(3)a a a a ++=⋅++ 13a =+, 由分式有意义的条件可知:a 不能取-1,-3, 故a =2, 原式11235==+. 【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.【例17】(3分)(2019·河北省13/26)如图,若x 为正整数,则表示22(2)1+441x x x x +-++的值的点落在( )A .段①B .段②C .段③D .段④【考点】分式的加减法,化简求值.【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【解答】解:∵22(2)+44x x x ++﹣11x +=22(2)(2)x x ++﹣11x +=1﹣11x +=1x x +又∵x 为正整数,∴12≤1xx +<1 故表示22(2)+44x x x ++﹣11x +的值的点落在②故选:B .【点评】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.1.(2022•德阳)下列计算正确的是( ) A .222()a b a b -=- B .2(1)1-= C .1a a a a÷⋅= D .233611()26ab a b -=-2.(2022•天津)计算1122a a a ++++的结果是( ) A .1B .22a + C .2a + D .2aa + 3.(2022•眉山)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2aa +4.(2022•杭州)照相机成像应用了一个重要原理,用公式111()v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则(u = )A .fvf v- B .f vfv- C .fvv f- D .v ffv- 5.(2022•内蒙古)下列计算正确的是( ) A .336a a a +=B .1a b a b÷⋅= 巩固训练C .22211a a a -=--D .3325()b b a a=6.(2022•威海)试卷上一个正确的式子11()a b a b +÷+-★2a b=+被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( ) A .aa b- B .a ba- C .aa b+ D .224aa b -7.(2022•玉林)若x 是非负整数,则表示22242(2)x x x x --++的值的对应点落在如图数轴上的范围是( )A .①B .②C .③D .①或②8.(2022•河北)若x 和y 互为倒数,则11()(2)x y y x+-的值是( )A .1B .2C .3D .49.(2022•南充)已知0a b >>,且223a b ab +=,则2221111()()a b a b+÷-的值是( )AB .CD .10.(2022•南通)分式22x -有意义,则x 应满足的条件是 . 11.(2022•湖北)若分式21x -有意义,则x 的取值范围是 . 12.(2022•湖州)当1a =时,分式1a a+的值是 . 13.(2022•襄阳)化简分式:ma mba b a b+=++ . 14.(2022•益阳)计算:2211a a a -=-- . 15.(2022•张家界)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S = .16.(2022•包头)计算:222a b aba b a b -+=-- . 17.(2022•苏州)化简2222x xx x ---的结果是 . 18.(2022•衡阳)计算:2422a a a +=++ .19.(2022•怀化)计算5322x x x +-=++ . 20.(2022•温州)计算:22x xy xy x xy xy+-+= .21.(2022•黔西南州)计算:2x y yx y x y+-=-- . 22.(2022•武汉)计算22193x x x ---的结果是 . 23.(2022•淄博)计算:2211x x x+=-- . 24.(2022•湘西州)计算:111x x x -=-- . 25.(2022•沈阳)化简:211(1)1x x x --⋅=+ .26.(2022•自贡)化简:223424432a a a a a a --⋅+=++-+ .27.(2022•台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是 .28.(2022•衢州)(1)因式分解:21a -. (2)化简:21111a a a -+-+. 29.(2022•临沂)计算: (1)34112()963-÷⨯-;(2)1111x x -+-. 30.(2022•舟山)观察下面的等式:111236=+,1113412=+,1114520=+,⋯⋯ (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数). (2)请运用分式的有关知识,推理说明这个结论是正确的.31.(2022•连云港)化简221311x x x x -+--.32.(2022•重庆)计算: (1)()()(2)x y x y y y +-+-;(2)2244(1)24m m m m m -+-÷+-. 33.(2022•德州)(1)化简:52(2)23m m m m -+-⋅--; (2)解方程组:43253x y x y -=⎧⎨-=-⎩.34.(2022•淮安)(1)计算:0|5|(32tan 45-+-︒; (2)化简:23(1)93a a a ÷+--. 35.(2022•徐州)计算:(1)202211(1)3|()3--+-+(2)22244(1)x x x x +++÷.36.(2022•镇江)(1)计算:11()tan 451|2--︒+;(2)化简:11(1)()a a a-÷-.37.(2022•宁夏)下面是某分式化简过程,请认真阅读并完成任务. 212()422x x x x -÷-+- 2222()442x x x x x --=-⋅⋯--第一步 22242x x x x ---=⋅⋯-第二步22(2)(2)2x x x --=⋅⋯+-第三步 12x =-⋯+第四步 任务一:填空①以上化简步骤中,第 一 步是通分,通分的依据是 . ②第 步开始出现错误,错误的原因是 . 任务二:直接写出该分式化简后的正确结果. 38.(2022•南通)(1)计算:22242a a aa a a -⋅+-+;(2)解不等式组:211418x x x x ->+⎧⎨-+⎩.39.(2022•西藏)计算:222242a a a a a a +⋅---. 40.(2022•兰州)计算:21()(1)x x x x ++÷.41.(2022•大连)计算:2224214424x x x x x x x -+÷--+-.42.(2022•十堰)计算:2222()a b b aba a a--÷+.43.(2022•常德)化简:231(1)22a a a a a +--+÷++. 44.(2022•陕西)化简:212(1)11a aa a ++÷--. 45.(2022•泰安)(1)化简:244(2)24a a a a ---÷--; (2)解不等式:5231234x x -+->. 46.(2022•江西)以下是某同学化简分式2113()x +-÷的部分运算过程: (1)上面的运算过程中第 步出现了错误; (2)请你写出完整的解答过程.47.(2022•甘肃)化简:22(3)3322x x x x x x ++÷-++.48.(2022•泸州)化简:22311(1)m m m m m-+-+÷. 49.(2022•重庆)计算: (1)2(2)(4)x x x ++-;(2)22(1)2a a b b b--÷.50.(2022•阜新)先化简,再求值:22691(1)22a a a a a -+÷---,其中4a =.51.(2022•辽宁)先化简,再求值:22221124()11x x x x x x x -+--÷-++,其中6x =. 52.(2022•福建)先化简,再求值:211(1)a a a-+÷,其中21a =+.1.(2022•德阳)下列计算正确的是( ) A .222()a b a b -=- B .2(1)1-= C .1a a a a÷⋅= D .233611()26ab a b -=-【考点】算术平方根;幂的乘方与积的乘方;完全平方公式;分式的乘除法【分析】根据分式的乘除法,算术平方根,幂的乘方与积的乘方,完全平方公式,进行计算即可进行判断.【解答】解:A .222()2a b a ab b -=-+,故A 选项错误,不符合题意;2.(1)11B -==,故B 选项正确,符合题意;C .1111a a a a a÷⋅=⨯=,故C 选项错误,不符合题意; D .233611()28ab a b -=-,故D 选项错误,不符合题意.故选:B .【点评】本题考查了分式的乘除法,算术平方根,幂的乘方与积的乘方,完全平方公式,解决本题的关键是掌握以上知识熟练进行计算. 2.(2022•天津)计算1122a a a ++++的结果是( ) A .1B .22a + C .2a + D .2aa + 【考点】分式的加减法【分析】按同分母分式的加减法法则计算即可. 【解答】解:原式112a a ++=+ 22a a +=+ 1=.故选:A .【点评】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键.巩固训练解析3.(2022•眉山)化简422a a +-+的结果是( ) A .1B .22a a +C .224a a -D .2aa + 【考点】分式的加减法【分析】先通分,根据分式的加减法法则计算即可. 【解答】解:422a a +-+ 24422a a a -=+++ 22a a =+. 故选:B .【点评】本题考查了分式的加减法,把2a -看成分母是1的分数进行通分是解题的关键. 4.(2022•杭州)照相机成像应用了一个重要原理,用公式111()v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则(u = )A .fvf v- B .f vfv- C .fvv f- D .v ffv- 【考点】分式的加减法【分析】利用分式的基本性质,把等式111()v f f u v=+≠恒等变形,用含f 、v 的代数式表示u .【解答】解:111()v f f u v=+≠, 111f u v =+, 111u f v =-, 1v fu fv -=, fvu v f=-. 故选:C .【点评】考查分式的加、减法运算,关键是异分母通分,掌握通分法则. 5.(2022•内蒙古)下列计算正确的是( ) A .336a a a +=B .1a b a b÷⋅=C .22211a a a -=--D .3325()b b a a=【考点】合并同类项;分式的混合运算【分析】根据合并同类项的法则、分式运算的法则逐项判断即可. 【解答】解:3332a a a +=,故A 错误,不符合题意; 2111aa b a b b b b÷⋅=⋅⋅=,故B 错误,不符合题意; 22222(1)21111a a a a a a a ---===----,故C 正确,符合题意; 3326()b b a a=,故D 错误,不符合题意; 故选:C .【点评】本题考查合并同类项、分式的混合运算,解题的关键是掌握合并同类项的法则、分式相关运算的法则.6.(2022•威海)试卷上一个正确的式子11()a b a b +÷+-★2a b=+被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( ) A .aa b- B .a b a- C .aa b+ D .224aa b- 【考点】分式的混合运算【分析】根据已知分式得出被墨汁遮住部分的代数式是112()a b a b a b+÷+-+,再根据分式的运算法则进行计算即可; 【解答】解:11()a b a b +÷+-★2a b=+, ∴被墨汁遮住部分的代数式是112()a b a b a b+÷+-+ ()()2a b a b a ba b a b -+++=⋅+- 212a a b =⋅- aa b=-; 故选:A .【点评】本题考查了分式的化简,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.7.(2022•玉林)若x 是非负整数,则表示22242(2)x x x x --++的值的对应点落在如图数轴上的范围是( )A .①B .②C .③D .①或②【考点】数轴;分式的化简求值【分析】原式第二项约分后,利用同分母分式的减法法则计算得到最简结果,即可作出判断. 【解答】解:原式22(2)(2)2(2)x x x x x +-=-++ 2222x x x x -=-++ 2(2)2x x x --=+222x x x -+=+22x x +=+ 1=,则表示22242(2)x x x x --++的值的对应点落在如图数轴上的范围是②. 故选:B .【点评】此题考查了分式的化简求值,以及数轴,熟练掌握运算法则是解本题的关键. 8.(2022•河北)若x 和y 互为倒数,则11()(2)x y y x+-的值是( )A .1B .2C .3D .4【考点】分式的化简求值【分析】根据x 和y 互为倒数可得1xy =,再将11()(2)x y y x+-进行化简,将1xy =代入即可求值. 【解答】解:x 和y 互为倒数,1xy ∴=, 11()(2)x y y x +-1212xy xy=-+-21121=⨯-+- 2121=-+-2=.故选:B .【点评】本题主要考查分式化简求值,解题关键是熟练掌握分式化简.9.(2022•南充)已知0a b >>,且223a b ab +=,则2221111()()a b a b+÷-的值是( )A B .C D .【考点】分式的化简求值【分析】利用分式的加减法法则,乘除法法则把分式进行化简,由223a b ab +=,得出2()5a b ab +=,2()a b ab -=,由0a b >>,得出a b +a b -=可得出答案.【解答】解:2221111()()a b a b+÷-2222222()a b b a a b a b +-=÷ 22222()()()a b a b a b b a b a +=⋅+- a ba b+=--, 223a b ab +=,2()5a b ab ∴+=,2()a b ab -=, 0a b >>,a b ∴+a b -=a b a b +∴-===-, 故选:B .【点评】本题考查了分式的化简求值,掌握分式的加减法法则,分式的乘除法法则,把分式正确化简是解决问题的关键. 10.(2022•南通)分式22x -有意义,则x 应满足的条件是 2x ≠ . 【考点】分式有意义的条件【分析】利用分母不等于0,分式有意义,列出不等式求解即可. 【解答】解:分母不等于0,分式有意义,20x ∴-≠,解得:2x ≠,故答案为:2x ≠.【点评】本题主要考查了分式有意义的条件,利用分母不等于0,分式有意义,列出不等式是解题的关键.11.(2022•湖北)若分式21x -有意义,则x 的取值范围是 1x ≠ . 【考点】分式有意义的条件【分析】根据分式有意义的条件可知10x -≠,再解不等式即可.【解答】解:由题意得:10x -≠,解得:1x ≠,故答案为:1x ≠.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.(2022•湖州)当1a =时,分式1a a+的值是 2 . 【考点】分式的值【分析】把1a =代入分式计算即可求出值.【解答】解:当1a =时, 原式1121+==. 故答案为:2.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.13.(2022•襄阳)化简分式:ma mb a b a b+=++ m . 【考点】分式的加减法【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式ma mb a b +=+ ()m a b a b +=+ m =,故答案为:m .【点评】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算,本题属于基础题型.14.(2022•益阳)计算:2211a a a -=-- 2 . 【考点】分式的加减法 【分析】根据同分母分式加减法则进行计算即可.【解答】解:原式221a a -=- 2(1)1a a -=- 2=.故答案为:2【点评】本题考查了同分母分式的加减,同分母分式的加减,分母不变,分子相加减.15.(2022•张家界)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S = 201182. 【考点】规律型:数字的变化类;分式的加减法【分析】通过探索数字变化的规律进行分析计算.【解答】解:13111311123222212a ===⨯+-⨯⨯⨯+; 25511131234242212222a ===⨯+-⨯⨯⨯++; 37711131345602331232a ===⨯+-⨯⨯⨯++; ⋯,2111131(1)(2)2122n n a n n n n n n +==⨯+-⨯++++, 当12n =时, 原式11111113111(1...)(...)(...)22312231323414=++++++++-⨯+++ 201182=, 故答案为:201182. 【点评】本题考查分式的运算,探索数字变化的规律是解题关键.16.(2022•包头)计算:222a b ab a b a b-+=-- a b - . 【考点】分式的加减法【分析】根据同分母的分式相加减,分母不变,把分子相加减,分子分解因式后,一定要约分.【解答】解:原式222a ab b a b-+=- 2()a b a b-=- a b =-,故答案为:a b -.【点评】本题考查了分式加减法,熟练运用同分母分式加减法法则是解题关键.17.(2022•苏州)化简2222x x x x ---的结果是 x . 【考点】分式的加减法【分析】依据同分母分式的加减法法则,计算得结论.【解答】解:原式222x x x -=- (2)2x x x -=- x =.故答案为:x .【点评】本题考查了分式的减法,掌握同分母分式的加减法法则是解决本题的关键.18.(2022•衡阳)计算:2422a a a +=++ 2 . 【考点】分式的加减法【分析】根据同分母分式的加法计算即可.【解答】解:2422a a a +++ 242a a +=+ 2(2)2a a +=+ 2=,故答案为:2.【点评】本题考查分式的加减法,解答本题的关键是明确分式加法的计算法则.19.(2022•怀化)计算5322x x x +-=++ 1 . 【考点】分式的加减法【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式532x x +-=+ 22x x +=+ 1=.故答案为:1.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.20.(2022•温州)计算:22x xy xy x xy xy+-+= 2 . 【考点】分式的加减法【分析】根据同分母分式的运算法则运算即可.【解答】解:原式22x xy xy x xy++-=, 2xy xy=, 2=.故答案为:2.【点评】本题主要考查了分式的加法运算,熟记运算法则是解题的关键.21.(2022•黔西南州)计算:2x y y x y x y+-=-- 1 . 【考点】分式的加减法【分析】利用分式的减法法则,化简得结论.【解答】解:原式2x y y x y +-=- x y x y -=- 1=.故答案为:1.【点评】本题考查了分式的减法,题目比较简单,掌握分式的减法法则是解决本题的关键.22.(2022•武汉)计算22193x x x ---的结果是 13x + . 【考点】分式的加减法【分析】先通分,再加减.【解答】解:原式23(3)(3)(3)(3)x x x x x x +=-+-+- 23(3)(3)x x x x --=+-3(3)(3)x x x -=+- 13x =+. 故答案为:13x +. 【点评】本题考查了分式的加减,掌握异分母分式的加减法法则,是解决本题的关键.23.(2022•淄博)计算:2211x x x+=-- 2- . 【考点】分式的加减法【分析】先变形,再根据分式的加减法则求出即可.【解答】解:原式2211x x x =--- 221x x -=- 2(1)1x x --=- 2=-,故答案为:2-.【点评】本题考查了分式的加减,能灵活运用运算法则进行化简是解此题的关键.24.(2022•湘西州)计算:111x x x -=-- 1 . 【考点】分式的加减法【分析】由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.【解答】解:原式11x x -=- 1=.故答案为:1.【点评】本题考查的是分式的加减法,即同分母的分式相加减,分母不变,把分子相加减.25.(2022•沈阳)化简:211(1)1x x x--⋅=+ 1x - . 【考点】分式的混合运算【分析】先算括号内的式子,然后计算括号外的乘法即可.【解答】解:211(1)1x x x--⋅+11(1)(1)1x x x x x +-+-=⋅+ (1)(1)1x x x x x+-=⋅+ 1x =-,故答案为:1x -.【点评】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.26.(2022•自贡)化简:223424432a a a a a a --⋅+=++-+ 2a a + . 【考点】分式的混合运算【分析】先将原分式的分子、分母分解因式,然后约分,再计算加法即可.【解答】解:223424432a a a a a a --⋅+++-+ 23(2)(2)2(2)32a a a a a a -+-=⋅++-+ 2222a a a -=+++ 2a a =+, 故答案为:2a a +. 【点评】本题考查分式的混合运算,解答本题的关键是明确因式分解的方法和分式加法的运算法则.27.(2022•台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是 5 .【考点】合并同类项;分式的化简求值【分析】先将题目中的分式化简,然后令化简后式子的值为1-,求出相应的x 的值即可.【解答】解:314x x -+-344x x x -+-=- 14x=-, 当114x =--时,可得5x =, 检验:当5x =时,40x -≠,∴图中被污染的x 的值是5,故答案为:5.【点评】本题考查分式的化简求值,解答本题的关键是明确分式混合运算的运算法则和运算顺序.28.(2022•衢州)(1)因式分解:21a -.(2)化简:21111a a a -+-+. 【考点】分式的加减法;因式分解-运用公式法【分析】(1)应用因式分解-运用公式法,平方差公式进行计算即可得出答案;(2)运算异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减,进行计算即可得出答案.【解答】解 (1)21(1)(1)a a a -=-+;(2)21111211111a a a a a a -+=+=-++++. 【点评】本题主要考查了分式的加减法及因式分解-运用公式法,熟练掌握分式的加减法及因式分解-运用公式法的方法进行求解是解决本题的关键.29.(2022•临沂)计算:(1)34112()963-÷⨯-; (2)1111x x -+-. 【考点】有理数的混合运算;分式的加减法【分析】(1)利用有理数的混合运算法则运算即可;(2)利用异分母分式的减法法则运算即可.【解答】解:(1)原式9128()466=-⨯⨯- 91846=⨯⨯3=;(2)原式1(1)(1)(1)x x x x --+=+- 221x -=- 221x =-. 【点评】本题主要考查了有理数的混合运算,分式的减法,正确利用相关法则进行运算是解题的关键.30.(2022•舟山)观察下面的等式:111236=+,1113412=+,1114520=+,⋯⋯ (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数).(2)请运用分式的有关知识,推理说明这个结论是正确的.【考点】规律型:数字的变化类;分式的加减法【分析】(1)观察已知等式,可得规律,用含n 的等式表达即可;(2)先通分,计算同分母分式相加,再约分,即可得到(1)中的等式.【解答】解:(1)观察规律可得:1111(1)n n n n =+++; (2)111(1)n n n +++ 1(1)(1)n n n n n =+++ 1(1)n n n +=+ 1n=, ∴1111(1)n n n n =+++. 【点评】本题考查探索规律及分式的运算,解题的关键是观察得到已知等式中的规律.31.(2022•连云港)化简221311x x x x -+--. 【考点】分式的加减法【分析】先通分,再计算通分母分式加减即可.【解答】解:原式213(1)(1)(1)(1)x x x x x x x +-=++-+- 221(1)(1)x x x x -+=+- 2(1)(1)(1)x x x -=+-11x x -=+. 【点评】本题考查分式的加减运算,熟练掌握异分母分式的通分是解题关键.32.(2022•重庆)计算:(1)()()(2)x y x y y y +-+-;(2)2244(1)24m m m m m -+-÷+-. 【考点】单项式乘多项式;平方差公式;分式的加减法【分析】(1)根据平方差公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)()()(2)x y x y y y +-+-2222x y y y =-+-22x y =-;(2)原式22(2)2(2)(2)m m m m m m +--=÷+-+ 2222m m m +=⋅+- 22m =-. 【点评】本题考查分式的混合运算、平方差公式和单项式乘多项式,解答本题的关键是明确它们各自的计算方法.33.(2022•德州)(1)化简:52(2)23m m m m -+-⋅--; (2)解方程组:43253x y x y -=⎧⎨-=-⎩. 【考点】解二元一次方程组;分式的混合运算【分析】(1)先通分,把能分解的因式进行分解,再进行约分即可;(2)利用加减消元法进行求解即可.【解答】解:(1)52(2)23m m m m -+-⋅-- 245223m m m m ---=⋅-- (3)(3)223m m m m m -+-=⋅-- 3m =+;(2)43253x y x y -=⎧⎨-=-⎩①②, ②2⨯得:4106x y -=-③,①-③得:99y =,解得1y =,把1y =代入①得:413x -=,解得1x =,故原方程组的解是:11x y =⎧⎨=⎩. 【点评】本题主要考查分式的混合运算,解二元一次方程组,解答的关键是对相应的知识的掌握.34.(2022•淮安)(1)计算:0|5|(32tan 45-+-︒;(2)化简:23(1)93a a a ÷+--. 【考点】零指数幂;分式的混合运算;实数的运算;特殊角的三角函数值【分析】(1)先计算零次幂、代入特殊角的函数值,再化简绝对值,最后算加法;(2)先通分计算括号里面的,再把除法转化为乘法.【解答】解:(1)原式5121=+-⨯512=+-4=;(2)原式(3)(3)3a a a a a =÷+-- 3(3)(3)a a a a a -=⨯+- 13a =+. 【点评】本题考查了实数和分式的运算,掌握零次幂、绝对值的意义及分式的运算法则是解决本题的关键.35.(2022•徐州)计算:(1)202211(1)3|()3--+-+ (2)22244(1)x x x x +++÷.【考点】负整数指数幂;实数的运算;分式的混合运算【分析】(1)根据有理数的乘方、绝对值和负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)202211(1)3|()3--+-1333=++4=;(2)22244(1)x x x x +++÷ 222(2)x x x x +=⋅+ 2x x =+. 【点评】本题考查分式的混合运算、实数的运算,熟练掌握运算法则是解答本题的关键.36.(2022•镇江)(1)计算:11()tan 451|2--︒+; (2)化简:11(1)()a a a-÷-. 【考点】实数的运算;分式的混合运算;负整数指数幂;特殊角的三角函数值【分析】(1)利用负整数指数幂的运算、特殊角的三角函数值、去绝对值的法则计算即可;(2)利用分式的混合运算来做即可.【解答】解:(1)原式211=-=(2)原式211()()a a a a a a=-÷- 211a a a a -=⨯- 1(1)(1)a a a -=-+ 11a =+. 【点评】本题考查了实数的运算和分式的混合运算,做题关键要掌握负整数指数幂的运算、特殊角的三角函数值、去绝对值的法则、通分、约分.37.(2022•宁夏)下面是某分式化简过程,请认真阅读并完成任务.212()422x x x x -÷-+- 2222()442x x x x x --=-⋅⋯--第一步 22242x x x x ---=⋅⋯-第二步 22(2)(2)2x x x --=⋅⋯+-第三步 12x =-⋯+第四步 任务一:填空①以上化简步骤中,第 一 步是通分,通分的依据是 .②第 步开始出现错误,错误的原因是 .任务二:直接写出该分式化简后的正确结果.【考点】分式的混合运算;通分【分析】任务一:①根据分式的基本性质分析即可;②利用去括号法则得出答案;任务二:利用分式的混合运算法则计算得出答案.【解答】解:任务一:①以上化简步骤中,第一步是通分,通分的依据是分式的性质. ②第二步开始出现错误,错误的原因是去括号没有变号.故答案为:①一,分式的性质.②二,去括号没有变号.任务二:212()422x x x x -÷-+- 2222()442x x x x x --=-⋅-- 22242x x x x -+-=⋅- 22(2)(2)2x x x -=⋅+- 12x =+. 【点评】本题考查了分式的混合运算,解题的关键是掌握分式的基本性质.38.(2022•南通)(1)计算:22242a a a a a a -⋅+-+;。

2024年中考数学复习课件 第4讲 分式

2024年中考数学复习课件 第4讲 分式
不为0.
要点梳理
典题精析
备考练习
19
第4讲
分式
解:原式 =
=
=
−1+3
−1

−1
−2 +2
+2
−1

−1 −2 +2
1
.
−2
在 −1 ,0,1,2中,当 = 1 或2时,分式无意义,所以选 = −1 或0.
当 = −1 时,原式 =
1
− . ( 或当
3
要点梳理
备考练习
31
第4讲
分式
备考练习
12.(2021·玉林)先化简,再求值: − 2 +
例函数 =
1

÷
−1 2
,其中 使反比


的图象位于第二、四象限.

解:因为反比例函数 =

的图象位于第二、四象限,所以

< 0.
所以 = − .
因此 − 2
1
+

÷
−1 2

=
−1 2
要点梳理
+ 1 ≠ 0 .解得 ≠ −1 .
典题精析
备考练习
8
第4讲
分式
1
(2)若该分式的值为0,则 的值为___.
思路点拨

分式 的值为 0

⇔ = 0且 ≠ 0.
2 −1
【解析】要使分式
的值为0,则 2
+1
− 1 = 0 ,且 + 1 ≠ 0 .解得
= 1.
要点梳理
第4讲
分式
例2 计算: + 1 +

【人教版】中考数学一轮复习课件第四节 分式

【人教版】中考数学一轮复习课件第四节 分式
A. 或 B. C. D.
A
2.(2020·省卷)要使分式 有意义, 需满足的条件是______.
3.(2017·天水)若式子 有意义,则 的取值范围是________________.

命题点二 分式的化简及求值
4.(2019·兰州)化简: ( )
A. B. C. D.
解:原式 .由原式及化简过程可知, 且 ,所以当 时,原式 .
易错点解读 由于 的值是从给出的三个数中选择的,所以此题是一道开放性的试题,但在选择 的值时,一定要注意所选择的 的值要保证原分式有意义.
甘肃6年中考 2017—2022
命题点一 分式有意义和分式值为零的条件
1.(2018·省卷)若分式 的值为0,则 的值是( )
(2)异分母分式相加减,先______,变为同分母的分式,再相加减.即 ____, ______.
7.分式的乘除
(1)乘法法则:分式乘分式,将分子、分母分别相乘的积,作为积的分子、分母,用式子表示为 ___;
分母
相加减
通分
(2)除法法则:分式相除,将除式的分子、分母颠倒位置后与被除式相乘,即 ___.
解:原式 .解不等式组 得 ,整数解有 , , , .由题意,得只有 符合题意,当 时,原式 .
核心素养提升
(2022·江西,改编)以下是某同学化简分式 的部分运算过程:
解:原式 ① ② ③
任务一:填空:
(1)以上化简步骤中,第____步是进行分式的通分,通分的依据是__________________,或填_____________________________________________________________;
同分母
[练对点二]

专题04分式(讲练)-2022年中考数学一轮复习讲练测课课通(人教版)(原卷版)

专题04分式(讲练)-2022年中考数学一轮复习讲练测课课通(人教版)(原卷版)

一、目标要求:二、课前热身1.分式2x1-有意义,那么x的取值范围是〔〕A.x≠1 B.x=1 C.x≠﹣1 D.x=﹣13.假设分式x2x-的值是0,那么x的值为.4.化简:() 2222a b ab2a b2ab+=.5.化简:1x1xx23x6-⎛⎫+÷⎪--⎝⎭.三、【根底知识重温】1. 分式:整式A除以整式B,可以表示成AB的形式,如果除式B中含有,那么称AB为分式.假设,那么AB有意义;假设,那么AB无意义;假设,那么AB=0.2.分式的根本性质:分式的分子与分母都乘以〔或除以〕同一个不等于零的整式,分式的值不变.用式子表示为 .3. 约分:把一个分式的分子和分母的约去,这种变形称为分式的约分.4.通分:根据分式的根本性质,把异分母的分式化为的分式,这一过程称为分式的通分. 5.分式的运算⑴加减法法那么:①同分母的分式相加减: .②异分母的分式相加减: .⑵乘法法那么: .乘方法那么: .⑶除法法那么:四、例题分析题型一分式有意义、无意义、值等于零的条件例.〔2021凉山〕分式x3x3-+的值为零,那么x的值为〔〕A. 3B. ﹣3C. ±3D. 任意实数【趁热打铁】1.在式子11,,x 2,x 3x 2x 3---- 中,x 可以取2和3的是【 】 A .1x 2- B .1x 3- C .x 2- D .x 3- 2.如果分式42x x -+的值为0,那么x 的值为 . 题型二 分式的约分例..〔2021内蒙古海拉尔区第四中学〕化简2244xy y x x --+的结果是〔 〕 A .2xx + B .2xx - C .2yx +D .2y x -【趁热打铁】1.化简:32104a bab =2.化简分式222--a abb a 的结果是〔 〕题型三 分式的加减运算例.〔2021浦东新区〕计算:2111x x x -=--【趁热打铁】1.计算:1aa 11a +--的结果是 .2.化简 3x -1-x +2x 2-x .题型四 分式的乘除运算例. 〔2021襄阳〕计算:22a 1a 1a 2a a --÷+= .【趁热打铁】1.计算:222x 1x x.x 1x 2x 1--⋅+-+题型五 分式的混合运算例. 〔2021扬州〕化简:222x2x 6x 3x 1x 1x 2x 1++-÷+--+【趁热打铁】1化简:2241()222x x x x x ---+. 题型六 分式的化简求值例. 〔2021河南〕先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x 21=- 【趁热打铁】1.先化简,再求值:22a b 1a b a b⎛⎫-÷ ⎪--⎝⎭,其中a 31=+,b 31=-. 2.先化简,再求值:221x 121x x x x 1x 1⎛⎫+÷-+ ⎪--+⎝⎭,其中x 的值为方程2x 5x 1=-的解.五、牛刀小试1、【题源】2021辽宁丹东卷—11假设式子有意义,那么实数x 的取值范围是 .2、【题源】2021广西百色卷—8以下三个分式、、x3的最简公分母是〔 〕 A .4〔m ﹣n 〕x B . 2〔m ﹣n 〕x 2C .D . 4〔m ﹣n 〕x 2 3、【题源】2021江西南昌卷—17计算:〔﹣〕÷.4、【题源】2021江苏淮安卷—19〔2〕计算:〔1+〕÷.当a=2021时,求÷〔a+〕的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元数与式第4讲分式知识点名师点晴分式的概念整式A除以整式B,可以表示成AB的形式,如果除式B中含有___,那么称AB为分式.若_____,则AB有意义;若______,则AB无意义;若_______,则AB=0.分式的基本性质及应用1.分式的基本性质)0()0(≠÷÷=≠⋅⋅=CCBCABACCBCABA要熟练掌握,特别是乘或除以的数不能为0[来2.分式的变号法则分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.3.分式的约分、通分通分与约分的依据都是分式的基本性质4.最简分式分子与分母没有公因式分式的运算1.分式的加减法异分母的分式相加减,要先通分,然后再加减2.分式的乘除法、乘方熟练应用法则进行计算3.分式的混合运算应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.1.(2019•衡阳)如果分式11x+在实数范围内有意义,则x的取值范围是()A.1x≠-B.1x>-C.全体实数D.1x=-2.(2019•江西)计算211()a a÷-的结果为()A.a B.a-C.31a-D.31a3.(2019•河北)如图,若x为正整数,则表示22(2)1441xx x x+-+++的值的点落在()A.段①B.段②C.段③D.段④4.(2019•白银)下面的计算过程中,从哪一步开始出现错误()A.①B.②C.③D.④5.(2019•临沂)化简211a a a ---的结果是( )A .11a -B .11a --C .211a a +-D .211a a a ---6.(2019•眉山)化简2()b a ba a a--÷的结果是( )A .a b -B .a b +C .1a b- D .1a b+ 7.(2018•云南)已知16x x +=,则221(x x+= ) A .38B .36C .34D .328.(2018•孝感)已知x y +=x y -44()()xy xyx y x y x y x y-++--+的值是( )A .48B .C .16D .129.(2019•泰州)若分式121x -有意义,则x 的取值范围是 . 10.(2019•北京)分式1x x-的值为 0 ,则x 的值是 . 11.(2019•吉林)计算:22y xx y=g . 12.(2019•绥化)当2018a =时,代数式211()11(1)a a a a a --÷+++的值是 . 13.(2019•广东)计算:0112019()3-+= .14.(2019•河北)若2107777p --⨯⨯=,则p 的值为 .15.(2019•恩施州)先化简,再求值:22111211x x x x x +÷-++++,其中1x =.16.(2019•朝阳)先化简,再求值:2232624288a a a a a a a ++-÷+--+,其中11|6|()2a -=--.17.(2019•青海)化简求值:2321(2)22m m m m m -++-÷++;其中1m 18.(2019•湘潭)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下: 立方和公式:3322()()x y x y x xy y +=+-+ 立方差公式:3322()()x y x y x xy y -=-++根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =.一:分式的有关概念 基础知识:分式有意义的条件是分母不为零;分式无意义的条件是分母等于零;分式值为零的条件是分子为零且分母不为零. 注意:1.分式有意义的条件是分母不为0,无意义的条件是分母为0.2.分式值为0要满足两个条件,分子为0,分母不为0. 二:分式的性质 基础知识:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为)0()0(≠÷÷=≠⋅⋅=C C B C A B A C CB C A B A注意:1.分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;2.将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;3.巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值. 三:分式的加减运算加减法法则:① 同分母的分式相加减:分母不变,分子相加减 ② 异分母的分式相加减:先通分,变为同分母的分式,然后再加减 . 注意:1.分式加减运算的运算法则:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,然后再加减.2.异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.求最简公分母的方法是:①将各个分母分解因式;②找各分母系数的最小公倍数;③找出各分母中不同的因式,相同因式中取次数最高的,满足②③的因式之积即为各分式的最简公分母. 四:分式的乘除运算1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方.2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.注意:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.要出现符号错误),然后找出其中的公因式,并把公因式约去. 五:分式的混合运算基础知识:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式. 注意:注意运算顺序,计算准确.考点一、分式的有关概念 例1.(2019•贺州)若分式11x +有意义,则x 的取值范围是 . 【变式训练】1.(2019•贵阳)若分式22x xx-的值为0,则x 的值是 .2.(2019•桂林三模)若分式2||2x x -+的值为零,则x 的值为 . 3.(2019•长清区一模)若分式211x x -+的值为0,则x = .考点二、分式的基本性质例2.(2019•新乐市二模)下列变形不正确的是( ) A .221x y x y x y-=-+ B .11111()xy x y y x÷-=- C .22x y x y-+-=-D .2633()x x y y=--【变式训练】1.(2019•拱墅区二模)下列变形正确的是( ) A .22a ab b +=+ B .0.220.1a b a bb b++=C .11a a b b--=D .22(1)(1)a a mb b m +=+2.(2019•房山区模拟)如果把分式343xyx y-中的x 和y 的值都扩大为原来的3倍,那么分式的值( )A .扩大为原来的3倍B .扩大6倍C .缩小为原来的12倍D .不变3.(2019•红花岗区校级一模)已知12a c e b d f ===,则32(264a c e b d f-+=-+ ) A .12B .13C .14 D .15考点三、分式的值例3.(2019•大庆二模)已知112a b +=,求535a ab b a ab b++=-+ . 【变式训练】1.(2019•福州二模)若分式65m m -+-的值是负整数,则整数m 的值是 . 2.(2019•常州一模)已知分式3x x y +的值为2,且1y ≠-,则分式21x y ++的值为 .3.(2019•广饶县模拟)若112x y +=,则分式3533x xy yx xy y++-+的值为_________. 考点四、分式化简例4.(2019•海曙区一模)化简:22426926a a a a a --÷+++.【变式训练】1.(2019•中原区校级模拟)化简:22(16)4x x x x ⋅--2.(2019•鼓楼区校级模拟)计算:2222111x x x x x x +++÷--3.(2019•六合区二模)化简:121()a a a a a--÷-.考点五、分式的混合运算例5.(2019•碑林区校级模拟)化简:31(1)12x x x -+⋅++【变式训练】1.(2019•金堂县模拟)化简:2211(1)211x x x x x x -++-÷-+-2.(2019•武侯区模拟)化简:2213(2)22m m m m m ++÷-+++3.(2019•东河区二模)化简:2221(1)11a a a a a --÷---+考点六、分式的化简求值例6.(2019•望花区四模)先化简,再求值:2211()121x x x xx x x x ++--÷--+,其中x 满足210x x --=.【变式训练】1.(2019•松滋市三模)先化简,再求值:22221()111a a a a +÷----,其中2(2)2sin 60(3)a π-=-+︒--︒.2.(2019•邓州市二模)先化简,再求值:2435()(1)11a a a a a a +-=-÷-++,其中a 是方程2210a a +-=的解.3.(2019•长沙一模)先化简,再求值:211()22a a a a a a--÷++,其中2a =.。

相关文档
最新文档