初一期中考试数学试卷
湖南省长沙市雅礼教育集团2023-2024学年上学期七年级期中考试数学试卷
23年秋初一雅礼教育集团期中考试数学试卷 一、单项选择题 (每小题3分,共30分)−1.(3分)2023的相反数是()A . −20231−B .2023C .20231D .20232.(3分)我国幅员辽阔,南北冬季温差较大,12月份的某天同一时刻,我国最南端南沙群岛的曾母暗沙的气温是︒28C ,而北端漠河县的气温是︒ −25C ,则该时刻曾母暗沙的气温比漠河县的气温高()A .︒B 53C .︒−53CC .︒D 43C .︒ 3C3.(3分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()310⨯A .8310⨯B .9310⨯C .10 310⨯D .114.(3分)用四舍五入法,把3.90456精确到百分位,取得近似值为()A .3.9B .3.90C .3.91D .3.905 5.(3分)下列计算正确的是() −=−36A .2B .a a 22321−=−−=C .110D .−=−a b a b 2(2)42−x 2+66.(3分)在代数式,1x x −+34,2,π, x57x ,3中,整式的个数有() A .2个B .3个C .4个D .5个 7.(3分)如图所示,直角三角尺的面积是()A .ab 21ab r −πB .2C .21ab r −π2D .21ab r −2 m n −+−=8.(3分)若|2|(3)02 −2024,则m n ()的值是()−A .1B .1C .2023 −D .20239.(3分)下列说法中正确的个数有 ( )±1①0是绝对值最小的有理数;②倒数等于本身的数有0和;a 的次数是1;④正整数、0③单项式和负整数统称为整数.A .1个B .2个C .3个D .4个10.(3分)多项式m x mx −+−|1|m (3)3− 是关于x 的二次三项式,则m 取值为()A .3−B .1−C .3或1−D .3或1二、填空题 (每小题3分,共18分)11.(3分)81的倒数等于.12.(3分)点A 、B −在数轴上对应的数分别为2 和10,则A 、B 两点间的距离为. −13.(3分)比较两个数的大小:0 5.14.(3分)单项式−x y 722的系数是.m n −2x y m 46x y 52n 15.(3分)单项式与是同类项,则+=.16.(3分)已知关于x 的多项式−+−−+x x mx x 4352122 化简后不含x 2 项,则m 的值是.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每题10分,共72分)17.(6分)(1) −÷+−⨯−2(24)4(4)()3(2;)−−+⨯−313518()22. 18.(6分)化简:(1)++−−−a a a a 62352222;x x x (2)−−−3[52(4)].+−−−2219.(6分)先化简,再求值:xy xy y xy y 2(32)2(),其中x =−1,y =2.20.(8分)近些年来我们的生活水平不断提高,曾经的奢侈品小轿车也越来越多地进入更多的家庭.小明家中买了一辆小轿车,他连续7天记录了小轿车每天行驶的路程(如表),以50km 为标准,多于50km 的部分记为“+”,不足50km 的部分记为“−”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米;(2)求出这7天中平均每天行驶多少千米?21.(8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛.例如:如果2231x x +=,求代数式2232022x x ++的值. 我们可以将223x x +作为一个整体代入:22232022(23)2022120222023x x x x ++=++=+=. 请仿照上面的解题方法,完成下面的问题:(1)如果2231x x +=−,求代数式2232025x x ++的值; (2)如果3x y +=,求代数式6()332017x y x y +−−+的值.22.(9分)本学期的十月份,正是秋高气爽的时节,某学校七年级甲班的4名老师决定带领本班m名学生去长沙县某茶叶庄园参加秋季劳动实践活动.已知该活动基地每张门票的票价为30元,现有A、B两种购票方案可供选择:方案A:教师全价,学生半价;方案B:不分教师与学生,全部六折优惠.(1)若该班级按方案A购票,4名老师全价购票的总费用为元,m名学生半价购票的总费用为元;若该班级按方案B购票,4名老师按6折优惠购票总费用为元,m 名学生按6折优惠购票总费用为元(请分别用数字或含m的代数式表示).(2)当学生人数40m=,且只能从A、B两种方案中选择一种购票时,请通过计算按A、=B两种方案购票分别所需的总费用来说明选择哪种方案更为优惠.(每种方案的总费用4+名学生购票所需总费用)名教师购票所需总费用m23.(9分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,c a−0,a b−0.(2)化简:||||||−+−−−.c b a b c a24.(10分)我们规定:使得a b ab −=成立的一对数a ,b 为“积差等数对”,记为(,)a b .例如:因为1.50.6 1.50.6−=⨯,(2)2(2)2−−=−⨯,所以数对(1.5,0.6),(2,2)−都是“积差等数对”.(1)判断下列数对是否是“积差等数对”: ①1(1,)2(填“是”或者“否” );②(2,1) (填“是”或者“否” ); ③1(2−,1)− (填“是”或者“否” );(2)若数对(,3)m 是“积差等数对”,求m 的值;(3)若数对(,)a b 是“积差等数对”,求代数式224[32(2)]2(32)6ab a ab a b a −−−−−+的值.25.(10分)如图所示,点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,其中a 是最大的负整数,b 、c 满足2(9)|12|0b c −+−=,且BC CD =.(1)a = ;d = ;线段BC = ;(2)若点A 以每秒3个单位长度的速度向左运动,同时点C 以每秒5个单位长度的速度向左运动,设运动的时间为t 秒,当A 、C 两点之间的距离为11个单位长度时,求运动时间t 的值;(3)若线段AB 和CD 同时开始向右运动,且线段AB 的速度小于线段CD 的速度.在点A 和点C 之间有一点M ,始终满足AM CM =,在点B 和点D 之间有一点N ,始终满足BN DN =,此时线段MN 为定值吗?若是,请求出这个定值,若不是,请说明理由.23年秋初一雅礼教育集团期中考试数学试卷参考答案与试题解析 一、单项选择题 (每小题3分,共30分)−1.(3分)2023的相反数是()A . −20231−B .2023C .20231D .2023 【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.−【解答】解:2023的相反数为2023.故选:D .【点评】本题主要考查相反数,关键是掌握相反数的定义.2.(3分)我国幅员辽阔,南北冬季温差较大,12月份的某天同一时刻,我国最南端南沙群岛的曾母暗沙的气温是︒28C ,而北端漠河县的气温是︒ −25C ,则该时刻曾母暗沙的气温比漠河县的气温高()A .︒B 53C .︒−53CC .︒D 43C .︒3C 【分析】认真读懂题意,列算式,进行有理数的减法运算.【解答】解:−−=53(C)︒=+28(25)2825,故选:A .【点评】本题考查了有理数减法运算的应用,做题的关键是读懂题意理解正负数的意义,列出正确的减法算式.3.(3分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()310⨯A .8310⨯B .9 310⨯C .10 310⨯D .11【分析】运用科学记数法进行变形、求解.=⨯=⨯300010310811【解答】解:3000亿, 故选:D . 【点评】此题考查了科学记数法的应用能力,关键是能准确理解并运用以上知识.4.(3分)用四舍五入法,把3.90456精确到百分位,取得近似值为(A .3.9B .3.90)D .C .3.91 3.905【分析】对千分位数字4进行四舍五入即可得.【解答】解:把3.90456精确到百分位,取得的近似值为3.90. 故选:B .【点评】本题考查近似数和有效数字,掌握四舍五入法解答是关键. 5.(3分)下列计算正确的是( ) A .236−=− B .22321a a −=C .110−−=D .2(2)42a b a b −=−【分析】根据合并同类项法则:把系数合并,字母部分不变;有理数的减法法则:减去一个数等于加上它的相反数;负整数指数幂:1((0p pa a a −=≠,p 为正整数)分别进行计算即可. 【解答】解:A 、239−=−,故原题计算错误;B 、22232a a a −=,故原题计算错误;C 、112−−=−,故原题计算错误;D 、2(2)42a b a b −=−,故原题计算正确; 故选:D .【点评】此题主要考查了合并同类项、有理数的减法、负整数指数幂,关键是掌握各计算法则.6.(3分)在代数式26x +,1−,234x x −+,π,5x,37x 中,整式的个数有( ) A .2个B .3个C .4个D .5个【分析】利用整式定义可得答案.【解答】解:在代数式26x +,1−,234x x −+,π,5x,37x 中,其中26x +,1−,234x x −+,π,37x 是整式,共有5个,故选:D .【点评】此题主要考查了整式,关键是掌握单项式和多项式合称为整式. 7.(3分)如图所示,直角三角尺的面积是( )A .12abB .2ab r π−C .212ab r π−D .212ab r −【分析】用三角形面积减去圆的面积即可.【解答】解:由三角形面积公式和圆的面积公式可得,直角三角尺的面积是212ab r π−,故选:C .【点评】本题考查列代数式,解题的关键是掌握三角形面积公式和圆的面积公式. 8.(3分)若2|2|(3)0m n −+−=,则2024()m n −的值是( ) A .1−B .1C .2023D .2023−【分析】根据非负数的性质,可求出m 、n 的值,然后代入代数式求解即可. 【解答】解:2|2|(3)0m n −+−=,20m ∴−=,30n −=, 解得2m =,3n =,20242024()(1)1m n ∴−=−=. 故选:B .【点评】本题考查了非负数的性质:偶次方,绝对值都是非负数,几个非负数的和为0时,这几个非负数都为0.9.(3分)下列说法中正确的个数有( )①0是绝对值最小的有理数;②倒数等于本身的数有0和1±; ③单项式a 的次数是1;④正整数、0和负整数统称为整数. A .1个B .2个C .3个D .4个【分析】根据绝对值,倒数,单项式的定义,有理数的分类逐项进行判断即可. 【解答】解:①0是绝对值最小的有理数,故符合题意; ②倒数等于本身的数有1±,故不符合题意; ③单项式a 的次数是1,故符合题意;④正整数、0和负整数统称为整数,故符合题意. 故选:C .【点评】本题考查单项式,绝对值,倒数,有理数的分类,掌握这些定义是正确判断的前提. 10.(3分)多项式|1|(3)3m m x mx −−+−是关于x 的二次三项式,则m 取值为( ) A .3B .1−C .3或1−D .3−或1【分析】多项式中次数最高的项的次数叫做多项式的次数,单项式的个数就是多项式的项数,由此即可计算.【解答】解:多项式|1|(3)3m m x mx −−+−是关于x 的二次三项式,∴−=m |1|2∴=m ,3m =−,或1m −≠,30,∴=−m1,B 故选:.【点评】本题考查多项式的有关概念,绝对值的概念,关键是掌握多项式的次数,项的概念,并注意多项式的二次项不等于0.二、填空题 (每小题3分,共18分)11.(3分)818的倒数等于.. 【分析】根据倒数的定义即可得到结论.【解答】解:81的倒数等于8,故答案为:8.【点评】此题考查倒数的定义.此题比较简单,解题的关键是掌握倒数的定义.12.(3分)点A 、B −在数轴上对应的数分别为2 和10,则A 、B 两点间的距离为12. 【分析】求数轴上两点间的距离,用较大数减去较小数即可.【解答】解:−−= 10(2)12 , 故答案为:12.【点评】本题考查了求数轴上两点间的距离的方法,知道用较大数减较小数是即可.13.(3分)比较两个数的大小:0 >−5. 【分析】根据负数都小于0解答即可.−【解答】解:5 ∴>−是负数,05. 故答案为:>.【点评】本题考查的是有理数的大小比较,熟知正数都大于0,负数都小于0是解题的关键.14.(3分)单项式 −72x y 2的系数是−72. 【分析】根据单项式系数的定义解答.【解答】解:单项式−x y 722的系数是−2.7故答案为:− 72.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数是解题的关键. 6x y 5215.(3分)单项式n−2x y m 与4m n 是同类项,则+=7.m =5【分析】根据同类项的定义求出,m n +n =2,再代入求出答案即可.【解答】解:6x y 52单项式n−2x y m 与4是同类项,∴=m 5n ,=24∴=n ,2m n +=+=,解得:527,故答案为:7.【点评】本题考查的是同类项的含义,熟记同类项的定义是解本题的关键.16.(3分)已知关于x 的多项式−+−−+x x mx x 4352122化简后不含x 2 项,则 m 的值是2.【分析】先合并同类项,再根据题意列出方程,解方程得到答案.【解答】解:−+−−+x x mx x 4352122=−−+m x x (42)462,由题意得:−=m 420m =,解得:2,故答案为:2.【点评】本题考查的是合并同类项,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每题10分,共72分)17.(6分)(1)−÷+−⨯−2(24)4(4)()3;(2)−−+⨯−313518()22.【分析】(1)先算乘除法,再算加法即可;(2)先算乘方,再算乘法,最后算加减法即可.【解答】解:(1)−÷+−⨯−2(24)4(4)()3 ==−+(6)60;(2)−−+⨯−313518()22=−−+⨯995181=−=−−+95212.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.18.(6分)化简:(1)x x x ++−−−;(2a a a a 62352222)−−−3[52(4)].【分析】(1)原式合并同类项即可;(2)原式去括号合并即可得到结果.【解答】解:(1)++−−−a a a a 62352222=−+−+−=+a 21a a a a 65223222;x x x (2)−−−3[52(4)]=−−+x x x 3(528)=−+−x x x 3528=−8.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.+−−−2219.(6分)先化简,再求值:xy xy y xy y 2(32)2(),其中x =−1,y =2.【分析】利用整式的运算,化简代数式,代入数据求值.【解答】解:1x =−,2y =,222(32)2()xy xy y xy y ∴+−−−2223222xy xy y xy y =+−−+3xy =3(1)2=⨯−⨯6=−.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.20.(8分)近些年来我们的生活水平不断提高,曾经的奢侈品小轿车也越来越多地进入更多的家庭.小明家中买了一辆小轿车,他连续7天记录了小轿车每天行驶的路程(如表),以50km 为标准,多于50km 的部分记为“+”,不足50km 的部分记为“−”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米;(2)求出这7天中平均每天行驶多少千米?【分析】(1)根据正负数的意义求出第三天的路程即可;(2)根据平均数的定义计算即可.【解答】解:(1)第三天行驶了(5014)36−=(千米),答:第三天行驶了36千米;(2)平均每天行驶的路程为811148411650507−−−++−+=(千米), 答:这7天中平均每天行驶50千米.【点评】本题考查正负数的意义,解题的关键是理解用正负数表示两种具有相反意义的量.21.(8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛.例如:如果2231x x +=,求代数式2232022x x ++的值.我们可以将223x x +作为一个整体代入:22232022(23)2022120222023x x x x ++=++=+=. 请仿照上面的解题方法,完成下面的问题:(1)如果2231x x +=−,求代数式2232025x x ++的值;(2)如果3x y +=,求代数式6()332017x y x y +−−+的值.【分析】将各式变形后代入已知数值计算即可.【解答】解:(1)2231x x +=−,∴原式12025=−+2024=;(2)3x y +=,∴原式6()3()2017x y x y =+−++3()2017x y =++332017=⨯+92017=+2026=.【点评】本题考查整式的化简求值,将原式进行正确的变形是解题的关键.22.(9分)本学期的十月份,正是秋高气爽的时节,某学校七年级甲班的4名老师决定带领本班m 名学生去长沙县某茶叶庄园参加秋季劳动实践活动.已知该活动基地每张门票的票价为30元,现有A 、B 两种购票方案可供选择:方案A :教师全价,学生半价;方案B :不分教师与学生,全部六折优惠.(1)若该班级按方案A 购票,4名老师全价购票的总费用为 120 元,m 名学生半价购票的总费用为 元;若该班级按方案B 购票,4名老师按6折优惠购票总费用为 元,m 名学生按6折优惠购票总费用为 元(请分别用数字或含m 的代数式表示). (2)当学生人数40m =,且只能从A 、B 两种方案中选择一种购票时,请通过计算按A 、B 两种方案购票分别所需的总费用来说明选择哪种方案更为优惠.(每种方案的总费用4=名教师购票所需总费用m +名学生购票所需总费用)【分析】(1)根据题意列出两个代数式即可;(2)把40m =代入(1)中的两个代数式进行计算,即可得出答案.【解答】解:(1)4名老师全价购票的总费用为430120⨯=(元),m 名学生半价购票的总费用为130152m m ⨯=(元), 4名老师按6折优惠购票总费用为43060%72⨯⨯=(元),m 名学生按6折优惠购票总费用为3060%18m m ⨯=;故答案为:120;15m ;72;18m ;(2)当40m =时,选择方案A 所需的费用为:1201540720+⨯=(元),选择方案B 所需的费用为:184072792⨯+=(元),720792<,∴选择方案A 更为优惠.【点评】本题考查了列代数式及代数式求值,理解题意正确列出代数式是解题的关键.23.(9分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.24.(10分)我们规定:使得a b ab −=成立的一对数a ,b 为“积差等数对”,记为(,)a b .例如:因为1.50.6 1.50.6−=⨯,(2)2(2)2−−=−⨯,所以数对(1.5,0.6),(2,2)−都是“积差等数对”.(1)判断下列数对是否是“积差等数对”: ①1(1,)2(填“是”或者“否” );②(2,1) (填“是”或者“否” ); ③1(2−,1)− (填“是”或者“否” ); (2)若数对(,3)m 是“积差等数对”,求m 的值;(3)若数对(,)a b 是“积差等数对”,求代数式224[32(2)]2(32)6ab a ab a b a −−−−−+的值.【分析】(1)根据新定义内容进行计算,从而作出判断;(2)根据新定义内容列方程求解;(3)将原式去括号,合并同类项进行化简,然后根据新定义内容列出等式并化简,最后代入求值.【解答】解:(1)①111122−=⨯,1(1,)2∴是“积差等数对”; ②2121−≠⨯,(2,1)∴不是“积差等数对”;③11(1)(1)22−−−=−⨯−,1(2∴−,1)−是“积差等数对”; 故答案为:是;否,是;(2)(,3)m 是“积差等数对”,33m m ∴−=,解得:32m =−,m ∴的值为32−; (3)原式224(322)646ab a ab a b a =−−+−++2212488646ab a ab a b a =−−+−++ 44416ab a b =−++,(,)a b 是“积差等数对”,a b ab ∴−=,∴原式44()16ab a b =−−+4416ab ab =−+16=. 【点评】本题属于新定义内容,考查解一元一次方程,整式的加减—化简求值,理解“积差等数对”的定义,掌握解一元一次方程的步骤以及合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.25.(10分)如图所示,点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,其中a 是最大的负整数,b 、c 满足2(9)|12|0b c −+−=,且BC CD =.(1)a = ;d = ;线段BC = ;(2)若点A 以每秒3个单位长度的速度向左运动,同时点C 以每秒5个单位长度的速度向左运动,设运动的时间为t 秒,当A 、C 两点之间的距离为11个单位长度时,求运动时间t 的值;(3)若线段AB 和CD 同时开始向右运动,且线段AB 的速度小于线段CD 的速度.在点A 和点C 之间有一点M ,始终满足AM CM =,在点B 和点D 之间有一点N ,始终满足BN DN =,此时线段MN 为定值吗?若是,请求出这个定值,若不是,请说明理由.【分析】(1)根据题意列式计算即可;(2)由于点A 、C 同时向左,C 点的速度较快,因此点C 可能在点A 左侧,也可能点A 右侧,根据题意列方程即可得到结论;(3)设运动的时间为t 秒,线段AB 的速度为a ,线段CD 的速度为()b a b <,根据题意列方程即可得到结论.【解答】解:(1)a 是最大的负整数,1a ∴=−;2(9)|12|0b c −+−=,90b ∴−=,120c −=,9b ∴=,12c =,1293BC CD ∴==−=,33915d ∴=++=,(2)由于点A 、C 同时向左,C 点的速度较快,因此点C 可能在点A 左侧,也可能点A 右侧,∴点A 表示的数为:13t −−,点C 表示的数为:125t −,|(13)(125)||213|11AC t t t ∴=−−−−=−=,解得1t =或12;(3)线段MN 为定值,设运动的时间为t 秒,线段AB 的速度为a ,线段CD 的速度为()b a b <,则点:1A at −+,点:9B at +,点:12C bt +,点:15D bt +,由题意可知:点M 为AC 中点,点N 为BD 中点,因此,可求得:11211:222at bt a b M t −++++=+;915:1222at bt a b N t ++++=+, 111312()2222a b a b MN t t ++=+−+=. 【点评】本题考查一元一次方程的应用,解题的关键是学会设未知数,构建方程解决问题.。
初一期中考试的数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001…2. 下列运算正确的是()A. 3 + (-2) = 5B. (-3) × (-4) = 12C. 5 ÷ (-2) = -2.5D. 6 × 2 = 123. 若 |x| = 5,则 x 的值为()A. ±5B. 5C. -5D. 04. 下列图形中,轴对称图形是()A. 长方形B. 正方形C. 等腰三角形D. 以上都是5. 若 a > b,则下列不等式成立的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 3 < b + 3D. a - 3 > b - 36. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x^3 + 2x^2 - x + 1D. y = 2x^2 - 4x + 37. 若 a、b、c 是等差数列,且 a + b + c = 15,则 b 的值为()A. 5B. 7C. 9D. 118. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^29. 下列命题中,正确的是()A. 如果 a > b,则 a^2 > b^2B. 如果 a > b,则 -a < -bC. 如果 a > b,则 a - b > 0D. 如果 a > b,则 a + b > 010. 下列关于平行四边形的说法中,正确的是()A. 对角线互相平分B. 对边互相平行C. 对角线互相垂直D. 以上都是二、填空题(每题5分,共50分)11. 若 a = -2,b = 3,则 a^2 + b^2 的值为________。
湖南省长沙市华益中学2023-2024学年上学期七年级期中考试数学试卷
23年秋初一华益中学期中考试数学试卷 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分) −1.(3分)2的相反数是()A .2−B .2C .21D . −21 2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国 聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .6 0.11610⨯D .83.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|(1)−−12B .与2(2)−C .3−2与3D .322与 32()2 a b +<4.(3分)若0 ab <,0,则下列说法正确的是()A .a ,b 同号B . a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能5.(3分)关于整式,下列说法正确的是() A .x y 2的次数是2B .0不是单项式3πC .mn 的系数是3x x −−D .2332是三次三项式−2a b n 6.(3分)若5 5a b 32m n 与+的差仍是单项式,则m n的值是()A .2B .0 −C .1D .17.(3分)下列各式运用等式的性质变形,错误的是() a b =A .若,则+=+a b =B a c b c .若,则=c ca ba b =C .若,则=a b =D ac bc .若,则−=−a c b c −1A 8.(3分)如果数轴上的点对应的数为,点B 与 A 点相距3个单位长度,则点 B 所对 应的有理数为()A .2−B .4−C .2或4−D .2或49.(3分)某同学在解关于x x mx 的方程−=+313时,把m x =看错了,结果解得4,则该同m 学把看成了()−A .2B .2C .34D .27 10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C,则该地半夜的气温为. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为.13.(3分)已知a ,b a b ++−=满足|3|(2)02+,则a b ()2023的值是.14.(3分)已知轮船在逆水中前进的速度是a 千米时,水流的速度是5/千米 /时,则这轮船在顺水中前进的速度是/千米时. a a 2+−=1015.(3分)已知,则代数式 a a 2222021++的值是.16.(3分)若k x −−=||4k (5)60− 是关于x的一元一次方程,则k 的值为.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)−+−−⨯−2|23|2(1)32023.18.(6分)解方程:x x =−+−6312152.19.(6分)先化简,再求值:+−−−m m n m n 2(32)6()22,其中=−m 3,=n 3.20.(8分)(1)已知有理数a ,b ,c 在数轴上对应的点如图所示,化简:−+−−−b a a c c b ||||||; (2)已知=−A x x 532,=−+B x x 1162,求当=x 1时,求−A B 的值.21.(8分)如图,在长为++a ab 12,宽为−a ab 22的长方形纸板上裁去一个边长为b 的正方形.(1)求剩余纸板的周长C (用含a ,b 的代数式表示); (2)当=a 3,=b 1时,求C 的值.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克? (2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?23.(9分)已知关于x 的整式=+−+A x ax x 3322,整式=+−+B x ax x 24222,若a 是常数,且−A B 3不含x 的一次项. (1)求a 的值;(2)若b 为整数,关于x 的一元一次方程+−=bx x 230的解是整数,求+a b 5的值.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = ,a = ,b = ; (2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t秒,甲班的A 同学在数轴上位置C拿到最后一棒接力棒时,记为0t=,此时乙班的B同学已经位于数轴上数10的位置,A同学以每秒8米向左运动,B同学以每秒5米向左运动,两位同学到达D点立即停止运动.(1)当0t=时,A、B同学相距米;当1t=时,A、B同学在数轴上所表示的数为、.(2)①若t秒后A同学恰好追上B同学,求t;②当A同学到达终点D后,B同学还要经过多少秒到达D点.③分别取线段AC、BD中点为E、F,若在点A、B运动期间,4mEF nDA−始终保持不变(其中m,n为常数),求mn的值.23年秋初一华益中学期中考试数学试卷参考答案与试题解析 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)−1.(3分)2的相反数是()A .2−B .2C .21D . −21 【分析】根据相反数的定义进行判断即可.−【解答】解:2的相反数是2,故选:A .【点评】本题考查相反数,掌握相反数的定义是正确判断的前提.2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .60.11610⨯D .8a ⨯10【分析】将一个数表示成n a 的形式,其中1||10<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1160万 ==⨯11600000 1.16107,故选:B .【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.3.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|−1B .2(1)−与2(2)−C .3−2与3D .322与32()2【分析】根据有理数的乘方运算法则、绝对值的意义可进行求解.【解答】解:A −−=、(2)2−−=−,|2|2 −−,所以(2)−−与|2|不相等不符合题意;−=−11B 、2 −=,(1)12(1)−2,所以与−12不相等不符合题意;−=−C 、(2)83−=−28,3(2)−,所以3−23与相等符合题意;D 、3924()2=,所以322与23()2不相等不符合题意;C 故选:.【点评】本题主要考查有理数的乘方运算,熟练掌握有理数的乘方运算法则是解题的关键. 4.(3分)若0a b +<,0ab <,则下列说法正确的是( ) A .a ,b 同号B .a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能【分析】根据题意得知a 、b 异号,并且负数的绝对值较大,挖掘出这一条件后,再对四个选项逐一分析.【解答】解:0ab <,a ∴、b 异号,又0a b +<,∴负数的绝对值较大, 根据这一条件判断:A 、C 、D 选项错误;B 选项正确; 故选:B .【点评】本题考查了有理数的除法,两个不等于零的数相乘,两数相乘,同号为正,异号为负,并把绝对值相乘.5.(3分)关于整式,下列说法正确的是( ) A .2x y 的次数是2 B .0不是单项式C .3mn π的系数是3D .3223x x −−是三次三项式【分析】根据单项式的系数与单项式的次数的定义对A 、C 进行判断;根据单独的一个数字或字母也是单项式对B 进行判断;根据多项式的次数和项数的定义对D 进行判断. 【解答】解:A 、2x y 的次数是3,所以A 选项错误; B 、数字0是单项式,所以B 选项错误; C 、3mn π的系数是3π,所以C 选项错误;D 、3223x x −−是三次三项式,所以D 选项正确.故选:D .【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.也考查了多项式的定义. 6.(3分)若52n a b −与325m n a b +的差仍是单项式,则n m 的值是( ) A .2B .0C .1−D .1【分析】由52n a b −与325m n a b +的差仍是单项式知52n a b −与325m n a b +是同类项,据此可得3n =,25m n +=,解之求出m 的值,代入计算可得.【解答】解:52n a b −与325m n a b +的差仍是单项式,52n a b ∴−与325m n a b +是同类项,3n ∴=,25m n +=, 1m ∴=,则311n m ==,故选:D .【点评】本题主要考查同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.7.(3分)下列各式运用等式的性质变形,错误的是( ) A .若a b =,则a c b c +=+ B .若a b =,则a bc c=C .若a b =,则ac bc =D .若a b =,则a c b c −=−【分析】根据等式的性质,可得答案.【解答】解:A 、若a b =,则a c b c +=+,故A 不符合题意; B 、c 等于零时,除以c 无意义,故B 符合题意; C 、若a b =,则ac bc =,故C 不符合题意;D 、若a b =,则a c b c −=−,故D 不符合题意;故选:B .【点评】本题考查了等式的性质,熟记等式的性质是解题关键.8.(3分)如果数轴上的点A 对应的数为1−,点B 与A 点相距3个单位长度,则点B 所对应的有理数为( ) A .2B .4−C .2−或4D .2或4−【分析】考虑在A 点左边和右边两种情形解答问题.【解答】解:在A 点左边与A 点相距3个单位长度的点所对应的有理数为4−; 在A 点右边与A 点相距3个单位长度的点所对应的有理数为2. 故选:D .【点评】本题考查了数轴上两点间的距离,解题的关键是注意分类讨论.9.(3分)某同学在解关于x 的方程313x mx −=+时,把m 看错了,结果解得4x =,则该同学把m 看成了( ) A .2−B .2C .43D .72【分析】将4x =代入313x mx −=+中解得m 的值即可.x =【解答】解:将4x mx 代入−=+313中可得−=+m 12143m =,解得:2,B 故选:. 【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)x 【分析】设有个人共同出钱买鸡,根据买鸡需要的总钱数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设有x x x 个人共同出钱买鸡,根据题意得:−=+811513.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C ,则该地半夜的气温为︒−1C . 【分析】利用题意列出算式解答即可.【解答】解:+− =−163211920︒=−1C .故答案为:︒ −1C .【点评】本题主要考查了有理数的加减混合运算的应用,正确列出算式是解题的关键.3.90. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为【分析】把千分位上的数字6进行“四舍五入”即可.【解答】解:≈3.896 3.900.01)(精确到.故答案为:3.90.【点评】本题考查了近似数与精确度,熟练掌握精确度的定义是解答本题的关键.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.(3分)已知a ,a b ++−=b 满足|3|(2)02 +,则a b ()2023−的值是1.【分析】根据绝对值、偶次方的非负性求出a、b ,再根据有理数的乘方法则计算即可.a b 【解答】解:|3|(2)0++−=2∴+=a 30,,b −=20,∴=−a 3b =,2,∴+=−+=−a b ()(32)120232023,−故答案为:1.【点评】本题考查的是非负数的性质,熟记绝对值、偶次方具有非负性是解题的关键.14.(3分)已知轮船在逆水中前进的速度是a 时,水流的速度是5千米/千米/ 时,则这轮 a 船在顺水中前进的速度是+(10)/千米时.【分析】根据顺水速度=逆水速度+⨯2水流速度,把相关数值代入后化简即可.a +【解答】解:由题意得:船在静水中的速度为:5,∴a a ++=+这轮船在顺水中航行的速度是55(10)千米/时,a 故答案为:+(10).【点评】本题考查列代数式,解题的关键是顺水速度=逆水速度+⨯2水流速度.a a +−=15.(3分)已知102 a a 2,则代数式222021++的值是2023.a a +=【分析】根据题意得到12,再将代数式变形即可求值.a a 【解答】解:2+−=10∴+=a a 2,1,∴++=++=⨯+=a a a a 2220212()2021212021202322,故答案为:2023.【点评】本题考查了代数式求值,利用整体代入思想解决问题是解题关键.16.(3分)若k x −−=||4k (5)60−是关于x 的一元一次方程,则k−的值为5.【分析】直接利用一元一次方程的定义得出关于k 的方程求出答案.k x 【解答】解:(5)60−−=||4k −是关于x 的一元一次方程,∴−=k ||41k −≠50且,解得:k =−5.−5故答案为:.【点评】此题主要考查了一元一次方程的定义,正确把握未知数的系数与次数是解题关键.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)320232|23|2(1)−+−−⨯−.【分析】先求绝对值和乘方,再作乘法和加减即可.【解答】解:原式812(1)=−+−⨯−812=−++5=−.【点评】本题考查含乘方的有理数运算,掌握相关的运算法则和公式是解题的关键.18.(6分)解方程:2152163x x +−=−. 【分析】先去分母,再去括号,移项,合并同类项,系数化成1即可.【解答】解:2152163x x +−=−,去分母,得2162(52)x x +=−−, 去括号,得216104x x +=−+,移项,得210641x x +=+−,合并同类项,得129x =,系数化成1,得34x =. 【点评】本题考查了解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.19.(6分)先化简,再求值:,其中,.【分析】直接去括号,再合并同类项,把已知数据代入得出答案.【解答】解:原式2262466m m n m n =+−−+22m n =+,当3m =−,3n =时,原式2(3)23=⨯−+⨯66=−+0=.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.20.(8分)(1)已知有理数,,在数轴上对应的点如图所示,化简:; (2)已知,,求当时,求的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的意义化简,去括号合并即可得到结果;(2)先化简A B −,然后把1x =代入求值.【解答】解:(1)由数轴可得:0a b c <<<,且||||||a c b >>,0b a ∴−>,0a c −<,0c b −>, ||||||b a a c c b −+−−−()()()b a a c c b =−−−−−b a a c c b =−−+−+22a b =−+;(2)A B −322(5)(116)x x x x =−−−+3225116x x x x =−−+−326116x x x =−+−, 当1x =时,原式3216111160=−⨯+⨯−=.【点评】本题考查整式的加减−化简求值、数轴、绝对值,解题的关键是掌握绝对值性质.21.(8分)如图,在长为,宽为的长方形纸板上裁去一个边长为的正方形.(1)求剩余纸板的周长(用含,的代数式表示); (2)当,时,求的值.【分析】(1)根据长方形的周长公式进行解答即可;(2)把3a =,1b =代入求值即可.【解答】解:(1)剩余纸板的周长:222(12)a ab a ab +++−2222224a ab a ab =+++−2422a ab =−+;(2)把3a =,1b =代入得:243231232C =⨯−⨯⨯+=.【点评】本题主要考查了列代数式,整式加减的应用;解题的关键是熟练掌握整式加减混合运算法则,准确计算.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元千克收购,按9.5元千克进行苹果销售,运费及包装费等平均为2.5元千克,则李军该周销售苹果一共收入多少元?【分析】(1)根据表中数据计算即可;(2)根据表中数据计算即可;(3)根据(2)的数据计算即可.【解答】解:(1)13070200+=(千克),答:李军该周销售苹果最多的一天比最少的一天多200千克;(2)20007305070130205011014180⨯+−−+−++=(千克),答:李军该周实际销售苹果的总量是14180千克;(3)14180(9.55 2.5)28360⨯−−=(元),答:李军该周销售苹果一共收入28360元.【点评】本题主要考查正负数的计算,熟练掌握正负数的计算是解题的关键.23.(9分)已知关于的整式,整式,若是常数,且不含的一次项. (1)求的值;(2)若为整数,关于的一元一次方程的解是整数,求的值.【分析】(1)将A ,B 代入3A B −中计算后根据已知条件即可求得a 的值;(2)解方程并进行分类讨论后确定b 的值,然后将a ,b 的值代入5a b +中计算即可.【解答】解:(1)2332A x ax x =+−+,22422B x ax x =+−+,3A B ∴−223(332)(2422)x ax x x ax x =+−+−+−+2239962422x ax x x ax x =+−+−−+− 2(57)4x a x =+−+,3A B −不含x 的一次项,570a ∴−=,解得:75a =; (2)230bx x +−=,整理得:(2)3b x +=,原方程的解为整数,且b 为整数,1b ∴=±或3−或5−,当1b =时,75517185a b +=⨯+=+=;当1b =−时,75517165a b +=⨯−=−=; 当3b =−时,75537345a b +=⨯−=−=;当5b =−时,75557525a b +=⨯−=−=; 综上,5a b +的值为2或4或6或8.【点评】本题考查整式的化简求值及解一元一次方程,结合已知条件确定a ,b 的值是解题的关键.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = 1 ,a = ,b = ;(2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.【分析】(1)根据题干信息得出12a b =,21a b =,先方程20x m −=的解为12,求出1m =,即可得出答案;(2)先求出方程30x k +=的解为:3k x =−,在求出方程30x k +=的“美美与共”方程30kx +=的解为3x k=−,根据3k −和3k −都为整数,求出结果即可; (3)先求出方程12(21)x x −=−的解为:13x =,得出方程0ax b +=的解为13b x a =−=−,再求出方程0ax b +=的“美美与共”方程为0bx a +=,求出方程0bx a +=的解为:3a x b =−=−. 【解答】解:(1)21221||()0a b a b −+−=,120a b ∴−=,210a b −=,解得:12a b =,21a b =, 方程20x m −=的解为12,∴1202m ⨯−=,解得:1m =, ∴方程20x m −=与0ax b +=互为“美美与共”方程,2b ∴=,m a −=,1a ∴=−, 故答案为:1;1−;2;(2)存在;方程30x k +=的解为:3k x =−, 方程30x k +=的“美美与共”方程为:30kx +=,且其解为3x k=−, 关于x 的方程30x k +=与其“美美与共”方程的解都是整数, ∴3k −和3k−都为整数,3k ∴=±; (3)方程12(21)x x −=−的解为:13x =, 方程12(21)x x −=−的解也是方程0ax b +=的解,∴方程0ax b +=的解为13b x a =−=, 方程0ax b +=的“美美与共”方程为0bx a +=,∴方程0bx a +=的解为:3a x b=−=. 即方程0ax b +=的“美美与共”方程的解为3x =. 【点评】本题主要考查了方程的解,解一元一次方程,解题的关键是熟练掌握解方程的一般步骤准确计算.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t 秒,甲班的A 同学在数轴上位置C 拿到最后一棒接力棒时,记为0t =,此时乙班的B 同学已经位于数轴上数10的位置,A 同学以每秒8米向左运动,B 同学以每秒5米向左运动,两位同学到达D 点立即停止运动.(1)当0t =时,A 、B 同学相距 15 米;当1t =时,A 、B 同学在数轴上所表示的数为 、 .(2)①若t 秒后A 同学恰好追上B 同学,求t ;②当A 同学到达终点D 后,B 同学还要经过多少秒到达D 点.③分别取线段AC 、BD 中点为E 、F ,若在点A 、B 运动期间,4mEF nDA −始终保持不变(其中m ,n 为常数),求m n的值. 【分析】(1)根据数轴上两点间距离公式进行解答即可;(2)①根据t 秒后A 恰好追上B 时,A 同学的路程比B 同学的路程多15列方程求解即可; ②先求出A 到达D 所需要的时间,再求出B 到达D 所需要的时间,然后两个时间相减即可; ③分别用t 表示出E 、F 在数轴表示的数,然后求出线段653||2t EF −=,508DA t =−,进而求出6532t EF −=,然后代入4mEF nDA −并化简得出4(86)13050mEF nDA n m t m n −=−+−,根据4mEF nDA −为定值(其中m ,n 为常数)得出860n m −=,即可求解.【解答】解:(1)当0t =时,A 同学所在位置表示的数为25,B 表示的数为10, ∴此时A 、B 同学相距251015−=;当1t =时,A 同学在数轴上所表示的数为251817−⨯=,B 同学在数轴上所表示的数为10155−⨯=;故答案为:15;17;5;(2)解:①根据题意,得852510t t −=−,解得5t =; ②10(25)25(25)0.7558−−−−−=(秒), 答:当A 同学到达终点D 后,B 同学还要经过0.75秒到达D 点;③A 在数轴上所表示的数为258t −,B 在数轴上所表示的数为105t −,故258(25)508DA t t =−−−=−,E 在数轴上所表示的数为(258)252542t t −+=−, F 在数轴上所表示的数为(105)(25)15522t t −+−−−=, 线段长155653|254()|||22t t EF t −−−=−−=, 当B 同学运动到D 点时停止运动,所以总运动时间为10(25)75−−=(秒), ∴65302t −>,则6532t EF −=, 4mEF nDA ∴−,2(653)(508)m t n t =−−−(86)13050n m t m n =−+−,由于4mEF nDA −为定值,故860n m −=,解得43m n =. 【点评】本题主要考查的是数轴上两点之间的距离,一元一次方程的应用,熟练的利用方程思想解决数轴上的动点问题是解题的关键.。
湖南省长沙市湖南师大附中2023-2024学年上学期七年级期中考试数学试卷
23年秋初一湖南师大附中期中考试数学试卷一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖 +马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6,那么支出2元记 作( ) A .2−B .2C .4−D .4 2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 () 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .33.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32 4.(3分)下列各式正确的是() −−=−A .853 B .+=C 437a b ab .−=x x x 54−−−=D .2(7)55.(3分)下列方程中是一元一次方程的是 () x y A .+=x x ++=B 341.560 2C .−=D 342x x .+=x5036.(3分)下列说法正确的是()A .ab a bc 22−−521是四次三项式B .单项式xy 的系数是0C .x x 231−−的常数项是1x y xy 23D .231−+ 2x y 最高次项是27.(3分)下列方程变形中,正确的是()A .由 y =30y =,得323x =B .由,得 x =32 C .由−=23a a a =,得3b b D .由−=+2131b =,得2−2xy m 8.(3分)若和 x y n 3是同类项,则m 和n 的值分别为( )m =1A ., n =1m =1B ., n =3m =3C .,n =1m =3D .,n =3A 向左移动29.(3分)如图,数轴上一动点个单位长度到达点B ,再向右移动5个单位长C 表示的数为1C 度到达点.若点,则与点A 表示的数互为相反数的是() −A .7B .3−C .3D .2x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3 二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是.12.(3分)单项式 − 3x yz 523的系数是.a b +=13.(3分)若23742,则b a ++=. 14.(3分)如图是一个计算程序,若输入−a 的值为1,则输出的结果应为.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为 a ,则圈出的三个数之和为.(用含a 的式子表示)16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算2[5(2)](|4|)1⨯+−−−−÷3.218.(6分)化简求值:222()3(2)a ab a ab−−−,其中2a=−,3b=.19.(6分)解方程:(1)54(31)13x x+−=.(2)27231 32x x−−−=.20.(8分)阅读材料:对于任意有理数a,b,规定一种新的运算:()1a b a a b=+−,例如,252(25)113=⨯+−=;(1)计算3(2)−;(2)若(2)5x−=,求x的值.21.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,a b−0,c a−0.(2)化简:||||||c b a b c a−+−−−.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.24.(10分)定义:若关于x的方程0(0)ax b a+=≠的解与关于y的方程0(0)cy d c+=≠的解满足||(x y m m−=为正数),则称方程0(0)ax b a+=≠与方程0(0)cy d c+=≠是“m差解方程”.(1)请通过计算判断关于x的方程2512x x=−与关于y的方程3(1)1y y−−=是不是“2差解方程”;(2)若关于x的方程213x mx n−−=−与关于y的方程2(2)3(1)y mn n m−−−=是“m差解方程”,求n的值;(3)关于x,y的两个方程2(1)31x m−=−与方程3y mn n=+,若对于任何数m,都使得它们不是“2差解方程”,求n的值.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.23年秋初一湖南师大附中期中考试数学试卷参考答案与试题解析一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖+马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6 ,那么支出2元记 作() A .2−B .2C .4−D .4【分析】用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.+【解答】解:收入6元记作6−2元,则支出2元记作元,故选:B .【点评】本题考查正数、负数的意义,用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 ( ) 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .3a ⨯10【分析】科学记数法的表示形式为n a 的形式,其中1||10<,n 为整数.确定n 的值时,a 要看把原数变成时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n<是正整数;当原数的绝对值1时,n是负整数.=⨯【解答】解:468000 4.68105.B 故选:.a ⨯10n 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中a 1||10<,n为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32【分析】先算出 −−3||2,再求其相反数即可.【解答】解:22||33−−=−,23−的相反数为23, 故选:C .【点评】用到的知识点为:a 的相反数是a −;负数的绝对值是正数;负数的相反数是正数.4.(3分)下列各式正确的是( )A .853−−=−B .437a b ab +=C .54x x x −=D .2(7)5−−−=【分析】合并同类项,首先要能识别哪些是同类项,两个项(单项式)是同类项,它们所含的字母必须相同,并且各个字母的指数也相同,其次是掌握同类项合并的法则:系数相加.字母和字母的指数不变.【解答】解:A 、85−−应等于13−,故本选项错误;B 、4a 和3b 不是同类项,不能合并,故本选项错误;C 、5x 和4x 指数不同,不是同类项,不能合并,故本选项错误;D 、2(7)5−−−=,故本选项正确.故选:D .【点评】此题主要考查学生对合并同类项的理解和掌握,解答此类题目的关键是能识别哪些是同类项.此题难度不大,属于基础题.5.(3分)下列方程中是一元一次方程的是( )A .341x y +=B .2560x x ++=C .342x x −=D .350x+= 【分析】根据一元一次方程的定义,逐个判断.【解答】解:方程341x y +=含有两个未知数,不是一元一次方程;方程2560x x ++=含有未知数的二次项,不是一元一次方程;方程342x x −=符合一元一次方程的定义,是一元一次方程; 方程350x+=不是整式方程,不是一元一次方程. 故选:C .【点评】本题考查了一元一次方程的定义,一元一次方程需满足以下三条:①只含有一个未知数;②未知数的次数是1;③整式方程.6.(3分)下列说法正确的是( )A .22521ab a bc −−是四次三项式B .单项式xy 的系数是0C .231x x −−的常数项是1D .23231x y xy −+最高次项是22x y【分析】直接利用多项式的项数、次数确定方法分别分析得出答案.【解答】解:A 、22521ab a bc −−是四次三项式,正确;B 、单项式xy 的系数是1,故此选项错误;C 、231x x −−的常数项是1−,故此选项错误;D 、23231x y xy −+最高次项是33xy −,故此选项错误;故选:A .【点评】此题主要考查了多项式,正确把握相关定义是解题关键.7.(3分)下列方程变形中,正确的是( )A .由03y =,得3y =B .由23x =,得23x = C .由23a a −=,得3a = D .由2131b b −=+,得2b =【分析】按照解一元一次方程的步骤进行计算,逐一判断即可解答.【解答】解:A 、由03y =,得0y =,故A 不符合题意; B 、由23x =,得32x =,故B 不符合题意; C 、由23a a −=,得3a =,故C 符合题意;D 、由2131b b −=+,得2b =−,故D 不符合题意;故选:C .【点评】本题考查了解一元一次方程,等式的性质,熟练掌握解一元一次方程的步骤是解题的关键.8.(3分)若2m xy −和3n x y 是同类项,则m 和n 的值分别为( )A .1m =,1n =B .1m =,3n =C .3m =,1n =D .3m =,3n =【分析】相同字母的指数要相同可求出m 与n 的值.【解答】解:由题意可知:1n =,3m =,故选:C .【点评】本题考查同类项的概念,属于基础题型.9.(3分)如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C A 表示的数为1.若点C ,则与点表示的数互为相反数的是 () −A .7B .3−C .3D .2【分析】先求出A 点表示的数,根据相反数的定义即可求解.【解答】解:数轴上一动点A 向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C ,表示的数为1点C ,∴点B −表示的数为4,∴点A −表示的数为2,∴则与点A表示的数互为相反数的是2,故选:D.【点评】本题考查了相反数的定义,本题的解题关键是求出A 点表示的数.x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3【分析】先将原多项式合并同类项,再令xy 项的系数为0,然后解关于k 的方程即可求出k.【解答】解:原式=+−−−x k xy y 22(13)38,因为不含xy 项,故−=k 130,解得: k =31 . C 故选:. 【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是16.【分析】直接利用绝对值的定义得出答案. −【解答】解:16的绝对值是:16.故答案为:16.【点评】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.12.(3分)单项式 −3x yz 523的系数是 −53.【分析】利用单项式系数定义可得答案.【解答】解:单项式2335x yz −的系数是35−, 故答案为:35−. 【点评】此题主要考查了单项式,关键是掌握单项式中的数字因数叫做单项式的系数.13.(3分)若23a b +=,则742b a ++= 13 .【分析】根据23a b +=,可知24a b +的值,进一步求解即可.【解答】解:23a b +=,242(2)236a b a b ∴+=+=⨯=,7427613b a ∴++=+=,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.14.(3分)如图是一个计算程序,若输入a 的值为1−,则输出的结果应为 5− .【分析】将1a =−代入计算程序中进行计算.【解答】解:当1a =−时,2[(1)(2)](3)4−−−⨯−+(12)(3)4=+⨯−+3(3)4=⨯−+94=−+5=−, 故答案为:5−.【点评】本题考查代数式求值,准确理解程序图,掌握有理数混合运算的运算顺序和计算法则是解题关键.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为a ,则圈出的三个数之和为 3a .(用含a 的式子表示)【分析】观察任意圈出一竖列上相邻的三个数,可以看出每一竖列相邻的两个数之间相差7.表示出最小的数和最大的数,让这三个数相加即可.【解答】解:设中间数为a ,∴其他两个数分别表示为7a −,7a +.∴三个数的和为+++−=a a a a 773.3故答案为:a . 【点评】本题考查列代数式,关键是注意每一竖列相邻两个数之间的关系,都是差7.16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是小师.【分析】因为10次对决中没有平局,那么小师6次剪刀只能对应小滨的2次石头和4次布,这6局中小师赢4局;同理,小师3次石头和1次布只能对应小滨4次剪刀,这4局中小师赢3局,由此推断出结论.【解答】解:因为10次对决中没有平局,所以小师6次剪刀只能对应小滨的2次石头和4次布,所以这6局中小师赢4局,同理,小师3次石头和1次布只能对应小滨4次剪刀,所以这4局中小师赢3局,所以小师共赢了+=局,小滨赢了3437局.故答案为:小师.【点评】本题考查的是推理论证,根据已知条件做出正确分析,注意每一步都有根据和理由.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算22[5(2)](|4|)1 ⨯+−−−−÷3.【分析】先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:22[5(2)](|4|)1⨯+−−−−÷3=⨯+−−−⨯ ==−+=⨯−−−2[5(8)](42)2(3)(8)682.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.(6分)化简求值:−−−a ab a ab 2()3(2)22a =−,其中2b =3,.【分析】直接去括号进而合并同类项,再把已知代入即可.【解答】解:−−−a ab a ab 2()3(2)22=−−+=−+4a ab a ab a ab 2263222,a =−2把,=−22b =3代入得:原式.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(6分)解方程:(1)54(31)13x x +−=.(2)2723132x x −−−=. 【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)去括号,得512413x x +−=,移项,得512134x x +=+,合并同类项,得1717x =,系数化为1,得1x =;(2)去分母,得2(27)3(23)6x x −−−=,去括号,得414696x x −−+=,移项,得496146x x +=++,合并同类项,得1326x =,系数化为1,得2x =.【点评】本题考查了解一元一次方程,能正确根据等式的基本性质进行变形是解此题的关键.20.(8分)阅读材料:对于任意有理数a ,b ,规定一种新的运算:()1ab a a b =+−,例如,252(25)113=⨯+−=; (1)计算3(2)−;(2)若(2)5x −=,求x 的值.【分析】(1)直接利用已知运算法则计算得出答案;(2)直接利用已知运算法则计算得出答案.【解答】解:(1)3(2)3(32)12−=⨯−−=;(2)由题意可得:(2)5x −=,2(2)15x −⨯−+−=,则4215x −−=,解得:1x =−. 【点评】此题主要考查了一元一次方程的解法以及有理数的混合运算,正确掌握相关运算法则是解题关键.21.(8分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,故答案为:>,<,>;(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 15xy 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.【分析】(1)住房的总面积=长4y 宽2x 的客厅的面积+长2y 宽x 的厨房的面积+长x 宽y 的浴室的面积+长2x 宽2y 的卧室的面积;(2)将4x =, 2.5y =代入算出小明家住房面积,再乘以每平方米装修成本,即可得出全部装修完的成本.【解答】解:(1)42222y x y x x y x y ⨯+⨯+⨯+⨯824xy xy xy xy =+++15xy =(平方米). 故小明家住房面积为15xy 平方米;(2)4x =, 2.5y =,15154 2.5150xy ∴=⨯⨯=,150********⨯=(元).答:全部装修完的成本为90000元.故答案为:15xy ;90000.【点评】本题考查了整式的混合运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 ①③ (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.【分析】(1)根据定义列式计算后进行判断即可;(2)根据定义列得方程,解方程即可;(3)将原式去括号,合并同类项后代入数值计算即可.【解答】解:(1)8.190.9−+=−,8.1(9)0.9−÷−=,则①是“差商等数对”;11022−=,11122÷=,则②不是“差商等数对”; 11122−+=,11(1)22−÷−=,则③是“差商等数对”; 故答案为:①③;(2)由题意可得22a a −=,解得:4a =; (3)222(3)(52)a a a a −−+−222652a a a a =−++−234a a =+,当4a =时,原式23444481664=⨯+⨯=+=.【点评】本题考查整式的化简求值及实数的运算,结合已知条件列得正确的算式是解题的关键.24.(10分)定义:若关于x 的方程0(0)ax b a +=≠的解与关于y 的方程0(0)cy d c +=≠的解满足||(x y m m −=为正数),则称方程0(0)ax b a +=≠与方程0(0)cy d c +=≠是“m 差解方程”.(1)请通过计算判断关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是不是“2差解方程”;(2)若关于x 的方程213x m x n −−=−与关于y 的方程2(2)3(1)y mn n m −−−=是“m 差解方程”,求n 的值;(3)关于x ,y 的两个方程2(1)31x m −=−与方程3y mn n =+,若对于任何数m ,都使得它们不是“2差解方程”,求n 的值.【分析】(1)分别求解两个方程,根据定义判断即可;(2)分别求出方程的解,根据题意可得332334||22n m n m mn m −−−++−=,解出n 的值即可;(3)分别求出方程2(1)31x m −=−与方程3y mn n =+的解,再根据对于任何数m ,都使得它们不是“2差解方程”,即与m 无关,则可列出关于n 的一元一次方程,解出方程即可求解.【解答】解:(1)关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”,理由如下:2512x x =−的解为4x =,3(1)1y y −−=的解为2y =,|||42|2x y −=−=,∴关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”; (2)方程213x m x n −−=−的解为3322n m x −−=, 方程2(2)3(1)y mn n m −−−=的解为3342n m mn y −++=, 两个方程是“m 差解方程”,332334||22n m n m mn m −−−++∴−=, |34|2n ∴+=,14n ∴=−或54n =−; (3)2(1)31x m −=−化简得:231x m =+,解得:312m x +=, 3y mn n =+,解得:3mn n y +=, 3123m mn n x y ++∴−=−,9322(92)3266m mn n m n n +−−−+−==; 对于任何数m ,都使2(1)31x m −=−与3y mn n =+不是“2差解方程”,920n ∴−=,解得:92n =. 【点评】本题考查一元一次方程的解,绝对值方程,熟练掌握一元一次方程的解法,绝对值方程的解法,理解新定义是解题的关键.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 1.5 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.【分析】(1)先由非负数的性质求出5c =,2d =−,进而可得CD 的中点N 所对应的数;(2)首先依题意求出点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,然后根据R 为PQ 的中点,R 到点C 的距离为2,得∴22522t t −++−=,由此解出t 即可; (3)①依题意可得出M 对应的数;②由(2)可知:点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,再求出点E 所表示的数为735t −,点F 所表示的数为52t −,进而求出73||5t OE −=,|5|2t OF =−,从而得514|73||707|OE OF t t +=−+−,然后根据绝对值的意义进行分类讨论即可得出答案.【解答】解:(1)由非负数的性质得:30c d −+=,20d +=,解得:5c =,2d =−, CD ∴的中点N 所对应的数为:25 1.52−+=, 故答案为:1.5.(2)P 点从C 点出发,以每秒1个单位的速度向左运动,∴运动6秒后,点Q 开始运动,运动t 秒后,点P 所表示的数为:5(6)1t t −+=−−, Q 点从D 点出发,以每秒2个单位的速度向右运动,t ∴秒时,点Q 所表示的数为:22t −+, R 为PQ 的中点,则点R 所表示的数为:221322t t t −+−−−=, 又点R 到点C 的距离为2,∴3|5|22t −−=, 整理得:|13|4t −=,解得:9t =,或17t =即9或17秒时,R 到点C 的距离为2.(3)①M 为AB 靠近A 的三等分点时,M 对应的数为23x y +, M 为AB 靠近A 的四等分点时,M 对应的数为34x y +, 以此类推,⋯,M 为AB 靠近A 的5等分点时,M 对应的数为45x y +, 故答案为:45x y +. ②由(2)可知:点P 所表示的数为:1t −−,点Q 所表示的数为:22t −+, E 是PQ 最靠近Q 的五等分点,∴点E 所表示的数为:4(22)17925t t t −+−−−=,F 为PC 中点,∴点F 所表示的数为:15222t t −−+=−, 79||5t OE −∴=,|2|2t OF =−, 795145||14|2||79||287|52t t OE OF t t −∴+=⨯+⨯−=−+−, 当79t <时,514972873714OE OF t t t +=−+−=−,79t <,则1418t −>−,3714371819t ∴−>−=,即51419OE OF +>,当9728t 时,5147928719OE OF t t +=−+−=,当728t >时,514797281437OE OF t t t +=−+−=−,728t >,则1456t >,1437563719t ∴−>−=,即51419OE OF +>,综上所述:514OE OF +的最小值为19,此时9728t ,即947t , 故得当514OE OF +的最小值为19时,t 的取值范围是:947t . 【点评】此题主要考查了有理数与数轴,绝对值的意义,理解题意,读懂题目中新定义的分点公式,熟练掌握绝对值的意义,运用分类讨论思想进行分类讨论是解决问题的关键.。
初一上册数学期中考试题
初一上册数学期中考试题一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 22. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是3. 两个数的和是正数,它们的积是:A. 正数B. 负数C. 可能是正数或负数D. 04. 以下哪个表达式的结果不是整数?A. 3 + 2B. 4 × 5C. 7 ÷ 3D. 8 - 55. 一个数的平方是16,这个数是:A. 4B. -4C. 4或-4D. 都不是6. 一个数的立方是-8,这个数是:A. -2B. 2C. -8D. 87. 以下哪个分数是最接近0的?A. 1/2B. -1/3C. 1/3D. -1/28. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 都不是9. 下列哪个不是有理数?A. πB. √2C. 1/2D. -310. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 1或-1二、填空题(每题2分,共20分)11. 如果一个数的相反数是-7,那么这个数是________。
12. 绝对值不大于5的所有整数有:-5,-4,-3,-2,-1,0,1,2,3,4,5。
13. 一个数的平方是25,这个数的平方根是________。
14. 两个数的乘积是-6,其中一个数是3,另一个数是________。
15. 一个数的立方是-27,这个数的立方根是________。
16. 一个数的倒数是1/2,这个数是________。
17. 一个数的平方是9,这个数是________。
18. 一个数的立方是64,这个数是________。
19. 一个数的绝对值是3,这个数可能是________或________。
20. 如果一个数的平方根是2,那么这个数的平方是________。
三、计算题(每题5分,共30分)21. 计算下列各题,并写出计算过程:(1) (-3) × (-2) + 5 ÷ 1(2) √16 - √922. 解下列方程:(1) 2x + 5 = 11(2) 3x - 7 = 823. 计算下列各题,并写出计算过程:(1) (-4)³ + √4(2) 1/3 + 2/5 - 1/224. 解下列不等式,并写出解集:(1) 2x - 3 < 7(2) 5x + 4 ≥ 14四、解答题(每题10分,共30分)25. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
2024年下学期期中考试七年级数学试卷(问卷)
2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。
浙江省J12共同体联盟2024学年七年级上学期期中考试数学试卷
J12共同体联盟校学业质量检测2024(初一上)数学试题卷亲爱的同学:欢迎参加考试!答题时,请注意以下几点:1.全卷共4页,有三大题,24小题,满分120分。
考试时间120分钟。
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。
3.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
祝你成功!一、选择题(本题有10小题,每小题3分,共30分。
每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在实数-1,0,√3,12中,属于无理数的是( ) A.-1 B.0 C .√3 D .12 2.2024年法国巴黎奥运会最大场馆是巴黎圣母院体育场,该场馆可容纳约77600人,其中77600用科学记数法表示为( )A.0.776×105B.7.76×104C.77.6×103D.776×1023.某日杭州市最高气温为11℃,最低气温为-2℃,则该日杭州市的最大温差为( )A.13℃B.11℃C.9℃D.7℃4.9的平方根是( )A.9B.±9C.3D.±35.下列计算正确的是( )A.3(a+b )=3a+bB.-a 2b+b 2a =0C.x 2+2x 2=3x 2D.2a+3b =5ab6.下列说法:① 若两个数乘积为1,则这两个数必互为倒数;② 任何正数都有两个互为相反数的平方根;③ 立方根等于本身的数有1,0,-1;④ 一个数的算术平方根一定比原数小.其中错误的是( )A.①B.②C.③D.④7.一条数轴上有两点A 与B ,已知点A 到原点O 的距离为3个单位,点B 在点A 的右侧且到点A 的距离为5个单位,则点B 所表示的数可能是( )A.8B.2C.-8或2D.8或28.某辆新能源车每次充电都会把电充满,下表记录了该车相邻两次充电时的情况。
(注:“累计里程“指汽车从出厂开始累计行驶的路程)在这段时间内,该车每100千米平均耗电量为( )A .403度 B.12.5度 C.8度 D.7.5度 充电时间 充电量(度) 充电时的累计里程(千米) 2024年9月30日 10 35000 2024年10月2日25 352009.如图,数轴上从左到右的三个点A,B,C把数轴分成了I,II,II,IV四个部分,点A,B,C对应的数分别是a,b,c。
初一数学上册期中考试试卷及答案
初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
七年级期中考试数学试卷及答案
ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
人教版七年级上册数学期中考试试卷含答案
人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。
七年级初一期中考试卷数学
一、选择题(每题2分,共20分)1. 下列数中,绝对值最小的是()A. -3B. 2C. 0D. -52. 下列各数中,是正数的是()A. -1/2B. -1/3C. 1/4D. -1/43. 下列各数中,有理数的是()A. √2B. πC. 3.14D. -√34. 下列代数式中,同类项的是()A. 2x^2 + 3xyB. 4a^2 - 5a^2C. 3b^2 + 2b^2D. 5c^2 - 4c^25. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x^2C. y = 4x - 5D. y = 5/x6. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 等腰梯形D. 菱形7. 下列各数中,能被3整除的是()A. 17B. 21C. 24D. 288. 下列各数中,能被5整除的是()A. 13B. 20C. 25D. 309. 下列各数中,是偶数的是()A. 1B. 2C. 3D. 410. 下列各数中,是质数的是()A. 2B. 3C. 4D. 5二、填空题(每题2分,共20分)11. -3的相反数是__________。
12. 下列数中,有理数是__________。
13. 下列代数式中,同类项是__________。
14. 下列函数中,反比例函数是__________。
15. 下列图形中,是矩形的是__________。
16. 下列各数中,能被4整除的是__________。
17. 下列各数中,是奇数的是__________。
18. 下列各数中,是合数的是__________。
三、解答题(每题10分,共30分)19. (10分)计算下列各式的值:(1)3/4 + (-2/3)(2)-5 - (-3/2)(3)2/5 × (-4/3)20. (10分)解下列方程:(1)2x - 3 = 7(2)3/4y + 5 = 2(3)-2/3z - 4 = -521. (10分)已知:a = 2,b = -3,求下列代数式的值:(1)2a - b(2)ab + 3(3)a^2 + b^2答案:一、选择题:1. C2. C3. C4. C5. D6. D7. B8. D9. B 10. B二、填空题:11. 3 12. 3/4 13. 2x^2 - 5x^2 14. y = 5/x 15. 矩形 16. 24 17. 3 18. 4三、解答题:19. (1)-1/12 (2)-1 (3)-8/320. (1)x = 5 (2)y = -6 (3)z = -121. (1)1 (2)-3 (3)13。
初一数学期中考试试卷
初一数学期中考试试卷一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 93. 计算下列表达式的值:(-2) × (-3) =A. -6B. 6C. 9D. -94. 一个数的绝对值是它的相反数,这个数一定是:A. 正数B. 0C. 负数D. 正数或05. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/96. 一个数的立方等于-8,这个数是:A. 2B. -2C. 8D. -87. 根据题目所给的选项,下列哪个是正确的不等式?A. 3 > 5B. 2 < 1C. -1 ≥ 0D. 4 ≤ 48. 如果a > b,且b > c,那么下列哪个不等式是正确的?A. a > cB. a < cC. a = cD. a ≤ b9. 一个数的倒数是1/5,那么这个数是:A. 5B. 1/5C. 5/1D. 110. 计算下列表达式的值:(-1)^2 =A. -1B. 1C. 2D. 0二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。
12. 如果一个数的平方等于16,那么这个数可以是______。
13. 一个数的绝对值是5,那么这个数可以是______。
14. 计算下列表达式的值:(-3)^3 = ______。
15. 一个数的立方等于27,这个数是______。
16. 如果a = 3,b = 2,那么a - b = ______。
17. 一个分数的分子是5,分母是10,这个分数化简后是______。
18. 一个数的倒数是2/3,那么这个数是______。
19. 如果一个数除以-2等于3,那么这个数是______。
20. 计算下列表达式的值:(-2)^3 + 3 × (-2) = ______。
初一期中数学试卷及答案
初一期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列哪个数是负数?A.-5B.0C.3D.7答案:A2.2的平方根是?A.2B.4C.-2D.无法确定答案:D3.若a=3,b=5,则a+b的值为?A.2B.8C.6D.10答案:D4.下列哪个数是偶数?A.11B.13C.15D.16答案:D5.下列哪个数是无理数?A.√9B.√16C.√25D.√2答案:D二、判断题(每题1分,共20分)1.1的倒数是1。
()答案:正确2.0乘以任何数都等于0。
()答案:正确3.2的平方根是2。
()答案:错误4.负数乘以负数等于正数。
()答案:正确5.两个奇数相加一定是偶数。
()答案:正确三、填空题(每空1分,共10分)1.5的平方是______。
答案:252.4的立方是______。
答案:643.9的平方根是______。
答案:34.1的倒数是______。
答案:15.两个奇数相加一定是______。
答案:偶数四、简答题(每题10分,共10分)1.请简述勾股定理。
答案:勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。
五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知a=3,b=5,求a+b的值。
答案:a+b=3+5=82.已知一个正方形的边长为4,求其面积。
答案:面积=边长×边长=4×4=163.已知一个等差数列的前三项分别为2,5,8,求该数列的公差。
答案:公差=第二项-第一项=5-2=34.已知一个等差数列的前三项分别为2,5,8,求该数列的第四项。
答案:第四项=第三项+公差=8+3=11六、解答题(每题5分,共10分)1.解方程:2x+5=15。
答案:2x=155,2x=10,x=5。
2.解方程:3(x2)=12。
答案:3x6=12,3x=12+6,3x=18,x=6。
七、应用题(每题5分,共10分)1.小明有10个苹果,他吃掉了3个,还剩下多少个苹果?答案:103=7个苹果。
初中初一期中考试卷子数学
一、选择题(每题3分,共30分)1. 下列各数中,负数是()A. -5B. 0C. 3D. -82. 如果a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. a × 2 < b × 2D. a ÷ 2 > b ÷ 23. 下列代数式中,同类项是()A. 3x^2y 和 5xy^2B. 2xy 和 3x^2yC. 4x^2 和 5x^3D. 2xy 和 3xy4. 下列方程中,解为x = 2的是()A. 2x + 3 = 9B. 3x - 4 = 7C. 4x + 5 = 11D. 5x - 6 = 135. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24cm^2B. 32cm^2C. 36cm^2D. 48cm^26. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆7. 如果一个数的平方是25,那么这个数是()A. 5B. ±5C. 10D. ±108. 下列关于直角三角形的说法中,正确的是()A. 直角三角形的两个锐角都是45°B. 直角三角形的斜边是最长的边C. 直角三角形的两个锐角的和是90°D. 直角三角形的面积是底边乘以高的一半9. 下列函数中,y是x的一次函数的是()A. y = x^2 + 1B. y = 2x + 3C. y = 3x - 2xD. y = 4x^3 - 5x^210. 下列各数中,是质数的是()A. 17B. 18C. 19D. 20二、填空题(每题3分,共30分)11. 0.125的小数点向右移动两位后,变成______。
12. 3^4 ÷ 3^2 = ______。
13. 下列各数中,正数是______。
14. 一个数的倒数是它的______。
2024年人教版初一数学上册期中考试卷(附答案)
2024年人教版初一数学上册期中考试卷(附答案)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. ()下列哪个数是有理数?A. √3B. 5C. 1/2D. π2. ()一个正方形的边长为2,那么它的对角线长度为?A. 2B. 2√2C. 4D. √53. ()一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 324. ()下列哪个数是素数?A. 21B. 29C. 35D. 395. ()一个圆的半径为3,那么它的面积是多少?A. 9πB. 9C. 27πD. 27二、判断题(每题1分,共20分)1. ()所有的偶数都是2的倍数。
2. ()如果一个数是4的倍数,那么它一定是偶数。
3. ()等差数列的任意两项之差是相等的。
4. ()等边三角形的三个角都相等。
5. ()平行四边形的对角线互相平分。
三、填空题(每空1分,共10分)1. ()一个正方形的面积是16,那么它的边长是______。
2. ()一个等差数列的第1项是3,公差是2,那么第5项是______。
3. ()一个圆的直径是10,那么它的半径是______。
4. ()一个等边三角形的周长是18,那么它的边长是______。
5. ()如果一个数的平方是36,那么这个数可能是______或______。
四、简答题(每题10分,共10分)1. 请简述等差数列的定义和性质。
2. 请简述平行四边形的性质和判定方法。
五、综合题(1和2两题7分,3和4两题8分,共30分)1. ()一个长方形的长是10,宽是5,求它的面积和周长。
2. ()一个等差数列的第1项是2,公差是3,求前5项的和。
3. ()一个圆的半径是7,求它的面积和周长。
4. ()一个等边三角形的边长是12,求它的面积。
三、填空题(每空1分,共10分)6. ()若一个正方形的对角线长为6√2 cm,则其边长为______cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—学年度第一学期
鮀济中学初一级数学科期中测试题班级姓名座号分数
一.填空题(每小题2分,共20分)
.用代数式表示与的相反数的差.
.-的相反数是,倒数是.
.数轴上到原点距离为个单位长度的点表示的数是.
.地球表面积约平方千米,用科学记数法表示为平
方千米.
.保留2个有效数字的近似值,精确到百位
是.
.已知(+)和-互为相反数,则=.
.有理数为、在数轴上的位置如图所示,
则,.
.如图,化简-+-+-=.
.当为正整数时,(-)·(-)的值是.
.若-,则.如果>,<,那么.
二.选择题(每小题2分,共20分)
.一个有理数与它相反数的积是()
.正数.负数.非正数.非负数
.有理数、,若<,>,则、应满足的条件是( )
.>,>.>,<.<,<.<,>
.若=,=,则+为( )
.±..±、±.以上都不对
.当为正整数时,(-)-(-)的值是( )
..-..无法确定
.一个长方形的周长为,一边长为,则这个长方形的面积是().(-).(-)
.(-) .(-)
.代数式的意义是( )
.减去除以的商.除以与的差
.除以减去.与的差除以的商
.某厂去年生产台机床,今年增长了,今年产量为( )台.
..() ..
.若为有理数,则说法正确是( )
.-一定是负数.一定是正数
.一定不是负数.-一定是负数
.(-)表示( )
.-×.个连加.个-连乘.个-连乘
.若为正数,则( )
.-<≤.-<<
.>>-.-≤≤
三.计算题(每题分,共分)
.-÷(-)×(-)- (为自然数) .-+----(-)×
.-×
.-×(-)+(-)×(-)-×
.×〔×(-)-〕-×(-)
.〔-()×〕÷
四.解答题(每小题分共分)
.当=-,=,=时,求代数式的值.
.用代数式表示阴影部分的面积
当时,求阴影部分的面积.(结果保留π)
.老王种了十亩果园,今年收成与去年相(增产为正,减产为负)的情况如下:(单位:千克)
,,-,-,,-,-,-,,
用简便方法计算后说明,今年总产量与去年相比较情况如何?
.邮购一种书,每册定价元,另加的邮费,购书册,总计金额元.)用的代数式表示.
)计算当,时,总额是多少?
.甲、乙两站相距千米,一列慢车以每小时千米的速度从甲站开出、一列快车以每小时千米的速度从乙站开出、两车同时出发、相向而行,问多少小时后两车相遇?
个人整理,仅供交流学习
----------------------------- ----------------------------- ----------------------------- -----------------------------。