新七年级数学下期末试卷含答案

合集下载

新人教版七年级数学(下册)期末试卷及答案(新版)

新人教版七年级数学(下册)期末试卷及答案(新版)

新人教版七年级数学(下册)期末试卷及答案(新版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( )A .﹣4B .4C .﹣2D .22.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145° 3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+= B .x y 50{x y 180=++= C .x y 50{x y 90=++= D .x y 50{x y 90=-+= 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( ) A .54573x x -=- B .54573x x +=+ C .45357x x ++= D .45357x x --= 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=,C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.若()2320m n -++=,则m+2n 的值是________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程(1)35(2)2x x --= (2)212134x x +--=2.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、C6、C7、B8、D9、A 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、105°3、0.4、-15、两6、5三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)25x = 2、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1. 3、50°.4、∠BOE 的度数为60°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

七年级下册数学期末考试卷子【含答案】

七年级下册数学期末考试卷子【含答案】

七年级下册数学期末考试卷子【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 30答案:B2. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是?A. 26厘米B. 32厘米C. 36厘米D. 40厘米答案:C3. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 正方形D. 圆形答案:A4. 一个数的平方根是9,那么这个数是?A. 81B. 9C. 3D. 81答案:A5. 下列哪个数是偶数?A. 11B. 13C. 15D. 16答案:D二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。

(×)2. 所有的等边三角形都是等腰三角形。

(√)3. 1的立方根是1。

(√)4. 任何数乘以0都等于0。

(√)5. 两个负数相乘的结果是正数。

(√)三、填空题(每题1分,共5分)1. 4的平方根是______。

2. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的面积是______平方厘米。

3. 下列数中,______是奇数。

4. 一个数的平方是81,那么这个数是______。

5. 下列图形中,______是轴对称图形。

四、简答题(每题2分,共10分)1. 请简述等边三角形的性质。

2. 请简述勾股定理。

3. 请简述因式分解的意义。

4. 请简述平行线的性质。

5. 请简述概率的意义。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个等腰三角形的底边长为10厘米,腰长为13厘米,求这个三角形的面积。

3. 下列数中,哪个数是质数?11、13、15、174. 下列数中,哪个数是偶数?11、13、15、165. 一个数的平方是81,求这个数的平方根。

六、分析题(每题5分,共10分)1. 请分析等腰三角形和等边三角形的区别和联系。

2. 请分析概率在实际生活中的应用。

(完整版)七年级数学下册期末测试题及答案(共五套)

(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。

16=±4B 。

±16=4 C.327-=-3 D 。

2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。

135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。

331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

七年级下学期期末考试数学试卷(附有答案)

七年级下学期期末考试数学试卷(附有答案)

a b七年级下学期期末考试数学试卷(附有答案)一 、选择题(每小题4分,共40分)1、点P (-2021,12+a )所在象限为( )A 第一象限B 第二象限C 第三象限D 第四象限2、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人,准备同时租用这三种客房共7间,如果每个房间都住满租房方案有 ( ) A 4种 B 3种 C 2种 D 1种3、点A (-3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为 ( ) A.(1,-8) B. (1, -2) C. (-6,-1 ) D. ( 0,-1)4、如右图,下列能判定AB ∥CD 的条件的个数为( ) (1)∠B+∠BCD=0180 (2)∠1=∠2;(3)∠3=∠4 ;(4)∠B=∠5 . A.1 B.2 C.3 D.45、如图和,生活中,将一个宽度相等的纸条按右图所示折叠一下; 如果∠1=140°,那么∠2的度数为( ) A 140° B 120° C 110° D 100°6、如果表示a ,b 两个实数的点在数轴上的位置如图测所示,那么化简│a-b │+2()a b +的结果等于( )A -2bB 2bC -2aD 2a7、已知五个命题,正确的有 ( )(1)有理数与无理数之和是无理数; ⑵有理数与无理数之积是无理数; (3)无理数与无理数之积是无理数; ⑷无理数与无理数之积是有理数;(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

A. 1个 B. 2个 C. 3个 D.4个8、为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是 ( )A .2000名运动员是总体B .100名运动员是所抽取的一个样本C .样本容量为100名D .抽取的100名运动员的年龄是样本第4第5题9、若x 是49的算术平方根,则x 等于 ( )A. 7B. -7C. 49D.-4910、已知点A (-1,0),点B (2,0),在y 轴上存在一点C ,使得△ABC 的面积为6,则点C 的坐标为 ( )A (0,4)B (0,2)C (0,2)或(0,-2)D (0,4)或(0,-4) 二 、填空题(每小题4分,共40分)11、点P在第二象限,P到x 轴的距离为4,P到y 轴距离为3,则点P的坐标为 12 、4的平方根是 .13、若不等式组⎩⎨⎧>>2x mx 解集为2>,则m 取值范围是 .14 、在自然数范围内,方程的解是 .15 、把“同角的余角相等,改写成如果……那么……的形式为 。

最新人教版七年级下册数学《期末检测试卷》(附答案)

最新人教版七年级下册数学《期末检测试卷》(附答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。

七年级下学期期末考试数学试卷(附含答案)

七年级下学期期末考试数学试卷(附含答案)

第5题图第9题图七年级下学期期末考试数学试卷(附含答案)一 选择题(每小题4分,共40分) 1. 9的平方根是( )A.3±B. 3C. 81D.81± 2.在平在直角坐标系中,点M (3,-2)位于( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.下列调查中适合采用全面调查的是( )A.了解凯里市“停课不停学”期间全市七年级学生的听课情况B.了解新冠肺炎疫情期间某校七(1)班学生的每日体温C.了解疫情期间某省生产的所有口罩的合格率D.了解全国各地七年级学生对新冠状病毒相关知识的了解情况 4.下列运动属于平移的是( )A. 荡秋千B. 地球绕太阳转C. 风车的转动D.急刹车时,汽车在地面上的滑动5. 如图,在下列条件中,不能判定AB ∥DF 的是( )A. ∠A+∠AFD=180°B.∠A=∠CFDC. ∠BED=∠EDFD. ∠A=∠BED 6. 已知二元一次方程432=-y x ,用含x 的代数式表示y ,正确的是( ) A.342+=x y B. 342-=x y C. 234y x += D. 234yx -= 7. 已知b a >,下列不等式中错误的是( )A. 11+>+b aB. 22->-b aC. b a 22>D. b a 44->-8. 下列命题是真命题的是( )A.若||||b a =,则b a =B.经过直线外一点有且只有一条直线与已知直线平行C.同位角相等D.在同一平面内,如果b a ⊥,c b ⊥,那么c a ⊥ 9.如图,数轴上与40对应的点是( ) A.点A B.点B C.点C D.点D 10. 某种服装的进价为200元,出售时标价为300元; 由于换季,商店准备对该服装打折销售,但要保持利 润不低于20%,那么最多打( )A. 6折B. 7折C. 8折D. 9折 二 填空题(每小题4分,共32分) 11. 在实数①21,②11,③1415926.3,④16,⑤π,⑥ 2020020002.0(相邻两个2之间依次多一个0)中,无理数有 (填写序号).12. 如图,要在河岸l 上建立一水泵房引水到C 处,做法是:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 . 13. 已知⎩⎨⎧=-=13y x 是方程7=+y mx 的解,则m .14.如图,直线a ∥b ,点B 在a 上,点A 与点C 在b 上; 且AB ⊥BC.若∠1=034,则∠2= .第12题图第14题图15. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为18,第三组的频率为0.2,则第四组的频率为 . 16.一个正数b 有两个不同的平方根1+a 和72-a ,则b a -21的立方根是 . 17.若关于x 的不等式组⎪⎩⎪⎨⎧<->-2210x a x 的所有整数解之和等于9,则a 的取值范围是 .18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上 向右 向下 向右的方向依次不断移动,每次移动1个单位,移动的路线如图所示。

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。

新七年级下册数学期末考试题(含答案)

新七年级下册数学期末考试题(含答案)

新七年级下册数学期末考试题(含答案)一、选择题(本题10小题,每小题3分,共30分.)1.下列计算正确的是()A.a5+a5=a10B.a6•a3=a18C.a6÷a3=a3D.(a3)2=a52.以下标志中,不是轴对称图形的是()A.B.C.D.3.四根长度分别为4cm、5cm、9cm、13cm的木条,以其中三根的长为边长,制作成一个三角形框架,那么这个框架的周长可能是()A.18cm B.26cm C.27cm D.28cm4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.关于频率与概率有下列几种说法,其中正确的说法是()①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近;④“某彩票中奖的概率是1%”表示买100张该种彩票不可能中奖.A.①③B.①④C.②③D.②④6.如图,直线m∥n,∠1=60°,∠2=25°,则∠A等于()A.30°B.35°C.40°D.50°7.如果9x2﹣16y2=(﹣3x﹣4y)•M,那么M表示的式子为()A.3x+4y B.3x﹣4y C.4y﹣3x D.﹣4y﹣3x8.如图,E、B、F、C四点在同一条直线上,EB=CF,∠DEF=∠ABC,添加以下哪一个条件不能判断△ABC≌△DEF的是()A.∠A=∠D B.DF∥AC C.AC=DF D.AB=DE9.已知:如图,∠AOB内一点P,P1,P2分别P是关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=6cm,则△PMN的周长是()A.3cm B.4cm C.5cm D.6cm10.如图,AB⊥BC,DC⊥BC,AE平分∠BAD,DE平分∠ADC,以下结论,正确的是()①DE=BE;②点E是BC的中点;③∠AED=90°;④AD=AB+CDA.①②③B.①②④C.①③④D.②③④二、填空题(本题6小题,共18分)11.已知a+b=7,ab=4,则a2+b2=.12.计算:(﹣0.5)2018×41010=.13.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于.14.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为.15.如图,线段AD、BC相交于点O,连接AB、CD.下列条件:①AB=CD,AO=CO;②∠A =∠C,AO=CO;③AO=CO,BO=DO;④∠B=∠D,AB=CD;⑤∠B=∠D,∠A=∠C;从中任选一组能得出△ABO≌△CDO的概率是.16.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②n=7.5;③点H的坐标是(7,80);④m=160.其中说法正确的是.三、解答题(共72分)解答时应写出必要的文字说明,证明过程或演算步骤17.(1)计算:(﹣1)2019+(﹣)﹣2﹣()0+16×2﹣3(2)计算:20182﹣2017×201918.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?19.家乐福超市“端午节”举行有奖促销活动:凡一次性购物满200元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖金依次为48元、40元、32元.一次性购物满200元者,如果不摇奖可返还现金15元.(1)摇奖一次,获一等奖的概率是多少?(2)小明一次性购物满了200元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.20.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他共走了140步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.21.先化简,再求值:[(2a+b)(2a﹣b)﹣(2a﹣b)2﹣b(a﹣2b)]÷(2a),其中a=,b=.22.如图,点P与点Q都在y轴上,且关于x轴对称.(1)请画出△ABP关于x轴的对称图形△A′B′Q(其中点A的对称点用A′表示,点B 的对称点用B′表示);(2)点P、Q同时都从y轴上的位置出发,分别沿l1、l2方向,以相同的速度向右运动,在运动过程中是否在某个位置使得AP+BQ=A′B成立?若存在,请你在图中画出此时PQ 的位置(用线段P′Q′表示),若不存在,请你说明理由(注:画图时,先用铅笔画好,再用钢笔描黑).23.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2﹣2a+5的最小值.方法如下:∵a2﹣2a+5=a2﹣2a+1+4=(a﹣1)2+4,由(a﹣1)2≥0,得(a﹣1)2+4≥4;∴代数式a2﹣2a+5的最小值是4.(1)仿照上述方法求代数式x2+10x+7的最小值;(2)代数式﹣a2﹣8a+16有最大值还是最小值?请用配方法求出这个最值.24.如图1,已知:AB∥CD,点E、F分别在AB、CD上,且OE⊥OF.(1)求∠1+∠2的度数;(2)如图2,分别在OE、CD上取点G、H,使FO平分∠CFG,OE平分∠AEH,试说明FG ∥EH.25.在△ABC中,AB=AC.D是直线BC上一点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,求证:△ABD≌△ACE;(2)如图2,当点D在线段BC上时,如果∠BAC=90°,求∠BCE的度数;(3)如图3,若∠BAC=α,∠BCE=β.点D在线段CB的延长线时,则α、β之间有怎样的数量关系?并证明你的结论.参考答案与试题解析一.选择题(共10小题)1.下列计算正确的是()A.a5+a5=a10B.a6•a3=a18C.a6÷a3=a3D.(a3)2=a5【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a5,不符合题意;B、原式=a9,不符合题意;C、原式=a3,符合题意;D、原式=a6,不符合题意,故选:C.2.以下标志中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.3.四根长度分别为4cm、5cm、9cm、13cm的木条,以其中三根的长为边长,制作成一个三角形框架,那么这个框架的周长可能是()A.18cm B.26cm C.27cm D.28cm【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:其中的任意三条组合有4cm、5cm、9cm;4cm、5cm、13cm;4cm、9cm、13cm;5cm、9cm、13cm共四种情况,根据三角形的三边关系,则只有5cm、9cm、13cm符合,故周长是27cm.故选:C.4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10,故选:C.5.关于频率与概率有下列几种说法,其中正确的说法是()①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近;④“某彩票中奖的概率是1%”表示买100张该种彩票不可能中奖.A.①③B.①④C.②③D.②④【分析】分别利用概率的意义分析得出答案.【解答】解:①“明天下雨的概率是90%”表示明天下雨的可能性很大,此说法正确;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上,此说法错误;③“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,此说法正确;④“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖,此说法错误.故选:A.6.如图,直线m∥n,∠1=60°,∠2=25°,则∠A等于()A.30°B.35°C.40°D.50°【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A 的度数.【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=60°,∴∠3=60°,∵∠3=∠2+∠A,∠2=25°,∴∠A=35°.故选:B.7.如果9x2﹣16y2=(﹣3x﹣4y)•M,那么M表示的式子为()A.3x+4y B.3x﹣4y C.4y﹣3x D.﹣4y﹣3x【分析】利用平方差公式的结构特征判断即可求出M.【解答】解:9x2﹣16y2=(﹣3x﹣4y)•(﹣3x+4y),则M表示的式子为﹣3x+4y.故选:C.8.如图,E、B、F、C四点在同一条直线上,EB=CF,∠DEF=∠ABC,添加以下哪一个条件不能判断△ABC≌△DEF的是()A.∠A=∠D B.DF∥AC C.AC=DF D.AB=DE【分析】由EB=CF可得出BC=EF,A、由∠A=∠D、∠ABC=∠DEF、BC=EF,利用全等三角形的判定定理AAS即可证出△ABC≌△DEF;B、由DF∥AC可得出∠ACB=∠DFE,结合BC=EF、∠ABC=∠DEF,利用全等三角形的判定定理ASA即可证出△ABC≌△DEF;C、由AC=DF结合∠ABC=∠DEF、BC=EF,无法证出△ABC≌△DEF;D、由AB=DE结合∠ABC=∠DEF、BC=EF,利用全等三角形的判定定理SAS即可证出△ABC≌△DEF.综上即可得出结论.【解答】解:∵EB=CF,∴BC=EF.A、在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);B、∵DF∥AC,∴∠ACB=∠DFE.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);C、在△ABC和△DEF中,,无法证出△ABC≌△DEF;D、在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故选:C.9.已知:如图,∠AOB内一点P,P1,P2分别P是关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=6cm,则△PMN的周长是()A.3cm B.4cm C.5cm D.6cm【分析】由P与P1关于OA对称,得到OA为线段PP1的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得MP=MP1,同理可得NP=NP2,由P1P2=P1M+MN+NP2=6cm,等量代换可求得△PMN的周长【解答】解:∵P与P1关于OA对称,∴OA为线段PP1的垂直平分线,∴MP=MP1,同理,P与P2关于OB对称,∴OB为线段PP2的垂直平分线,∴NP=NP2,∴P1P2=P1M+MN+NP2=MP+MN+NP=6cm,则△PMN的周长为6cm.故选:D.10.如图,AB⊥BC,DC⊥BC,AE平分∠BAD,DE平分∠ADC,以下结论,正确的是()①DE=BE;②点E是BC的中点;③∠AED=90°;④AD=AB+CDA.①②③B.①②④C.①③④D.②③④【分析】如图作EH⊥AD于H.利用角平分线的性质定理,证明三角形全等即可解决问题;【解答】解:如图作EH⊥AD于H.∵EA平分∠BAD,EB⊥BA,EH⊥AD,∴BE=EH,同法可证:EH=EC,∴EB=EC,故②正确,∵DE>EH,EH=BE,∴DE>BE,故①错误,∵∠B=∠EHA=90°,AE=AE,EB=EH,∴Rt△EAB≌Rt△EAH(HL),∴AH=AB,∠AEB=∠AEH,同理可证:△EDH≌△EDC(HL),∴DH=DC,∠DEH=∠DEC,∴AD=AH+DH=AB+CD,∠AED=(∠BEH+∠CEH)=90°,故③④正确,故选:D.二.填空题(共6小题)11.已知a+b=7,ab=4,则a2+b2=41 .【分析】把a+b=7两边平方,利用完全平方公式化简,将ab的值代入计算即可求出所求式子的值.【解答】解:把a+b=7两边平方得:(a+b)2=a2+b2+2ab=49,将ab=4代入得:a2+b2=41,故答案为:4112.计算:(﹣0.5)2018×41010= 4 .【分析】根据幂的乘方可得41010=22020,再根据积的乘方法则计算即可.【解答】解:(﹣0.5)2018×41010=()2018×22020=()2018×22018×22=.故答案为:413.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于70°或20°.【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况,当∠A为锐角时,∠B等于70°,当∠A为钝角时,∠B等于20°.【解答】解:根据△ABC中∠A为锐角与钝角,分为两种情况:①当∠A为锐角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠A=40°,∴∠B===70°;②当∠A为钝角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠1=40°,∴∠BAC=140°,∴∠B=∠C==20°.故答案为:70°或20°.14.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为7 .【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为7.【解答】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=7,∴D到OA的距离等于DE的长,即为7.故答案为:7.15.如图,线段AD、BC相交于点O,连接AB、CD.下列条件:①AB=CD,AO=CO;②∠A =∠C,AO=CO;③AO=CO,BO=DO;④∠B=∠D,AB=CD;⑤∠B=∠D,∠A=∠C;从中任选一组能得出△ABO≌△CDO的概率是.【分析】根据三角形全等的判定逐一判断,再根据概率可得答案.【解答】解:在△ABO和△CDO中,②∵,∴△ABO≌△CDO(ASA);③∵,∴△ABO≌△CDO(SAS),④∵,∴△ABO≌△CDO(AAS),则在以上所列5个条件中,能使两三角形全等的条件有②③④这3个,∴从中任选一组能得出△ABO≌△CDO的概率是,故答案为:.16.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②n=7.5;③点H的坐标是(7,80);④m=160.其中说法正确的是①③④.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,②错误.当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,④正确;∴正确的有①③④.故答案为:①③④三.解答题(共9小题)17.(1)计算:(﹣1)2019+(﹣)﹣2﹣()0+16×2﹣3(2)计算:20182﹣2017×2019【分析】(1)先计算负整数指数幂,零指数幂,然后计算加减法;(2)原式变形后,利用平方差公式计算即可求出值.【解答】(1)解:原式=﹣1+9﹣1+2=9.(2)解:原式=20182﹣(2018﹣1)(2018+1)=20182﹣20182+1=1.18.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不在随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【解答】解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/小时.19.家乐福超市“端午节”举行有奖促销活动:凡一次性购物满200元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖金依次为48元、40元、32元.一次性购物满200元者,如果不摇奖可返还现金15元.(1)摇奖一次,获一等奖的概率是多少?(2)小明一次性购物满了200元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.【分析】(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率;(2)求得转动转盘一次获得的奖金数与15元比较即可.【解答】解:(1)整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:,(2)转转盘:元,∵16元>15元,∴转转盘划算.20.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他共走了140步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【解答】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC(ASA),∴AB=DE,又∵小刚共走了140步,其中AD走了60步,∴走完DE用了80步,小刚一步大约50厘米,即DE=80×0.5米=40米.答:小刚在点A处时他与电线塔的距离为40米.21.先化简,再求值:[(2a+b)(2a﹣b)﹣(2a﹣b)2﹣b(a﹣2b)]÷(2a),其中a=,b=.【分析】直接利用乘法公式整理进而合并同类项即可代入数据得出答案.【解答】解:原式=(4a2﹣b2﹣4a2+4ab﹣b2﹣ab+2b2)÷2a=3ab÷2a=,当时,原式=1.22.如图,点P与点Q都在y轴上,且关于x轴对称.(1)请画出△ABP关于x轴的对称图形△A′B′Q(其中点A的对称点用A′表示,点B 的对称点用B′表示);(2)点P、Q同时都从y轴上的位置出发,分别沿l1、l2方向,以相同的速度向右运动,在运动过程中是否在某个位置使得AP+BQ=A′B成立?若存在,请你在图中画出此时PQ 的位置(用线段P′Q′表示),若不存在,请你说明理由(注:画图时,先用铅笔画好,再用钢笔描黑).【分析】(1)画出A、B、P的对应点A′、B′、Q即可;(2)连接A′B交直线l2于Q′,再画出P′即可解决问题;【解答】解:(1)△A′B′Q如图1中所示.(2)如图2中,P′Q′的位置如图所示.23.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2﹣2a+5的最小值.方法如下:∵a2﹣2a+5=a2﹣2a+1+4=(a﹣1)2+4,由(a﹣1)2≥0,得(a﹣1)2+4≥4;∴代数式a2﹣2a+5的最小值是4.(1)仿照上述方法求代数式x2+10x+7的最小值;(2)代数式﹣a2﹣8a+16有最大值还是最小值?请用配方法求出这个最值.【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可【解答】解:(1)∵x2+10x+7=x2+10x+25﹣18=(x+5)2﹣18,由(x+5)2≥0,得(x+5)2﹣18≥﹣18;∴代数式x2+10x+7的最小值是﹣18;(2)﹣a2﹣8a+16=﹣a2﹣8a﹣16+32=﹣(a+4)2+32,∵﹣(a+4)2≤0,∴﹣(a+4)2+32≤32,∴代数式﹣a2﹣8a+16有最大值,最大值为32.24.如图1,已知:AB∥CD,点E、F分别在AB、CD上,且OE⊥OF.(1)求∠1+∠2的度数;(2)如图2,分别在OE、CD上取点G、H,使FO平分∠CFG,OE平分∠AEH,试说明FG ∥EH.【分析】(1)过点O作OM∥AB,根据平行线的性质得出∠1=∠EOM,求出OM∥CD,根据平行线的性质得出∠2=∠FOM,即可得出答案;(2)根据平行线的性质得出∠AEH+∠CHE=180°,根据角平分线定义得出∠CFG=2∠2,∠AEH=2∠1,根据∠1+∠2=90°求出∠CFG+∠AEH=2∠1+2∠2=180°,求出∠CFG=∠CHE,根据平行线的判定得出即可.【解答】证明:(1)过点O作OM∥AB,则∠1=∠EOM,∵AB∥CD,∴OM∥CD,∴∠2=∠FOM,∵OE⊥OF,∴∠EOF=90°,即∠EOM+∠FOM=90°,∴∠1+∠2=90°;(2)∵AB∥CD∴∠AEH+∠CHE=180°,∵FO平分∠CFG,EO平分∠AEH∴∠CFG=2∠2,∠AEH=2∠1,∵∠1+∠2=90°∴∠CFG+∠AEH=2∠1+2∠2=180°,∴∠CFG=∠CHE,∴FG∥EH.25.在△ABC中,AB=AC.D是直线BC上一点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,求证:△ABD≌△ACE;(2)如图2,当点D在线段BC上时,如果∠BAC=90°,求∠BCE的度数;(3)如图3,若∠BAC=α,∠BCE=β.点D在线段CB的延长线时,则α、β之间有怎样的数量关系?并证明你的结论.【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)先求出∠ABC=∠ACB=45°,借助(1)的结论,即可得出结论;(3)同(1)的方法得出△ABD≌△ACE,判断出∠ACE=∠ACB+β,再用等腰三角形的性质和三角形内角和定理,得出∠ACB=90°﹣α,即可得出结论.【解答】解:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,由(1)知,△ABD≌△ACE,∴∠ACE=∠ABC=45°,∴∠BCE=∠ACB+∠ACE=90°;(3)同(1)的方法得,△ABD≌△ACE(SAS),∴∠ACE=∠ABD,∠BCE=β,∴∠ACE=ACB+∠BCE=∠ACB+β,在△ABC中,AB=AC,∠BAC=α,∠ACB=∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=180°﹣∠ABC=90°+α,∴∠ACE=∠ACB+β=90°﹣α+β,∵∠ACE=∠ABD=90°+α,∴90°﹣α+β=90°+α,∴α=β.人教版数学七年级下册单元检测:第十章数据的收集、整理与描述人教版七年级数学下册第十章数据的收集、整理与描述单元测试题一、填空题1.某校为了了解700名八年级学生是视力情况,从中抽取了100名学生进行测试,其中总体为______________,样本为______________,样本容量______.2.青海湖自然保护区的工作人员为了估计区内白天鹅的只数,先捕捉了30只白天鹅,并在每只白天鹅的脚上套了铁环做记号后放回,一个月后,又捕捉了100只天鹅,发现其中有脚环的白天鹅5只,据此可估算该保护区内大约有白天鹅________只.3.为了了解全班同学对新闻、体育、动画、娱乐和戏曲五类电视节目喜爱情况,文艺委员做了统计调查,调查结果如图所示,那么,喜爱戏曲节目的同学仅占全班总人数的________(用百分数表示)4.为了解佛山市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是________.(填序号,答案格式如:“①②③”)①100位女性老人;②公园内100位老人;③在城市和乡镇选10个点,每个点任选10位老人.5.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.二、选择题(每小题只有一个正确答案)6.为了检查一批皮鞋的质量,从中抽取了50双作质量检查,在此问题中数目50是( )A.样本 B.样本容量 C.总体 D.个体7.某学校将为初一学生开设A、B、C、D、E、F共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整).根据图表提供的信息,下列结论错误的是( )A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少8.某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A 踢毽子,B篮球,C 跳绳,D 乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为( )A. 240 B. 120 C. 80 D. 409.为了清楚地反映部分占总体的百分比是多少,我们常选用的统计图是( )A.扇形图 B.折线图 C.条形图 D.直方图10.为了了解家里的用水情况,以便能更好的节约用水,小方把自己家1至6月份的用水量绘制成如图的折线图,那么小方家这6个月的月用水量最大是( )A. 1月 B. 4月 C. 5月 D. 6月11.我市属国家珍稀动物“大鲵”保护地,科考人员某日在其中一个保护区捕捞6只大鲵,并在它们身上都做了标记后放回,几天后,在该保护区又捕捞18只大鲵,其中2只身上有标记,据此估计该保护区约有大鲵多少只( )A. 54 B. 24 C. 32 D. 10812.用下面的方式获取的数据可信度比较低的是( )A.社会上的传闻 B.从《中国青年报》上摘录的C.看电视新闻得到的 D.小组实地考察或测量得到的13.为开展阳光体育活动,某校组织了八年级五个班的足球赛,为更清楚地表示出首轮比赛中各班的总进球数,我们最好选择( )A.折线统计图 B.条形统计图 C.扇形统计图 D.以上三种都可以14.为了解某中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出如图所示的频数分布直方图(每组数据包含最大值,不包含最小值),估计该校这300名男生的身高满足:164.5 cm<身高≤174.5 cm的人数约有( )A. 12 B. 16 C. 28 D. 16815.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A.计算机行业好于其它行业 B.贸易行业好于化工行业C.机械行业好于营销行业 D.建筑行业好于物流行业16.下列调查中,适合做抽样调查的有( )①了解一批炮弹的命中精度;②调查全国中学生的上网情况;③审查某文章中的错别字;④考查某种农作物的长势.A. 1个 B. 2个 C. 3个 D. 4个17.某校对九年级(1)班、(2)班同学各50人参加体育活动的情况进行了调查,结果如图所示,下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多 B.喜欢羽毛球的人数(2)班比(1)班多C.喜欢足球的人数(1)班比(2)班多 D.喜欢篮球的人数(1)班比(2)班多三、解答题18.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?19.某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市次项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取200名居民;B.从一个城镇的不同住宅楼中随机选取200名居民;C.从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是________(选择).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图(每个范围内含最小值,不含最大值),在这个调查中,这200名居民每天锻炼2小时以上(包括2小时)的人数是多少.(3)若该市有100万人,请你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.20.为确保学生上学安全,某校打算采购一批校车.为此,学校在全校300名走读学生中对购买校车的态度进行了一次抽样调查,并根据抽样调查情况绘制了如下统计图.被调查的学生对购买校车有四种态度:A.非常希望,决定以后就坐校车上学B.希望,以后也可能坐校车上学C.随便,反正不会坐校车上学D.反对,因家离学校近不会坐校车上学(1)由图①知A所占的百分比为________,本次抽样调查共调查了________名走读学生,并完成图②;(2)请你估计该校走读学生中至少会有多少名学生非常希望乘坐校车上学(即A态度的学生人数).。

七年级数学(下)期末测试卷含答案

七年级数学(下)期末测试卷含答案

七年级数学(下)期末测试卷(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版七年级下全册。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.在实数3.14,),之间依次增加一个两个,,,,26 (262262226)4-0,57.1,9-722-π其中无理数的个数是( ) A .2B .3C .4D .52.9的平方根是( )A .3B .3±C .3D .3±3.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况、针对这个问题,下面说法正确的是( )A 、300名学生是总体B 、每名学生是个体C 、50名学生是所抽取的一个样本D 、这个样本容量是504.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是( )A .53°B .63°C .73°D .27°5.若a <b ,则下列不等式中成立的是( )A .a +5>b +5B .﹣5a >﹣5bC .3a >3bD .6.若方程()133a 2=++-y xa 是关于x ,y 的二元一次方程,则a 的值为( )A.-3B.2±C.3±D.3 7.点P(-3,4)到x 轴的距离是( )A 、-3B 、3C 、4D 、5. 8.若点P (a,a -3)在第四象限,则a 的取值范围是( )A.0a 3<<-B.3a 0<<C.3a >D.0a <9.已知⎩⎨⎧=-=12y x 是方程52=+y kx 的一个解,则k 的值为( )23.-A 23.B32.-C 32.D 10.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A.6折B.7折C.8折D.9折11.如图,a//b,M,N 分别在a,b 上,P 为两平行线间一点,那么=∠+∠+∠321( )︒180.A ︒270.B ︒360.C ︒540.D12.若不等式组⎩⎨⎧->-≥-2210x x x a 有解,则a 的取值范围是( )A.1a ->B.1a -≥C.1a ≤D.1a <第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若点A (1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则B 的坐标为 .14.若a+1和-5是实数m 的两个平方根,则a 的值为 . 15.若0x 2-x =++y ,则=x y .16.如图,将一个宽度相等的纸条按如图所示沿AB 所折叠,已知︒=∠601,则=∠2 .17.已知a是5的整数部分,b是5的小数部分,则a-b= . 18.若不等式组⎩⎨⎧<->+1b x 23a 2x 解集为1<x<2,则(a+2)(b -1)值为 .三、解答题(本大题共7小题,共46分.解答应写出文字说明、证明过程或演算步骤)19.计算(5分)2-1-8-02--91-322020+++)()(20.解方程组(5分)⎩⎨⎧=+=+②①1534255x 2y x y21.(6分)解下列不等式组,并把解集在数轴上表示出来。

江苏南京鼓楼区2024年七年级下学期期末考试数学卷+答案

江苏南京鼓楼区2024年七年级下学期期末考试数学卷+答案

七年级 (下)期末试卷数 学 注意事项:1.本试卷共6页.全卷满分100分:考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5 毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.甲骨文是我国古代的一种文字,是汉字的早期形式,下列甲骨文中,能大致用平移来分析其形成过程的是2. 2⁻¹的值是12 B. 1 C. 2 D. -2A.3.下列运算正确的是AA .aa ²⋅aa ³=aa⁶ BB .aa ³÷aa =aa ³ CC .(−aa ²)³=aa⁵ DD .(aa ²bb )³=aa⁶bb ³ 4. 不等式3x+1>0的最小整数解是 A. -1 B. 0 C. 1 D. 25. “抖空竹”是国家级非物质文化遗产,也是大家钟爱的运动之一.在公园里,小聪看到小女孩在抖空竹(图 1) , 抽象得到图 2: 在同一平面内,已知AB ∥CD, ∠A=70°, ∠ECD=110°, 则∠E 的度数为A. 20°B. 30°C. 40°D. 50°第 1 页 共 6 页6.在矩形ABCD中将边长分别为a和b的两张正方形纸片(a>b)按图1和图2两种方式放置(两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1、图2中阴影部分的面积分别为S ₁,S₂.当AADD=32AABB时, SS2−SS1AAAA的值为A. a/2 BB.bb2CC.32aa DD.32bb.......二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7. 用不等式表示“a的一半与b的和不小于0”是▲ .8. 我国某品牌手机以其创新的5 nm工艺领先世界,其中5nm=0.000000 005m. 用科学记数法表示0.000000005是▲ .9. 已知�xx=1,yy=−3是方程2mx-y=-1(m为常数) 的解, 则m的值为▲ .10. 已知实数a, b, c在数轴上的位置如图所示, 则ac ▲ bc. (填“>” “<”或“=”)11. 如图, 在同一平面内, ∠1+∠2=180°, ∠3=70°, 则∠4= ▲ °.12. 若整式4xx²+kkxx+1可以写成一个多项式的平方,则常数k的值为▲ .13.若某一多边形的所有外角都为60°,则该多边形的内角和为▲ °.14. “方程”二字最早见于我国数学经典著作《九章算术》,该书的第八章名为“方程”.如从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则将中两个方程联立成方程组可表示为▲ .15.有一个两位数,它的个位上的数为a,十位上的数为b,如果交换它个位和十位上的数,使得到的两位数比原来的两位数大18,那么a,b的数量关系为▲ .16. 如图, 点D, E, F分别在△ABC的各边上, DE∥AC, DF∥AB. 将△ABC沿DE翻折, 使得点B落在 B'处, 沿DF 翻折, 使得点C 落在C'处. 若∠B'DC'=40°, 则∠A= ▲ °.第 2 页共 6 页三、解答题(本大题共10小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(1)(2aa ²)³−aa⁸÷aa ²; (2)(a+b-1)(a-b-1).18.(6 分) 分解因式:(1)2aa ²−8aabb +8bb ²; (2)aa ²(xx −yy )+bb ²(yy −xx ).19.(8分)解二元一次方程组:(1)�2xx +3yy =1,xx −2yy =4; (2)�xx −yy+23=1,2xx −yy =1.20. (5分)解不等式组 �4(xx −1)≤7xx +2,xx +1>5xx−13,并在数轴上表示该不等式组的解集.21.(5分)如图, 在△ABC 中, 点D, E 分别在边 AB, AC 上, ∠B=∠C, ∠A=40°.(1) 求∠B 的度数;(2) 若∠ADE=∠AED, 求证DE ∥BC.第 3 页 共 6页22.(6分) 如图, 点C在∠AOB的边OB上, 过C作DDDD‖OOAA,CF平分. ∠BBCCDD,CCCC⊥CCCC于C.(1) 若∠BCG=55°, 求∠DCF;(2)过O作OH∥CF, 交DE于点 H, 求证: OH平分∠AOB.23. (7分) 某超市准备购进A, B两种商品, 进3件A, 4件B 需要270元; 进5件A, 2件B需要310元;该超市将A种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)计划用不超过元的资金购进A,B两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,有几种进货方案?24.(7分)一个正方形边长为a+4(a为常数,a>0),记它的面积为S₁.将这个正方形的一组邻边长分别增加2 和减少2,得到一个长方形,记该长方形的面积为S₂.(1) 求S₂(用含a的代数式表示).(2)小丽说无论a为何值,S₁与S₂的差都不变,你同意她的观点吗?为什么?(3)将原正方形一组邻边分别增加4 和减少3,得到一个长方形,记该长方形的面积为( SS₃,比较S₂与S₃的大小.第 4 页共 6页25.(9分)如图1,正方形甲、乙、丙的边长分别为出新生产且(1)如图 2,将正方形甲、乙拼接在一起,沿着外边框可以画出一个大正方形,用两种不同的方法表示这个大正方形的面积为 ▲ 或 ▲ ,从而可以得到一个乘法公式为 ▲ ;(2)如图 3,将正方形甲、乙、丙拼接在一起,沿着外边框可以画出一个大正方形,类比(1)的思路进行思考,直接写出所得到的等式;(3)用正方形甲、乙、丙构造恰当的图形,说明( (pp −mm −nn )²<pp ²−mm ²−nn ².第 5 页 共 6页26.(26.(9分) 在几何软件中, 将△ABC和△DEF按图1所示的方式摆放,其中∠ACB=∠DFE=90°,∠D=45°, ∠ABC=30°, 点D, A, F, B在同一条直线上, E在B的正上方, 且EB<ED.(1)如图1,将△DEF绕点 F顺时针旋转, 当BC第一次与DE 平行时, ∠DFA= ▲ °;(2)将图1中的△DEF绕点E逆时针旋转一定角度使点D落在边 BC上, 过E 作 EG∥BC, 直线DM平分∠FDB,直线EN平分∠GED交直线DM于点 N. 在图2中按以上叙述补全图形(无需尺规作图),并直接写出∠END的度数.(3) 如图3, 将图1中的△ABC绕点B逆时针旋转.①当BC∥DE时, 连接AF, BF, 则∠DFA-∠FAB= ▲ °;②若∠E与∠ABC的角平分线所在直线相交于点Q,∠EQB=27°,直接写出∠DBA的度数..第 6 页共 6 页七年级 (下)期末数学试卷参考答案说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)题号 1 2 3 4 5 6答案 C A D B C B二、填空题(本大题共10小题,每小题2分,共20分)7.12aa+bb≥08.5×10⁻⁹ 9. -2 10. > 11. 11012. ±4 13. 720 14.�xx+2yy=22,2xx+2yy=33 15. a=b+2 16. 70三、解答题(本大题共10小题,共68分)17. (本题6分)解: (1)(2aa²)³−aa⁸÷aa²=8aa⁶−aa⁶ ··2分=7aa⁶. 3分(2)(a+b-1)(a-b-1)=[(a-1)+b][(a-1)-b]=(aa−1)²−bb²=aa²−2aa+1−bb². ………………… …………………6分注:第1小问每个运算正确得1分,结果1分;第2小问不用公式直接计算,若计算正确得满分,计算错误全扣分.18.(本题6分)解: (1)2aa²−8aabb+8bb²=2(aa²−4aabb+4bb²) ………1分=2(a-2b)². 3分(2)aa²(xx−yy)+bb²(yy−xx)=aa²(xx−yy)−bb²(xx−yy) ····4分=(xx−yy)(aa²−bb²) ····5分=(x-y)(a+b)(a-b) ……6分19.(本题8分)(1)�2xx+3yy=1①,xx−2yy=4②;②×2, 得2x-4y=8③数学试卷参考答案及评分标准第 1 页 (共4页)①-③,得7y=-7y=-1将y=-1代入③, 得2x-4×(-1)=8解此一元一次方程得,x=2故原方程组的解为�xx=2,yy=1. ………4分(2)�xx−yy+23=1①,2xx−yy=1②.①×3, 得3x-y-2=33x-y=5③③-②,得x=4将x=4代入③, 得12-y=5y=7故原方程组的解为�xx=4,yy=7. ………………………8分注:每一小问,解出第1个未知数得2分,解出第2个未知数得3分,下结论得4分.20.(本题5分)解: �4(xx−1)≤7xx+2①,xx+1>5xx−13②,解不等式①,得x≥-2… …… 1分解不等式②,得x<2…… 3分故原不等式组得解集为-2≤x<2.. 4分在数轴上表示该不等式组得解集为·5分数学试卷参考答案及评分标准第 2 页 (共4页)21. (本题5分)解: (1)在△ABC中, ∠A+∠B+∠C=180°∵∠B=∠C, ∠A=40°∴∠BB=180∘−∠AA2=70∘ ·2分(2) 在△ADE中,∠A+∠ADE+∠AED=180°∵∠ADE=∠AED, ∠A=40°∴∠AADDDD=180∘−∠AA2=70∘∵∠B=ADE∴DE∥BC……………………………………………………………………………………………5分注:第2问不利用题干所给角的度数证明,证明正确得满分.22. (本题6分)解:(1) ∵ CG⊥CF,∴∠GCF=90°.∵∠BCG=55°,∴∠BCF=90°-∠BCG=35°.……………………………………………………………………2分∵ CF平分∠BCD,∴∠DCF=∠BCF=35°.…………………………………………………………………………3分(2) ∵ OH∥CF,∴∠BCF=∠BOH.∵ CF平分∠BCD,∴∠BCD=2∠DCF.∵ DE∥OA,∴∠AOB=∠BCD.∴∠BBOOBB=12∠AAOOBB.∴ OH平分∠AOB. ………………………………………………………………6分注:借助第1问角的度数证明,扣1分.23. (本题7分)解:(1)设A种商品每件进价为x元,B种商品每件进价为y元.由题得�3xx+4yy=270,5xx+2yy=310, …2分解得x=50, y=30∴A种商品每件进价50元,B种商品每件进价30元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)设购进A种商品m件,则购进B种商品(40-m)件.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分由题得�80mm+45(40−mm)≤2400,mm≥12(40−mm),…5分数学试卷参考答案及评分标准第 3 页 (共4页)解得403≤mm≤1207. ·6分∵ m为正整数,∴ m取 14,15,16,17.∴共有四种进货方案. 7分24. (本题7 分)解: (1)SS₂=(aa+4+2)(aa+4−2)=aa²+8aa+12; ·2分(2) 同意.SS₁−SS₂=(aa+4)²−(aa²+8aa+12)=4, 3分即S₁与S₂的差与a变化无关,差值不变; ·4分(3) S₃=(a+4+4)(a+4-2)=(a+8)(a+2) =a²+9a+8; 5分SS₃−SS₂=aa−4; 6分当a>4时, SS₃>SS₂;当a=4时, SS₃=SS₂;当0<a<4时, SS₃=SS₂; 7分25. (本题9分)解:( ( (1)(mm+nn)²,mm²+nn²+2mmnn,(mm+nn)²=mm²+nn²+2mm,; ·4分(2)(mm+nn+pp)²=mm²+nn²+pp²+2mmnn+2mmpp+2nnpp 6分(3)如图,正方形A的面积为( (pp−mm−nn)²,阴影部分面积为pp²−mm²−nn²,由图形面积之间关系可说明( (pp−mm−nn)²<pp²−mm²−nn². 9分注:1. 第 (1)问前两空每空1分,第三空2分;2.(pp−mm−nn)²,pp²−mm²−nn²两个部分各1分,简单说明与判断1分.26. (本题9分)(1) 15°; ………………………………………………2分(2) 22.5°; ……………………………………4分(3)①15°或165°;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分②79.5°或100.5°或25.5°或154.5°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分注:第3问的第2小问仅写对15.5°给1分,仅写对60.5°给2分,两个都写对得3分,有1个错误答案,全扣.数学试卷参考答案及评分标准第 4 页 (共4页)。

【多套试卷】最新七年级下册数学期末考试题【含答案】

【多套试卷】最新七年级下册数学期末考试题【含答案】

最新七年级下册数学期末考试题【含答案】一、选择题:(本大题有10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应的位置上)1.下列运算中,正确的是( )A .33a a a ⋅=B .632a a a ÷=C .22(2)4a a -=- D .2(3)(2)6a a a a -+=-- 2.若a b >,则下列判断中错误的是( )A .22a b +>+B . 22ac bc <C . 33a b -<-D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .55.下列命题中真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若22a b =,则a b = D .同角的余角相等6.如图,已知ADB ADC ∠=∠,添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是( )A .BAD CAD ∠=∠B .BC ∠=∠ C . BD CD = D .AB AC = 7.若311393m ⨯=,则m 的值为( )A . 2B . 3C . 4D . 5 8.若2216x mx ++是一个完全平方式,则m 的值为( ) A .±4 B .±2 C . 4 D .-4 9.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为( ) A . 8 B . 6 C .5 D . 4 10.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( )A. M N =B. M N >C. M N <D. M 与N 的大小由x 的取值而定 A . 3个 B . 2个 C . 1个 D . 0个二、填空题:(本大题有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在答题卡对应的横线上)11.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm .12.若4,9n n x y ==,则()nxy = .13.已知25x y -=,若用含x 的代数式表示y ,则y = . 14.若2x y +=,则代数式224x y y -+的值等于 .15.如图,//a b ,将三角尺的直角顶点落在直线a 上,若160∠=︒, 250∠=︒人教版七年级数学下册期中考试试题【答案】一、选择题(每小题3分,共30分)1、点P (﹣3,2)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在实数,,0.121221221…,3.1415926,,﹣中,无理数有( )A .2个B .3个C .4个D .5个 3、如图a ∥b ,∠3=108°,则∠1的度数是( )A .72°B .80°C .82°D .108°4、如图,直线AB 与CD 相交于点O ,∠COE=2∠BOE .若∠AOC=120°,则∠DOE 等于( )A .135°B .140°C .145°D .150°5、下列四个命题:①坐标平面内的点与有序数对一一对应;②若a 大于0,b 不大于0,则点P (﹣a ,﹣b )在第三象限;③在x 轴上的点的纵坐标都为0;④当m=0时,点P (m 2,﹣m )在第四象限.其中,是真命题的有( ) A .1个 B .2个 C .3个 D .4个6、下列各式正确的是( ) A .=±4B .±=4C .=﹣4 D .=﹣37、如图的围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(5,2),白棋④的坐标为(6,﹣2)那么黑棋①的坐标应该是( )A .( 9,3 )B .(﹣1,﹣1)C .(﹣1,3)D .( 9,﹣1) 8、如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A.∠A+∠2=180°; B.∠A=∠3 C.∠1=∠4 D.∠1=∠A9、的平方根是()A.﹣4 B.±2 C.±4 D.410、已知:AB∥CD,∠ABE=120°,∠C=25°,则∠α度数为()A.60° B.75° C.85° D.80°二、填空题(每小题3分,共18分)11、垂直于y轴的直线上有A和B两点,若A(2,2),AB的长为,则点B的坐标为________.12、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA的度数为40°,则∠GFB的度数为.13、某数的平方根是2a+3和a﹣15,则这个数为.14、若与|x+2y﹣5|互为相反数,则(x﹣y)2019= .15、如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2= .16、如图,已知四边形ABCD的顶点为A(1,2),B(﹣1,2),C,(﹣1,﹣2),D(1,﹣2),点M和点N同时从E点出发,沿四边形的边做环绕匀速运动,M点以1单位/s的速度做逆时针运动,N点以2单位/s的速度做顺时针运动,则点M和点N第2019次相遇时的坐标为.三、解答题(共10小题,满分72分) 17、计算:(1)(2)+﹣()2 (3)+﹣2+3.18、求下列各式中的x 的值:(1) x 3-2=0 ; (2)()25122=-x ;19、已知:如图,∠1=∠2,∠C =∠D 。

七年级数学下册期末考试卷(带答案解析)

七年级数学下册期末考试卷(带答案解析)

七年级数学下册期末考试卷(带答案解析)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C. D.2.下列各数中是无理数的是()A.B.πC.6.25 D.3.下列运算正确的是()A.=±5 B.|﹣3|=3 C.=3 D.=﹣4 4.下列事件中,最适合采用普查的是()A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.如图,a⊥c,b⊥c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°8.如图,下列条件:①∠1=∠5;②∠2=∠6;③∠3=∠7;④∠4=∠8.其中能判定AB∥CD的是()A.①②B.②③C.①④D.②④9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<1二、填空题(本大题共6小题,每小题3分,共18分.)11.的平方根为.12.若+(a﹣1)2=0,则a+b的值为.13.已知点A(0,a)在y轴的负半轴上,则点B(a,a﹣1)在第象限.14.某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级,根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有.15.如图,已知AB∥CD,∠BAC与∠ACD的平分线相交于点E,若∠ACE=31°,则∠BAE的度数是.16.关于x的不等式组无整数解,则a的取值范围为.三.解答题(共72分)17.计算:.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.19.解方程组:(1);(2).20.解不等式组,并把它的解集在数轴上表示出来.21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?25.同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图(1),已知∠AOB,请你画出它的角平分线OC,并填空:因为OC是∠AOB的平分线(已知)所以∠=∠=∠AOB(2)如图(2),已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,请你画出射线OB,射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=∠所以射线是∠的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A落在C处,折痕为OE,再将它的另一个角也折叠,顶点B落在D处并且使OD过点C,折痕为OF.直接利用(2)的结论;①若∠AOE=60°,求∠EOF的度数.②若∠AOE=m°,求∠EOF的度数,从计算中你发现了∠EOF的度数有什么规律?③∠DOF的补角为;∠DOF的余角为.参考答案与解析一.选择题(共10小题)1.解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.2.解:A.5.34是分数,属于有理数,故这个选项不符合题意;B.是无理数,故这个选项符合题意;C.6.25是分数,属于有理数,故这个选项不符合题意;D.是分数,属于有理数,故这个选项不符合题意;故选:B.3.解:A、=5,故本选项错误;B、|﹣3|=3,故本选项正确;C、∵=3,∴≠3,故本选项错误;D、=4,故本选项错误;故选:B.4.解:A、对我校七年级一班学生出生日期的调查适合采用普查;B、对全国中学生节水意识的调查适合采用抽样调查;C、对山东省初中学生每天阅读时间的调查适合采用抽样调查;D、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:A.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.7.解:∵a⊥c,b⊥c,∴a∥b,∴∠3=∠1=70°,∴∠2=∠3=70°.故选:A.8.解:①∵∠1=∠5,∴AB∥CD,能判定AB∥CD;②∵∠2=∠6,∴AD∥BC,不能判定AB∥CD;③∵∠3=∠7;∴AD∥BC,不能判定AB∥CD;④∵∠4=∠8,∴AB∥CD,能判定AB∥CD.故选:C.9.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.二.填空题(共6小题)11.【答案】±【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.12.【答案】﹣1【分析】直接利用非负数的性质得出b,a的值,即可得出答案.【解答】解:∵+(a﹣1)2=0,∴3b+6=0,a﹣1=0,解得:b=﹣2,a=1,∴a+b=﹣2+1=﹣1.故答案为:﹣1.13.【答案】三【分析】根据点A(0,a)在y轴的负半轴上可得到a<0,再根据各象限内点的坐标特征解答.【解答】解:∵点A(0,a)在y轴的负半轴上,∴a<0,∴a﹣1<0,∴点B(a,a﹣1)在第三象限.故答案为:三.14.【答案】340名【分析】用A等级人数除以其对应权重,再乘以权重之和即可得出答案.【解答】解:该校七年级学生共有68÷2×(2+3+3+1+1)=340(名),故答案为:340名.15.【答案】59°【分析】根据平行线的性质得到∠BAC+∠ACD=180°,再根据角平分线的定义得到∠CAE+∠ACE=90°,根据题意即可得解.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠ACD的平分线相交于点E,∴∠BAE=∠CAE=∠BAC,∠ACE=∠ACD,∴∠CAE+∠ACE=×(∠BAC+∠ACD)=90°,∵∠ACE=31°,∴∠CAE=90°﹣∠ACE=59°,∴∠BAE=59°,故答案为:59°.16.【答案】a≥2【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据“无整数解”这个条件分析答案;另外需考虑不等式组无解的情况.【解答】解:不等式组整理得:不等式组的解集是:a<x<,或a≥时,不等式组无解,∵不等式组无整数解,∴a≥2故答案为:a≥2.三.解答题17.计算:.【分析】首先计算开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣﹣3+(﹣4)=﹣2﹣4.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.【答案】40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.【解答】解:∵∠BOC=130°,∠AOD与∠BOC是对顶角,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠EOD=130°﹣90°=40°,即∠EOD的度数是40°.19.解方程组:(1);(2).【答案】(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1),②代入①,可得:y﹣1+2y=8,解得y=3,把y=3代入②,解得x=2,∴原方程组的解是.(2),由②,可得:5x+5y=1③,①×5+③,可得20x=26,解得x=1.3,把x=1.3代入①,解得y=﹣1.1,∴原方程组的解是.20.解不等式组,并把它的解集在数轴上表示出来.【答案】x>2,解集在数轴上的表示见解答.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+2≥3x,得:x≥﹣1,解不等式2﹣<x,得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.【答案】(1)见解答;(2)10.【分析】(1)先利用P点和P′点的坐标特征确定平移的方向与距离,再利用此平移规律写出A′、B′的坐标,然后描点得到线段AB和A'B';(2)用一个矩形的面积分别减去三个直角三角形的面积去计算三角形OA'B'的面积.【解答】解:(1)如图,线段AB和A'B'为所作;(2)三角形OA'B'的面积=4×6﹣×4×2﹣×2×4﹣×6×2=10.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】见试题解答内容【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【答案】见试题解答内容【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?【答案】(1)甲商品的进货价格为65元,乙商品的进货价格为5元;(2)a的取值范围是0≤a≤50;(3)进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.【分析】(1)设甲、乙商品的进货价格分别是x元,y元,根据题意列方程组即可得到结论;(2)设小明购进甲商品a件,由题意列出不等式,即可求解;(3)由获得的利润不少于1450元,列出不等式可求a的范围,可求出答案.【解答】解:(1)设甲、乙商品的进货价格分别是x元,y元,由题意列方程组得:,解得,答:甲商品的进货价格为65元,乙商品的进货价格为5元;(2)设小明购进甲商品a件,由题意得,65a+5(100﹣a)≤3500,解得a≤50,∴a的取值范围是0≤a≤50;(3)由题意可得:(90﹣65)a+(10﹣5)(100﹣a)≥1450,解得:a≥47.5,∴47.5≤a≤50,又∵a为整数,∴a=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;若甲商品进48件,乙商品进52件,利润为(90﹣65)×48+(10﹣5)×52=1460(元),若甲商品进49件,乙商品进51件,利润为(90﹣65)×49+(10﹣5)×51=1480(元),若甲商品进50件,乙商品进50件,利润为(90﹣65)×50+(10﹣5)×50=1500(元),∴当甲商品进50件,乙商品进50件,利润有最大值.利润最大值为1500(元).答:进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.25.解:(1)如图1所示:∵OC是∠AOB的平分线,∴∠AOC=∠BOC=∠AOB,故答案为:AOC,BOC,;(2)如图2所示:∵∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,∴∠BOC=∠AOC,∴射线OC是∠AOB的角平分线,故答案为:BOC,OC,AOB;(3))①∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=60°,∴∠AOE=∠EOC=60°,∠BOF=∠DOF=(180°﹣∠AOE﹣∠EOC)=×60°=30°,∴∠EOF=∠EOC+∠DOF=60°+30°=90°;②∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=m°∴∠AOE=∠EOC=m°,∠BOF=∠DOF=[180°﹣(∠AOE+∠EOC)]=×[18°﹣2m°]=90°﹣m°,∴∠EOF=∠EOC+∠DOF=m°+90°﹣m°=90°,发现∠EOF始终为90°;③∵由②知,∠DOF=∠BOF,∠BOF+∠AOF=180°,∴∠DOF的补角是∠AOF;∵∠DOF+∠EOC=90°,∴∠DOF的余角是∠EOC和∠AOE,故答案为:∠AOF,∠EOC和∠AOE.。

2023七年级下册数学期末试卷含答案

2023七年级下册数学期末试卷含答案

2023七年级下册数学期末试卷含答案第一部分:选择题1. 计算 $2+3=$( A. 2 B. 3 C. 4 D. 5 )2. 如果 $x+5=9$,那么 $x=$( A. 4 B. 5 C. 6 D. 7 )3. 下面哪个数字不是37的倍数?( A. 37 B. 74 C. 148 D.111 )4. 解方程:$4x-7=9$,则$x=$( A. 4 B. 4.5 C. 5 D.5.5 )5. 图中的正方形边长为 $x$,则其面积为( A. $x$ B.$x^2$ C. $2x$ D. $2x^2$ )6. $\frac{3}{4}+\frac{1}{6}-\frac{2}{3}=$( A.$\frac{1}{4}$ B. $\frac{1}{3}$ C. $\frac{1}{2}$ D. $\frac{2}{3}$ )7. 学校共有学生 500 名,其中女生 250 名,则男生人数为( A. 250 B. 300 C. 350 D. 400 )8. 下面哪个数不是素数?( A. 19 B. 29 C. 39 D. 47 )9. 下面有一个表格,请回答第 3 行第 2 列中的数字是多少。

10. 一块长方形的纸片,长 $ x $ 厘米,宽 $ y $ 厘米。

如果将它沿宽度方向剪成宽度为 $5$ 厘米的若干块,则剪成的每块长都是( A. $5x$ B. $5y$ C. $\frac{x+y}{5}$ D. $xy$ )第二部分:填空题11. 梯形的面积公式为__________________。

12. 在一条直线上,如果已知 $A$ 和 $B$ 两点的位置,则可画出两点间的 _________________,通常用字母 ______ 表示。

13. 三平方之和公式为 ____________________。

14. 在一个正方形 ABCD 中,若 $\angle A \hat BD=70^\circ$,则 $\angle A \hat CB$ 的度数为 ___________________。

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=,n=.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn 的值.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有A能确定一个位置,故选A.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.5.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°【分析】先根据平行线的性质及对顶角相等求出∠AEM的度数,再根据垂直的性质求出∠2的度数即可.【解答】解:∵∠1=130°,∴∠3=∠1=130°,∵AB∥CD,∴∠3=∠AEM,∵HE⊥MN,∴∠HEM=90°,∴∠2=∠3﹣∠HEM=130°﹣90°=40°.故选B.【点评】本题涉及到的知识点为:(1)对顶角相等;(2)两直线平行,同位角相等;(3)垂线的定义.7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【分析】A、根据立方根的即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根、立方根的定义求解即可判定.【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.要注意一个正数的平方根有两个,它们互为相反数.8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③【分析】利用同位角相等(都等于90°),同旁内角互补,两条直线平行,或同一平面内,垂直于同一条直线的两条直线平行作答.【解答】解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.【点评】本题考查平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为9.【分析】直接利用非负数的性质得出x,y的值,进而利用有理数的乘方运算法则求出答案.【解答】解:∵|x+3|+=0,∴x=﹣3,y=2,则x y=(﹣3)2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为1.【分析】根据在数轴上表示不等式解集的方法得出不等式的解集,再用a表示出不等式的解集,进而可得出a的值.【解答】解:由题意可知,x<2,∵解不等式x﹣a<1得,x<1+a,∴1+a=2,解得a=1.故答案为:1.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=1,n=0.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值,最后代入可得到m n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:1,0.【点评】考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是15.【分析】根据平移的性质,判断出△HEC∽△ABC,再根据相似三角形的性质列出比例式解答.【解答】14.15解:由平移的性质知,BE=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC =S梯形ABEH=(AB+EH)BE=(6+4)×3=15.故答案为:15.【点评】本题主要利用了平行线截线段对应成比例和平移的基本性质求解,找出阴影部分和三角形面积之间的关系是关键.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为(n,n2+1).【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A n的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12+1,当n=2时,A2(2,5),即x=2,y=22+1;当n=3时,A3(3,10),即x=3,y=32+1;当n=4时,A1(4,17),即x=4,y=42+1;…∴当n=n时,x=n,y=n2+1,故答案为:(n,n2+1).【点评】此题主要考查了点的坐标规律,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1),①+②×3得,10x=50,解得x=5,把x=5代入②得,10+y=13,解得y=3.故方程组的解为;(2),由①得,x<3,由②得,x≥﹣2,故方程组的解为:﹣2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.【分析】根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.【点评】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?【分析】(1)根据乒乓球的总数为50,频数为0.50,求出体育器材总数,然后减去乒乓球、排球、篮球数目,即可得到足球频数、频率及合计数.(2)根据统计表中的数据,将统计图补充完整即可.(3)列方程求出篮球和足球的单价,再根据单价列出不等式,推知购买方案.【解答】解:(1)50÷0.50=100个;则足球有100﹣20﹣50﹣25=5个;足球频率=0.05;排球频率=0.2;合计为100.故答案为:0.2;5,0.05;100.(2)如图:.(3)设篮球每个x元,足球每个(x+10)元,列方程得,25x+5(x+10)=950,解得x=30,则篮球每个30元,足球每个40元.设再买y个篮球,列不等式得,30y+40(10﹣y)≤320,解得y≥8,由于篮球足球共10个,则篮球8个,足球2个;或篮球9个,足球1个.【点评】本题考查了频数分布表、频数分布直方图及一元一次方程的应用,从图中得到相关信息是解题的关键.20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?【分析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从公司购买A、B 两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,可列不等式组求解.【解答】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60﹣m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,列出不等式组求解.21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根据<a>表示大于a 的最小整数,可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.【分析】(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;(2)证明方法与(1)一样;(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA﹣∠PDB.【解答】解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.。

新七年级(下)数学期末考试题(含答案)

新七年级(下)数学期末考试题(含答案)

新七年级(下)数学期末考试题(含答案)一、填空题(本大题共6个小题,每小题3分,共18分) .1.2的相反数是_____________.2.6的算术平方根是_____________.3.不等式组1 1120xx+<⎧⎨->⎩的解集是_____________.4.如图1,将块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为______________.图15.已知直线AB//x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为_____________.6.如图,用黑白两色正方形瓷砖按一定的规律铺设地面,第n个图案中白色瓷砖有_____________.块(用含n的式子表示) .二、选择题(本大题共8个小题,每小题4分,共32分) .7. 2019年一季度,曲靖市经济保持了较快增长,全市生产总值437.74亿元,同比增长10.1%,实现“开门红”. 437.74亿元用科学记数法表示为( )A. 437.74×109元B. 4.3774×1010元C. 0. 43774×1011元D. 4. 3774×1011元8.下面的调查中,不适合抽样调查的是( )A. 一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间9.下列图形中,不能通过其中一个四边形平移得到的是( )10.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y= ( )A. ─1B.1C. 5D. ─511.不等式组31 2840x x ->⎧⎨-≤⎩的解集在数轴上表示正确的是( )A. B.C. D.12.如图2所示,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCED. ∠D+∠ACD=180°图213.小颖家离学校1200米,其中有一段为上坡路, 另一段为下坡路,她去学校共用了16分钟,上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,设小颖上坡用了x 分钟,下坡用了y 分钟,据题意可列方程组为( )A.351200 16 x y x y +=⎧⎨+=⎩B.35 1.2 606016 x y x y ⎧+=⎪⎨⎪+=⎩ C.35 1.2 16 x y x y +=⎧⎨+=⎩ D.351200 606016 x y x y ⎧+=⎪⎨⎪+=⎩ 14.如图3,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF//BC ,以下四个结论①AH ⊥EF , ②∠ABF=∠EFB ,③AC // BE ,④∠E= ∠ABE.其中正确的有( ) A.①②③④ B.①② C.①③④ D.①②④图3三、解答题(本大题共9个小题,共70分) 15. (5分)2|1+-16. (6 分)解方程组29 32 1 x yx y+=⎧⎨-=-⎩①②17.(6分)解不等式组5(1)312151132x xx x-<+⎧⎪-+⎨-≤⎪⎩并将解集在数轴上表示出来.18.(7 分)完成推理填空:如图4,在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+ 6 EFD=180°(邻补角定义) ,∠1+∠2=180° (已知)∴_________________________(同角的补角相等) ①∴_________________________(内错角相等,两直线平行) ②∴∠ADE=∠3( ) ③∵∠3=∠B( ) ④∴______________=___________( 等量代换) ⑤∴DE//BC ( ) ⑥图4 ∴∠AED=∠C( ) ⑦19. (8分) 已知2m+3和4m+9是x的平方根,求x的值.20. (8 分)在读书月活动中,学校准备购买─批课外读物. 为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类) ,如图5是根据调查结果绘制的两幅不完整的统计图.条形统计图扇形统计图图5请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了____________名同学;(2)条形统计图中,m________,n=_______(3)扇形统计图中,艺术类读物所在扇形的圆心角是__________度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买“其他”类读物多少册比较合理?21. (8分)如图6,已知AB// DE,∠B=60°,AE⊥BC,垂足为点E.(1)求∠AED的度数:(2)当∠EDC满足什么条件时,AE// DC ?证明你的结论。

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。

一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。

2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。

4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。

8、若一个数的立方根就是它本身,则这个数是 。

9、点P (-2,1)向上平移2个单位后的点的坐标为 。

10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。

问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。

二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。

C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。

12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

2023-2024学年四川省成都实验外国语学校七年级(下)期末数学试卷及答案解析

2023-2024学年四川省成都实验外国语学校七年级(下)期末数学试卷及答案解析

2023-2024学年四川省成都实验外国语学校七年级(下)期末数学试卷一、选择题(每小题4分,共32分.请将所选答案的字母代号填涂在答题卡上)1.(4分)新能源汽车是我国经济发展的重要产业之一,下列新能源车标中,不是轴对称图形的是()A.B.C.D.2.(4分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣ab3)2=a2b6D.2a6÷a3=2a2 3.(4分)“墙角数枝梅,凌寒独自开.遥知不是雪,为有暗香来.”出自宋代诗人王安石的《梅花》.梅花的花粉直径约为0.000036m,用科学记数法表示为3.6×10n m,则n的值为()A.﹣4B.﹣5C.4D.54.(4分)关于全等图形的描述,下列说法正确的是()A.形状相同的图形B.面积相等的图形C.能够完全重合的图形D.周长相等的图形5.(4分)已知直线a∥b,将一块含30°角的直角三角板ABC按如图方式放置,点C落在直线b上.若∠1=48°,则∠2的度数为()A.42°B.48°C.52°D.58°6.(4分)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3B.1,2,4C.2,3,4D.2,2,47.(4分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AC=BD C.∠ACB=∠DBC D.AB=DC8.(4分)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多六客,一房八客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有6人无房可住;如果一间客房住8人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.二、填空题(每小题4分,共32分.请将所选答案的字母代号填涂在答题卡上)9.(4分)把方程2x﹣y=4变形,用含x的代数式表示y,则y=.10.(4分)若x、y满足x﹣y=﹣2,x+y=3,则代数式x2﹣y2的值为.11.(4分)已知∠A与∠B互余,且∠A=47°,则∠B的补角是度.12.(4分)在弹性限度内,弹簧的长度随所挂物体的质量的增加而增长,经过实验与测量,得到弹簧的长度(cm)与所挂物体的质量(kg)之间的对应关系如下表:物体的质量/kg12345弹簧的长度/cm1313.51414.515若弹簧的长度是17cm,则所挂物体的质量是kg.13.(4分)如图,在△ABC中,AB=AC,分别以A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连接MN与AC交于点E,若EC=2,则AB的长度为.三、解答题(共5小题,满分48分.请正确答案写在答题卷上)14.(16分)计算:(1);(2)(﹣2a2)3+4a2•a4﹣a8÷a2;(3)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y;(4)解方程组:.15.(6分)先化简,再求值:[(2x﹣y)2﹣(2x﹣y)(2x+y)﹣4xy]÷2y,其中x=1,y=2.16.(8分)如图,在正方形网格中,已知△ABC的三个顶点在格点上.(1)画出△ABC关于直线DE的轴对称图形△A1B1C1;(2)若正方形网格的单位长度为1,求△A1B1C1的面积.17.(8分)补充完成下列推理过程:已知:如图,在△ABC中,D为AB的中点,过点D作DE∥BC,交AC于点E.F是BC上一点,连接DF,且∠DFB=∠ACB.求证:AE=DF.证明:∵D为AB的中点(已知)∴AD=DB()∵DE∥BC(已知)∴∠ADE=∠DBF()又∠DFB=∠ACB(已知)∴DF∥AC().∴∠DAE=∠.在△ADE与△DBF中∴△ADE≌△DBF()∴AE=DF()18.(10分)已知,在△ABC中,∠ACB=90°,CD⊥AB于点D,E是AB上一点,满足:CA=CE;将CE绕点E顺时针旋转90°,交CB于点F.(1)如图1,(i)试说明:FE=FB;(ⅱ)若EC=EF,请探究EB与CD的数量关系,并说明理由;(2)如图2,若E是线段AB的中点,求的值.一、填空题(每小题4分,共20分;请将答案填在答题卷对应的横线上)19.(4分)已知x2﹣3x﹣10=0,则2x2﹣6x+5=.20.(4分)已知4x2+(k﹣3)xy+9y2是完全平方式,则k=.21.(4分)如图,AB∥CD,P、Q分别是线段AB、CD上的定点,在AB与CD之间有一点F,PE、QE 分别为∠APF、∠CQF的角平分线,若∠PEQ=130°,则∠PFQ=度.22.(4分)如图,在四边形ABCD中,AD=BC=6,AB=CD,BD=10,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.在整个运动过程中,当G的速度为时,△DEG与△BFG全等.23.(4分)在正方形ABCD中,点M、N是BC、CD上的两定点,满足:∠MAN=45°,(点N不与B,C重合;点M不与C,D重合).连接MN,取MN的中点P,连接AP,请问:(1)若BN+MD=6,则MN=.(2)在(1)的条件下,当AP=8时,在线段AB上找一点E,在线段AD上找一点F,使四边形ENMF 的周长最小,最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示龟兔赛跑时的路程s(米)与时间t(分钟)的关系,请你根据图中给出的信息,解决下列问题.(1)折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)兔子醒来,以100米/分钟的速度跑向终点,结果还是比乌龟晚到了1分钟,请你算算兔子中间停下睡觉用了多少分钟?25.(10分)【知识回顾】如图1,长方形的长与宽分别为a、b,请认真观察图形,解答下列问题:(1)若用四个完全相同的这样的长方形拼成如图2的正方形,请写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系式:;(2)根据(1)中的等量关系,解决如下问题:若x﹣y=7,xy=6,求x2+y2的值;【深入探究】(3)若a满足(2023﹣a)(a﹣2024)=﹣5,求(2023﹣a)2+(a﹣2024)2的值;【应用迁移】(3)如图3,长方形ABCD中,AB=2BC,E、F是边AB上的点(E在F左侧),以EF为边向下作正方形EFGH,延长GH交AD于点M,再以MH为边向上作正方形MHQP,若BF=2k,DM=k+1,(k 为常数,且k>0),正方形MHQP与长方形ABCD重叠部分的长方形面积为,求长方形AMGF的周长.26.(12分)【模型熟悉】(1)如图1,已知△ABC和△DCE,点B、C、E在一条直线上,且∠B=∠ACD=∠E,AC=CD,求证:BC=DE;【模型运用】(2)如图2,在等边△ABC中,M、N分别为BC,AB边上的点,且ND=NM,∠DNM=60°,连接AD.若∠DAN=30°,求证:CM=2BN;【能力提升】(3)如图3,等边△ABC的面积是25,AB=6,点D、F分别为AC、BC边上的动点,AD=2CF,连接DF,以DF为边在△ABC内作等边△DEF,连接BE,当点D从点A运动到点C,请在图3中作出点E的运动轨迹,并求出点E的运动路程.2023-2024学年四川省成都实验外国语学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共32分.请将所选答案的字母代号填涂在答题卡上)1.【分析】根据轴对称图形的定义进行判断即可.【解答】解:A.该图是轴对称图形,不符合题意;B.该图不是轴对称图形,符合题意;C.该图是轴对称图形,不符合题意;D.该图是轴对称图形,不符合题意;故选:B.【点评】本题考查了轴对称图形的识别,解题的关键在于熟练掌握:在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形.2.【分析】根据整式的运算法则即可求出答案.【解答】解:A.a2与a3不是同类项不能合并,故A错误;B.a2•a3=a5,底数不变指数相加,故B错误;C.(﹣ab3)2=a2b6,故C正确;D.2a6÷a3=2a3,底数不变指数相减,故D错误;故选:C.【点评】本题考查整式的运算,熟记整式的运算法则是解题的关键.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:0.000036m=3.6×10﹣5m,则n=﹣5,故选:B.【点评】本题考查科学记数法表示较小的数,熟练掌握其定义是解题的关键.4.【分析】根据全等图形的定义进行判断即可.【解答】解:A、形状相同的图形相似但不一定全等,故错误,不符合题意;B、面积相等的图形不一定全等,故错误,不符合题意;C、能够完全重合的图形是全等图形,正确,符合题意;D、周长相等的图形不一定是全等图形,故错误,不符合题意.故选:C.【点评】本题考查了全等图形的定义,了解能够完全重合的图形是全等形是解答本题的关键,难度不大.5.【分析】先利用平角定义求出∠DCA的度数,再根据平行线的性质即可解答.【解答】解:如图:∵∠1=48°,∠BCA=90°,∴∠DCA=180°﹣∠1﹣∠BCA=42°,∵a∥b,∴∠2=∠DCA=42°,故选:A.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2=3,不能组成三角形,故A选项错误;B、1+2<4,不能组成三角形,故B选项错误;C、2+3>5,能组成三角形,故C选项正确;D、2+2=4,不能组成三角形,故D选项错误;故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.7.【分析】利用SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项错误;B、添加AC=BD不能判定△ABC≌△DCB,故此选项正确;C、添加∠ACB=∠DBC可利用ASA判定△ABC≌△DCB,故此选项错误;D、添加AB=CD可利用SAS判定△ABC≌△DCB,故此选项错误;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【分析】设该店有客房x间,房客y人,根据“一房七客多七客,一房八客一房空”得出方程组即可.【解答】解:设该店有客房x间,房客y人,根据题意得:,故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组.根据题意得出方程组是解决问题的关键.二、填空题(每小题4分,共32分.请将所选答案的字母代号填涂在答题卡上)9.【分析】要用x的代数式表示y,先移项,再将系数化为1即可.【解答】解:2x﹣y=4,y=2x﹣4.故答案为:2x﹣4.【点评】此题考查了解二元一次方程的知识.解此类问题的关键是把方程中含有x的项移到等号的右边,再把y的系数化为1.10.【分析】根据平方差公式求解即可.【解答】解:∵x﹣y=﹣2,x+y=3,∴x2﹣y2=(x+y)(x﹣y)=3×(﹣2)=﹣6.故答案为:﹣6.【点评】此题考查了平方差公式,解题的关键是掌握平方差公式x2﹣y2=(x+y)(x﹣y).11.【分析】根据余角的和补角的定义解决此题.【解答】解:由题意得,∠B=90°﹣∠A=43°.∴∠B的补角是180°﹣∠B=180°﹣43°=137°.故答案为:137.【点评】本题主要考查余角和补角,熟练掌握余角和补角的定义是解决本题的关键.12.【分析】由表格可知,物体的质量每增加1kg,弹簧的长度增加0.5cm,设所挂物体的质量是x kg,列方程并求解即可.【解答】解:由表格可知,物体的质量每增加1kg,弹簧的长度增加0.5cm,设所挂物体的质量是x kg,得0.5(x﹣1)=17﹣13,解得x=9.故答案为:9.【点评】本题考查函数的表示方法,找到变量的变化规律是本题的关键.13.【分析】利用基本作图可判断MN垂直平分AC,所以AE=CE=2,则AC=4,从而得到AB的长.【解答】解:由作法得MN垂直平分AC,∴AE=CE=2,∴AB=AC=AE+CE=2+2=4.故答案为:4.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了等腰三角形的性质和线段垂直平分线的性质.三、解答题(共5小题,满分48分.请正确答案写在答题卷上)14.【分析】(1)先算乘方,负整数指数幂,零指数幂,再算乘法,最后算加减即可;(2)先算积的乘方,单项式乘单项式,整式的除法,最后合并同类项即可;(3)先算括号里的运算,再算除法即可;(4)利用加减消元法进行求解即可.【解答】解:(1)=﹣1×4+9+1=﹣4+9+1=6;(2)(﹣2a2)3+4a2•a4﹣a8÷a2=﹣8a6+4a6﹣a6=﹣5a6;(3)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y=(x3y2﹣x2y﹣x2y+x3y2)÷x2y=(2x3y2﹣2x2y)÷x2y=2xy﹣2;(4),①×2得:2x+6y=10③,②+③得:7x=14,解得:x=2,把x=2代入①得:2+3y=5,解得:y=1,故原方程组的解是:.【点评】本题主要考查整式的混合运算,解二元一次方程组,实数的运算,解答的关键是对相应的运算法则的掌握.15.【分析】先利用完全平方公式,平方差公式计算括号里,再算括号外,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:[(2x﹣y)2﹣(2x﹣y)(2x+y)﹣4xy]÷2y=(4x2﹣4xy+y2﹣4x2+y2﹣4xy)÷2y=(2y2﹣8xy)÷2y=y﹣4x,当x=1,y=2时,原式=2﹣4=﹣2.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,平方差公式,准确熟练地进行计算是解题的关键.16.【分析】(1)利用网格特点和对称轴的性质,分别画出点A、B、C关于直线DE的对称点A1、B1、C1即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)△ABC的面积=3×3﹣×2×1﹣×3×2﹣×3×1=3.5.【点评】本题考查了轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.17.【分析】先根据线段中点的定义可得AD=DB,再根据平行线的性质可得∠ADE=∠DBF,然后再根据已知∠DFB=∠ACB可得DF∥AC,从而利用平行线的性质可得∠DAE=∠BDF,最后利用ASA证明△ADE≌△DBF,从而利用全等三角形的性质即可解答.【解答】解:∵D为AB的中点(已知),∴AD=DB(中点定义),∵DE∥BC(已知),∴∠ADE=∠DBF(两直线平行,同位角相等),又∠DFB=∠ACB(已知),∴DF∥AC(同位角相等,两直线平行),∴∠DAE=∠BDF,在△ADE与△DBF中,,∴△ADE≌△DBF(ASA),∴AE=DF(全等三角形的对应边相等),故答案为:中点定义;两直线平行,同位角相等;同位角相等,两直线平行;BDF;ASA;全等三角形的对应边相等.【点评】本题考查了全等三角形的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.18.【分析】(1)(i)由AC=CE,CD⊥AE,得∠A=∠CED,由∠ACB=90°,得∠B+∠A=90°,故∠B+∠CED=90°,由将CE绕点E顺时针旋转90°,得∠CEF=90°,故∠DEC+∠BEF=90°,得∠BEF=∠B,故EF=BF;(ⅱ)由(i)知EF=BF,BH=EH,由∠CDE=∠CEF=∠FHE=90°,得∠DEC=∠EFH,再证明△CDE≌△EHF,得CD=EH,故CD=.(2)由E是线段AB的中点,得AE=BE,如图,过F作FG⊥BE于G,由(1)知EF=BF,得BG=EG=,由AD=DE=AE,得AD=DE=EG=BG,故BG:BD=1:3.由FG∥CD,得△BFG ∽△BCD,得FG:CD=BG:BD=1:3,故====3.【解答】(1)(i)证明:∵AC=CE,CD⊥AE,∴∠A=∠CED,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B+∠CED=90°,∵将CE绕点E顺时针旋转90°,交CB于点F,∴∠CEF=90°,∴∠DEC+∠BEF=90°,∴∠BEF=∠B,∴EF=BF;(ⅱ)CD=;理由:过F作FH⊥BE于H,由(i)知,EF=BF,∴BH=EH,∵∠CDE=∠CEF=∠FHE=90°,∴∠FEH+∠DEC=∠EFH+∠FEH=90°,∴∠DEC=∠EFH,在△CDE和△EHF中,∴△CDE≌△EHF(AAS),∴CD=EH,∴CD=;(2)如图,过F作FG⊥BE于G,∵E是线段AB的中点,∴AE=BE,由(1)知EF=BF,∴BG=EG=,∵AD=DE=AE,∴AD=DE=EG=BG,∴BG:BD=1:3.∵CD⊥AB,FG⊥AB,∴FG∥CD,∴△BFG∽△BCD,∴FG:CD=BG:BD=1:3,∴====3.【点评】本题考查了几何变换综合题,构造一线三垂直是解题关键.一、填空题(每小题4分,共20分;请将答案填在答题卷对应的横线上)19.【分析】将2x2﹣6x+5变形为2(x2﹣3x)+5,然后整体代入求值即可.【解答】解:∵x2﹣3x﹣10=0,∴x2﹣3x=10,∴2x2﹣6x+5=2(x2﹣3x)+5=2×10+5=25,故答案为:25.【点评】本题考查了代数式求值,熟练掌握整体代入思想是解题的关键.20.【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵4x2+(k﹣3)xy+9y2=(2x)2±2•2x•3y+(3y)2是完全平方式,∴k﹣3=±12,∴k=15或﹣9.故答案为:15或﹣9.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.21.【分析】过E作EK∥AB,得到EK∥CD,推出∠PEK=∠APE,∠QEK=∠CQE,因此∠APE+∠CQE =∠PEQ=130°,由角平分线定义得到∠EPF+∠EQF=∠APE+∠CQE=130°,由四边形内角和是360°,即可求出∠PFQ的度数.【解答】解:过E作EK∥AB,∵AB∥CD,∴EK∥CD,∴∠PEK=∠APE,∠QEK=∠CQE,∴∠PEK+∠QEK=∠APE+∠CQE,∴∠APE+∠CQE=∠PEQ=130°,∵PE、QE分别为∠APF、∠CQF的角平分线,∴∠EPF=∠APE,∠EQF=∠CQE,∴∠EPF+∠EQF=∠APE+∠CQE=130°,∴∠PFQ=360°﹣∠PEQ﹣(∠EPF+∠EQF)=360°﹣130°﹣130°=100°.故答案为:100.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠APE+∠CQE=∠PEQ.22.【分析】根据平行四边形的判定定理得到四边形ABCD是平行四边形,求得AD∥BC,根据平行线的性质得到∠EDG=∠FBG设运动时间为t,点G的运动速度为v,根据全等三角形的性质进行解答即可.【解答】解:∵AD=BC=6,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EDG=∠FBG,设运动时间为t,点G的运动速度为v,则BF=6﹣3t,DE=t,当0<t≤2时,若△DEG≌△BFG,则,∴,∴,∴v=;若△DEG≌△BGF,则,∴,∴(舍去);当2<t≤4时,若△DEG≌△BFG,则,∴∴,∴v=;若△DEG≌△BGF,则,∴,∴,∴v=1.综上,点G的速度为或或1时,△DEG与△BFG全等.故答案为:或或1.【点评】本题主要考查平行四边形的判定和性质,三角形全等的判定和性质,解题的关键是利用分类讨论思想解答.23.【分析】(1)由“SAS“可证△ABH≌△ADM,可得AH=AM,∠DAM=∠BAH,由“SAS“可证MN =NH,即可求解;(2)先证N'M'=AT=2AP,由线段垂直平分线的性质可得NE=NE',MF=MF',则四边形ENMF的周长=EN+MN+FM+EF=M'N'+MN,即可求解.【解答】解:(1)如图,延长CB至H,使BH=DM,连接AH,又∵∠ABH=∠D=90°,AD=AB,∴△ABH≌△ADM(SAS),∴AH=AM,∠DAM=∠BAH,∵∠MAN=45°,∴∠DAM+∠BAN=45°,∴∠BAN+∠BAH=45°=∠NAH,∴∠NAH=∠MAN,又∵AN=AN,AH=AM,∴△AMN≌△AHN(SAS),∴MN=NH,∵BN+MD=6,∴MN=NH=BH+BN=BN+DM=6,故答案为:6;(2)如图,作点N关于直线AB的对称点为N',点M关于直线AD的对称点为M′,延长AP至T,使得PT=AP,连接AN',AM',NT,连接N'M',交AB于E,交AD于F,连接EN,MF,此时四边形∴B为EE'的中点,D为FF'的中点,又∵四边形ABCD为正方形,∴∠ABN=∠ADM=90°,∴AB为NN'的中垂线,AD为MM'的中垂线,∴AN=AN',AM=AM',∵点P是MN的中点,∴PN=PM,又∵∠NPT=∠MPA,AP=TP,∴△PNT≌△PMA(SAS),∴NT=AM,∠PNT=∠PMA,∴NT=AM',且∠ANT=∠ANP+∠PNT=∠ANP+∠AMP=180°﹣∠MAN,∵AN'=AN,∠ABN'=∠ABN=90°,∴∠BAN'=∠BAN,同理可得∠MAD=∠M'AD,∴∠N'AM'=∠BAN'+∠DAM'+∠BAD=∠BAN+∠DAM+∠BAD=(∠BAD﹣∠MAN)+∠BAD=180°﹣∠MAN,∴∠ANT=∠N'AM',又∵AN'=AN,AM'=NT,∴△N'AM'≌△ANT(SAS),∴N'M'=AT=2AP,∴AB为NN'的中垂线,AD为MM'的中垂线,∴NE=NE',MF=MF',∴四边形ENMF的周长=EN+MN+FM+EF=NE'+MN+MF'+EF=M'N'+MN,∵N'M'=2AP,MN=BN+DM=6,AP=8,∴M'N'+MN=16+6=22,∴当E',M,N,F'在同一直线上时,四边形MEFN的周长有最小值,最小值为22.故答案为:22.【点评】本题属于四边形综合题,主要考查了全等三角形的判定与性质,正方形的性质,等边三角形的性质,轴对称的性质,旋转的性质,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等得出结论.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)利用乌龟始终运动,中间没有停留,而兔子中间有休息的时刻,即可得出折线OABC的意义和全程的距离;(2)根据图象中点A、D实际意义可得速度;(3)利用兔子的速度,求出兔子走完全程的时间,再求解即可.【解答】解:(1)∵乌龟是一直跑而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系,由图象可知:赛跑的全过程为1200米.故答案为:兔子,1200.(2)结合图象得出:兔子在起初每分钟跑400÷5=80(米),乌龟每分钟爬1200÷60=20(米),答:兔子在起初每分钟跑80米,乌龟每分钟爬20米.(3)∵兔子跑了400米停下睡觉,用了5分钟,∴剩余800米所用的时间为800÷100=8(分钟),∴兔子睡觉用了61﹣5﹣8=48(分钟),答:所以兔子中间停下睡觉用了48分钟.【点评】本题主要考查一次函数的应用,结合题意弄清图象中每个点的实际意义是解题的关键.25.【分析】(1)由图2中大正方形的面积直接求和间接求两种方法表示,可得出三式的关系式;(2)把x﹣y=7两边平方,利用完全平方公式化简,再将xy=6代入即可求出x2+y2的值;(3)设2023﹣a=m,a﹣2024=n,则有mn=﹣5,m+n=1,把m+n=1两边平方,利用完全平方公式化简,把mn=﹣5代入求出m2+n2的值,即为所求;(4)设BC=AD=x,则AB=2x,表示出AM与AE的长,由正方形MHQP与长方形ABCD重叠部分的长方形面积为,求出x的值,确定出AM与AF的长,即可求出长方形AMGF的周长.【解答】解:(1)根据题意得:(a+b)2=(a﹣b)2+4ab;故答案为:(a+b)2=(a﹣b)2+4ab;(2)把x﹣y=7两边平方得:(x﹣y)2=49,展开得:x2+y2﹣2xy=49,将xy=6代入得:x2+y2﹣12=49,整理得:x2+y2=61;(3)设2023﹣a=m,a﹣2024=n,则有mn=﹣5,m+n=1,把m+n=1两边平方得:(m+n)2=1,即m2+n2+2mn=1,把mn=﹣5代入得:m2+n2﹣10=1,即m2+n2=11,则(2023﹣a)2+(a﹣2024)2=m2+n2=11;(4)设BC=AD=x,则AB=2x,∵正方形EFGH,矩形AMGF,∴AM=FG=EF=AD﹣MC=x﹣(k+1)=x﹣k﹣1,AE=AB﹣EF﹣FB=2x﹣[x﹣(k+1)]﹣2k=x﹣k+1,∵正方形MHQP与长方形ABCD重叠部分的长方形面积为,即矩形AEHM面积为,∴AM•AE=(x﹣k﹣1)(x﹣k+1)=,即(x﹣k)2﹣1=,整理得:(x﹣k)2=,开方得:x﹣k=(负值舍去),∴AM=﹣1=,AE=+1=,AF=AE+EF=AE+AM=5,则长方形AMGF周长为2(AF+AM)=2×(5+)=13.【点评】此题考查了整式的混合运算﹣化简求值,完全平方公式的几何背景,平方差公式,熟练掌握运算法则及公式是解本题的关键.26.【分析】(1)证△ABC≌△CED即可得证;(2)在AB上截取AF=DF构造△FDN≌△BNM(AAS),从而证出FD=BN=AF,FN=BM,再用线段和差即可得证;(3)类比探究,根据前问思路,构造“一线三等角”的全等,证明BE平分∠ABC,即可得出点E的运动轨迹,再利用面积法求出BN的长度即可.【解答】(1)证明:∵∠B=∠ACD,∠ACE=∠ACD+∠DCE=∠B+∠BAC,∴∠BAC=∠DCE,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴BC=DE.(2)证明:在AB上截取AF=DF,连接DF,∵∠DAN=30°,∴∠DAN=∠ADF=30°,∴∠DFN=60°=∠B,∵∠ANM=∠AND+∠DNM=∠PMN+∠B,且∠DNM=∠B=60°,∴∠AND=∠BMN,在△FDN和△BNM中,,∴△FDN≌△BNM(AAS),∴FD=BN,FN=BM,∴AF=BN,∵AB=BC,∴AB﹣NF=BC﹣BM,即AF+BN=CM,∴CM=2BN.(3)解:如图,在BC上截取BM=CF,连接EM,∵AD=2CF=BM+CF,且AC=BC,∴CD=FM,∵△DEF是等边三角形,∴DF=EF,∠DFE=60°,∵∠DFM=∠CDF+∠C=∠MFE+∠DFE,且∠C=∠DFE=60°,∴∠CDF=∠MFE,∴△DFC≌△FEM(SAS),∴∠FME=∠C=60°,EM=CF,∵BM=CF,∴BM=EM,∴∠EBM=30°,∴BE平分∠ABC,∴如图所示,点E在△ABC的内角∠ABC的角平分线上BN上运动.∴点E的运动路程也就是BN的长度,∵△ABC是等边三角形,BN是角平分线,∴BN⊥AC,∴S△ABC=AC•BN=25,∵AC=6,∴BN=,即点E的运动路程为.【点评】本题主要考查全等三角形的判定和性质、等边三角形的性质等内容,熟练掌握相关知识和添加合适的辅助线是解题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新七年级数学下期末试卷含答案一、选择题1.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)2.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒3.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间4.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°6.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 8.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-4 9.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -= B .321a b += C .491b a -=- D .941a b +=10.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个11.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 12.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( ) A .453560(2)35x y x y -=⎧⎨-=-⎩ B .453560(2)35x y x y =-⎧⎨-+=⎩C .453560(1)35x y x y +=⎧⎨-+=⎩D .453560(2)35x y y x =+⎧⎨--=⎩ 二、填空题13.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.14.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.15.线段CD是由线段AB平移得到的,其中点A(﹣1,4)平移到点C(﹣3,2),点B (5,﹣8)平移到点D,则D点的坐标是________.16.已知(m-2)x|m-1|+y=0是关于x,y的二元一次方程,则m=______.a b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为17.如图,直线//______.18.如图,将周长为10的三角形ABC沿BC方向平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__________.19.用不等式表示x的4倍与2的和大于6,________;此不等式的解集为________.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________三、解答题21.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.22.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.23.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?24.解方程组:1234311236x yx y-+⎧-=⎪⎪⎨--⎪-=⎪⎩25.解不等式组533(2)1233x xx x->-⎧⎪⎨-≤-⎪⎩,并把解集表示在数轴上,再找出它的整数解.【参考答案】***试卷处理标记,请不要删除一、选择题解析:B【解析】试题解析:已知点M (2,-3),则点M 关于原点对称的点的坐标是(-2,3),故选B .2.B解析:B【解析】【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案.【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补),∴318018074106BAC ∠=︒-∠=︒-︒=︒,故选B .【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.3.B解析:B【解析】 解:∵3104<<,∴41015<+<.故选B .点睛:此题主要考查了估算无理数的大小,正确得出10 的取值范围是解题关键.4.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD =180°,再根据垂直的定义求出∠2的度数. 详解:∵直线a ∥b ,∴∠2+∠BAD =180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.6.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.7.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.8.D解析:D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.9.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.10.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.解析:C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.12.B解析:B【解析】根据题意,易得B.二、填空题13.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=解析:48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=48(cm2)故答案为48 cm2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.14.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25【解析】【分析】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.15.(3﹣10)【解析】【分析】由于线段CD 是由线段AB 平移得到的而点A (-14)的对应点为C (-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B (5-8)的对应点D 的坐标【详解】解析:(3,﹣10)【解析】【分析】由于线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B (5,-8)的对应点D 的坐标.【详解】∵线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (-3,2),∴由A 平移到C 点的横坐标减小2,纵坐标减小2,则点B (5,-8)的对应点D 的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.16.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.17.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB⊥BC,∠1=55°,∴∠3=90°-55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。

相关文档
最新文档