第一章 一元一次不等式和一元一次不等式试题

合集下载

第一章 一元一次不等式(组)水平测试(含答案)-

第一章 一元一次不等式(组)水平测试(含答案)-

第一章 一元一次不等式(组)水平测试一、填空题(每题3分,共30分)1. 如果1212+<+b a ,那么._______b a2. 已知,b a >若,0<a 则._________2ab a3. 不等式x x ->+1)1(2的解集为________.4. 若1142132->+-m x 是关于x 的一元一次不等式,则.________=m 5. 不等式)2(2443-+≥-x x 的最小整数解是_________.6. 若,252<-x k 且x 不为负数,则k 的取值范围是_________.7. 学校图书馆搬迁,有15万图书,原准备每天在一个班的劳动课上,安排一个小组同学帮助搬运图书,两天共搬1.8万册,如果要求在一周内搬完,设每小组搬运图书书数相同,则在以后的五天内,每天至少安排________个小组搬书.8. 关于x 的不等式223-≤-a x 的解集如图1所示,则a 的值是_________.–4–3–2 –1 0 1 2 3图19. 某种药品的说明书上贴有如下图所示的标签,一次服用这种药品的剂量是10.知不等式组⎩⎨⎧≤≥-mx x 042无解,则m 的取值范围是____________.二、选择题(每题3分,共30分)11.已知,1-<a 则下列不等式中错误的是( )(A )44-<a (B )44-<-a (C )12<+a (D )32>-a12.三个连续自然数的和小于15,这样的自然数组共有( )(A )6组 (B )5组 (C )4组 (D )3组13.1-≤x 是哪个不等式(组)的解集( )(A )0121<+-x (B )1213-≥+x (C )⎩⎨⎧≥-+-≤03)2(x x x (D )⎩⎨⎧<+-≥--5)1(21)1(x x14.与不等式11052-≤-x x 的解集相同的不等式是( ) (A) 12-≤-x (B) 102-≤-x x (C) 104-≥-x x (D) 104-≤-x x15.使不等式145->-x x 成立的值中最大的整数是( ) (A)2 (B)―1 (C)―2 (D)016.某次“迎奥运”知识竟赛中共20到题,对于每一道题,答对得10分,答错或不答扣5分,选手至少要答对( )道题,其得分才会不少于95分?(A)14 (B)13 (C)12 (D)1117.若b a <则不等式组⎩⎨⎧<>bx a x 的解集是( )(A) a x > (B) b x < (C) b x a << (D)无解18.如果不等式组⎩⎨⎧+>+>212m x m x 的解集是1->x ,那么m 为 (A )1 (B )3 (C )―1 (D )―319.若不等式组⎩⎨⎧>≤<mx x 21有解,则m 的取值范围是( )(A) 2<m (B) 2≥m (C) 1<m (D) 21<≤m20.某中肥皂原零售价每块2元,凡购买二块以上(含二块),商场推出两种优惠销售办法,第一种:一块按原价,其余按原价的七折优惠;第二种:全部按原价的八折优惠,你在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少需购买肥皂( )(A)5 块 (B)4块 (C)3 块 (D)2块三、解答题(本大题共40分)21.(本题8分)解不等式:611012+≥-x x22.(本题8分)解不等式组⎩⎨⎧>+>-4)5(201x x23(本题8分).求不等式组⎪⎩⎪⎨⎧+≤-+<+)31(21)1(323312x x x x 的非负整数解.24.(本题8分)一个两位数,其个位数字比十位数字大2,已知这个两位数大于20而小于40,求这个两位数.25.(题8分)已知方程⎩⎨⎧=++=-m y x m y x 3252的解满足条件,0,0<>y x 求m 的取值范围.四、综合探究题(本大题共20分)26.(本题12分)校准备在甲、乙两家公司为毕业班学生制作一批纪念册,甲公司提出:每册收材料费5元另收设计费1500元;乙公司提出:每册收费8元,不收设计费.(1)请写出制作纪念册的册数x 与甲公司的收费1y (元)的函数关系.(2)请写出制作纪念册的册数x 与乙公司的收费2y (元)的函数关系.(3)如果学校派你去甲、乙两家公司定做纪念册,你会选择哪家公司?27.(本题8分)比较下面四个算式结果的大小(在横线上选填<,=,>):542_____5422⨯⨯+2)1(2_____2)1(22⨯-⨯+- (3132____)31()322⨯⨯+ 332_____3322⨯⨯+;……通过观察归纳,写出反映这种规律的一般结论:_________________.答案:一、1.< 2.<提示:注意改变不等号的方向. 3. 31->x 4.2提示: 132=-m5. 4=x6. 1≥k7.38. 21-提示: .1322-=-a9.10;30提示330÷为最小剂量,260÷为最大剂量. 10. .2<m二、11.B 12.C 提示:设中间的自然数为x ,则.153=x 13.C 14C15C 提示:先求不等式的解集. 16.B 提示:设共答对x 道题,则95)20(510≥--x x17.C 18.D 19.A 20.B 提示: x x 6.1)1(4.12<-+三、21.解: 110)12(6+≥-x x 22.解:解不等式①得1<x110612+≥-x x 解不等式②得3->x 72≥x 所以原不等式组的解集为 27≥x 13<<-x23.解:解不等式组得52≤<-x .所以原不等式组的非负整数解为0,1,2,3,4,5.24.解:设十位数字为x ,则个位数字为2+x ,由题意得4021020<++<x x解得11301118<<x因x 为正整数,所以42,2=+=x x答:这个两位数为24.25.解:解方程组得⎩⎨⎧-=+=12m y m x因为0,0<>y x ,所以⎩⎨⎧<->+0102m m解得12<<-m四、26.解:(1)150051+=x y(2)x y 82=(1) 由21y y >,即x x 815005>+,解得500<x由21y y =,即x x 815005=+,解得500=x由21y y <,即x x 815005<+,解得500>x所以,当少于500册时,选择乙公司;当500册时,选择哪一个公司都可以;当多于500册时,选择甲公司.27.解:>;>;>:=; ab b a 222≥+.。

(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析)

(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析)

(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析) ⋯⋯⋯⋯⋯⋯⋯⋯⋯○装⋯○⋯⋯⋯⋯_____⋯⋯____⋯⋯:号装考_○__⋯____⋯_⋯__:⋯⋯班__⋯__⋯__○___⋯:⋯名姓_外⋯____⋯_⋯___⋯:校⋯学内⋯⋯⋯⋯⋯○⋯⋯○⋯⋯⋯⋯⋯(完整word 版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析)优来文化培训中心 数学 八下第一章一元一次不等式和一元一次不等式组练习题分卷 I分卷 I 注卷人得分一、 ( 注 )1、关于 x 、y 的二元一次方程 的解 足不等式 > 0, 的取范 是〔 〕A . < -1B . < 1C . > -1D . > 12、如果 a < 0, 以下式子 的是A . 5+a >3+aB . 5 a > 3 aC . 5a >3aD .3、不等式的解集在数 上表示A .B .C .D .4、 数 a 、 b 在数 上的位置如 所示,以下各式成立的是A .B . a b >0C . ab > 0D . a+b >05、点P 〔〕在第一象限, a 的取 范 在数 上表示正确的选项是A .B .C .D .6、把不等式 的解集在数 上表示出来,正确的选项是A .B .C .D .7、假设〔 m+1〕 x |m| +2>0 是关于 x 的一元一次不等式, m=〔 〕 A . ± 1B . 1C . 1D . 0试卷第 1 页,总 19 页(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析) ⋯⋯⋯⋯⋯⋯⋯⋯⋯○装⋯○⋯⋯⋯⋯_____⋯⋯____⋯⋯:号装考_○__⋯____⋯_⋯__:⋯⋯班__⋯__⋯__○___⋯:⋯名姓_外⋯____⋯_⋯___⋯:校⋯学内⋯⋯⋯⋯⋯○⋯⋯○⋯⋯⋯⋯⋯(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析)16、假设 a<b,以下各式中一定正确的选项是A. ab<0B. ab>0C. a- b>0D.- a>- b优来文化培训中心数学八下试卷第 2 页,总 19 页8、由 a> b 得到 am> bm 的条件是〔〕A. m> 0B. m<0C. m≥0D. m≤O9、如果关于x 的不等式 (a+1)x>a+1 的解集x<1, a 的取范是〔〕A. a<0B. a<-1C. a>1D. a>-110、不等式的解集在数上表示A.B.C.D.11、如天平右中的每个砝的量都是1g,物体 A 的量 m(g)的取范在数上可表示 ( )12、不等式的解集在数上表示〔〕13、假设关于 x的一元一次不等式有解,m 的取范A.B.C.D.14、以下命正确的选项是A.假设 a> b, b <c, a> c B.假设 a> b, ac> bcC.假设 a> b, ac2> bc2D.假设 ac2> bc2, a> b15、一个不等式的解集在数上的表示如下,个不等式的解集是A. x<3B. x≥-1C.- 1<x ≤3D.- 1≤ x<3(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析) ⋯⋯⋯⋯⋯⋯⋯⋯⋯○装⋯○⋯⋯⋯⋯_____⋯⋯____⋯⋯:号装考_○__⋯____⋯_⋯__:⋯⋯班__⋯__⋯__○___⋯:⋯名姓_外⋯____⋯_⋯___⋯:校⋯学内⋯⋯⋯⋯⋯○⋯⋯○⋯⋯⋯⋯⋯(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析)试卷第 3 页,总 19 页优来文化培训中心数学八下17、 a<b,以下不等式一定成立的是A. a+5>b+5B. -2a<-2b C.D. 7a-7b<018、在数上表示不等式的解集,正确的选项是19、 a、 b 均 a>b,以下不正确的选项是〔〕A. a+3>b+3B. a-3>b-3C. 3a>3b D.20、不等式的解集,〔〕A. 2021B.C.D. 1(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析) ⋯⋯⋯⋯⋯⋯⋯⋯⋯○装⋯○⋯⋯⋯⋯_____⋯⋯____⋯⋯:号装考_○__⋯____⋯_⋯__:⋯⋯班__⋯__⋯__○___⋯:⋯名姓_外⋯____⋯_⋯___⋯:校⋯学内⋯⋯⋯⋯⋯○⋯⋯○⋯⋯⋯⋯⋯(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析) 优来文化培训中心数学八下31、解不等式.分卷II分卷 II注卷人试卷第 4 页,总 19 页得分二、填空(注)21、某采石爆破,点燃火的甲工人要在爆破前移到400 米以外的平安区域.甲工人在移程中,前40 米只能步行,之后自行.火燃的速度米 / 秒,步行的速度 1米 / 秒,的速度 4 米 / 秒.了确保甲工人的平安,火的要大于米.22、不等式和x+3〔x1〕< 1 的解集的公共局部是.23、关于 x 的方程 kx 1=2x 的解正数,k 的取范是.24、当 x,代数式的不小于的.25、假设关于 x的不等式的解集是x> 2, m 的取范是.26、足不等式 5< 6 2x<3 的所有整数解的和是.27、不等式 1 2x<6 的整数解是.28、 3x+4 ≤ 6+2〔 x 2〕, |x+1|的最小等于.29、不等式x<1 的正整数解是.30、不等式的解集是;卷人得分三、算 ( 注 )(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析) ⋯⋯⋯⋯⋯⋯⋯⋯⋯○装⋯○⋯⋯⋯⋯_____⋯⋯____⋯⋯:号装考_○__⋯____⋯_⋯__:⋯⋯班__⋯__⋯__○___⋯:⋯名姓_外⋯____⋯_⋯___⋯:校⋯学内⋯⋯⋯⋯⋯○⋯⋯○⋯⋯⋯⋯⋯(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析)试卷第 5 页,总 19 页优来文化培训中心数学八下32、〔 1〕解方程:〔2〕解不等式:.33、解不等式〔8 分〕34、解方程:〔 1〕〔2〕35、因式分解:〔 1〕 m3- 4m〔2〕36、先化:再从不等式的整数解中一个恰当的x 代入并求.(完整word版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析) ⋯⋯⋯⋯⋯⋯⋯⋯⋯○装⋯○⋯⋯⋯⋯_____⋯⋯____⋯⋯:号装考_○__⋯____⋯_⋯__:⋯⋯班__⋯__⋯__○___⋯:⋯名姓_外⋯____⋯_⋯___⋯:校⋯学内⋯⋯⋯⋯⋯○⋯⋯○⋯⋯⋯⋯⋯(完整word 版)北师大版八年级下册数学第一章_一元一次不等式和一元一次不等式组练习题(带解析)优来文化培训中心 数学 八下37、解不等式 ,并把解集在数 上表示出来.38、解不等式 ,并把它 的解集在数 上表示出来.(1)〔 2〕39、解不等式 ≥ ,将解集在数 上表示出来,且写出它的正整数解。

第一章_一元一次不等式和一元一次不等式组_过关100题

第一章_一元一次不等式和一元一次不等式组_过关100题

●知识点:1.用__________号连接而成的式子叫做不等式.常见的不等号有________________2.数的大小比较:正数______负数.0___负数.两个负数比较,绝对值大的反而____.3.不等式的两边都加上(或减去)同一个整式,不等式的方向__________.4.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________.5.不等式两边都乘以(或除以)同一个负数,不等号方向__________6.规定了__________、__________、__________的直线叫做数轴.7.数轴上的点与实数之间是__________的关系.8.填空①________________________________________叫做不等式的解.②________________________________________组成不等式的解集. ③_______________________________叫做解不等式. 9..不等式的左右两边都是整式,只含有__________个未知数,且未知数的最高次数都是__________,像这样的不等式,叫做一元一次不等式.10.解一元一次不等式的基本步骤:①__________;②__________;③__________;④__________;⑤__________.11.关于同一未知数的__________合在一起,就组成一元一次不等式组.12.一元一次不等式组中各个不等式的解集的__________叫做这个一元一次不等式组的解集. 13.求不等式组__________的过程,叫做解不等式组. ●知识拓展:(1)a b b a <⇔>(对称性) (2)c a c b b a >⇒>>,(传递性)(3)cb c a b a+>+⇒>(加法单调性)(4)db c a d c b a +>+⇒>>,(同向不等式相加) (5)db c a dc b a ->-⇒<>,(异向不等式相减)(6)bcac c b a >⇒>>0,.(7)bcac c b a <⇒<>0,(乘法单调性)(8)bdac dc b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d cd>><<⇒>(异向不等式相除)11(10),0a b ab ab>>⇒<(倒数关系)(11))1,(0>∈>⇒>>n Z n b ab ann且(平方法则)(12))1,(0>∈>⇒>>n Z n b a b ann且(开方法则)●基础篇:1.x 与-3的和是负数. ______________________2.x 与5的和的28%不大于-6. ______________________3.m 除以4的商加上3至多为5. ______________________4.a 与b 两数和的平方不小于3. ______________________5.三角形的两边a 、b 的和大于第三边c . ______________________6.在数学表达式①-3<0; ②4x+5>0; ③x=3; ④x 2+x;⑤ x+2>x+1是不等式的有( )A.2个B.3个C.4个D.5个 7. x 的2倍减7的差不大于-1,可列关系式为( )A.2x-7≤-1B. 2x-7<-1C. 2x-7=-1D. 2x-7≥-4 8.下列列出的不等关系式中, 正确的是( )A.a 是负数可表示为a>0;B. x 不大于3可表示为x<3C. m 与4的差是负数,可表示为m-4<0;D. x 与2的和是非负数可表示为x+2>0 9. 代数式3x+4的值不小于0,则可列不等式为( )A. 3x+4<0B. 3x+4>0C. 3x+4≥0D. 3x+4≤010.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-a A.①② B.①③ C.②③ D.①②③11.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )A.b -a >0B.ab >0C.c -b <c -aD.ab11>12.若a <b ,则-3a +1________-3b +1. 13.若-35x >5,则x ________-3.14.若a >b ,c ≤0,则ac ________bc . 15.若ba b a --||=-1,则a -b ________0.16.若ax >b ,ac 2<0,则x ________ab .17.根据不等式性质,把下列不等式化成x >a 或x <a 的形式. (1)x +7>9 (2)6x <5x -3 (3)51x <52 (4)-32x >-118.下列说法中,正确的是( )A.x =2是不等式3x >5的一个解B.x =2是不等式3x >5的唯一解C.x =2是不等式3x >5的解集D.x =2不是不等式3x >5的解 19.不等式-4≤x <2的所有整数解的和是( ) A.-4 B.-6 C.-8 D.-920.用不等式表示图中的解集,其中正确的是( )A.x >-3B.x <-3C.x ≥-3D.x ≤-321.若不等式(a +1)x <a +1的解集为x <1,那么a 必须满足( ) A.a <0 B.a ≤-1 C.a >-1 D.a <-1 22.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >2 23.大于________的每一个数都是不等式5x >15的解. 24.如果不等式(a -3)x <b 的解集是x <3-a b ,那么a 的取值范围是________.25.在数轴上表示下列不等式的解集:(1)x >3 (2)x ≥-2 (3)x ≤4 (4)x <-2126.利用不等式的性质求出下列不等式的解集,并把它们的解集在数轴上表示出来: (1)-2x ≥3 (2)-4x +12<027.已知-4是不等式ax >9的解集中的一个值,试求a 的取值范围.28.已知不等式2x -1>x 与ax -6>5x 同解,试求a 的值.29.不等式53263-<-x x 的解集是( )A.x >9B.x <9C.x >32D.x <3230.下列不等式中,与523x -≤-1同解的不等式是( )A.3-2x ≥5B.2x -3≥5C.3-2x ≤5D.x ≤431.解不等式51232->+x x,下列过程中,错误的是( )A.5(2+x )>3(2x -1)B.10+5x >6x -3C.5x -6x >-3-10D.x >13 32.解下列不等式,并将解集在数轴上表示出来: (1)2x -9<7x +11 (2)125-+x ≤223+x33.已知方程组⎩⎨⎧-=+=-ky x k y x 5132的解x 与y 的和为负数,求k 的取值范围.34.在一次“人与自然”知识竞赛中,共有25道选择题,要求学生把正确答案选出,每道选对得10分,选错或不选倒扣5分.如果一个学生在本次竞赛中的得分不低于200分,那么他至少要选对多少道题?35.如果一次函数y =-x +b 的图象经过y 轴的正半轴,那么b 应取值为( ) A.b >0 B.b <0 C.b =0 D.b 不确定 36.已知函数y =8x -11,要使y >0,那么x 应取( )A.x >811 B.x <811 C.x >0 D.x <037.汽车由A 地驶往相距120千米的B 地,汽车的平均速度是30千米/时,则汽车距B 地的路程S (千米)与行驶时间t (小时)的关系式及自变量t 的取值范围是( )A.S =120-30t (0≤t ≤4)B.S =30t (0≤t ≤4)C.S =120-30t (t >0)D.S =30t (t >4)38.要使一次函数y =(2a -1)x +(a -1)的图象经过y 轴的正半轴且过x 轴的负半轴,则a 的取值范围是( ) A.a >21 B.a >1 C.21<a <1 D.a <2139.已知函数y =(2m -1)x 的图象上两点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是( )A.m <21 B.m >21 C.m <2 D.m >040.已知一次函数y =kx +b 的图象经过点:A (-2,0)、B (m ,-7)、C (-21,-3).(1)求m 的值. (2)当x 取什么值时,y <0.41.画出一次函数y =32x -2的图象,并回答:(1)当x 取何值时,y =0? (2)当x 取何值时,y >0?(3)当-1<y <1,求x 的取值范围.42.不等式组⎩⎨⎧≥-<+423532x x 的解集是( )A.x <1B.x ≥2C.无解D.1<x ≤243.若方程组⎩⎨⎧-=-=+323a y x y x 的解是负数,那么a的取值范围是( )A.-3<a <-6B.a >6C.a <-3D.无解44.若不等式组⎩⎨⎧><ax x 2的解集为a <x <2,则a 的取值范围为( )A.a >2B.a <2C.0<a <2D.不确定45.设a >b ,则不等式组⎩⎨⎧><bx a x 的解集为( )A.x >bB.x <aC.b <x <aD.无解46.若一元一次不等式组⎩⎨⎧<>bx a x (a ≠b )无解,则a 与b 的关系是( )A.a <bB.a >b B.a=bC.a ≥b 47.解下列不等式组:(1)⎩⎨⎧->+--≤-243213x x x x(2)⎪⎩⎪⎨⎧-<-+≥+23423521xx x x48.如果关于x 的方程x +2m -3=3x +7的解为不大于2的非负数,求m 的范围.49.已知方程组⎩⎨⎧-=-+=+172652y x m y x 的解x 、y 都是正数,求m 的取值范围.50.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?●拔高篇:51.若关于x 的不等式组⎪⎩⎪⎨⎧<++>+01456m x x x 的解集为x<4,求m 的取值范围。

(完整版)一元一次不等式各题型练习

(完整版)一元一次不等式各题型练习

一元一次不等式各题型练习例一.解不等式组-+<-+-≥⎧⎨⎪⎩⎪21113121x x x 31151235x x x x +>-≤-⎧⎨⎪⎪⎩⎪⎪ -<-<1232x例二.若||()x x y m -+--=4502,求当y ≥0时,m 的取值范围。

例三.班级50名学生上体育课,老师出了一道题目:现在我拿来一些篮球,如果每5人一组玩一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,就会有一组玩篮球的人数不足6个.你们知道有几个篮球吗?甲同学说:如果有x 个篮球,550x <.乙同学说:650x >.丙同学说:6(1)50x -<.你明白他们的意思吗?例四.3.若不等式组的解集为−1<x<1,求(a+1)(b −1)的值.例五.用不等式表示:x 的2倍与1的和大于-1为__________,y 的13与t 的差的一半是负数为_________。

例六.x 为何值时,代数式5123--+x x 的值是非负数?例七.已知:关于x 的方程m x m x =--+2123的解是非正数,求m 的取值范围.一.填空:1、有下列数学表达:①30<;②450x +>;③3x =;④2x x +;⑤4x ≠-; ⑥21x x +>+.其中是不等式的有________个.2. 学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm,售价30分;大饼直径40cm ,售价40分.你更愿意买 饼,原因是 .3.若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n -- 4.用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______23; (3)如果15x >-2,那么x______-10; (4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 5.有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a ,b 的不等式表示为 .6、有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。

一元一次方程与一元一次不等式

一元一次方程与一元一次不等式

第一章:一元一次不等式和一元一次不等式组知识要点:1. 不等式:一般地用不等号连接的式子叫做不等式。

2. 不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

3. 解不等式:把不等式变为x>a 或x<a 的形式。

4. 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,不等式的左右两边都是整式的不等式,叫做一元一次不等式。

5. 解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为16. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分。

法则:“同大取大,同小取小,大小小大取中间,大大小小是无解。

”【典型例题】例1. 用不等式表示下列数量关系。

(1)a 的一半与-3的和小于或等于1。

()的与的差的相反数不小于。

2a 3525-()的相反数的不大于的倍加。

317516x x点评:用不等号表示的时候要准确理解“大”、“小”、“多”、“少”、“不大于”、“不小于”、“不多于”、“不少于”、“至少”、“至多”等词语的含义。

下面我们判断一下,以下的不等式是不是一元一次不等式.请大家讨论.2.一元一次不等式的解法.[例1]解不等式3-x <2x +6,并把它的解集表示在数轴上.[分析]要化成“x >a ”或“x <a ”的形式,首先要把不等式两边的x 或常数项转移到同一侧,变成“ax >b ”或“ax <b ”的形式,再根据不等式的基本性质求得.解一元一次方程的步骤吗?.有去分母;去括号;移项;合并同类项;系数化成1.[例2]解不等式22-x ≥37x -,并把它的解集在数轴上表示出来.请大家判断以下解法是否正确.若不正确,请改正.解不等式:312 -+-x≥5解:去分母,得-2x+1≥-15移项、合并同类项,得-2x≥-16两边同时除以-2,得x≥8.有两处错误.第一,在去分母时,两边同时乘以-3,根据不等式的基本性质3,不等号的方向要改变,第二,在最后一步,两边同时除以-2时,不等号的方向也应改变.[3.解一元一次不等式与解一元一次方程的区别与联系.联系:两种解法的步骤相似.区别:(1)不等式两边都乘以(或除以)同一个负数时,不等号的方向改变;而方程两边乘以(或除以)同一个负数时,等号不变.(2)一元一次不等式有无限多个解,而一元一次方程只有一个解.例2. 有理数x、y在数轴上的对应点如图所示,试用“>”或“<”号填空:x 0 y(1)x______y (2)x+y_____0 (3)xy____0(4)x-y______0例3. 设“A、B、C、D”表示四种不同质量的物体,在天平秤上的情况如图所示,请你用“<”号将这四种物体的质量m A、m B、m C、m D从小到大排列:_____________________________。

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)第一篇:一元一次不等式试题10.(2012湖北随州4分)若不等式组⎨⎧x-b<0⎩x+a>0的解集为2A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。

【考点】解一元一次不等式组【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x >-a,∴不等式组的解集是:-a<x<b,∵不等式组⎨⎧x-b<0 ⎩x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。

故选A。

11.(2012湖北孝感3分)若关于x的一元一次不等式组⎨范围是【】⎧x-a>0⎩1-2x>x-2无解,则a的取值A.a≥1B.a>1C.a≤-1D.a<-1【答案】A。

【考点】解一元一次不等式组。

【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可:⎧x-a>0①,由①得:x>a,由②得:x<1。

⎨1-2x>x-2②⎩∵不等式组无解,∴a≥1。

故选A。

12.(2012湖北襄阳3分)若不等式组⎨⎧1+x>a⎩2x-4≤0有解,则a的取值范围是【】A.a≤3B.a<3C.a<2D.a≤2【答案】B。

【考点】解一元一次不等式组。

【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可:由1+x>a得,x>a﹣1;由2x-4≤0得,x≤2。

∵此不等式组有解,∴a﹣1<2,解得a<3。

故选B。

20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<aB.b<c<aC.c<a<bD.b<a<c【答案】A。

30.(2012山东淄博4分)若a>b,则下列不等式不一定成立的是【】(A)a+m>b+m(B)a(m2+1)>b(m2+1)(C)-a2<-b2(D)a2>b2x+2⎧4+x>⎪32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组⎪⎨⎪x+a<0⎪⎩2围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组⎨⎧2x+y=3k-1⎩x+2y=-2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组:⎨⎧3x-a≥0⎩2x-b≤0,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。

一元一次不等式练习习题附答案

一元一次不等式练习习题附答案

一元一次不等式练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >0【答案】B 【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断. 【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大, 即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意; C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意; D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意; 故选:B . 【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101a b c <-<<<<.2.若不等式组4101x m x x m-+<+⎧⎨+>⎩解集是4x >,则( )A .92m ≤B .5m ≤C .92m =D .5m =【答案】C 【分析】首先解出不等式组的解集,然后与x >4比较,即可求出实数m 的取值范围. 【详解】解:由①得2x >4m -10,即x >2m -5; 由②得x >m -1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.3.下列不等式组,无解的是()A.1030xx->⎧⎨->⎩B.1030xx-<⎧⎨-<⎩C.1030xx->⎧⎨-<⎩D.1030xx-<⎧⎨->⎩【答案】D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.4.海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<80【答案】C【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5.不等式组31xx<⎧⎨≥⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】根据不等式组的解集的表示方法即可求解. 【详解】解:∵不等式组的解集为31x x <⎧⎨≥⎩ 故表示如下:故选:C . 【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.如果0b a <<,则下列哪个不等式是正确的( ) A .2b ab < B .2a ab >C .22b a ->-D .22b a >【答案】C 【分析】运用不等式的基本性质逐一判断即可. 【详解】 ∵0b a <<, ∴2b ab > , ∴A 不符合题意; ∵0b a <<, ∴2ab a > , ∴B 不符合题意; ∵0b a <<, ∴22b a ->- , ∴C 符合题意; ∵0b a <<, ∴22b a < , ∴D 不符合题意; 故选C .【点睛】本题考查了不等式的性质,熟练运用基本性质是解题的关键.7.如图,数轴上表示的解集是()A.﹣3<x≤2B.﹣3≤x<2 C.x>﹣3 D.x≤2【答案】A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8.能说明“若x>y,则ax>ay”是假命题的a的值是()A.3 B.2 C.1 D.1-【答案】D【分析】根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.【详解】解:“若x>y,则ax>ay”是假命题,则0a<,故选:D.【点睛】本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.二、填空题912x-x的取值范围为_______________.【答案】12x ≤且1x ≠- 【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解. 【详解】解:由题意得:120x -≥,且10x +≠ 解得:12x ≤且1x ≠- 故答案为:12x ≤且1x ≠- 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键. 10.若m 与3的和是正数,则可列出不等式:___. 【答案】30m +> 【分析】根据题意列出不等式即可 【详解】若m 与3的和是正数,则可列出不等式30m +> 故答案为:30m +> 【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键.11.不等式组21054x x -≤⎧⎨+≥⎩的整数解是__________.【答案】-1、0 【分析】分别求出各不等式的解集,再求出其公共解集即可得出答案. 【详解】解:解不等式210x -≤, 得:12x ≤, 解不等式54x +≥, 得:1x ≥-,则不等式组的解集为112x ≤≤-, ∴不等式组的整数解为-1、0, 故答案为:-1、0. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解题的关键.12.a 、b 、c 表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)3a +______3b +;(2)-a b ________0; (3)35a __________35b ;(4)2a -________2b -;(5)14a -________14b -;(6)a c ⋅_______b c ⋅; (7)a c -________b c -;(8)ab _______2b .【答案】> > > < < > > > 【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变; (2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变; (3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变. 据此可以对不等号的方向进行判断. 【详解】解:由数轴的定义得:a>0,b>0,c <0,a >b >c ,(1)不等式a >b 的两边同加上3,不改变不等号的方向,则3a +>3b +; (2)不等式a >b 的两边同减去b ,不改变不等号的方向,则a -b >b -b ,即a -b >0; (3)不等式a >b 的两边同乘以35,不改变不等号的方向,则35a >35b ;(4)不等式a >b 的两边同乘以-2,改变不等号的方向,则2a -<2b -;(5)不等式a >b 的两边同乘以-4,改变不等号的方向,则-4a <-4b ;不等式-4a <-4b 的两边同加上1,不改变不等号的方向,则14a -<14b -;(6)不等式a >b 的两边同乘以正数c ,不改变不等号的方向,则a c ⋅ > b c ⋅; (7)不等式a >b 的两边同减去c ,不改变不等号的方向,则a c ->b c -; (8)不等式a >b 的两边同乘以正数b ,不改变不等号的方向,则ab >2b .【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.13.不等式组53xx m<⎧⎨>+⎩有解,m的取值范围是______.【答案】m<2【分析】根据不等式组得到m+3<x<5,【详解】解:解不等式组53xx m<⎧⎨>+⎩,可得,m+3<x<5,∵原不等式组有解∴m+3<5,解得:m<2,故答案为:m<2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.14.如果a>b,那么﹣2﹣a___﹣2﹣b.(填“>”、“<”或“=”)【答案】<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a>b,∴﹣a<﹣b,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.三、解答题15.解下列不等式:(1)5132x x -+>-;(2)1515x x -+≤-;(3)112135x x -<-;(4)(31)2x x x --≤+.【答案】(1)3x <;(2)152x ≥;(3)458x <;(4)13x ≥-. 【分析】根据解一元一次不等式的步骤以及不等式的基本性质,解一元一次不等式即可. 【详解】 (1)5132x x -+>- 去分母,5226x x -+>- 移项,合并同类项,3x ->- 化系数为1,3x <; (2)1515x x-+≤- 去分母,315x x -+≤- 移项,合并同类项,215x -≤- 化系数为1, 152x ≥; (3)112135x x -<-去分母,530153x x -<- 移项,合并同类项,845x < 化系数为1,458x <; (4)(31)2x x x --≤+ 去括号,312x x x -+≤+ 移项,合并同类项,31x -≤ 化系数为1,13x ≥-.【点睛】本题考查了解一元一次不等式,正确的计算是解题的关键. 16.解下列不等式组: (1)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ (2)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩【答案】(1)12x -≤<;(2)1x ≥-.【分析】(1)(2)分别先根据一元一次不等式的解法分别求出每个不等式的解集,并将两个不等式的解集表示在同一数轴上,再利用不等式组的解集的确定方法:“同大取大;同小取小;大小小大中间找;大大小小无解”求解即可. 【详解】解:(1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②,解不等式①,得1x ≥-. 解不等式②,得2x <.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为12x -≤<.(2)()2731423133x x x x ⎧-<-⎪⎨+≥-⎪⎩①② 解不等式①,得4x ->. 解不等式②,得1x ≥-.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为1x ≥-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键. 17.已知-x <-y ,用“<”或“>”填空: (1)7-x ________7-y . (2)-2x ________-2y . (3)2x ________2y . (4)23x _______23y .【答案】(1)<(2)<(3)>(4)>【分析】根据不等式的性质求解即可.(1)解:∵x y-<-,∴不等号两边都加7,依据不等式的性质1,得7-x<7-y.(2)解:∵x y-<-,∴不等号两边都乘以2,依据不等式的性质2,得-2x<-2y.(3)解:∵x y-<-,∴不等号两边都乘以-2;依据不等式的性质3,得2x>2y.(4)解:∵x y-<-,∴不等号两边都乘以23-,依据不等式的性质3,得23x>23y.故答案为:(1)<(2)<(3)>(4)>【点睛】本题考查了不等式的性质:1、把不等式的两边都加(或减去)同一个数或式子,不等号的方向不变;2、不等式两边都乘(或除以)同一个正数,不等号的方向不变;3、不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0;(2)2x+3>5;(3)384x<;(4)1x≥2;(5)2x+y≤8【答案】(2)、(3)是一元一次不等式【分析】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可,根据定义逐一判断即可.【详解】解:(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数,所以不是一元一次不等式,所以一元一次不等式有:(2)、(3)【点睛】本题考查的是一元一次不等式的识别,掌握一元一次不等式的定义是解本题的关键. 19.解不等式(组)(1)2151132x x -+-> (2)321125123x x x x -≥+⎧⎪+⎨-<-⎪⎩ 【答案】(1)1x -<;(2)不等式组的解集为83x ≤-. 【分析】(1)先去分母,再去括号,移项合并,系数化1即可;(2)分别解每个不等式,再取它们的公共解集即可.【详解】解:(1)2151132x x -+->, 去分母得()()2213516x x --+> ,去括号得421536x x --->,移项合并得 1111x ->,解得1x -<;(2)321125123x x x x -≥+⎧⎪⎨+-<-⎪⎩①②, 解不等式①得83x ≤-, 解不等式②得45x <, ∴不等式组的解集为83x ≤-. 【点睛】本题考查不等式的解法,不等式组的解法,掌握不等式的解法与步骤,不等式组的解法,特别是不等式组的解集取法,同大取大,同小取小,大小小大取中间,大大小小无解是解题关键.20.解不等式:(1)2(x ﹣1)﹣3(3x +2)>x +5.(2)221235x x +->-. 【答案】(1)138x <-(2)43x < 【分析】(1)去括号,移项合并同类项,求解不等式即可;(2)去分母,去括号,移项合并同类项,求解不等式即可.【详解】解:(1)去括号,得:2x ﹣2﹣9x ﹣6>x +5,移项,得:2x ﹣9x ﹣x >5+2+6,合并,得:﹣8x >13,系数化为1,得:138x <-; (2)去分母,得:5(2+x )>3(2x ﹣1)﹣30,去括号,得:10+5x >6x ﹣3﹣30,移项,得:5x ﹣6x >﹣3﹣30﹣10,合并同类项,得:﹣x >﹣43,系数化为1,得:x <43.【点睛】此题考查了一元一次不等式的求解,解题的关键是掌握一元一次不等式的求解步骤. 21.计算:解下列不等式(组),并把解集在数轴上表示出来.(1)6341213x x x x +≤+⎧⎪+⎨>-⎪⎩ (2)()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩ 【答案】(1)14x ≤<,数轴见解析;(2)723x -<≤,数轴见解析 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,再将解集表示在数轴上即可.【详解】(1)634 1213x xxx+≤+⎧⎪⎨+>-⎪⎩①②解不等式①,得x≥1.解不等式②,得x<4.因此,原不等式组的解集为1≤x<4.在数轴上表示其解集如下:(2)()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩①②.由①,得x>﹣2.由②,得x≤73.故此不等式组的解集为723x-<≤.在数轴上表示为,【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.22.列一元一次方程解应用题:某校七年级将进行广播操比赛,七年级(1)班准备在网上找商家将班徽制作成胸牌,下列图表是负责这项事务的同学了解到的信息及他们的对话:材料费(元/个)总设计费(元)甲商家10150乙商家12160(1)当制作多少个胸牌时,在甲、乙两个商家购买费用相同?(2)七年级(1)班应该如何根据本班定制胸牌数量选择不同的商家才更省钱?【答案】(1)当制作23个胸牌时,甲乙两个商家购买费用相同;(2)当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当制作23个胸牌时,甲乙两个商家购买费用相同.【分析】(1)根据题意设当制作x 个胸牌时,甲乙两个商家购买费用相同,依据所花费用相同列出方程,求解即可;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,根据题意分三种情况讨论即可.【详解】解:(1)设当制作x 个胸牌时,甲乙两个商家购买费用相同,根据题意可得:100.915015121600.6x x ⨯++=+⨯,解得:23x =,当制作23个胸牌时,甲乙两个商家购买费用相同;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,当100.915015121600.6y y ⨯++>+⨯,解得:23y <,当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当100.915015121600.6y y ⨯++<+⨯,解得:23y >,当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当100.915015121600.6y y ⨯++=+⨯,解得:23y =,当制作23个胸牌时,甲乙两个商家购买费用相同.【点睛】题目主要考查一元一次方程及一元一次不等式的应用,理解题意,列出相应方程是解题关键.23.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,在每辆车都满载的情况下,甲种运输车至少需要安排多少辆.【答案】甲种运输车至少需要安排6辆【分析】设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨,根据两种运输汽车不超过10辆建立不等式求出其解,就可以求出甲种车运输的吨数,从而求出结论.【详解】解:设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨, 根据题意,得:4654x x -+≤10, 去分母得:4x +230-5x ≤200,-x ≤-30,x ≥30,则5x ≥6. 答:甲种运输车至少需要安排6辆.【点睛】本题考查了一元一次不等式的应用,关键是以运输车的总数不超过10辆作为不等量关系列方程求解.24.(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 【答案】(1)x ≥﹣1,数轴见解析;(2)733x -<≤,2 【分析】 (1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x ﹣5x ≤2,合并同类项,得:﹣2x ≤2,系数化为1,得:x ≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.。

第一章 一元一次不等式复习(2)

第一章 一元一次不等式复习(2)
论该单位购买同样多的椅子时,选择 哪一种方案更省钱?
某工厂现有甲种原料360千克,乙种原料 290千克,计划用这两种原料生产A、B两种产 品共50件,已知生产一件A种产品,需要甲种 原料9千克,乙种原料3千克,可获利润700元; 生产一件B种产品,需要甲种原料4千克,乙种 原料10千克,可获利润1200元。
0
3x 5 x 2a
8:已知x=1是不等式组
2
3(x a) 4(x 2) 5
的解,求a的取值范围。
解下列不等式组
(1)
5x 15
6 4x, 9x 10
4x;
(2)
2 (x+2) < x+5 ① 3 (x-2)+8 >2x ②
1 x x (3) 3 2
(4)2≤3x-7<8
1:不等式4-3x>0的解是( D )
A、x 4 3
C、x 4 3
B、x 4 3
D、x 4 3
2:不等式组
x x
2 3
的解集是(
C
)
A, x 2 B, x 2 C, x 3 D,2 x 3
3:不等式组
是(D)
x x
1 的0 解集在数轴上的表示正确的 2 1
A
-1
3
B
-1
3
C
-1
3
D
-1
3
4:不等式组2xx2115的解集是__2_<_x_<_3___.
3(x 2) 4 5x
5:解不等式组
x
1 2
x
3x
1
6:不等式 2x 3 的最小整数解为( A )
x 1 8 2x
A,-1
B,0

数学:第一章一元一次不等式和一元一次不等式组单元测试(北师大版八年级下)

数学:第一章一元一次不等式和一元一次不等式组单元测试(北师大版八年级下)

第一章 一元一次不等式和一元一次不等式组整章水平测试一、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________. 2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________.3.若0)3)(2(>-+x x ,则x 的取值范围是________.4.若b a <,用“<”或“>”号填空:2a______b a +,33a b -_____. 5.若11|1|-=--x x ,则x 的取值范围是_______. 6.如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是_______.7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________. 10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.二、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ]. A .23-<k B .23<k C .23->k D .23>k 2.同时满足不等式2124x x -<-和3316-≥-x x 的整数x 是 [ ]. A .1,2,3 B .0,1,2,3C .1,2,3,4D .0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ].A .3组B .4组C .5组D .6组4.如果0>>a b ,那么 [ ].A .b a 11->-B .b a 11<C .ba 11-<- D .ab ->- 5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ].A .9>xB .9≥xC .9<xD .9≤x6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1B .2C .3D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ]. A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 [ ]. A .-2 B .21- C .-4 D .41- 9.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ].A .4辆B .5辆C .6辆D .7辆三、解答题(本大题,共40分)1.(本题8分)解下列不等式(组):(1)1312523-+≥-x x ; (2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x 2.(本题8分)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x m y x 的解为非负数,求整数m 的值.3.(本题6分)若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种: 方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg .(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2b a +元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因. 2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.参考答案一、填空题1.337≤t 2.129<≤k 提示:不等式03≤-k x 的解集为 3k x ≤.因为不等式03≤-k x 的正数解是1,2,3,所以 433<≤k .所以129<≤k .3.3>x 或2-<x提示:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x 前一个不等式的解集为3>x ,后一个不等式的解集为2-<x4.<,>5.1<x6.5<m7.-2提示:不等式组⎩⎨⎧>-<-3212b x a x 的解集为2123+<<+a x b ,由题意,得解得 ⎩⎨⎧-==21b a所以2)32()31()3)(3(-=+-⨯-=+-b a .8.09.710.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则22≤x ,且8.4284)25(35⨯≥⨯-++x x ,解得 8.21≥x .应取最小整数解,得 x=22. 二、选择题1.C2.B3.B提示:设三个连续奇数中间的一个为x ,则 27)2()2(≤+++-x x x .解得 9≤x .所以72≤-x .所以 2-x 只能取1,3,5,7.4.C5.B6.C7.B 提示:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为ax 428-<<. 因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,所以134212≤-<a . 解得25411-<≤-a .8.A提示:不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为212++<≤+b a x b a .由题意,得⎪⎩⎪⎨⎧=++=+52123b a b a 解得⎩⎨⎧=-=63b a . 则2163-=-=a b . 9.B10.C三、解答题1.解:(1)去分母,得 15)12(5)23(3-+≥-x x .去括号,得1551069-+≥-x x移项,合并同类项,得 4-≥-x .两边都除以-1,得4≤x .(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x 解不等式①,得 2>x . 解不等式②,得25>x . 所以,原不等式组的解集是25>x . 2.解:解方程组⎩⎨⎧=+=+3135y x m y x 得 .由题意,得 解得 331531≤≤m . 因为m 为整数,所以m 只能为7,8,9,10. 3.解:因为方程52)4(3+=+a x 的解为372-=a x ,方程3)43(4)14(-=+x a x a 的解为a x 316-=.由题意,得a a 316372->-.解得 187>a . 4.解:设该班共有x 位同学,则 6)742(<++-x x x x .∴6283<x .∴56<x .又∵x ,2x ,4x ,7x 都是正整数,则x 是2,4,7的最小公倍数.∴28=x .故该班共有学生28人.5.解:(1)设利润为y 元.方案1:240082400)2432(1-=--=x x y ,方案2:x x y 4)2428(2=-=.① ②当x x 424008>-时,600>x ;当x x 424008=-时,600=x ;当x x 424008<-时,600<x .即当600>x 时,选择方案1;当600=x 时,任选一个方案均可;当600<x 时,选择方案2.(2)由(1)可知当600=x 时,利润为2400元.一月份利润2000<2400,则600<x ,由4x=2000,得 x=500,故一月份不符.三月份利润5600>2400,则600>x ,由560024008=-x ,得 x=1000,故三月份不符. 二月份600=x 符合实际.故第一季度的实际销售量=500+600+1000=2100(kg ).四、探索题1.解:买5条鱼所花的钱为:b a 23+,卖掉5条鱼所得的钱为: 2)(525b a b a +=+⨯.则2)23(2)(5a b b a b a -=+-+. 当b a >时,02<-a b ,所以甲会赔钱. 当b a <时,02>-a b ,所以甲会赚钱. 当b a =时,02=-a b ,所以甲不赔不赚. 2.解:设下个月生产量为x 件,根据题意,得⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x 解得 1800016000≤≤x .即下个月生产量不少于16000件,不多于18000件.。

八年级数学第一章 一元一次不等式和一元一次不等式组单元测试题

八年级数学第一章 一元一次不等式和一元一次不等式组单元测试题

第一章 一元一次不等式和一元一次不等式组单元测试班级: 姓名: 学号:一、选择题(每小题4分;共40分) 1.下列是一元一次不等式的是( )A.11x x+> B.221x -< C.32x + D.22x <- 2.已知a b >;则下列不等式中正确的是( ) A .33a b ->- B .33a b->- C .33a b ->- D .33a b ->- 3.不等式54≤-x 的解集是( )A .45-≤xB .45-≥xC .54-≤xD .54-≥x4.设“○”、“□”、“△”分别表示三种不同的物体;用天平比较它们质量的大小;两次情况如图所示;那么每个“○”、“□”、“△”这样的物体;按质量从小到大的顺序排列为( )A.○□△ B.○△□ C.□○△ D.△□○5.不等式组2112x x -<⎧⎨-⎩,≤的解集在数轴上表示为( )6.满足不等式223x x >-和不等式1242x x --≥的最小整数解为( ) A .1-B .0C .1D .47.关于x 的方程632=-x a 的解是非负数;那么a 满足的条件是 ( ) A .3>a B .3≤a C .3<a D .3≥a 8.观察函数y 1和y 2的图象; 当x=1;两个函数值的大小为 ( ) (A) y 1> y 2 (B) y 1< y 2(C) y 1=y 2 (D) y 1≥ y 29.用甲、乙两种原料配制成某种饮料;已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:2-1-012D .2-1-012A .2-1-012B .2-1-012C .-1 -2 12 3 x3 1-12 4 y 1 y 2y现配制这种饮料10kg ;要求至少含有4200单位的维生素C ;若所需甲种原料的质量为kg x ;则x 应满足的不等式为( )A.()600100104200x x +-≥ B.()841004200x x +-≤ C.()600100104200x x +-≤ D.()841004200x x +-≥10.如图;一次函数b kx y +=的图像经过A 、B 两点;则0>+b kx 解集是( ) A .0>x B .2x > C .3x >- D .23<<-x二、填空题(每题4分;共16分)11.x 的53与12的差不小于6;用不等式表示为__________________.12.不等式64-x ≥157-x 的正整数解是 .13.若不等式(2k +1)x <2k +1的解集是x >1;则k 的范围是 .14.不等式组242-5x a x b +>⎧⎨<⎩,的解集是0<x <2;那么a b +的值等于______.三、解答题(第15题每小题6分;第16题8分;第17、18每题9分;共44分) 15.解下列不等式(组);并把解集在数轴上表示出来((1)(2)各6分;(3)8分):(1)1132x x --≤;(2)()()213157x x x x -4-⎧⎪⎨+<+⎪⎩≤,.(3)23213x-<-≤16.王女士看中的一些商品在甲乙两商场均有售且标价相同;但两商场采用的促销方式不同;甲商场:一次性购物超过100元;超过的部分八折优惠;乙商场:一次性购物超过50元;超过的部分九折优惠;那么购物费用超过多少元在甲商场购物可比乙商场购物优惠?17.现在有住宿生若干名;分住若干间宿舍;若每间住5人;则还有19人无宿舍住;若每间住8人;则有一间宿舍不空也不满;问住宿人数是多少?18.现在要生产甲乙两种产品;甲产品需要A 原料15千克;B 原料20千克 ;乙产品需要A 原料20千克;B 原料10千克.现在A 原料有360千克;B 原料300千克.现在要生产甲乙两种产品共20件.已知生产甲产品成本是每件10元;乙产品成本每件8元.那么生产多少件甲产品可以使生产成本最低?附加题:(10分)已知关于x 、y 的方程组5339x y a x y a -=+⎧⎨+=+⎩的解x 、y 都是正数;(1)求a 的取值范围. (2)化简:384--+a a。

八年级数学下册第一章 一元一次不等式和一元一次不等式组单元测试题

八年级数学下册第一章 一元一次不等式和一元一次不等式组单元测试题

第一章 一元一次不等式和一元一次不等式组 单元测试班级:________ 姓名:___ _____ 一.选择题(每题3分)1.不等式组⎪⎩⎪⎨⎧≤-->84332x x 的最小整数解为( )(A)–1 (B) 0 (C)1 (D) 42.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ;那么m 的取值范围是( )A .4≥m B .4≤m C .4<m D .4=m3.如果不等式组⎩⎨⎧><mx x 5有解;那么m 的取值范围是(A) m >5 (B) m ≥5 (C) m<5 (D) m ≤8 4.观察函数y 1和y 2的图象; 当x=1;两个函数值的大小为 ( )(A) y 1> y 2 (B) y 1< y 2 (C) y 1=y 2 (D) y 1≥ y 2二.填空题(每空3分)1.不等式-2x <1的解集是 .2.已知三角形的两边为3和4;则第三边a 的取值范围是________.3.已知函数y=2x —3;当x 时;y ≥0;当x 时;y <5.4.代数式213+x 的值小于5 且大于0;则x 的取值范围是 .2x -a <15.若不等式组 的解集为—1<x <1;那么(a —1)(b —1)的值等于 x -2b >3三 解下列不等式或不等式组;要求在数轴上把解集表示出来.(1)312-x -4<-24+x . (2) -1<1-223x -<2.(3)⎪⎩⎪⎨⎧->-+<-;215123),12(334x x x x (4) ⎪⎩⎪⎨⎧+<-≤+--)1(3151215312x x x x四.解答题1、x 取哪些非正整数时;代数式251x-的值不小于代数式4323+-x的值.2.若方程组⎩⎨⎧-=-=+323a y x y x 的解x 、y 都是正数;求a 的取值范围.3.若干苹果分给几只猴子;若每只猴子分3个;则余8个;每只猴分5个;则最后一只猴分得的数不足5个;问共有多少只猴子?多少个苹果?4.某校长暑假将带领该校市级“三好学生”去北京旅游;甲旅行社说:“如果校长买全票一张;则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为240元;两家旅行社的服务质量相同;根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?5、青岛火车货运站现有甲种货物1530吨;乙种货物1150吨;安排用一列货车将这批货运往广州;这列货车可挂A、B两种不同规格的货厢50节;已知甲种货物35吨和乙种货物15吨可装满一节A型货厢;甲种货物25吨和乙种货物35吨可装满一节B型货厢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 一元一次不等式和一元一次不等式命题人;文维一、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________. 2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________. 3.若0)3)(2(>-+x x ,则x 的取值范围是________.4.若b a <,用“<”或“>”号填空:2a______b a +,33ab -_____.5.若11|1|-=--x x ,则x 的取值范围是_______. 6.如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是_______.7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________. 10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人. 二、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ].A .23-<kB .23<kC .23->kD .23>k2.同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 [ ].A .1,2,3B .0,1,2,3C .1,2,3,4D .0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ]. A .3组 B .4组 C .5组 D .6组 4.如果0>>a b ,那么 [ ]. A .b a 11->-B .ba 11< C .b a 11-<- D .a b ->- 5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ]. A .9>x B .9≥x C .9<x D .9≤x6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1B .2C .3D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ].A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为 [ ].A .-2B .21-C .-4D .41- 9.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ].A .4辆B .5辆C .6辆D .7辆 三、解答题(本大题,共40分)1.(本题8分)解下列不等式(组): (1)1312523-+≥-x x ;(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x2.(本题8分)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数m 的值.3.(本题6分)若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg .(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.参考答案一、填空题1.337≤t2.129<≤k 提示:不等式03≤-k x 的解集为 3k x ≤.因为不等式03≤-k x 的正数解是1,2,3,所以 433<≤k.所以129<≤k .3.3>x或2-<x提示:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x前一个不等式的解集为3>x ,后一个不等式的解集为2-<x4.<,> 5.1<x6.5<m 7.-2提示:不等式组⎩⎨⎧>-<-3212b x a x 的解集为 2123+<<+a x b ,由题意,得⎪⎩⎪⎨⎧=+-=+121123a b 解得 ⎩⎨⎧-==21b a 所以2)32()31()3)(3(-=+-⨯-=+-b a .8.0 9.7 10.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则22≤x ,且8.4284)25(35⨯≥⨯-++x x ,解得 8.21≥x.应取最小整数解,得 x=22.二、选择题1.C 2.B 3.B提示:设三个连续奇数中间的一个为x ,则 27)2()2(≤+++-x x x .解得 9≤x.所以72≤-x .所以 2-x 只能取1,3,5,7.4.C 5.B 6.C 7.B提示:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为a x 428-<<.因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,所以134212≤-<a .解得25411-<≤-a . 8.A提示:不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为212++<≤+b a x b a .由题意,得⎪⎩⎪⎨⎧=++=+52123b a b a 解得⎩⎨⎧=-=63b a .则2163-=-=a b . 9.B 10.C 三、解答题1.解:(1)去分母,得 15)12(5)23(3-+≥-x x .去括号,得1551069-+≥-x x移项,合并同类项,得 4-≥-x .两边都除以-1,得4≤x.(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x解不等式①,得 2>x .解不等式②,得25>x.所以,原不等式组的解集是25>x .2.解:解方程组⎩⎨⎧=+=+3135y x m y x 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331m y m x .① ②由题意,得⎪⎪⎩⎪⎪⎨⎧≥-≥-0231502331m m解得 331531≤≤m . 因为m 为整数,所以m 只能为7,8,9,10.3.解:因为方程52)4(3+=+a x 的解为372-=a x ,方程3)43(4)14(-=+x a x a 的解为a x 316-=.由题意,得a a 316372->-.解得 187>a . 4.解:设该班共有x 位同学,则 6)742(<++-x x x x .∴6283<x .∴56<x .又∵x ,2x ,4x ,7x都是正整数,则x 是2,4,7的最小公倍数.∴28=x.故该班共有学生28人. 5.解:(1)设利润为y 元. 方案1:240082400)2432(1-=--=x x y , 方案2:x x y 4)2428(2=-=.当x x 424008>-时,600>x ; 当x x 424008=-时,600=x ; 当x x 424008<-时,600<x .即当600>x 时,选择方案1;当600=x 时,任选一个方案均可; 当600<x时,选择方案2.(2)由(1)可知当600=x时,利润为2400元.一月份利润2000<2400,则600<x ,由4x=2000,得 x=500,故一月份不符.三月份利润5600>2400,则600>x ,由560024008=-x ,得 x=1000,故三月份不符.二月份600=x符合实际.故第一季度的实际销售量=500+600+1000=2100(kg ). 四、探索题1.解:买5条鱼所花的钱为:b a 23+,卖掉5条鱼所得的钱为: 2)(525b a b a +=+⨯.则2)23(2)(5ab b a b a -=+-+. 当b a>时,02<-ab ,所以甲会赔钱. 当b a <时,02>-ab ,所以甲会赚钱. 当b a =时,02=-ab ,所以甲不赔不赚. 2.解:设下个月生产量为x 件,根据题意,得⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x 解得 1800016000≤≤x .即下个月生产量不少于16000件,不多于18000件.。

相关文档
最新文档