高一数学上册期末考试题(人教版)
人教版高一数学上期末试题及答案
高一数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出四个选项中,只有一个是符合题目要求.1.设集合}6,5,4,3,2,1{=U ,}3,2,1{=A ,}6,5,2{=B ,则)(B C A U 等于( )(A )}2{ (B )}3,2{ (C )}3{ (D )}3,1{2.α是第四象限角,34tan -=α,则αsin 等于( ) (A )54 (B )54- (C )53 (D )53- 3.设⎪⎩⎪⎨⎧<-=->+=)0(,1)0(,1)0(,1)(x x x x x x f ,则=)]0([f f ( )(A)1 (B)0 (C)2 (D)1-4.如果31sin(=-)απ,那么=+)απ2cos(等于( ) (A )31- (B )31 (C ) 322 (D ) 322- 5.函数xx e e x f 1)(2-=的图像关于( ) (A )原点对称 (B )y 轴对称 (C )x 轴对称 (D )关于1=x 对称6.已知函数x y ωtan =在⎪⎭⎫ ⎝⎛-4,4ππ内是增函数,则( ) (A )20≤<ω (B )02<≤-ω (C )2≥ω (D )2-≤ω 7.设18log ,12log ,6log 642===c b a ,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )a b c >>8.︒-︒20sin 155sin 22的值为( ) (A )12 (B ) 12- (C ) 1- (D ) 1 9.已知函数)cos()(ϕω+=x A x f ,R x ∈(其中πϕπω<<->>,0,0A ),其部分图象如图所示,则ϕω,的值为( ) (A)43,4πϕπω== (B) 4,4πϕπω-== (C) 4,2πϕπω== (D) 4,2πϕπω-==10. 若函数)(x f 的零点与82ln )(-+=x x x g 的零点之差的绝对值不超过5.0, 则)(x f 可以是( )(A)63)(-=x x f (B)2)4()(-=x x f (C) 1)(2-=-x e x f (D))25ln()(-=x x f11.使奇函数)2cos()2sin(3)(θθ+++=x x x f 在]4,0[π上为增函数的θ值为( ) (A)3π- (B)6π- (C)65π (D)32π 12.已知函数⎩⎨⎧>≤≤=)1(log )10(sin )(2018x x x x x f π,若c b a ,,互不相等,且)()()(c f b f a f ==,则c b a ++取值范围是( ) (A))2018,2( (B) )2019,2( (C) )2018,3( (D) )2019,3(二、填空题(本题共4个小题,每小题5分)13.=︒660cos .14.已知方程05)2(2=-+-+a x a x 的两个根均大于2,则实数a 取值范围是 .15.设()f x 是以2为周期的奇函数,且2()35f -=,若sin 5α=,则(4cos 2)f α的值等于 , 16. 已知函数(1)y f x =+是定义域为R 的偶函数,且()f x 在[1,)+∞上单调递减,则不等式(21)(2)f x f x ->+的解集为 .三、解答题(本题共6个小题,共70分)17.(本小题满分10分) 已知集合{}{}42,20,01sin 22>=<<>-=-x x x B x x x A π (1)求集合A 和B ;(2)求B A .18.(本小题满分12分)已知若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-= 求(1)求αcos 的值;19.(本小题满分12分)已知函数2cos sin 34cos 4)(2++-=x x a x x f ,若)(x f 图象关于点)0,12(π对称.(1)求实数a ,并求出)(x f 单调减区间;(2)求)(x f 的最小正周期,并求)(x f 在]6,4[ππ-上的值域.20.(本小题满分12分)已知函数3)ln(2ln )(2+-=ex a x x f ,],[21e e x -∈(1)当1=a 时,求函数()f x 值域;(2)若4ln )(+-≤x a x f 恒成立,求实数a 取值范围.21.(本小题满分12分) 设函数1cos 2)32cos()(2+++-=a x x x f π,且]6,0[π∈x 时,)(x f 的最小值为2. (1)求实数a 的值;(2)当]2,2[ππ-∈x 时,方程2123)(+=x f 有两个不同的零点βα,,求βα+的值.22.(本小题满分12分)已知函数()223x x f x m =⋅+⋅,m R ∈.(1)当9m =-时,求满足(1)()f x f x +>实数x 的范围;(2)若9()()2x f x ≤对任意的x R ∈恒成立,求实数m 范围.高一数学答案 )3,31(-}2------6分31)4cos(=+απ ∴322)4sin(=+απ------4分642+=------6分33)24cos(=-βπ ∴36)24sin(=-βπ------10分∴935)24sin()4sin()24cos()4cos()]24()4cos[()2cos(=-++-+=--+=+βπαπααα------12分19、(1)∵0)12(=πf ∴1=a ------2分 ∴)62sin(4)(π-=x x f ------4分∴单调递减区间为)](65,3[Z k k k ∈++ππππ------6分π=------8分 ∵]6,4[ππ-∈x ∴]6,32[62πππ-∈-x ------10分 ∴]2,4[)(-∈x f ------12分1ln 2ln )(2+-=x x x ------1分 令]2,1[ln -∈=x t ------2分∴12+-=t t y ∴]4,0[∈y ------4分(2)∵4ln )(+-≤x a x f ∴012ln ln 2≤---a x a x 恒成立 令]2,1[ln -∈=x t ∴0122≤---a at t 恒成立------5分 设122---=a at t y ------∴当1212≤≤a a 即时,034max ≤+-=a y ∴143≤≤a ------8分 当1212>>a a 即时,0max ≤-=a y ∴1>a --------11分 综上所述,43≥a ------12分 21、(1)a x x f +++=2)32sin(3)(π------2分 ∵]6,0[π∈x ∴]32,3[32πππ∈+x ------4分∴]1,23[)2sin(∈+πx ∴227)(min =+=a x f ∴23-=a ------6分2123+ ∴21)32sin(∈+πx ------8分 ∵]2,2[ππ-∈x ∴]34,32[32πππ-∈+x ------10分 6532ππβ=+ ∴4,12πβπα=-= ∴6πβα=+------12分)()1(x f x >+ ∴2232--<x x ∴1)32(2<-x ∴2>x ------6分 x )29( ∴x x m )23(2)23(2-≤--------8分 令0)23(>=x t ∴t t m 22-≤ 1-= ∴1-≤m ------12分。
人教版高一数学上学期期末试题(解析版)
60个班级中,随机抽取6个班级进行卫生检查,其间隔为 ,因为抽取的编号可能是选项A.
考点:系统抽样.
点评:系统抽样是将总体分成几个部分,然后按照事先确定的规则在各部分抽取一定数量的样本.
3.设 均为正数,且 , , .则( )
(2)用分层抽样的方法,在分数段为 的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段 内的概率
【答案】(1)详见解析(2)
【解析】
【分析】
(1)首先可以计算出除了 之外的其他分数段的频率,然后计算出分数在 内的频率,再用频率除以组距即可,然后用每一分数段的中间数乘以每一分数段的概率再相加即可得出平均分;
令 ,则 , ,利用配方法求二次函数的值域即可.
【详解】解:由 得 ,令 ,则 , ,
当 ,即 , 时, ,
当 时,即 , 时,
【点睛】本题考查指数型二次函数的最值,考查配方法,考查转化能力,属于中档题.
18.函数 的定义域为 , 定义域为 .
(1)求 ;
(2)若 ,求实数 取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)求函数的定义域,就是求使得根式有意义的自变量 的取值范围,然后求解分式不等式即可;
(2)因为 ,所以一定有 ,从而得到 ,要保证 ,由它们的端点值的大小列式进行计算,即可求得结果.
【详解】(1)要使函数 有意义,
则需 ,即 ,
解得 或 ,
所以 ;
(2)由题意可知,因为 ,所以 ,
故答案为86.
【点睛】这个题目考查的是框图中的循环结构,计算输出结果,对于循环结构的框图关键是将每一次循环的结果都按题意写出来,直到满足输出条件为止.
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
人教版高一数学第一学期期末测试卷1(有答案)
D .余弦函数在[2k ,2k ](k Z)上都是减函数人教版高一数学第一学期期末测试卷(一)第I 卷(选择题,共60分)、选择题:本大题共 12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若集合 A { 1,1,B {x|mx 1},A . 1B . 1 D2. 已知集合A { y | yIn x, x 1}, BA . {y|0 y 1}B . {y|0B3. 下列函数中,在 R 上单调递增的是(A . y |xB . y log ; C且AUBA ,,则 m 的值为 ( )C. 1 或1D . 1或 1或0{y|y(2)x,x1},则AI B =()11y2}C .{y|- 2y 1} D)1x;•yx 3D . ytanx6.下列说法中不正确的是( )A .正弦函数、余弦函数的定义域是 R ,值域是[1,1]B.余弦函数当且仅当 x 2k (k Z)时,取得最大值13C. 正弦函数在[2k—,2k ](k Z)上都是减函数2 24 •如图所示,是全集,A 、B 是U 的子集,则阴影部分所表示的集合是(A . AlBC . AUBB B . BlC u AD . Al C u B5•已知函数f(x)是R 上的增函数,A(0,1)、B(3,1)是图象上两点, A • ( 1,2))1的解集是(那么f(x 1)B . (1,4)C. (, 1]U[4,)D . (, 1]U[2,)D7 .若sin cos5,则tan1( )2tanA. 4B. 4C. 8D. 8C8 .若a si n46o,b cos46°, c cos36°, 则a,b, c的大小关系是( )A. c a bB. a b cC. a c bD. b c aA9.函数y si n(2x)(0)的图象:关于直线x 对称,则8的值是( )A. 0B.— c.—D.42B10•已知从甲地到乙地通话m分钟的电话费由f(m) 1.06(0.5[m] 1)元给出,其中m 0, [m]表示不超过m的最大整数,(如[3]=3,[]=3),则从甲地到乙地通话时间为分钟的话费为( )A •B. 3.97 C. D.A11. 函数f (x) In x -的零点所在的大致区间是( )x1A. (1,2)B. (2,3)C. (1-)和(3,4)D. e,eB1 12. 已知y f (x)是定义在R上的奇函数,当x 0时,f(x) x 2,那么不等式f(x)—的解2集是( )A. x|05,3x 0 x B. x| -22C. x |3x 0,或05x D. x | x3,或05x 2222D第II卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分.13.方程2x3 2x的解的个数为_______________________14.函数y sin(2x 才)的单调递增区间为 ____________________15.函数y 、. cosx tan x的定义域是+2k,— 2k k Z22 216 .已知函数f(x) lg[(a 1)x (a 1)x 1]的值域为R,则实数a的范围是三、解答题:解答应写出文字说明、证明过程或演算步骤.17. (本题满分10分)已知集合M={x|x2—3x+2=0}, N={x z| 1 x 1 2}, Q={1, a2+1, a+1} (1 )求M N; (2)若M Q,求实数a的值.解:(1) M={1 , 2}, N={0, 1 , 2, 3} .......................... 分.2M N={1 , 2} ................................................................ 4-分(2). M Q当a2+1=2即a=1或一1时,a=1Q={1, 2, 2}(舍)a=1符合题意;……分当a+1=2 即a=1 时,Q={1, 1, 1}(舍)............................... 分..8 a=—1 ................................................................. 分 (9)18. (本题满分12分)2 si n3 cos 八(n )解:原式=.................. 分4 cos sin2ta n 3 八=9 ................................ 分124 tan20. (本题满分12分)已知定义域为R 的函数f (x)1 2x 2^是奇函数.(1) 求 a 的值;(2)若对任意的t R ,不等式f(t 2 2t) f (2t 2 k)0恒成立,求实数 k 的取值范围.(1)解:•••函数f(x)是定义域为R 的奇函数.f(x) f(x) 0对x R 恒成立.为计算方便,取x 1 ,f( 1)0 2 a 0 a 2 .(2)解:Q f(t 22t)f (2t 2k) 0 f(t 2 2t)f (2t 2k).Q f(x)为奇函数, f (t 22t) f( 2t 2k).由(1 )得 f (X)Y Y1 2 (2 1) 2 12 2 2(2 1),f (x)在定义域内为单调递减函数.t 2 2t 2t 2 k ,即:3t 2 2t k 0 恒成立., 1 0 ,二 k319. (本题满分12分)(I )化简:—匚缈20如60sin 160 V1 sin 2 20(n )已知:tan 3,求2C0右3si n(324cos( ) sin(—2)的值.)(I)解:原式=1 2sin20co s20sin 20cos 20分・3cos20 sin 20 sin 20 cos201 ................ 分设函数f(x) Asin( x ) ( A 0, 0, | | )的图象的最高点D的坐标为(2, 2),由最高(1 )求A 、3、$的值;(2)求函数y g(x),使其图象与y f(x)图象关于直线x 8对称.(1)解:最高点 D(2,.2), A = 2 .T2由题意一=6 — 2= 4 , T = 16 , T =,(3=—48f (x) = 2sn (—+ ®, Q 过最高点 D(2,2), 8(2)解:设P(x , y)为y = g (x)上任一点, Q(X o , y o )是f (x)上关于x = 8对称点.x x 0一y = y o ,=8; y = y o , x o = 16 — x ,又 y o = 2sin(x °).284y = . 2sin[—(16 x) -]=、2sin(2-x-) = . 2sin( —x -).848 4 8 421. (本题满分12分)2x已知函数f(x)=-综上,A = 2,3= —,$=—.8 4 —x 2"+ = 2k n — ,$ = 2k n+ —.8241 x2-1 - 1⑴、求f⑵与f( ), f(3)与f();2 31(2)、由(1)中求得结果,你能发现f(x)与f(—)有什么关系并证明你的结论;x⑶、求f(1)+f(2)+f (3) +??? f(2009) f(l) f(b ??? f (-)的值•2 3 200922. (本小题满分12分)2已知定义在区间[, ]上的函数y f (x)的图象关于直线x3时,函数f(x) Asin( x ) (A 0, 0,-2(1) 求函数y f(x)在[,2]的表达式;3、、42(2) 求方程f (x)—的解.即f(x) sin( x ) sinx ,—对称,当x [ ] 6 6 32),其图象如图所示2 T 解:(1) x [ -, ] , A 1,6 3 42且f (x) sin(x )过(——,0)3当x 一时,一x6 6 2,T 2, 13 6小2则,f (x)sin(x ) 3332,f ( x—)sin( x)3 33 3 3而函数y f (x)的图象关于直线x对称,则f(x) f( x )6 3x63 3x6f(x) (2)当sin(x —), x 6,_3]sin x,x [,6时,6,或—,x4 46 时,f(x)34' ~43 ,f(x)sin(x -)迪3 2—或—J12 12sin x ——,sin x2xx。
人教版高一上学期期末数学试卷(有答案)
人教版高一(上)期末数学试卷一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或03.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a25.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.187.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=,并求出=.14.(5分)如图所示几何体的三视图,则该几何体的表面积为.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.参考答案与试题解析一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)【解答】解:由,解得x>且x≠1.的定义域是(,1)∪(1,+∞).∴函数f(x)=log(2x﹣1)故选:B.2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或0【解答】解:当a=0时,两直线重合;当a≠0时,由,解得a=,综合可得,a=,故选:A.3.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)【解答】解:∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3,x3>﹣x1,又f(x)是定义在R上单调递减的奇函数,∴f(x1)<f(﹣x2)=﹣f(x2),f(x2)<f(﹣x3)=﹣f(x3),f(x3)<f(﹣x1)=﹣f(x1),∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,∴三式相加整理得f(x1)+f(x2)+f(x3)<0故选B4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a2【解答】解:由斜二测画法的规则知与x′轴平行的线段其长度不变以及与横轴平行的性质不变,正方形对角线在y′轴上,可求得其长度为a,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2a,∴原平面图形的面积为=故选:C.5.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③【解答】解:由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选A.6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.18【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,侧高为,故棱台的高h==2,故棱台的体积为:=,棱锥的底面是棱台上底面的一半,故底面面积为2,高为2,故棱锥的体积为:×2×2=,故组合体的体积V=﹣=,故选:B7.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.【解答】解:已知如图所示:过O做平面PBA的垂线,交平面PBC于Q,连接PQ则∠OPQ=90°﹣45°=45°.∵cos∠OPA=cos∠QPA×cos∠OPQ,∴cos∠QPA=,∴∠QPA=45°,∴∠QPB=45°∴cos∠OPB=cos∠OPQ×cos∠QPB=.故选C.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)【解答】解:设g(x)=2016x+log2016(+x)﹣2016﹣x,g(﹣x)=2016﹣x+log2016(+x)﹣2016x+=﹣g(x);g′(x)=2016x ln2016++2016﹣x ln2016>0;∴g(x)在R上单调递增;∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;∴g(3x+1)>g(﹣x);∴3x+1>﹣x;解得x>﹣;∴原不等式的解集为(﹣,+∞).故选:D.10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)【解答】解:由题意,存在x<0,使f(x)﹣g(﹣x)=0,即e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,令m(x)=e x﹣﹣ln(﹣x+a),则m(x)=e x﹣﹣ln(﹣x+a)在其定义域上是增函数,且x→﹣∞时,m(x)<0,若a≤0时,x→a时,m(x)>0,故e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,若a>0时,则e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解可化为e0﹣﹣ln(a)>0,即lna<,故0<a<.综上所述,a∈(﹣∞,).故选:C12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4【解答】解:由题意①2x2+2log2(x2﹣1)=5 ②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=1,并求出=.【解答】解:∵函数f(x)=(a>0),x1+x2=1,∴f(x1)+f(x2)=f(x1)+f(1﹣x1)=+=+==1,∴=1007+f()=1007+=.故答案为:1,.14.(5分)如图所示几何体的三视图,则该几何体的表面积为16+2.【解答】解:由已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,其直观图如下图所示:E和F分别是AB和CD中点,作EM⊥AD,连接PM,且PD=PC,由三视图得,PE⊥底面ABCD,AB=4,CD=2,PE═EF=2在直角三角形△PEF中,PF==2,在直角三角形△DEF中,DE==,同理在直角梯形ADEF中,AD=,根据△AED的面积相等得,×AD×ME=×AE×EF,解得ME=,∵PE⊥底面ABCD,EM⊥AD,∴PM⊥AD,PE⊥ME,在直角三角形△PME中,PM==,∴该四棱锥的表面积S=×(4+2)×2+×4×2+×2×2+2×××=16+2.故答案为:16+2.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.【解答】解:当x1∈[2,5]时,可得A(2,4),B(5,﹣2).设P(﹣1,﹣1),则k PA==,k PB==,∴的取值范围是.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.【解答】解:以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂直线为z轴,建立空间直角坐标系,在△PDC中,由于PD=CD=2,PC=2,可得∠PCD=30°,∴P到平面ABCD的距离为PCsin30°=.∴A(1,0,0),P(0,﹣1,),B(1,2,0),C(0,2,0),=(1,1,﹣),=(1,3,﹣),=(0,3,﹣),设平面PAB的法向量=(x,y,z),则,取z=1,得=(),设平面PBC的法向量=(a,b,c),则,取c=,得=(2,1,),设二面角A﹣PB﹣C的平面角为θ,则cosθ===,sinθ==,tanθ==.∴二面角A﹣PB﹣C的正切值为.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.【解答】解:设A(a,0),B(0,b),则直线l的方程为:+=1.把点P(3,2)代入可得:+=1.(a,b>0).∴1≥2,化为ab≥24,当且仅当a=6,b=4时取等号.=ab≥12,l的方程为:+=1,即4x+6y﹣24=0∴S△AOB18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.【解答】(Ⅰ)解:由该四棱锥的三视图可知,该四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PC⊥底面ABCD,且PC=2.…(1分)∴V P=S▱ABCD•PC=.…(3分)﹣ABCD(Ⅱ)证明:∵E、O分别为PC、BD中点∴EO∥PA,…(4分)又EO⊄平面PAD,PA⊂平面PAD.…(6分)∴EO∥平面PAD.…(7分)(Ⅲ)不论点E在何位置,都有BD⊥AE,…(8分)证明如下:∵ABCD是正方形,∴BD⊥AC,…(9分)∵PC⊥底面ABCD且BD⊂平面ABCD,∴BD⊥PC,…(10分)又∵AC∩PC=C,∴BD⊥平面PAC,…(11分)∵不论点E在何位置,都有AE⊂平面PAC,∴不论点E在何位置,都有BD⊥AE.…(12分)19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【解答】解:(1)令x=0,得y=a﹣2.令y=0,得(a≠﹣1).∵l在两坐标轴上的截距相等,∴,解之,得a=2或a=0.∴所求的直线l方程为3x+y=0或x+y+2=0.(2)直线l的方程可化为y=﹣(a+1)x+a﹣2.∵l不过第二象限,∴,∴a≤﹣1.∴a的取值范围为(﹣∞,﹣1].20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.【解答】解:(1)连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点G,连接OG,因为PC∥平面BDD1B1,平面BDD1B1∩平面APC=OG,故OG∥PC,所以,OG=PC=.又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1,故∠AGO是AP与平面BDD1B1所成的角.在Rt△AOG中,tan∠AGO=,即m=.所以,当m=时,直线AP与平面BDD1B1所成的角的正切值为4.(2)可以推测,点Q应当是A I C I的中点,当是中点时因为D1O1⊥A1C1,且D1O1⊥A1A,A1C1∩A1A=A1,所以D1O1⊥平面ACC1A1,又AP⊂平面ACC1A1,故D1O1⊥AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.【解答】解:(1)证明:如图,取DA1的中点G,连FG,GE;F为A1C中点;∴GF∥DC,且;∴四边形BFGE是平行四边形;∴BF∥EG,EG⊂平面A1DE,BF⊄平面A1DE;∴BF∥平面A1DE;(2)证明:如图,取DE的中点H,连接A1H,CH;AB=4,AD=2,∠DAB=60°,E为AB的中点;∴△DAE为等边三角形,即折叠后△DA1E也为等边三角形;∴A1H⊥DE,且;在△DHC中,DH=1,DC=4,∠HDC=60°;根据余弦定理,可得:HC2=1+16﹣4=13,在△A1HC中,,,A1C=4;∴,即A1H⊥HC,DE∩HC=H;∴A1H⊥面DEBC;又A1H⊂面A1DE;∴面A1DE⊥面DEBC;(3)如上图,过H作HO⊥DC于O,连接A1O;A1H⊥面DEBC;∴A1H⊥DC,A1H∩HO=H;∴DC⊥面A1HO;∴DC⊥A1O,DC⊥HO;∴∠A1OH是二面角A1﹣DC﹣E的平面角;在Rt△A1HO中,,;故tan;所以二面角A1﹣DC﹣E的正切值为2.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.【解答】附加题:(本题共10分)解:(1)g(x)=a(x﹣1)2+1+b﹣a,当a>0时,g(x)在[2,3]上为增函数,故,可得,⇔.当a<0时,g(x)在[2,3]上为减函数.故可得可得,∵b<1∴a=1,b=0即g(x)=x2﹣2x+1.f(x)=x+﹣2.…(3分)(2)方程f(2x)﹣k•2x≥0化为2x+﹣2≥k•2x,k≤1+﹣令=t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1,∴φ(t)min=0,∴k≤0.…(6分)(3)由f(|2x﹣1|)+k(﹣3)=0得|2x﹣1|+﹣(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|+﹣(2+3k)=0有三个不同的实数解,∴由t=|2x﹣1|的图象(如右图)知,t2﹣(2+3k)t+(1+2k)=0有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,记φ(t)=t2﹣(2+3k)t+(1+2k),则或∴k>0.…(10分)。
高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题
某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。
人教版高一上期末数学试卷(有答案)
人教版高一上期末数学试卷(有答案) 无明显问题的段落:一、选择题:1.已知集合M={x∈R|x^2+2x=0},N={2},则M∩N={2}。
2.若一个扇形的弧长是3,半径是2,则该扇形的圆心角为3/4π。
3.设x∈R,向量a=(3,x),b=(-1,1),若a⊥b,则||a||=6.4.二次函数f(x)=ax^2+bx+1的最小值为f(1)=0,则a-b=-2.5.已知点O是平行四边形ABCD两条对角线的交点,给出下列向量组:①,②,③,④。
其中可作为该平面其他向量基底的是①④。
6.已知函数f(x)=|x-1|,则与y=f(x)相等的函数是g(x)=1-x。
7.已知a=log3 2,b=log3 4,c=log3 5,则c>b>a。
8.已知函数f(x)=x^2-4x+5,若g(x)=f(x)-m为奇函数,则实数m的值为2.9.某人欲购买标价为2700元的商品,他可以享受的实际折扣率约为75%。
10.将函数y=f(x)的图象上所有点向左平行移动1个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴的方程是y=-1.11.函数y=f(x)的图象可能是D。
12.关于x的方程(a^2-1)x^2+2ax+a=0 (a>1且a≠-1)解的个数是2.二、填空题:13.函数f(x)=sin(x-π/2),则sinα=f(α+π/2),tan(π-α)=tanα。
14.已知角α为第四象限角,且tanα=-3/4,则cosα=4/5,sinα=-3/5.解得m=2c-1=2log3(5)-1。
故选:C.4.(3分)二次函数f(x)=ax2+bx+1的最小值为f(1)=0,则a-b=()A.-2 B.-1 C.1 D.3解:由题意可得f(1)=a+b+1=0,即a=-b-1,代入a-b中得a-b=-2b-1.所以选A。
5.(3分)设点O是平行四边形ABCD两条对角线的交点,给出下列向量组:①(3,1),②(1,1),③(1,-1),④(-2,-2)与(-1,2);其中可作为该平面其他向量基底的是()A.①② B.①③ C.①④ D.③④解:根据向量组共线或不共线的特性,可以排除②和④。
人教A版新教材高一上学期期末考试数学试卷(共五套)
人教版新教材高一上学期期末考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B 等于( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.若12cos 13x =,且x 为第四象限的角,则tan x 的值等于( ) A .125 B .125-C .512D .512-3.若2log 0.5a =,0.52b =,20.5c =,则,,a b c 三个数的大小关系是( ) A .a b c << B .b c a << C .a c b <<D .c a b <<4.已知1(1)232f x x -=+,且()6f m =,则m 等于( )A .14B .14-C .32D .32-5.已知5()tan 3,(3)7f x a x bx cx f =-+--=,则(3)f 的值为( ) A .13-B .13C .7D .7-6.已知()f x 是定义在R 上的偶函数,且有(3)(1)f f >.则下列各式中一定成立的是( ) A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f >D .(2)(0)f f >7.已知()f x 是定义在R 上的奇函数,当0x ≥时,()5x f x m =+(m 为常数),则5(log 7)f -的值为( ) A .4 B .4-C .6D .6-8.函数11y x=-的图象与函数2sin π(24)y x x =-≤≤的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,73ππ2α<<, 则cos sin αα+=( ) ABC.D.10.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩,且满足对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( )A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)11.已知ππ()sin(2019)cos(2019)63f x x x =++-的最大值为A ,若存在实数12,x x ,使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x -的最小值为( )A .π2019B .2π2019C .4π2019D .π403812.已知()f x 是定义在[4,4]-上的奇函数,当0x >时,2()4f x x x =-+,则不等式[()]()f f x f x <的解集为( ) A .(3,0)(3,4]-B .(4,3)(1,0)(1,3)---C .(1,0)(1,2)(2,3)-D .(4,3)(1,2)(2,3)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.5log 30.75333322log 2log log 825169-+-+=_______. 14.已知()1423x x f x +=--,则()0f x <的解集为_______.15.方程22210x mx m -+-=的一根在(0,1)内,另一根在(2,3)内,则实数m 的取值范围是______.16.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(,)a b a b ϕ=-,那么“(,)0a b ϕ=”是“a 与b 互补”的 条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{}123A x m x m =-≤≤+,函数2()lg(28)f x x x =-++的定义域为B .(1)当2m =时,求A B 、()A B R ;(2)若A B A =,求实数m 的取值范围.18.(12分)已知函数()log (1)log (1)a a f x x x =+--,0a >且1a ≠. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)当1a >时,求使()0f x >的x 的解集.19.(12分)已知函数()2πcos sin()1()3f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 在区间ππ[,]44-上的最大值和最小值,并分别写出相应的x 的值.20.(12分)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. (1)求(0)f 及((1))f f 的值;(2)求函数()f x 在(,0)-∞上的解析式;(3)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.21.(12分)设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且()21f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.22.(12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1[,3]2x ∈时,2()(21)0f kx f x +->恒成立,求实数k 的取值范围.【答案解析】 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】因为12A x x ⎧⎫=<⎨⎬⎩⎭,{}01B x x =≤≤,所以102A B x x ⎧⎫=≤<⎨⎬⎩⎭.2.【答案】D【解析】因为x 为第四象限的角,所以5sin 13x =-,于是5tan 12x =-,故选D . 3.【答案】C【解析】2log 0.50a =<,0.521b =>,200.51c <=<,则a c b <<,故选C . 4.【答案】B【解析】因为1(1)232f x x -=+,设112x t -=,则22x t =+,所以()47f t t =+,因为()6f m =,所以476m +=,解得14m =-,故选B .5.【答案】A 【解析】5()tan 3f x a x bx cx =-+-,()()6f x f x ∴+-=-,(3)7f -=,(3)6713f ∴=--=-.故选A . 6.【答案】A【解析】∵()f x 是定义在R 上的偶函数,∴(1)(1)f f =-, 又(3)(1)f f >,∴(3)(1)f f >-,故选A . 7.【答案】D【解析】由奇函数的定义可得(0)10f m =+=,即1m =-,则5log 755(log 7)(log 7)51716f f -=-=-+=-+=-.故选D .8.【答案】A 【解析】函数111y x=-,22sin π(24)y x x =-≤≤的图象有公共的对称中心(1,0), 如图在直角坐标系中作出两个函数的图象,当14x <≤时,10y <,而函数2y 在(1,4)上出现1.5个周期的图象,且在3(1,)2和57(,)22上是减函数,在35(,)22和7(,4)2上是增函数.∴函数1y 在(1,4)上函数值为负数,且与2y 的图象有四个交点E 、F 、G 、H , 相应地,1y 在(2,1)-上函数值为正数,且与2y 的图象有四个交点A 、B 、C 、D , 且2A H B G C F D E x x x x x x x x +=+=+=+=, 故所求的横坐标之和为8,故选A . 9.【答案】C 【解析】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴1tan tan k αα+=,21tan 31tan k αα⋅=-=, ∵73ππ2α<<,∴0k >, ∵24k =,∴2k =,∴tan 1α=,∴π3π4α=+,则cos α=,sin α=,则cos sin αα+=C . 10.【答案】D【解析】∵对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立, ∴函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递增, 1114021(4)122a a a a ⎧⎪>⎪⎪∴->⎨⎪⎪≥-⨯+⎪⎩,解得[4,8)a ∈,故选D . 11.【答案】B【解析】ππ()sin(2019)cos(2019)63f x x x =++-,112019cos 2019cos 201920192222x x x x =+++2019cos 2019x x =+π2sin(2019)6x =+,∴()f x 的最大值为2A =, 由题意得,12x x -的最小值为π22019T =, ∴12A x x -的最小值为2π2019,故选B . 12.【答案】B【解析】∵()f x 是定义在[4,4]-上的奇函数,∴当0x =时,(0)0f =,先求出当[4,0)x ∈-时()f x 的表达式, 当[4,0)x ∈-时,则(0,4]x -∈,又∵当0x >时,2()4f x x x =-+,∴22()()4()4f x x x x x -=--+-=--, 又()f x 是定义在[4,4]-上的奇函数,∴2()()4f x f x x x =--=-+,∴224,[4,0]()4,(0,4]x x x f x x x x ⎧+∈-⎪=⎨-+∈⎪⎩,令()0f x =,解得4x =-或0或4,当[4,0]x ∈-时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x +++<+, 化简得222(4)3(4)0x x x x +++<,解得(4,3)(1,0)x ∈---;当(0,4]x ∈时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x --++-+<-+, 化简得222(4)3(4)0x x x x --++-+<,解得(1,3)x ∈, 综上所述,(4,3)(1,0)(1,3)x ∈---,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】原式=253log 94433332log 4log log 825(2)9-+-+ 339log (48)98log 91132=⨯⨯-+=-=.14.【答案】2{|log 3}x x <【解析】当()0f x <,即14230,023x x x +--<<<,解得2log 3x <. 15.【答案】(1,2)【解析】设22()21f x x mx m =-+-,则由题意知:函数()f x 的一个零点在(0,1)内,另一个零点在(2,3)内,则有222210(0)0(1)020(2)0430(3)0680m f f m m f m m f m m ⎧->>⎧⎪⎪<-<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎪⎪>⎩-+>⎩,解得12m <<,m 的取值范围是(1,2).16.【答案】充要条件【解析】若(,)0a b ϕ=,a b =+,两边平方整理,得0ab =,且0a ≥,0b ≥,所以a 与b 互补;若a 与b 互补,则0a ≥,0b ≥,且0ab =,所以0a b +≥,此时有(,)()()()0a b a b a b a b ϕ=+=+-+=, 所以“(,)0a b ϕ=”是“a 与b 互补”的充要条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1){}27A B x x =-<≤,{}()21A B x x =-<<R ;(2)1(,4)(1,)2-∞--.【解析】根据题意,当2m =时,{}17A x x =≤≤,{}24B x x =-<<, 则{}27A B x x =-<≤, 又{1A x x =<R或}7x >,则{}()21A B x x =-<<R .(2)根据题意,若A B A =,则A B ⊆, 分2种情况讨论:①当A =∅时,有123m m ->+,解可得4m <-; ②当A ≠∅时,若有A B ⊆,必有12312234m m m m -≤+⎧⎪->-⎨⎪+<⎩,解可得112m -<<,综上可得:m 的取值范围是1(,4)(1,)2-∞--.18.【答案】(1){}11x x -<<;(2)奇函数,证明见解析;(3)(0,1)x ∈. 【解析】()log (1)log (1)a a f x x x =+--,若要式子有意义,则1010x x +>⎧⎨->⎩,即11x -<<,所以定义域为{}11x x -<<.(2)()f x 的定义域为(1,1)-,且()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=-, 所以()f x 是奇函数.(3)又()0f x >,即log (1)log (1)0a a x x +-->, 有log (1)log (1)a a x x +>-.当1a >时,上述不等式101011x x x x +>⎧⎪->⎨⎪+>-⎩,解得(0,1)x ∈.19.【答案】(1)πT =;(2)π4x =时,max 3()4f x =-;π12x =-时,min 3()2f x =-. 【解析】(1)2π()cos sin()13f x x x x=+-+21cos (sin )12x x x x =+-2111cos2sin cos 1sin21242x x x x x +==+-11πsin2cos21sin(2)14423x x x =--=--, 所以()f x 的最小正周期为2ππ2T ==. (2)∵[,]4ππ4x ∈-,∴5π2[,]6ππ36x -∈-, 当ππ236x -=,即π4x =时,max 113()1224f x =⨯-=-, 当ππ232x -=-,π12x =-时,()min 13()1122f x =⨯--=-. 20.【答案】(1)0(0)f =,((1))1f f =-;(2)()22f x x x =+;(3)10m -<<. 【解析】(1)0(0)f =,((1))(1)(1)1f f f f =-==-. (2)设0x <,则0x ->,22()()2()2f x x x x x -=---=+,∵()f x 偶函数,2()()2f x f x x x -==+,∴当0x <时,()22f x x x =+.(3)设函数1()y f x =及2y m =,方程()0f x m -=的解的个数,就是函数1()y f x =与2y m =图象交点的个数. 作出简图利用数形结合思想可得10m -<<.21.【答案】(1)(0)0f =;(2)奇函数;(3){|1}x x <. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,∴(0)0f =. (2)∵()()()f x y f x f y -=-,∴()()()00f x f f x -=-,由(1)知(0)0f =,()()f x f x -=-, ∴函数()f x 是奇函数.(3)设12,x x ∀∈R ,且12x x >,则120x x ->,()()()1212f x x f x f x -=-,∵当0x >时,()0f x >,∴()120f x x ->,即()()120f x f x ->, ∴()()12f x f x >,∴函数()f x 是定义在R 上的增函数,()()()f x y f x f y -=-, ∴()()()f x f x y f y =-+,211(2)(2)(2)(42)(4)f f f f f =+=+=+-=, ∵()(2)2f x f x ++<,∴()(2)(4)f x f x f ++<, ∴()()()(2)44f x f f x f x +<-=-,∵函数()f x 是定义在R 上的增函数,∴24x x +<-,∴1x <, ∴不等式()(2)2f x f x ++<的解集为{|1}x x <.22.【答案】(1)1b =;(2)单调递减,证明见解析;(3)(,1)-∞-. 【解析】(1)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,即1022b-+=+,则1b =, 经检验,当1b =时,12()22x x bf x +-+=+是奇函数,所以1b =.(2)11211()22221x x x f x +-==-+++,()f x 在R 上是减函数,证明如下:在R 上任取12,x x ,且12x x <,则122121211122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为2x y =在R 上单调递增,且12x x <,则12220x x -<, 又因为12(21)(21)0x x ++>,所以21()()0f x f x -<, 即21()()f x f x <,所以()f x 在R 上是减函数.(3)因为2()(21)0f kx f x +->,所以2()(21)f kx f x >--, 而()f x 是奇函数,则2()(12)f kx f x >-, 又()f x 在R 上是减函数,所以212kx x <-, 即221212()x k x x x -<=-在1[,3]2上恒成立, 令1t x =,1[,2]3t ∈,2()2g t t t =-,1[,2]3t ∈, 因为min ()(1)1g t g ==-,则1k <-. 所以k 的取值范围为(,1)-∞-.人教版新教材高一上学期期末考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
人教版高一数学必修一期末综合练习题(含答案)
人教版高一数学必修一期末综合练习题(含答案)人教版高一数学必修一期末综合练题(含答案)一、单选题1.已知实数a,b,c满足lga=10=b,则下列关系式中不可能成立的是()A。
a>b>cB。
a>c>bC。
c>a>bD。
c>b>a2.已知函数f(x)=x(e^x+a),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为()A。
0B。
1C。
2D。
-13.命题:“对于任意实数x,x^2+x>0” 的否定是( )A。
存在实数x,使得x^2+x≤0B。
对于任意实数x,x^2+x≤0C。
存在实数x,使得x^2+x<0D。
对于任意实数x,x^2+x≥04.已知sin2α=-1/2,则cos(α+π/3)=()A。
-1/3B。
-2/3C。
1/3D。
2/35.已知ω>0,函数f(x)=cos(ωx+π/2),则ω的取值范围是()A。
(0,π/12]B。
(0,π/6]C。
(0,π/4]D。
(0,π/2]6.为了得到函数y=cos2x的图象,只需将函数y=sin(2x-π/2)的图象上所有点A。
向右平移π个单位B。
向左平移π个单位C。
向右平移π/2个单位D。
向左平移π/2个单位7.下列函数中,与函数y=x相同的是()A。
y=1/xB。
y=x^2C。
y=√xD。
y=|x|8.若2sinx-cos(π/2+x)=1,则cos2x=()A。
-8/9B。
-7/9C。
7/9D。
8/99.设A={x|x^2-4x+3≥0},B={x|x^2-6x+5≤0},则“A包含于B”是“B包含于A”的()A。
充分必要条件B。
必要不充分条件C。
充分不必要条件D。
既不充分也不必要条件10.已知集合A={x|y=ln(x+1)},集合B={x|x≤2},则A∩B等于()A。
(-1,2]B。
[0,2]C。
(0,∞)D。
(5,6]11.已知集合P={x|x-3≤2,x∈R},Q={3,5,6},则P∩Q=()A。
最新人教版高一数学上学期期末考试试题(附答案)
最新人教版高一数学上学期期末考试试题(附答案)最新人教版高一数学上学期期末考试试题(附答案)一、选择题(每题3分,共36分)1.已知集合$A=\{2,4,6\}$。
且当$a\in A$ 时,$6-a\in A$。
则 $a$ 为()A。
2 B。
4 C。
3 D。
12.$\sin(-1050)$ 的值为()A。
$\dfrac{3}{3}$ B。
$\dfrac{3}{2}$ C。
$0$ D。
$2$ 或$4$3.下列函数中,不满足 $f(2x)=2f(x)$ 的是()A。
$f(x)=|x|$ B。
$f(x)=x+1$ C。
$f(x)=-x$ D。
$f(x)=x-|x|$4.函数 $f(x)=|\cos x|$ 的最小正周期为()A。
$2\pi$ B。
$\pi$ C。
$3\pi$ D。
均不对5.函数 $y=2\sin x-2$ 的定义域为()A。
$[2k\pi,2k\pi+\dfrac{\pi}{4}]$,$k\in Z$ B。
$[2k\pi+\dfrac{\pi}{4},2k\pi+\dfrac{\pi}{2}]$,$k\in Z$C。
$[2k\pi+\dfrac{3\pi}{4},2k\pi+\pi]$,$k\in Z$ D。
$[2k\pi,2k\pi+3\pi]$,$k\in Z$6.函数 $f(x)=ax^2+bx+c$ 满足 $f(1)>0$,$f(2)<0$,则$f(x)$ 在 $(1,2)$ 上的零点()A。
至多有一个 B。
有1个或2个 C。
有且仅有一个 D。
一个也没有7.已知向量 $\bold{a}=(1,2,3)$,$|\bold{b}|=1$,且两向量夹 $120^\circ$,则 $|\bold{a}-\bold{b}|=$()A。
$\sqrt{3}$ B。
$3$ C。
$5$ D。
$7$8.将函数 $y=\sin(x+\phi)$,$(0<\phi<\pi)$ 的图像所有点的纵坐标不变,横坐标伸长到原来的2倍,再向左平移$\dfrac{1}{2}$ 个单位得到一个奇函数的图像,则$\phi=$()A。
全新人教高一数学上册期末试卷含答案
全新人教高一数学上册期末试卷含答案
一、单选题
1.函数的定义域为()
A .B.C.D.
2.已知函数在区间上是减函数,则实数的取值范围是()A .B.
C.D.
3.关于函数,下列命题正确的是()
A.由可得是的整数倍
B.函数的表达式可改写成
C .函数的图象关于点对称
D.函数的图象关于直线对称
4.已知函数的图象向左平移个单位长度,横坐标伸长为原来的2倍得函数的图象,则在下列区间上为单调递减的区间是()A.B.C.D.
5.设,则().
A.B.C.D.
6.已知偶函数满足,当时,;若函数
有3个零点,则k的取值范围是()
A.B.C.D.
7.函数的零点所在一个区间是().
A.B.C.D.
8.已知全集,集合,则()
A.B.C.D.
9.已知函数,则下列说法不正确的是()
A .的最小正周期是B.在上单调递增
C.是奇函数D.的对称中心是
10.已知函数是定义在上的奇函数,且函数在上单调递增,则实数的值为()
A.B.C.1D.2
11.()
A.0B.1C.-1D.2
12.已知,且为第四象限的角,则的值等于( )
A.B.C.D.
二、填空题
13.若将函数的图象向左平移个单位后,所得图象关于轴对称,则实数的值为__________.
14.的值是__________.
15.已知扇形的周长为6 cm ,面积为2 cm2,则扇形的圆心角的弧度数为. 16.设和是方程的两根,则________.。
人教版高一数学上学期期末试题解析版
比如,关于分解因式的题目,有同学归纳出三个思想步骤第一,分解因式一共有几种方法?第二,这道题适合哪一种
第三,按照对应的分解因式法解题。其他的如一元一次方程组、一元一次不等式、函数等题目,也可以归纳出相似的解题思想模式。
第一步,弄清考查范围。题目无非就是知识点的应用,任何一道题都是考查一个知识点的,或者是一个定理的应用,或者是推论的应用。做完题目后首先要弄明白,这道题考查了什么知识点。
第二步,掌握出题意图。命题者是怎样将知识点转化为这道题目的?包含哪些思想方法?怎样给出条件?隐藏了哪些条件?想考查什么?大家应该弄清楚。
【详解】解:因为 ,四边形 为平行四边形,
,
,所以 .因为 ,所以 .
故答案为:
【点睛】本题考查平面向量的减法运算,属于基础题.
16.函数 在 上的值域为_________.
【答案】
【解析】
【分析】
令 ,原函数的值域等价于函数 ( )的值域,根据二次函数的性质计算可得.
【详解】解: ,令 ,因为 ,所以 ,
【分析】
根据零点存在定理判断.
【详解】 , , , , ,零点 区间 上.
故选:C.
【点睛】本题考查零点存在定理,属于基础题.
4.已知向量 , ,若 ,则 ()
A. B. C.9D.10
【答案】D
【解析】
【分析】
根据平面向量共线定理求出参数 的值,再根据坐标法求模.
【详解】解:因为 , , ,所以 ,即 ,
22.已知函数 .
人教版高一数学上学期期末试题(解析版)
【分析】
(1)根据函数的奇偶性 ,则 , ,即可得到解析式;
(2)分段解方程 即可得到函数的零点.
【详解】解:(1)设 ,则 ,
所以 ,
因为 为奇函数,
所以 ,
所以 ,
故 的解析式为
.
(2)由 ,得
或 ,
解得 或 或 ,
所以 的零点是-1,0,1.
【点睛】此题考查根据函数的奇偶性求函数的解析式,根据函数解析式求函数的零点,关键在于准确求解方程.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分
17.已知函数 .
(1)求函数 的定义域;
(2)若 ,求 值.
【答案】(1) (2) 或55
【解析】
【分析】
(1)解不等式 ,其解集就是定义域;
【详解】解:(1)设 的周期为 ,图象的对称中心到对称轴的最小距离为 ,
则 ,
所以 ,
所以 ,
所以 .
所以函数 的解析式是
.
(2)因为 ,讨论函数的增区间:
令 ,
得 ,
所以函数在区间 上为增函数,在区间 上为减函数.
因为 , ,
,
故函数 在区间 上的最大值为 ,最小值为-1.
【点睛】此题考查根据函数图象特征求参数得函数解析式,解决三角函数在某一区间的最值问题,可以利用单调性讨论,也可利用换元法求值域.
人教版
高
中
数
学
测试卷
(考试题)
南充市2019—2020学年度上期高中一年级教学质量监测
数学试卷
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页,满分150分,考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,只将答题卡交回.
人教版高一数学上学期期末考试试题原卷版
高
中
数
学
测试卷
(考试题)
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明,证明过程及演算步骤.
17.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下:
机床甲
10
9.8
10
10.2
机床乙
10.1
10
9.9
10
如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求.
18.若函数 .
(1)求函数 的定义域,并判断函数 的奇偶性;
(2)求函数 的最大值.
19.已知函数 .
(1)若 ,求 的值;
(2)写出函数 的单调区间,不必说明理由;
(3)若 ,求实数 取值范围.
20.技术员小张对甲、乙两项工作投入时间 (小时)与做这两项工作所得报酬 (百元)的关系式为: ,若这两项工作投入的总时间为120小时,且每项工作至少投入20小时.
(2)若关于 的方程 有两个实数解,求实数 的取值范围.
附赠材料
必须掌握的试题训练法
题干分析法
怎样从“做题”提升到“研究”
题干分析法,是指做完题目后,通过读题干进行反思总结:这些题目都从哪几个角度考查知识点的?角度不同,容易出错的地方是不是变化了?只有这样,我们才能从单纯的“做题目”上升到“研究”,我们的思维能力和做题效率才能不断提高。具体来说,题干分析法可分为以下四个步骤
(1)试建立小张所得总报酬 (单位:百元)与对乙项工作投入的时间 (单位:小时)的函数关系式,并指明函数定义域;
(2)小张如何计划使用时间,才能使所得报酬最高?
高一(上)数学期末考试试题 人教版[全套]
高一(上)数学期末考试试题班级 姓名 分数选择题(每小题只有一个答案正确,每小题3分,共36分) 1.已知全集U=R ,A={-1},B={x x x lg )2lg(2=-} ,则( ) (A )A ⊆B (B )A φ=⋃B (C )A ⊇B (D )(C U A )⋂B={2} 2.下列函数中既不是奇函数,又不是偶函数的是( ) (A )y=2x(B )y=2x +2-x (C )y=lg11+x (D )y=lg(x+12+x ) 3.在同一坐标系内作出的两个函数图像图1所示,则这两个函数为( ) (A )y=a x 和y=log a (-x) (B )y=a x 和y=log a x -1(C )y=a -x 和y=log a x -1 (D )y=a -x 和y=log a (-x)4.等差数列{a n }中,已知a 2+a 12=3,则S 13=( ) (A )18 (B )19.5 (C )21 (D )39 5.当x ],0[+∞∈时,下列函数中不是增函数的是( ) (A )y=x+a 2x-3 (B )y=2x (C )y=2x 2+x+1 (D )y=x -36.如果f(n+1)=f(n)+1,(n *N ∈) 且f(1)=2 ,则f(100)的值是( ) (A )102 (B )99 (C )101 (D )100 7.下列不等式成立的是( )(A )log 3π<log 20.8 (B )(5252)20001999()20001998-->) (C )log 35>log 25 (D )(5152)20002001()20001999--<) 8.给出下列等式 ①255425log 15log log 2-=- ②56232a aaa =③{1,12≥-+-=x x x y y }}1{}0,21{-=≥-+=⋂m m x x④{521<-x x }⋃{062>--x x x }={033>-+-x x x }则上述等式成立的是( ) (A )①③ (B )①② (C )②④ (D )③④9.若数列{a n }为等比数列,则下面四个命题:①数列{a n 3}也是等比数列;②数列{-a n }也是等比数列;③数列{na 1}也是等比数列;④数列{n a }也是等比数列,其中正确的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个10.在映射f ∶A →B 中,A={1,2,3,k},B={4,7,a 4,a 2+3a}其中,a,k N ∈,对应法则f ∶x →y=3x+1(x B y A ∈∈,),则a 、k 的值分别为( )(A )a=2,k=5 (B )a=-5,k=2 (C )a=5,k=2 (D )a=2,k=411.将函数y=3x的图像向左平移1个单位得到图像C 1,将C 1向上平移一个单位得到C 2,再作C 2关于直线y=x 的对称图像C 3,则C 3的解析式是( ) (A )y=log 3(x+1)+1 (B )y=log 3(x+1)-1 (C )y=log 3(x-1)-1 (D )y=log 3(x-1)+1 12.下列命题中错误..命题的个数是( ) ①“若log 2x ,1≤则log 2(x-1)无意义”的否命题是真命题;②“若lgx+lg(x-1)-lg2,则x 2-x=2”的逆否命题是真命题;③“一个数是6”是“这个数是4和9的等比中项”的充分不必要条件;④“a n =a 1+(n-1)d ”是“数列{a n }为等差数列”的充要条件。
高一数学上学期期末考试试题(含解析)新人教版 新 版.doc
2019学年上学期期末考试高一数学试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则=()A. B. C. D.【答案】D【解析】,所以,故选D。
2. 等于()A. B. C. D.【答案】B【解析】,故选B。
3. 已知角的终边上一点的坐标为(),则角的最小正值为( )A. B. C. D.【答案】D【解析】试题分析:因为,,所以点在第四象限.又因为,所以角的最小正值为.故应选B.考点:任意角的三角函数的定义.4. 要得到的图像, 需要将函数的图像()A 向左平移个单位B 向右平移个单位C. 向左平移个单位 D 向右平移个单位【答案】A【解析】,所以是左移个单位,故选A。
5. 已知,则()A. B. C. D.【答案】C【解析】,得,,故选C。
6. 函数的最小值和最大值分别为()A. -3,1B. -2,2C. -3,D. -2,【答案】C【解析】试题分析:因为,所以当时,;当时,,故选C.考点:三角函数的恒等变换及应用.视频7. 下列四个式子中是恒等式的是()A. B.C. D.【答案】D【解析】由和差公式可知,A、B、C都错误,,正确。
故选D。
8. 已知()A. ﹣3B. 3C. ﹣1D. 1【答案】B【解析】,,所以,所以当时取最小值,故选B。
9. 已知向量,若与垂直,则的值等于()A. B. C. 6 D. 2【答案】B所以,则,故选B。
10. 设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】,故选A。
点睛:本题考查平面向量的线性表示。
利用向量加法的三角形法则,以及题目条件,得到,再利用向量减法的三角形法则,,代入得到答案,11. 在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则的值等于()A. 1B.C.D.【答案】B【解析】由题易知,直角三角形的直角边边长为,所以,所以,故选B。
人教版高一数学上学期期末试题(解析版)
【点睛】本题考查利用函数单调性判断大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系,属于基础题.
10.函数 则关于 的方程 的根的个数是( )
A. 5B. 6C. 7D. 8
【答案】B
【解析】
【分析】
作出 的图象,解得方程 或 ,数出根的个数即可.
【分析】
先判断函数的奇偶性,再根据函数值的变化规律即可得到答案.
【详解】∵函数
∴
∴函数 为奇函数,即图象关于原点对称
当 向右趋向于1时, 趋向于 ,故排除D;
当 向左趋向于1时, 趋向于 ,故排除B、C.
故选A.
【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及 时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除
不满足条件 , ;
不满足条件 , ;
满足条件 ,不满足条件 , ;
不满足条件 , ;不满足条件 , ;
满足条件 ,不满足条件 , ;
不满足条件 , ;不满足条件 , ;
满足条件 ,不满足条件 , ;
不满足条件 , ;不满足条件 , ;
满足条件 ,满足条件 ,输出 .
故选:B.
【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.
三、解答题:解答应写出文字说明、证明过程和演算步骤.
17.已知全集 , , .
(1)求 ;
人教版高一数学上学期期末试题(解析版)
故 .
故选:A
【点睛】此题考查函数零点问题,根据函数零点建立等量关系,考虑整体处理.
11.已知三棱柱的底面是边长为 的等边三角形,侧棱垂直于底面且侧棱长为2,若该棱柱的顶点都在一个球面上,则该球的表面积为()
A. B. C. D.
【答案】D
A. B. C.3D.3或
【答案】D
【解析】
【分析】
求出公共弦所在直线,再求与两坐标轴的交点,即可得出面积表达式,根据面积关系求解.
【详解】圆 标准方程为
两圆相交,必有 ,且 ,
将两圆方程相减可得 ,
当 时, ,当 时, ,所以直线与坐标轴的交点为 与 ,所围图形面积 ,解得 或 ,经检验,符合条件.
20.如图,在四棱锥 中, , , 平面ABCD, , ,E是棱PC上一点,F是AB的中点.
(1)证明: 平面ADE;
(2)若 ,O为点E在平面PAB上的正投影,求四棱锥 的体积.
【答案】(1)证明见解析;(2)
【解析】
【分析】
(1)通过证明 得 ,得 ,进而证明线面平行;
(2)转换顶点 即可求得体积.
【分析】
解出集合B根据包含关系,讨论端点的大小关系即可得解.
【详解】由已知可得 .因为 ,
所以 ,即 .
故答案为:
【点睛】此题考查根据集合的包含关系求参数的范围,关键在于弄清哪个集合是子集,建立不等关系,注意考虑端点能否取等.
14.已知函数 , .若该函数的值域为 ,则 ________.
【答案】4
由 ,可得 ,
则 ,所以 ,即 对任意的 恒成立,所以 ,
得 ,
解得 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一第一学期期末考试题
一、选择题(5×10=50)
1、设集合2{650}M x
x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5}
2、水平放置的∆ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A 1B 1C 1,则∆ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形
3、函数2(01)x y a a a =+>≠且图象一定过点 ( )
A .(0,1)
B .(0,3)
C .(1,0)
D .(3,0)
4、下列各组函数中,表示同一函数的是( )
A. y=x 0,y=
B. y=
C. y=x ,y=
D. 5、设集合A=B=(){},x y x R y R ∈∈、,从A 到B 的映射f :
(x ,y )→(x+2y ,2x-y ),在映射下,B 中的元素为(1,1)对应的A 中元素为( )
A .(1,3)
B .(1,1)
C .(31,55)
D .(11,22
) 6、下图中的三个直角三角形是一个体积为20 cm 3的几何体的三视图,
则h 为( )cm.
A .1
B .2
C .3
D .4、
7、设f (x )=x-2(x ≥10 );f (f(x+6)) (x<10),则f (5)的值为( )
A .10
B .11
C .12
D .13 8、下列命题中正确的有( )
①圆台的所有平行于底面的截面都是圆;②圆台是直角梯形绕其一边旋转一周而成的;③在圆台的上、下底面圆周上各取一点,则这两点的连线一定是圆台的母线;④圆台可看成是由平行于底面的平面截圆锥得到的. A .1个 B .2个 C .3个 D .4个
9、设a=20..3,b=0.32
,c=log 20.3,则a 、b 、c 的大小关系是( ) A .a<b<c B .c<b<a C .c<a<b D . b<c<a
10、如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的有( )
A B C D
二、填空题(5×5=25)
11、计算log225.log38.log59的结果是________
12、点P(1,-1)到直线x-y+1=0的距离是_________
13、已知函数y=-x2-4mx+1在【2,+∞)上是减函数,则m的取值范围_________
14、设f(x)在R上是奇函数,当x›0时,f(x)=x(1-x),则当x <0时,f(x)=__。