7-1初中数学
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)
A.﹣4B.±4C.4D.±8
10.若 ,则 的值等于( )
A.37B.27C.25D.44
11.如 , ,则 ( )
A.-11B.11
C.-7D.7
12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()
A. B.
C. D.
10.A
解析:A
【分析】
利用完全平方公式进行运算即可得.
【详解】
,
,即 ①,
又 ,
②,
由① ②得: ,
即 ,
故选:A.
【点睛】
本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.
11.D
解析:D
【分析】
根据 直接代入求值即可.
【详解】
解:当 , ,时,
=9-2=7.
故选:D.
【点睛】
本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键
∵ , ,
∴x+y= ,
∴
=
=
=20,
故选:A.
【点睛】
此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.
7.C
解析:C
【分析】
表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.
【详解】
解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,
解析:6
【分析】
根据平方差公式计算.
【详解】
( +1)( ﹣1)=7-1=6,
最新人教版初中七年级上册数学第一章《有理数的加减法》课时4精品课件
+ 4.4
= −18.25 + +18.25 + [−4.4 + 4.4]
= 0+0
=0.
(2)−
2 3
+
−
1 6
−
−
1 4
−
1 2
=−
2 3Leabharlann −1 6+
1 4
−
1 2
=−
8 12
−
2 12
+
3 12
−
6 12
=− 1132.
本题源于《教材帮》
课堂小结
有理数加减法混合运算 方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c); 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算. 方法二:省略括号法 1.省略括号; 2.同号放一起; 3.进行加减运算.
新知探究 知识点1
例 计算:(-20)+(+3)-(-5)-(+7)
分析:这个算式中有加法,也有减法.可以根据有理数减法法则,把它改写 为 (-20)+(+3)+(+5)+(-7).
解: (-20)+(+3)-(-5)-(+7) = (-20)+(+3)+(+5)+(-7) = [(-20)+(-7)]+[(+5)+(+3)] = (-27)+(+8) = -19.
后序
亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。希望我的文档能 够帮助到你,促进我们共同进步。
孔子曰,三人行必有我师焉,术业有专攻,尺有所长,寸有所短,希望你能 提出你的宝贵意见,促进我们共同成长,共同进步。每一个文档都花费了我大量 心血,其目的是在于给您提供一份参考,哪怕只对您有一点点的帮助,也是我最 大的欣慰。如果您觉得有改进之处,请您留言,后期一定会优化。
2019—2020年沪科版七年级数学第一学期例题与讲解:第1章1.5有理数的乘除.docx
1.5 有理数的乘除1.有理数的乘法(1)有理数的乘法法则①两数相乘,同号得正,异号得负,并把绝对值相乘.如:-3×(-2)=+(3×2)=6,(-2)×3=-(2×3)=-6.②任何数与零相乘仍得零.如:(-5)×0=0.(2)有理数乘法的步骤第一步:确定积的符号;第二步:计算各因数的绝对值;第三步:计算绝对值的积.由于绝对值总是正数或0,因此绝对值相乘就是小学中的算术乘法.由此可见,有理数乘法实质上就是通过符号法则,归结为算术的乘法完成的.解技巧 有理数的乘法运算技巧(1)两个有理数相乘时,先确定积的符号,再把绝对值相乘,带分数相乘时,要先把带分数化为假分数,分数与小数相乘时,一般统一写成分数.(2)一个数同零相乘,仍得零,同1相乘,仍得原数,同-1相乘得原数的相反数.(3)两数相乘,若把一个因数换成它的相反数,则所得的积是原来积的相反数.【例1】 计算:(1)45×0.2; (2)13×(-4);(3)(-1.3)×(-5); (4)221133⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (5)1106⎛⎫-⨯ ⎪⎝⎭.分析:利用乘法法则进行计算.这里(1)中是正数和正数相乘,因而得正;(2)中是正数和负数相乘,因而得负;(3)中是负数与负数相乘,因而得正;(4)中是负数和负数相乘,因而得正;(5)中是负数和零相乘,因而得零.小数和带分数一般化为分数或假分数.解:(1)原式=45×15=425; (2)原式=-(13×4)=-52;(3)原式=+(1.3×5)=6.5;(4)原式=5735326⎛⎫+⨯= ⎪⎝⎭; (5)原式=0.2.倒数(1)倒数的概念如果两个有理数的乘积为1,我们称这两个有理数互为倒数,如2与12,⎝ ⎛⎭⎪⎫-32与⎝ ⎛⎭⎪⎫-23分别互为倒数.用字母表示:若ab =1,则a ,b 互为倒数,反之,若a ,b 互为倒数,则ab =1.(2)倒数的求法若a ≠0,则a 的倒数是1a,正数的倒数是正数,负数的倒数是负数,0无倒数.为了方便,一般采用如下方法:①非零整数——直接写成这个数分之一.如:4的倒数是14,-6的倒数是-16. ②分数的倒数——把分子、分母颠倒写即可;带分数要化为假分数,小数要化为分数后再把分子、分母颠倒位置写.如:-34的倒数是-43;-0.25的倒数是-4,-123的倒数是-35. ③倒数等于本身的数是±1,零没有倒数.辨误区 倒数与相反数的区别一定要注意倒数的概念和相反数的概念的区分,互为相反数的两数之和为零,互为倒数的两数之积为1,同时正数的倒数仍为正数,负数的倒数仍为负数.【例2】 求下列各数的倒数.(1)-3;(2)45;(3)-0.2;(4)323. 分析:求一个整数的倒数直接写成这个数分之一即可;求一个分数的倒数,就是把这个分数的分子、分母颠倒位置即可;求一个小数的倒数,先把这个小数化成分数,再求其倒数;求一个带分数的倒数,要先化为假分数再求.解:(1)-3的倒数为-13;(2)45的倒数为54;(3)由于-0.2=-15,所以-0.2的倒数为-5;(4)由于323=113,所以323的倒数为311. 3.有理数乘法法则的推广(1)几个数相乘,有一个因数为零,积为零.如:1×2×(-5)×0×6=0.(2)几个不为零的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(3)由上面的法则可以知道:几个不等于零的数相乘,首先确定积的符号,然后,再把每个因数的绝对值相乘.这就是多个因数求积的常用方法.解技巧 多个有理数相乘的技巧多个有理数相乘时,先观察因数中有没有0.如果有0,积就是0;如果没有0,一般按从左向右的顺序计算绝对值的积作为积的绝对值.【例3】 计算:(1)1172137732222⎛⎫⎛⎫+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭; (2)(+5.9)×(-1 992)×(+1 993)×(-2 000)×0;(3)(-5)×8×(-7)×(-0.25).分析:(1)四个因数只有一个是负数,所以结果是负数,再把带分数化为假分数,约分之后得出结果;(2)因为乘式中含有一个因数0,故积为零;(3)式子中的负数有3个,所以结果是负数.多个有理数进行运算时,应一次确定结果的符号,再计算各因数绝对值的积,这样既简捷又不易出错.解:(1)1172137732222⎛⎫⎛⎫+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =-227×223×722×2122=-7.(2)(+5.9)×(-1 992)×(+1 993)×(-2 000)×0=0.(3)(-5)×8×(-7)×(-0.25)=-(5×8×7×0.25)=-70.4.有理数的除法(1)有理数除法的意义在有理数运算中,除法的意义依然是乘法的逆运算,即已知两个因数的积和其中一个因数,求另一个因数的运算.除法可以转化为乘法来进行.(2)有理数的除法法则①有理数的除法法则一(直接相除的法则):Ⅰ.两数相除,同号得正,异号得负,并把绝对值相除.Ⅱ.零除以一个不为零的数,仍得零.零不能作除数.用字母表示:Ⅰ.若a >0,b >0,则a b =|a||b|;若a <0,b <0,则a b =|a||b|; 若a <0,b >0,则a b =-|a||b|;若a >0,b <0,则a b =-|a||b|. Ⅱ.若a ≠0,则0a=0. ②有理数的除法法则二(化除为乘的法则):除以一个不为零的数,等于乘以这个数的倒数.用字母表示:a ÷b =a ×1b(b ≠0). 析规律 两个除法法则的区别对于除法的两个法则,在计算时根据具体情况,灵活运用,一般在不能整除的情况下应用法则二,在能整除的情况下,应用法则一比较简便.【例4】 计算:(1)(-16)÷(-4); (2)3324⎛⎫-÷ ⎪⎝⎭; (3)57168⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭; (4)0÷(-20).分析:在做除法时,选择哪一个除法法则,应从运算是否方便考虑,和乘法一样,做除法时,先要把带分数化为假分数.解:(1)(-16)÷(-4)=16÷4=4; (2)333422423⎛⎫-÷=-⨯=- ⎪⎝⎭; (3)57168⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=116×87=4421;(4)0÷(-20)=0.5.有理数的乘、除混合运算(1)有理数的乘、除混合运算①形式a ÷b ÷c ;a ×b ÷c ;a ÷b ×c ,这些都是有理数的乘、除混合运算.②方法有理数的乘、除混合运算,先将除法转化为乘法,然后按照乘法法则确定积的符号,最后求出结果.如,计算:(-81)÷214×49÷(-15). ③运算顺序对于连除或乘除混合运算问题,我们可以按从左到右的顺序依次进行计算,也可以直接把除法转化为乘法来计算.(2)有理数的四则混合运算对于含有加、减、乘、除的有理数的混合运算,运算顺序是:如没有括号,应先做乘除运算,后做加减运算;如有括号,应先做括号里的运算,再做其他运算.【例5-1】 计算:(1)(-35)×(-312)÷(-114)÷3; (2)-214÷1.125×(-8). 分析:乘除混合运算要按从左到右顺序进行.对于有理数的乘除法混合运算,应将它们统一为有理数的乘法运算.先由负因数的个数确定结果的符号,再把带分数化为假分数,同时把小数也化为分数,最后考虑约分.解:(1)(-35)×(-312)÷(-114)÷3 =(-35)×(-72)×(-45)×13=-35×72×45×13=-1425; (2)-214÷1.125×(-8) =94÷98×8 =94×89×8=16. 【例5-2】 计算:(15-13)×(14+15)÷(-120)÷(-13). 分析:本题是有理数的加减乘除混合运算,可按四则混合运算的顺序进行计算,有括号的要先算括号里面的.解:(15-13)×(14+15)÷(-120)÷(-13) =-215×920×(-20)×(-3) =-(215×920×20×3)=-185. 6.有理数的乘法的运算律(1)乘法交换律两个数相乘,交换因数的位置,积不变.即ab =ba.(2)乘法结合律三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.即(ab)c =a(bc).(3)分配律一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即a(b +c)=ab +ac.分配律在有理数的运算以及今后的有关代数式运算及变形中运用非常广泛,它的正向运用(即从左到右)与逆向运用(即从右到左)对于不同形式的计算与变形都起着简化的作用,应注意灵活运用.如,计算:(134-78-712)×(-117),考虑前一个括号里面的各个因数的分子都是7,而后面括号里面的因数的分母是7,可以直接利用乘法的分配律简化运算.【例6】 用简便方法计算:(1) (-12+16-38+512)×(-24); (2)-13×23-0.34×27+13×(-13)-57×0.34. 分析:第(1)题中有(-24)是括号中各分母的公倍数,所以应利用分配律变形;第(2)题把-0.34×27与13×(-13)交换位置,然后利用结合律将前两项结合、后两项结合,即分成两组,再分别在每组中逆用分配律即可.解:(1)原式=⎝ ⎛⎭⎪⎫-12×(-24)+16×(-24)+38×24+512×(-24) =12-4+9-10=7.(2)原式=-13×23+13×(-13)-0.34×27-57×0.34=⎣⎢⎡⎦⎥⎤(-13)×23+13×(-13)+⎣⎢⎡⎦⎥⎤0.34×⎝ ⎛⎭⎪⎫-27-57×0.34 =2125(13)0.343377⎡⎤⎡⎤⎛⎫⎛⎫-⨯++⨯-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=(-13)×1+0.34×(-1)=-13-0.34=-13.34.7.有理数混合运算的技巧进行有理数的乘除运算,除了注意运算顺序和运算法则之外,还要注意一些运算技巧,力求使运算简便.解答有理数除法运算有关的问题时,我们应注意利用有理数的除法法则,将有理数的除法运算转化为有理数的乘法运算.如果被除数或除数中有小数应先化为分数,有带分数应先化为假分数,便于约分,简化运算.辨误区 除法没有分配律除法没有分配律,如在有理数的除法运算中,如果按a ÷(b +c)=a ÷b +a ÷c 进行分配就错了.除法是没有分配律的,从而不能运用分配律.像6÷3×13有时会习惯性地将3和分母中的3约分,这是错误的,应严格按运算顺序进行计算,并经过一定练习才能灵活进行有理数的混合运算.有理数的乘、除混合运算的性质有:①a ÷b ÷c =a ÷(b ×c)=a ÷c ÷b.即一个数除以另一个数所得的商再除以第三个数,等于第一个数除以第二、三两数的积;也等于第一个数除以第三个数所得的商再除以第二个数.如:740÷(37×4)=740÷37÷4=20÷4=5.②a ×b ÷c =a ×(b ÷c)=(a ÷c)×b.即两个数的积除以第三个数,等于其中任意一个乘数除以第三个数,再与另一个乘数相乘.如:136×73÷68=2×73=146.③a ÷b ×c =a ÷(b ÷c).即第一个数除以第二个数所得的商再乘以第三个数,等于先求出第二个数除以第三个数的商,再用第一个数除以这个商.如:480 000÷144×12=480 000÷(144÷12)=480 000÷12=40 000.以上三个公式中,添括号或去括号都有规律.添括号时,如果一个数的前面是乘号,那么这个数前面添上括号后,括到括号里面的运算符号不变;如果一个数的前面是除号,那么在这个数前面添上括号后,括到括号里面的运算符号要改变,乘号变除号,除号变乘号.【例7-1】 计算:(1)⎝ ⎛⎭⎪⎫14-15+13÷160; (2)160÷111453⎛⎫-+ ⎪⎝⎭. 分析:(1)先将除法转化为乘法,运用了分配律后使运算简便;第(2)题属于易错题,因为除法没有分配律,只有乘法才有分配律,而一些学生往往因不看清题目而错误地运用运算律. 解:(1)方法一:⎝ ⎛⎭⎪⎫14-15+13÷160=⎝ ⎛⎭⎪⎫1560-1260+2060×60=2360×60=23. 方法二:⎝ ⎛⎭⎪⎫14-15+13÷160=(14-15+13)×60 =14×60-15×60+13×60=23. (2)方法一:160÷(14-15+13) =160÷(1560-1260+2060)=160÷2360=123. 方法二:∵⎝ ⎛⎭⎪⎫14-15+13÷160=(14-15+13)×60=14×60-15×60+13×60=23, ∴根据倒数的定义有160÷(14-15+13)=123. 【例7-2】 计算:(-48)×⎝ ⎛⎭⎪⎫-23+34+112. 分析:在有理数的计算中,如果能够准确地确定运算结果的符号,则可省去一些不必要的括号,运算步骤的简明与流畅可以提高运算的正确率.解:(-48)×⎝ ⎛⎭⎪⎫-23+34+112 =48×23-48×34-48×112=32-36-4=-8.【例7-3】 计算:-3.5×35.2+(-7)×32.4.分析:仔细观察算式的特点,可以发现3.5和7存在倍数关系,不妨将7写成3.5×2,然后逆用分配律来简化计算.解:-3.5×35.2+(-7)×32.4=-3.5×35.2+(-3.5)×2×32.4=-3.5×(35.2+2×32.4)=-3.5×100=-350.【例7-4】 计算:0.25÷168×(-1517). 分析:本题如果先计算0.25÷168的结果再乘以⎝ ⎛⎭⎪⎫-1517,运算过程就很繁杂,而且容易出错.仔细观察每一个数的特点,考虑0.25×4=1,可将68分解成4×17., 去括号时,如果括号的前面是乘号,那么去掉括号后,括号里面的运算符号不变;如果括号的前面是除号,那么去掉括号后,括号里面的运算符号要改变,乘号变除号,除号变乘号.解:0.25÷168×(-1517)=0.25×68×(-1517) =0.25×4×17×(-1517)=(0.25×4)×151717⎡⎤⎛⎫⨯- ⎪⎢⎥⎝⎭⎣⎦=1×(-15)=-15. 8.计算器的使用计算器是一种方便实用的计算工具,计算速度快,计算准确,操作方便.使用时要特别注意以下几点:(1)按下数字键后,应看清显示器上的显示是否正确;(2)用计算器进行有理数的加减运算时,按式子的顺序从左向右按;(3)用计算器进行有理数的乘除运算时,特别是有负数出现时,先应按(-),再输入其绝对值;(4)对于加减乘除混合运算,只要按算式的书写顺序输入,计算器会按要求求出结果.【例8】 用计算器计算:-15.13+4.85+(-7.69)-(-13.88).分析:不同的计算器用法不一样,要注意,使用计算器能进行一些较为复杂的运算. 解:用带符号键(-)的计算器计算.按键顺序: (-)15·13+4·85+(-)7·69-(-)13·88=. 得到-4.09.9.有理数的混合运算在实际问题中的应用有理数的混合运算在现实生活中有着广泛的应用,是解决其他数学问题的基础,也是解应用题的基础,多以实际应用、规律探究型问题的形式出现.尤其是运算律在现实生活中的应用更加广泛.在现实生活中我们经常会遇到一些较大的或者较复杂的数的混合运算,这时就要利用运算律进行转化,使运算简化.解决实际问题的关键是根据问题情境找出数量关系,将实际问题转化为所学的数学问题.有理数的混合运算可以解决一些实际应用题,如:银行利息计算、话费计算等.解决这类问题的关键是将实际问题抽象成数学问题,用运算符号正确表达出关系式,注意单位和解题格式.【例9-1】 某校体育器材室共有60个篮球.一天课外活动,有3个班级分别计划借篮球总数的12、13和14.请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?分析:本题可以转化为:求一个数的几分之几是多少的数学模型,所以用乘法来解答.解:60×1111234⎛⎫--- ⎪⎝⎭=60×1-60×12-60×13-60×14=60-30-20-15=-5(个).答:不够借,还缺5个篮球.【例9-2】 根据实验测定,高度每增加1 km ,气温大约下降6 ℃,小王是一位登山运动员,他在攀登山峰的途中发回信息,报告他所在的位置的气温是-15 ℃,如果当时地面的气温是3 ℃,则小王所在的位置离地面的高度是多少?分析:地面的温度是3 ℃,小王所在的位置是-15 ℃,我们可以根据温度差与高度每增加1 km 气温大约下降6 ℃之间的关系,通过计算得到小王所在位置的高度.解:[3-(-15)]÷6×1=3(km).所以小王所在的位置离地面的高度为3 km.。
初中一年级上册数学知识点总结
初中一年级上册数学知识点总结一、内容概览初中数学一年级的课程是初中数学学习的基础阶段,为后续的复杂数学问题打下坚实的基石。
对于刚升入初中的同学们来说,上册数学知识点众多且涉及面广,涵盖整数、小数、分数等基础数学知识。
让我们一同走进这个奇妙的数学世界,探寻初中一年级上册的数学知识点吧!接下来我们将逐一梳理这些知识点,帮助大家更好地理解和掌握。
同学们让我们一起加油,迎接数学学习的挑战吧!1. 初中数学课程的重要性初中数学课程的重要性不言而喻,数学不仅仅是一门学科,更是我们日常生活中无处不在的工具。
从小学到初中,数学为我们打开了一个全新的世界,这里既有基础的算术运算,也有复杂的代数、几何知识。
在初中一年级上册的数学课程中,我们首先要明白数学的重要性。
数学是思维的体操,通过学习数学,我们的逻辑思维、抽象思维、问题解决能力都会得到极大的锻炼。
在初中阶段,我们会接触到代数、几何等更为抽象的知识,这些知识的学习过程,也是我们的思维不断得到锻炼和成长的过程。
数学在日常生活中的应用也非常广泛,无论是购物计算、时间规划,还是工程建设、财务管理,都离不开数学。
甚至在我们娱乐时,很多游戏、谜题也需要数学知识和技巧。
初中一年级上册的数学课程,为我们打下了日常生活应用的基础。
此外数学还是很多学科的基础,物理、化学、生物、计算机等学科学习都离不开数学的支持。
初中数学的学习,不仅为我们高中更深层次的学习打下基础,还为我们未来的职业发展提供了有力的支持。
所以初中一年级上册的数学课程,不仅仅是一门学科的学习,更是我们思维能力、生活能力、未来职业发展能力的一次全面提升。
让我们一起走进数学的世界,感受数学的魅力吧!2. 初一上册数学的主要内容及特点在初中一年级上册的数学学习中,我们将开启全新的数学知识之旅。
这一册的数学内容主要包括数与代数部分,它不仅是初中数学的基础,更是我们日常生活和今后学习的重要工具。
接下来让我们看看这一年我们都要学习哪些内容。
北师大版初中数学七年级上册全册学案[版教案]名师优秀教案
例 2、从一个七边形的某边上一点出发,分别连结这个点和其余各顶点,可以 把这个七边形分割成多少个三角形 , 想一想,在画一画,如果是五边形、十二边形 呢 ,n(n?3) 边形呢 ,
例 3、从一个七边形内的某点出发,分别连结这个点和其余各顶点,可以把这 个七边形分割成多少个三角形 , 想一想,在画一画,如果是五边形、十二边形 呢 ,n(n?3) 边形呢 ,
觉,激发学生的形象思维 (
教学重点 : 引导学生参与用一个平面截一个正方体的数学活动,体会截面和几
何体的关系,学生充分动手操作、
自主探索、合作交流 ( 教学难点 : 同一几何体不同角度切截所得截面的不同形状的想象与截法,从切 截活动中发现规律,并能用自己的 语言来表达,能应用规律来解决问题,培养说理、交流的能力 二、典例精析 1、做一做 (1) 想一想 : 用一个平面去截正方体,想一想截出的面可能是什么形状 , 分小组 讨论。 (2) 做一做 : 拿出准备的正方体,学生分小组验证刚才的想象 (3) 注意事项与效果 : ?先商定如何切割 , ?想象切割后的几何体和截面分别是什么形状 , 可在草稿上描出草图,并指定专 人执笔,作好记载 . ?切开实物,进行对比 . ?通过实验回答 : 用平面去截一个正方体,其截面可以是三角形 , 梯形 , 四边形, 六边形,七边形吗 , 2、一个几何体被平面所截后,得到一个圆形,则原几何体可能是什么形状 , 如 果是三角形呢 , 3、探究题 : 用平面去截一个棱柱,你能得到哪几种平面图形 , 三、随堂演练 1( 用平面去截一个几何体,若截面形状是圆,则原几何体一定不是 ( ). A、三棱柱 B 、圆柱 C、球 D 、圆锥 2( 指出图中几何体截面的形状是 ( )
人教初中数学七下 7.1.1 有序数对课件 【经典初中数学课件 】
3.列频数分布表 对落在各个小组内的数据进行累计,得到
各个小组内的数据的个数(叫做频数).整理 可以得到频数分布表。
从表中可以看出,身高在155≤x<158, 158≤x<161,161≤x<164三个组的人数最多, 一共有41人,因此可以从身高在155~164 cm (不含164 cm)的学生中选队员.
列出样本的频数分布表,画出频数分布直方图。
:(1)计算最大值与最小值的差.
(2)决定组距与组数
.
解:(1)计算最大值和最小值的差 在样本数据中,最大值是7.4,最小值是 4.0,它们的差是
7.4-4.0=3.4(cm) (2)决定组距和组数 最大值与最小值的差是3.4 cm,若取组 距为0.3 cm,那么由于
13
6 .4 x 6 .7 正正一
11
6 .7 x 7 .0正正
10
7 .0 x 7 .3
2
7 .3 x 7 .6一
1
合计
100
(4) 画频数分布直方图
30 25 20 15 10
5 0
1
4.0<=x<4.3 4.3<=x<4.6 4.6<=x<4.9 4.9<=x<5.2 5.2<=x<5.5 5.5<=x<5.8 5.8<=x<6.1
.(3)列频数分布表
分组
划记
频数
4 .0 x 4 .3 一
1
4 .3 x 4 .6 一
1
4 .6 x 4 .9
2
4 .9 x 5 .2 正
5
5 .2 x 5 .5 正正一
11
5 .5 x 5 .8 正正正
冀教版七年级数学上册知识讲义-1.相反数
初中数学相反数 课标定位一、考点突破 1. 掌握相反数的意义;2. 会求一个数的相反数;3. 结合数轴理解相反数的几何意义,体验数形结合的数学思想。
二、重难点提示重点:求一个数的相反数。
难点:根据相反数的意义化简符号。
考点精讲1. 相反数的代数意义只有符号不同的两个数叫做互为相反数。
a 和-a 互为相反数,a 叫做-a 的相反数,-a 叫做a 的相反数。
【注意】-a 不一定是负数,a 不一定是正数。
2. 相反数的几何意义在数轴上,到原点两边距离相等的两个点表示的两个数互为相反数。
3. 相反数的性质正数的相反数一定是负数,负数的相反数一定是正数,0的相反数是0。
典例精析例题1 完成下列两题:(1)下列各数中互为相反数的是( )A. -6与-(+6)B. -(-7)与+(-7)C. -(+2)与+2.2D. -13与―(―23) (2)下列四个数中,其相反数是正整数的是( )A. 3B. 13C. -2D. -12思路分析:根据相反数的概念及正整数的概念,采用逐一检验法求解即可。
答案:(1)“+”号可以省略,两个“-”号表示一个负数的相反数,如-(-7)表示-7的相反数,-7的相反数是7,所以-(-7)=7,而+(-7)=-7,所以本题选B ,其他选项均不正确。
(2)其相反数是正整数的数,首先必须是负数,则可舍去A 、B ,而且相反数还得是整数,又舍去D,故选C。
技巧点拨:本题主要考查相反数的意义,一个数前面如果有多个符号,可以根据相反数的意义将符号化简。
例题2若m-4的相反数是-11,求3m+1的值。
思路分析:根据相反数的性质求解即可。
答案:因为11的相反数是-11,所以m-4=11,解得m=15。
所以3m+1=3×15+1=46。
技巧点拨:本题主要考查了互为相反数的定义,注意任意一个数都有相反数,但其相反数是唯一的。
例题3如图,在数轴上有三点A、B、C,请根据图示,回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?A B C-56-4-6-2012345-1-3思路分析:(1)若将B点向左移动3个单位后,则变为-5,三个点中点B最小,所表示的最小的数是-5;(2)分A不动,B移动;B不动,A移动两种情况讨论;(3)移动方法有3种:①把C、B两点移到A点处;②把A、C两点移到B点处;③把A、B两点移到C点处。
北师大版初中数学八年级(上)备课资料7-1 为什么要证明
第七章平行线的证明1为什么要证明典型例题题型一实验验证结论例1观察,再验证.(1)图1①中黑色的边是直的还是弯曲的?(2)图1②中两条线段a与b,哪一条更长?①②图1分析:先观察得出结论,再实验验证.解:对于(1)题,直接观察图1①可能得出结论:黑色的边是弯曲的.但实际上,黑色的边是直的.对于(2)题,直接观察图1②可能得出结论:线段b比线段a短.但实际上,这两条线段同样长.点拨:要判断一个数学结论是否正确,仅仅依靠经验、观察是不够的,必须给出严格的证明或实验验证.例2在学习中,小明发现:当n=1,2,3时,n2-6n的值都是负数.于是小明猜想:当n 为任意正整数时,n2-6n的值都是负数.小明的猜想正确吗?请简要说明你的理由.分析:因为n2-6n=n(n-6),所以只要n≥6,该式子的值都表示非负数,所以猜想不正确.解:(方法1:利用反例证明)不正确.理由:例如当n=7时,n2-6n=7>0.(方法2)不正确.理由:n2-6n=n(n-6),当n≥6时,n2-6n≥0.特别提示:通过此题可说明一点:学生在解答问题时不能太片面,而要全面考虑问题.题型二推理的应用1.图形中的推理例3如图2所示,一根细长的绳子,沿中间对折,再沿对折后的中间对折,这样连续沿中间对折5次,用剪刀沿5次对折后的中间将绳子全部剪断,此时细绳被剪成段.图2点拨:从简单、特殊的情况入手,运用比较、归纳的方法,探究内在的规律.2.数学式子中的推理例4观察下列关于自然数的等式:①1×7+2×9=52;②2×8+2×10=62;③3×9+2×11=72;…根据上述规律解决下列问题:(1)完成第4个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.解题关键:观察等式左右两边的数字变化情况,找出每个式子与序号之间的关系.解:(1)根据题意得,第4个等式为4×10+2×12=82.(2)猜想的第n个等式为n(n+6)+2(n+8)=(n+4)2.验证:左边=n(n+6)+2(n+8)=n2+6n+2n+16=n2+8n+42=(n+4)2=右边,所以n(n+6)+2(n+8)=(n+4)2.3.假设论证例5甲、乙、丙、丁四人的车分别为白色、银色、蓝色和红色.在问到他们各自车的颜色时,甲说:“乙的车不是白色的.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,那么以下说法正确的是()A.甲的车是白色的,乙的车是银色的B.乙的车是蓝色的,丙的车是红色的C.丙的车是白色的,丁的车是蓝色的D.丁的车是银色的,甲的车是红色的解析:∵丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,假设乙的车是红色的,∴乙说的是实话,∴丙的车也是红色的,和只有一个人的车是红色的矛盾.假设丙的车是红色的,∴丙说的是实话,而乙说“丙的车是红色的”,∴乙说的是实话,∴有两人说的是实话,与只有一个人说的是实话矛盾,∴只有甲的车是红色的.∴甲说的是实话,丙说的不是实话.∵丙说:“丁的车不是蓝色的”,∴丁的车是蓝色的,∴乙和丙的车一个是白色的,一个是银色的.∵甲说:“乙的车不是白色”,且甲说的是实话,∴丙的车是白色的,乙的车是银色的.综上,甲的车是红色的,乙的车是银色的,丙的车是白色的,丁的车是蓝色的.答案:C4.推理论证例6某球赛小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁解析:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分为5分,1胜2平,丙得分为3分,1胜0平,丁得分为1分,0胜1平.∵甲、乙都没有输球,∴甲一定与乙平.∵丙得3分,1胜0平,乙得5分,1胜2平,∴与乙打平的球队是甲与丁.答案:B拓展资源哥德巴赫猜想两百多年前,彼得堡科学院院士哥德巴赫曾研究过“将一个数表示成几个素数的和”的问题,他取了很多数做试验,想把它们分解成几个素数的和,结果得到一个断语:“总可将任何一个数分解成不超过三个素数之和.”但是哥德巴赫不能证明这个问题,甚至连如何证明的方法也没有,于是他写信给另一名彼得堡科学院院士、著名数学家欧拉,他在1742年6月7日的信中写道:“我想冒险发表下列假定‘大于5的任何数都是三个素数的和’.”这就是后来举世闻名的哥德巴赫猜想.同年6月30日,欧拉在给哥德巴赫的回信中说:“我认为‘每一个偶数都是两个素数之和’,虽然我还不能证明它,但我确信这个论断是完全正确的.”这两个数学家的通信内容传播出来之后,人们就称这个猜想为哥德巴赫猜想或者哥德巴赫-欧拉猜想.完整地说,哥德巴赫猜想是:大于1的任何数都是三个素数的和.后来,人们把它归纳为:命题A:每一个大于或者等于6的偶数,都可以表示为两个奇素数的和;命题B:每一个大于或者等于9的奇数,都可以表示为三个奇素数的和.人们在研究命题A的过程中,开始引进了“殆素数”的概念.所谓“殆素数”就是素数因子(包括相同的和不同的)的个数不超过某一固定常数的自然数.我们知道,除1以外,任何一个正整数,一定能表示成若干素数的乘积,其中每一个素数,都叫做这个正整数的素因子.相同的素因子要重复计算,它有多少素因子是一个确定的数.例如,从25~30这六个数中,25=5×5有2个素因子,26=2×13有2个素因子,27=3×3×3有3个素因子,28=2×2×7有3个素因子,29是素数有1个素因子,30=2×3×5有3个素因子.于是可说25,26,29是素因子不超过2的殆素数,27,28,30是素因子不超过3的殆素数.用殆素数的新概念,可以提出命题D来接近命题A.命题D:每一个充分大的偶数,都是素因子的个数不超过m与n的两个殆素数之和.这个命题简化为“m+n”.这样,哥德巴赫猜想的最后证明的方向就更明朗化了:如果能证明,凡是比某一个正整数大的任何偶数,都能表示成一个素数加上两个素数相乘,或者表示成一个素数加上一个素数,就算证明了“1+2”.当然如果能证明“1+1”就基本上证明了命题A,也就基本解决了哥德巴赫猜想了.1920年,挪威数学家布朗证明了“9+9”.1924年,德国数学家拉代马哈证明了“7+7”.1932年,英国数学家埃斯特曼证明了“6+6”.1938年,苏联数学家布赫雪托布证明了“5+5”.1938年,中国数学家华罗庚证明了几乎全体偶数都能表示成两个素数之和,即几乎所有偶数“1+1”成立.1940年,苏联数学家布赫雪托布证明了“4+4”.1948年,匈牙利的瑞尼证明了“1+c”,其中c是一个很大的自然数.1956年,中国数学家王元证明了“3+4”,稍后证明了“3+3”和“2+3”.1956年,苏联数学家维诺格拉多夫证明了“3+3”.1957年,中国数学家王元又证明了“2+3”.1962年,中国年轻数学家潘承桐证明了“1+5”,这是证明了相加的两个数中,有一个肯定是素数的成果,而另一个殆素数的因子小到不超过5.1962年,苏联数学家巴尔巴恩也证明了”1+5”.1963年,中国数学家王元、潘承桐及苏联数学家巴尔巴恩分别证明了“1+4”.1965年,维诺格拉多夫、布赫雪托布证明了“1+3”.1965年,意大利数学家朋比尼也证明了“1+3”.1966年,中国数学家陈景润宣布证明了“1+2”.。
2024-2025学年初中七年级上学期(第1-2章) 数学月考试题及答案(新浙教版)
2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米B .30+米C .10−米D .10米2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710×B .37.8710×C .47.8710×D .50.78710×3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个B .2个C .3个D .4个4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−−B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)+C .-|-0.01|与1100−−D .13−与0.3 6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3B .2C .1−D .07.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34B .32−C .152D .129.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a <<②1c <−③2b >−④b a <⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg .1314.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .15.比较两数大小: −76−16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 17.比2−小6的数是 .18.当||2,||4x y ==,且2x y +=−,则xy = . 19.已知1xyz xyz =,则x zy x y z++值为 .20.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 .三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−;(2)12433−÷−×;(3)()()32211234−+×−+−;(4)()235363412−+×−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.24.(本题8分)如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:.(2)A、B两点间的距离是,A、C两点间的距离是.(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×.27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×=. 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1 B .任何非零数的圈3次方都等于它的倒数 C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472−−÷−×−④⑥⑧.2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米 B .30+米 C .10−米 D .10米【答案】A【分析】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可. 【详解】解:∵向东走40米记作40+米, ∴向西走30米可记作30−米, 故选A .2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710× B .37.8710×C .47.8710× D .50.78710×【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中≤<110a ,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将78700用科学记数法表示为:47.8710× 故选:C .3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】将每个数进行化简后,得出判断.【详解】解:239−=−,2(93) ,(2)2−−=,|5|5−−=−,因此负数有:23−和|5|−−,共有2个, 故选:B .4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−− B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−【答案】C【分析】本题考查了绝对值、有理数的乘方、相反数、倒数,熟练掌握这几个定义是解题的关键.根据绝对值、有理数的乘方、相反数、倒数的定义分别计算判断即可. 【详解】解:A 、22−=,故此选项不符合题意; B 、()328−=−,故此选项不符合题意; C 、−2的相反数是2,故此选项符合题意; D 、−2的倒数是0.5−,故此选项不符合题意; 故选:C .5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)−+C .-|-0.01|与1100−−D .13−与0.3 【答案】C【分析】先化简,根据相反数的定义:只有符号不同的两个数即可求解. 【详解】解:A .−(+5)=−5−5)=−5,选项A 不符合题意; B .−(+0.5)=−0.5,与12−相等,选项B 不符合题意;C .−|−0.01|=−0.01,−(1100−)=1100=0.01,−0.01与0.01互为相反数,选项C 符合题意; D .13−与0.3不是相反数,选项D 不符合题意;故选:C .6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3 B .2 C .1− D .0【答案】B【分析】先用a 的式子表示出点C ,根据点C 与点B 互为相反数列出方程求解即可. 【详解】解:由题可知:A 点表示的数为a ,B 点表示的数为1, ∵C 点是A 向左平移3个单位长度,∴C 点可表示为:3a −, 又∵点C 与点B 互为相反数,∴310a −+=, ∴2a =. 故选:B .7.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A 、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B 、原式=﹣(4×125×7),不符合题意;C 、原式=(10﹣119)×16=160﹣1619,不符合题意; D 、原式=3×[(﹣25)×(﹣2)],不符合题意. 故选:A .8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34 B .32− C .152 D .12【答案】C【分析】本题主要考查了有理数的乘方运算,求一个数的绝对值,有理数的加法运算等知识点,熟练掌握相关运算法则是解题的关键. 先计算乘方和绝对值,然后相加即可. 【详解】解:722−▲2722=+−742=+152=,故选:C .9.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a << ②1c <− ③2b >− ④b a < ⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个【答案】B【分析】此题考查了利用数轴比较有理数的大小,由a ,b ,c 在数轴上的位置得到1012b c a <−<<<<<,进而逐项求解即可.【详解】解:由题意得,1012b c a <−<<<<<, ∴12a <<,①正确;1c >−,②错误; 2b <−,③错误;b a <,④正确; 12c −<<,⑤正确;a 到原点的距离小于b 到原点的距离,⑥错误;在a 与c 之间有2个整数,⑦正确.∴正确的有4个.故选:B .10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024【答案】D【分析】根据前面图案中三角形的个数,找出规律,即可求解. 【详解】解:第1个图案有2个三角形,即12个; 第2个图案有4个三角形,即22个; 第3个图案有8个二角形,即32个; 第4个图案有16个三角形,即42个; 则第n 个图案有2n 个三角形,只有D 选项,当21024n =时,10n =符合题意,其余选项n 都不符合题意, 故选:D二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 【答案】12024【分析】本题考查了相反数,熟练掌握相反数的概念:“只有符号不同的两个数叫做互为相反数”,是解题的关键. 【详解】解:12024−的相反数是12024. 故答案为:12024. 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg . 【答案】0.4【分析】本题主要考查正负数的意义,有理数的加减混合运算,根据题意质量相差最多的是()250.2kg ±,再根据有理数的加减运算即可求解,解题的关键理解并掌握正负数的意义,进行有理数的混合运算.【详解】解:根据题可得,质量最少的是少了0.2kg ,质量最多的是多了0.2kg ,∴质量最多相差0.20.20.4(kg)+=, 故答案为:0.4.13 【答案】2−【分析】根据绝对值的意义进行化简即可求解. 【详解】解:2−−=2−, 故答案为:2−.14.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .【答案】25−【分析】本题考查了有理数的混合运算,根据操作步骤列出式子进行计算即可求解. 【详解】解:依题意,()()310529 −÷−×−−()289=×−− 169=−− 25=−故答案为:25−.15.比较两数大小: −76−【答案】>【分析】本题主要考查的是比较有理数的大小,依据两个负数比较大小,绝对值大的反而小比较即可; 【详解】解:∵6677−=,7766−=,6776<, ∴−>−6776, 故答案为:>.16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 【答案】 579−+− 负5加7减9【分析】本题主要考查了有理数的加减混合运算,熟练掌握有理数的加减法法则是解题的关键.利用有理数的减法法则和有理数的加法法则解答即可.【详解】()()()()()()579579579−−−−+=−+++−=−+−, 读作:负5加7减9;故答案为:579−+−;负5加7减9. 17.比2−小6的数是 . 【答案】8−【分析】本题考查了有理数的减法,理解题意,根据题意正确列出式子,进行计算即可. 【详解】解:比2−小6的数是268−−=−, 故答案为:8−.18.当||2,||4x y ==,且2x y +=−,则xy = . 【答案】8−【分析】根据绝对值先求出x ,y 的值,再根据2x y +=−得出符合条件的值,计算即可. 【详解】解:∵||2,||4x y ==, ∴2x =±,4y =±, ∵2x y +=−, ∴2,4x y ==−, ∴8xy =−, 故答案为:8−. 19.已知1xyz xyz =,则x zy x y z++值为 . 【答案】1−或3【分析】此题考查了绝对值,以及有理数的除法,熟练掌握运算法则是解本题的关键.根据已知等式得到||xyz xyz =,确定出x ,y ,z 中负因式有0个或2个,原式利用绝对值的代数意义化简即可得到结果. 【详解】解:由1||xyzxyz =,得到||xyz xyz =,x ∴,y ,z 中有0个或2个负数,当2个都为负数时,原式1111=−−+=−; 当0个为负数时,原式1113=++=.∴1x zy xy z++=−或3 故答案为:1−或320.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 . 【答案】202348【分析】根据题意列出算式进行计算即可. 【详解】解:根据题意可得:11112023111123448×−×−×−− ……12347202323448=××××……1202348× 202348=. 故答案为:202348. 三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−; (2)12433−÷−× ;(3)()()32211234−+×−+−;(4)()235363412−+×−. 【答案】(1)50− (2)38(3)6(4)12−【分析】(1)根据有理数的加法法则计算即可; (2)根据有理数的混合运算法则解答即可;(3)根据含有乘方的有理数的混合运算法则解答即可; (4)根据乘法运算律解答即可.本题考查了有理数的混合运算,运算律的应用,熟练掌握法则和预算律是解题的关键. 【详解】(1)解:()()43772743+−++− ()43277743=++−− ()70120=+−50=−.(2)解:12433−÷−×()2433=−×−×236=+ 38=.(3)解:()()32211234−+×−+−()11894=−+×−+129=−−+ 6=.(4)解:()235363412−+×−()()()2353636363412=×−−×−+×− 242715=−+−12=−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明. 【答案】(1)=,=,= (2)满足交换律,理由见解析【分析】本题考查有理数的混合运算,新定义,理解新定义是关键. (1)按照题中新定义的运算进行计算即可作出判断; (2)就一般情况根据新定义进行计算即可.【详解】(1)解:∵()424(2)4(2)10⊗−=×−−−−=−,()24(2)4(2)410−⊗=−×−−−=−; ∴()42(2)4⊗−=−⊗;∵()()53(5)(3)(5)(3)23−⊗−=−×−−−−−=,()()35(3)(5)(3)(5)23−⊗−=−×−−−−−=,∴(5)(3)(3)(5)-⊗-=-⨯-;∵1115557222 −⊗=−×−−−=− ,1115557222⊗−=×−−−−=− ; ∴115522 −⊗=⊗− ; 故答案:=,=,=(2)解:运算:“✞”满足交换律 理由如下:由新定义知:a b ab a b ⊗−−,b a ba b a ⊗−−, ∴a b b a ⊗=⊗,表明运算“✞”满足交换律.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.【答案】见解析,()11300.5133234<<−−<+−<−<−−【分析】本题考查了有理数的大小比较,解题的关键是先将所给各数化简,在数轴上表示出各数,再根 【详解】解:()33110.50.5,,334433−−=−−=−+−=− . 画出数轴并在数轴上表示出各数如图:根据数轴的特点从左到右用“<”把各数连接起来为: ()1313300.51342+−<−<−−<<−−<24.(本题8分)如图,在数轴上有A 、B 、C 这三个点.回答:(1)A 、B 、C 这三个点表示的数各是多少?A : ;B : ;C : .(2)A 、B 两点间的距离是 ,A 、C 两点间的距离是 . (3)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等? 【答案】(1)6−、1、4 (2)7;10(3)点B 向左移动2个单位【分析】本题考查了是数轴,运用数轴上点的移动和数的大小变化规律是左减右加是解答此题的关键. (1)本题可直接根据数轴观察出A 、B 、C 三点所对应的数; (2)根据数轴的几何意义,根据图示直接回答;(3)由于10AC =,则点B 到点A 和点C 的距离都是5,此时将点B 向左移动2个单位即可. 【详解】(1)解:根据图示可知:A 、B 、C 这三个点表示的数各是6−、1、4, 故答案为:6−;1;4.(2)解:根据图示知:AB 的距离是()167−−=;AC 的距离是6410−−=, 故答案为:7;10;(3)解:∵A 、C 的距离是10, ∴点B 到点A 和点C 的距离都是5,∴应将点B 向左移动2B 表示的数为1−,5ABBC ==. 25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元? 【答案】(1)将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米 (2)800915:~:汽车共耗油21.2升(3)沈师傅在上午800915:~:一共收入156元【分析】本题考查了正数和负数在实际问题中的应用,明确正负数的含义及题中的数量关系,是解题的关键.(1)把记录的数字相加即可得到结果,结果为正则在东面,结果为负则在西面; (2)把记录的数字的绝对值相加,再乘以0.4,即可得答案;(3)先计算起步费总额,再将超过3千米的路程相加,所得的和乘以2,将起步费加上超过3千米的费用总额,即可得答案.【详解】(1)解:∵(8)(6)(3)(6)(8)(4)(8)(4)(3)(3)5++−+++−+++++−+−++++=, ∴将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米; (2)解:|8||6||3||6||8||4||8||4||3||3|+−+++−+++++−+−++++8636848433=+++++++++ 53=,∴0.45321.2×=(升),∴800915:~:汽车共耗油21.2升. (3)解:∵共营运十批乘客, ∴起步费为:1110110×=(元), 超过3千米的收费总额为:[](83)(63)(33)(63)(83)(43)(83)(43)(33)(33)246−+−+−+−+−+−+−+−+−+−×=(元),∴11046156+=(元),∴沈师傅在上午800915:~:一共收入156元 26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−× .【答案】(1)11111565630−×=−+=− (2)()11111111n n n n n n −×=−+=−+++ (3)20222023−【分析】本题考查了有理数的乘法运算,(1)根据题干,模仿写出第5个等式,即可作答;(2)由(1)以及题干条件,即得第n 个等式:()11111111n n n n n n −×=−+=−+++;(3) 由(2)的结论,先化简再运算,即可作答,掌握第n 个等式:()11111111n n n n n n −×=−+=−+++是解题的关键. 【详解】(1)解:依题意,第5个等式: 11111305656−×=−+=−; (2)解:第1个等式:11111222−×=−+=−; 第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−; 第4个等式:11111454520−×=−+=−; 第5个等式:11111565630−×=−+=−; ……故第n 个等式:()11111111n n n n n n −×=−+=−+++; (3)解:由(2)知第n ()11111111n n n n n n −×=−+=−+++;则111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×111111112233420222023=−++−++−++⋅⋅⋅⋅⋅⋅+−+111111112022202322334=−+−+−++⋅⋅⋅⋅⋅⋅−+112023=−+ 20222023=−27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×= . 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−【答案】(1)没有除法分配律,故解法一错误; (2)过程见解析,114−.【分析】本题考查了有理数的除法乘法分配律; (1)根据有理数的运算法则进行判断,可得答案;(2)根据有理数的运算顺序,计算原式的倒数,和按照先计算括号内的,最后计算除法,两种方法求解,即可得出答案.【详解】(1)解:没有除法分配律,故解法一错误; (2)解法一:原式的倒数为: 132216143742 −+−÷− , ()132********=−+−×−()()()()13224242424261437=×−−×−+×−−×− 14=−;所以原式114=−; 解法二:原式=17928124242424242 −÷−+−17928124242−+− =−÷1424214=−×114=−. 28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472 −−÷−×− ④⑥⑧. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)1149− 【分析】(1)根据题意,计算出所求式子的值即可;(2(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10a a a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确;B .因为()10a a a a a a=÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .圈n 次方等于它本身的数是1或1−,说法错误,()11−=②;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ,故答案为:21n a −; (4)解:()2114172 −−÷−×− ④⑥⑧ ()()()()711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−8个16个 41119647=−−÷×1149=−−4950=−.。
人教版初中数学7-9年级第一单元重点知识整理
人教版初中数学7-9年级第一单元重点知识整理七年级上册第一章有理数一.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a (bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版初中数学七年级第一章 有理数1.2 有理数课件(6)
边时,与点 A 的距离为 3 个单位长度所对应的数为 2.
精品PPT
5. 数轴上与原点距离小于 4 且表示整数的点分别是 __±__3_,__±__2_,__±__1_,__0_____.
6. 将一刻度尺如图所示放在数轴上(数轴的单位长度 是 1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上 的-3 和 x,则 x=__1_2___.
第一章 有理数 1.2 有理数 1.2.2 数轴
精品PPT
1. 数轴及其三要素,(1)数轴:用一条直线上的___点___ 表示数,这条直线叫做数轴.
(2)数轴的三要素: ①原点:在直线上任取一个点表示____0____,这个点叫 做原点.
精品PPT
②正方向:通常规定直线上从原点向___右 _____ (向 ___上_____)为正方向,从原点向___左_____ (向___下_____)为负 方向.
(2)小明家距离小颖家多远? (3)这次家访,老师共行了多少千米的路程?
精品PPT
解:(1)以向东为正,100 m 为单位长度,可建立数轴 如图;
(2)小明家距离小颖家 450 m; (3)250+350+800+200=1600(m)=1.6 km. 所以这次家访,老师共行了 1.6 km 的路程.
精品PPT
1. (2017·福建)已知 A,B,C 是数轴上的三个点,且 点 C 在点 B 的右侧,点 A,B 表示的数分别是 1,3,如图 所示.若 BC=2AB,则点 C 表示的数是__7_.
【解析】由数轴可知 AB=3-1=2,故 BC=2AB=4, 又点 C 在点 B 的右侧,所以点 C 表示的数为 3+4=7.
精品PPT
3. 如图,数轴上一动点 A 向左移动 2 个单位长度到达
初中七年级数学第一单元
初一数学第一单元知识点总结初一数学第一单元知识点总结11、单项式的定义:由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.2、单项式的系数:单项式中的数字因数叫这个单项式的系数.说明:⑴单项式的系数可以是整数,也可能是分数或小数。
如3x的系数是3的32系数是1;4.8a的系数是4.8; 3⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,4xy2的系数是4;2x2y的系数是4;⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的系数是-1;ab的系数是1;⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy的系数就是2.3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,而不是7次,应注意字母z的指数是1而不是0;⑵单项式的指数只和字母的指数有关,与系数的指数无关。
⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;4、在含有字母的式子中如果出现乘号,通常将乘号写作“ ”或者省略不写。
5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。
初一数学第一单元知识点总结21相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的'结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.3由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法初一数学第一单元知识点总结3知识点、概念总结1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
初中数学七年级上册苏科版1
4.学生的思维方式和合作意识:初中生正处于青春期,思维方式多样,合作意识有待培养。教师应注重启发式教学,引导学生学会思考、分析,并在合作学习中培养团队精神。
三、教学重难点和教学设想
然后,我会引入数轴的概念,讲解数轴的构成、特点及其在解题中的应用。通过数轴,让学生直观地理解正数、负数和零之间的关系,以及它们在数轴上的位置关系。
(三)学生小组讨论
在这一环节,我会组织学生进行小组讨论,以加深对负数和数轴的理解。我会给出几个实际问题,如“某商店在一天中的盈利和亏损情况,如何用正数和负数表示?”等,让学生分组讨论并给出解答。
讨论过程中,我会鼓励学生积极思考、发表见解,同时关注学生的讨论进度和思考方法。在讨论结束后,我会邀请部分小组分享他们的答案和思考过程,以促进学生之间的交流和学习。
(四)课堂练习
在这一环节,我会设计一些课堂练习,让学生运用所学知识解决实际问题。练习题目包括:
1.用正数和负数表示下列情况:
-向东走5米,向西走3米;
接着,我会引导学生关注负数的概念,提出问题:“在生活中,我们经常会遇到表示相反意义的量,如上升和下降、盈利和亏损等。那么,如何用数学方法来表示这些相反意义的量呢?”通过这个问题,引出负数的定义和性质。
(二)讲授新知
在这一环节,我将详细讲解负数的概念、性质及其运算规则。首先,我会给出负数的定义,并通过实例解释负数在生活中的应用。接着,我会讲解负数的性质,如相反数、绝对值等,并通过举例让学生加深理解。
(二)教学设想
1.教学策略:
-采用情境教学法,将生活中的实际情境引入课堂,激发学生的学习兴趣和探究欲望。
人教版数学七年级下册7-1-1 有序数对
7.1.1 有序数对教学设计课题7.1.1 有序数对单元第七单元学科初中数学年级七下学习目标1.通过丰富的实例认识有序数对,感受它在确定点的位置中的作用.2.了解有序数对的概念,学会用有序数对表示点的位置.3.通过学习确定位置的方法,初步发展空间观念.4.通过用有序数对表示物体的位置,培养学生的符号感和抽象思维能力,并增强数学应用意识.重点理解有序数对的意义和作用.难点用有序数对表示点的位置.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】1.先让学生观看建党百年庆典活动出现的图案,然后问学生:你知道这些背景图案是怎么组成的吗?2.课件展示一张电影票,你是怎么根据电影票上的数字找到位置的?学生根据教师描述和展示的两种情景发表自己对位置和其表示方法的认识和理解.通过对两个实际问题的分析,可以使学生更加明确在现实生活中有序数对的作用,渗透“有序”和“数对”的含义,体现概念建立的过程.讲授新课【合作探究】A、B、C,三点是某电影院里的三个位置,如何描述这些位置呢?点A的位置:第5列,第4排,也可以用数对表示(5,4);点B的位置:第3列,第2排,也可以用数对表示(3,2);点C的位置:第7列,第7排,也可以用数对表示(7,7).【探究】1、如果想指定某位同学在教室里的位置,应该如何确定呢?提示一:如果说“他的位置在第2列”,你能找到这个位置吗?提示二:如果说“他的位置在第3排”,你能找到这个位置吗?现在你知道如何确定这个位置了吗?说一说.追问:排数和列数的顺序对位置有影响吗?2、假设我们规定“列数在前,排数在后”,请你把如下表示某班同学位置的数对填在对应的位置. (1,5),(2,4),(4,2),(3,3),(5,6)提出问题:由上面可知,“第1列第5排”简记为(1,5)(约定列在前,排在后),那么“第3列第5排”怎么简记呢?(5,6)表示的含义是什么?“第3列第5排”记为(3,5),(6,7)表示第学生尝试用学过的知识思考,并回答.学生小组交流,汇总并举手发言.学生观察、思考回答.通过对实际问题的分析,可以使学生更加明确在现实生活中有序数对的作用,渗透“有序”和“数对如的含义,体现概念建立的过程.以用教室里的座位确定参加讨论的学生为背景,让学生经历用有序数对表示物体位置的过程,感受有序数对的“有序性”,在此基础上,抽象出有序数对的概念.6列第7排.追问:同样约定“列数在前,排数在后”,(2,4)和(4,2)在同一个位置吗?学生根据(2,4)表示第2列第4排,(4,2)表示第4列第2排,容易回答二者不在同一个位置.从而得到数对是有顺序的.通过观察,你有什么发现?请结合教材归纳“有序数对”的概念.有序数对:用含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,例如前边的表示列,后边的表示排,我们把这种有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b).3、利用有序数对,可以准确地表示出一个位置,生活中利用有序数对表示位置的情况是很常见的,如人们常用经纬度来表示地球上的地点等,你能再举出一些例子吗?(同学们每天排队做课间操都有固定的位置、手机屏幕上每个功能键的位置、十字绣等)【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.如图,甲处表示 2 街与 5 巷的十字路口,乙处表示5街与2巷的十字路口.如果用(2,5)表示甲处的位置,那么“(2,5)→(3,5)→(4,5)→(5,5)→(5,4)→(5,3)→(5,2)”表示从甲处到乙处的一种路线.请你用这种形式写出几种从甲处到乙处的路线.先引导学生结合有序数对的概念描述出此题中数对的意义,然后再根据题意找出合适的行走路线(特学生思考、回答.学生思考、计算并回答.学生通过列举生活中的实例,让学生自己联系实际,更好地理解“有序”的含义.巩固学生对“有序数对”的认识和理解.别提示:在写数对的时候,不要把列数和排数的位置弄错;路线不唯一).答案不唯一:例如(2,5)→(2,4)→(2,3)→(2,2)→(3,2)→(4,2)→(5,2).【课堂练习】教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.若(3,6)表示教室内第 3 排第 6 列的位置,某同学的座位号为(2,4),那么该同学所坐位置是()A. 第2排第4列B. 第4排第2列C. 第2列第4排D. 不能确定分析:对于有序数对(3,6),前边的3表示第3排,后边的6 表示第6 列,所以(2,4)前边的2 表示第2 排,后边的 4 表示第4 列.2.下列关于有序数对的说法正确的是()A. (3,4)与(4,3)表示的位置相同B. (a,b)与(b,a)表示的位置肯定不同C. (3,5)与(5,3)是表示不同位置的两个有序数对D. 有序数对(4,4)与(4,4)表示两个不同的位置解析:因为有序数对是有顺序的,所以两个不同的数字,如果先后顺序不同,表示的位置肯定不同.对于选项B,当a,b 表示的数相同时,它们表示的位置相同.3.同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜.下图是两人玩的一盘棋,若白①的位置是(1,4),黑的位置是(2,5),现轮到黑棋走,那黑棋放在()位置就获得胜利了. 自主完成练习.进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.2分析:如下图所示,黑棋放在两虚线圆所在的位置就获得胜利了,因为白①的位置是(1,4),黑 的位置是(2,5),所以与白①在同一条水平线上的虚线圆的位置为(7,4),与黑 在同一条竖直线上的虚线圆的位置为(2,9).(★拓展)下图是小明学校周边环境的示意图,以学校为参照点,儿童公园、图书市场分别距离学校 500 m ,700 m ,若以(南偏西 30°,500)来表示儿童公园的位置,则图书市场的位置应表示为( ).解析:以学校为中心,有序数对(南偏西 30°,500),前边表示的是方向,后边表示的是距离. 图书市场的位置:方向是北偏东45°,距离是700 m ,所以对应的有序数对是(北偏东45°,700).【教学建议】教师给出练习,随时观察学生完成情况并给与指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容.回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识. 板书1. 有序数对2 2(1)概念(2)记作(a,b)2.例题讲解。
人教版七年级上册数学第1章第1节 正数和负数
七年级数学<人教版上)同步练习第一章第一节正数和负数一、教学内容:1、了解正数和负数是怎样产生的,什么是相反意义的量;2、知道什么是正数和负数;3、理解数0表示的量的意义;4、有理数的概念及分类.二. 知识要点:1、负数产生的原因:<1)生活和生产的需要,对实际生活中出现的相反意义的量,如卖出与买入、盈利与亏损、上升与下降、增加与减少、前进与后退等,无法用自然数表示,为了解决这些问题人们引进了负数;eWS3yVib8y<2)数学本身的需要,如对较小的数减去较大的数的问题的解决,需要引进负数.2、像3,2,1.8%这样大于0的数叫做正数;3、像-3,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数.4、数0既不是正数,也不是负数;5、正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.6、有理数也可以这样:有理数注:掌握分类的标准是关键,不同的标准就有不同的分法.三. 重点难点1、重点:①正数、负数、有理数的概念;②数0表示的量的意义;③有理数的分类.2、难点:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.【考点分析】数是数学知识的基础,也是其他学科的工具,在近年来各地的中考试题中经常出现.全国大多数省市中考试题对数的概念单独命题,试题难度为低、中档次,题量约占总量的1%,题型以填空题、选择题居多.eWS3yVib8y【典型例题】例1 用正数和负数表示下列具有相反意义的量.<1)温度上升3℃和下降5℃;<2)盈利5万元和亏损8千元;<3)向东10M和向西6M;<4)运进50箱和运出100箱.分析:本题中的上升和下降,盈利和亏损,向东和向西,运进和运出都是相反意义的量,如果我们规定上升、盈利、向东、运进为正,那么下降、亏损、向西、运出就为负.eWS3yVib8y解:<1)+3℃,-5℃<2)+5万元,-8千元<3)+10M,-6M<4)+50箱,-100箱评析:用正负数表示相反意义的量,并不是固定不变的.我们只是习惯把向东、上升、盈利、增加、收入规定为正,把其相反意义的量规定为负.通过本题同学们要体会数学符号与对应的思想,学会用正、负数表示具有相反意义的量的符号化方法.eWS3yVib8y例2 下列各数哪些是正数,哪些是负数?分析:首先确定我们熟悉的大于0的数,即正数,然后再观察带有“-”号的数,看“-”号后的部分是否大于0,因为“正数的前面加上负号便是负数”.特别注意:0不是正数,也不是负数.eWS3yVib8y解:正数有:负数有:评析:分类要做到“不重复,不遗漏”.例3 给出一对数+2和-3,请赋予它们实际的意义.分析:此题为开放题,考查相反意义的量在实际生活中的作用,解题的关键是给“+”和“-”赋予生活中一组相反的意义,例如:收入和支出,前进和后退等.eWS3yVib8y解:+2表示收入2元,-3表示支出3元+2表示前进2M,-3表示后退3M等.评析:对于两种具有相反意义的量,究竟哪一种意义的量为正的,哪一种意义的量为负的,并不是固定的,而是在实际的生活和生产中人们根据实际情况的要求人为规定的.eWS3yVib8y例4 <2007位:℃) 4.619.4A、北京B、武汉C、广州D、哈尔滨分析:根据生活经验和正、负数的意义我们知道,表示零下的负数温度比正数温度低,负数温度中负号后面的数值越大温度越低.显然,气温最低的城市是哈尔滨.eWS3yVib8y解:D评析:这四个城市平均气温从高到低的顺序是:广州→武汉→北京→哈尔滨,它们对应的温度顺序是:13.1℃>3.8℃>-4.6℃>-19.4℃.通过本题同学们要初步理解这种将实际问题转化为数学问题的方法.eWS3yVib8y 思考:从这四个有理数的大小关系中你可以得出哪些结论?例5 如图所示,某化肥厂生产的颗粒磷肥外包装袋上标有净重:50±0.5kg,请你说说这是什么意思?分析:本题考查正、负数表示量的实际意义,以标准重量为基准:+0.5kg表示多出0.5kg,-0.5kg表示少0.5kg,这都属于正常范围,因为实际生活中不能做到绝对准确的50kg,只能尽量减小误差.eWS3yVib8y 解:50±0.5kg表示这袋化肥的净重可能比50kg多,但不会超过50+0.5=50.5kg,可能比50kg少,但不会少于50-0.5=49.5kg.eWS3yVib8y 评析:在生产中,产品可能与标准规格有差异,也就是会产生误差.但误差不能太大,产品可略有不足或略有超出,即误差应在一个允许的范围内.不足用负数表示,超出用正数表示,这个范围就可以用正负数表示出来了.eWS3yVib8y例6 下列说法正确的是< )A、整数、分数和负数统称为有理数B、有理数包括正数和负数C、正整数都是整数、整数都是正整数D、0是整数,也是自然数分析:A分类时有重复,应改为整数和分数统称有理数,B有遗漏,应改为有理数包括:正有理数、0、负有理数.在C中正整数和整数在有理数系中属不同的等级,不是两个相同的概念,应改为:正整数都是整数,但整数不是正整数.只有D是正确的.eWS3yVib8y解:D评析:数的范围扩大到有理数后,注意数的分类方法,特别是0的归属.0既不是正数,也不是负数;整数包括正整数、0、负整数,所以0是整数,当然也是有理数.eWS3yVib8y【方法总结】通过本节的学习我们要掌握整数、分数、正数、负数、有理数的区分方法,体会符号化在数学问题中的重大意义,理解把实际问题转化为数学问题来解决的转化思想.eWS3yVib8y【模拟试题】<答题时间:50分钟)一、选择题1、有五个数为其中正数的个数是< )A、1个B、2个C、3个D、4个2、2008年12月某日我国部分城市的平均气温情况如下表<记温度零上为A、广州3、正整数集合和负整数集合合在一起,构成数的集合是< )A、整数集合B、有理数集合C、自然数集合D、非零整数集合4、规定正常水位为0m,高于正常水位0.5m时,记作+0.5M,下列说法错误的是< )A、高于正常水位1.5m记作+1.5mB、低于正常水位1.5m 记作-1.5mC、-1m表示比正常水位低1mD、+2m表示比正常水位低2m5、如果收入200元记作+200元,那么支出150元记作< )A、+150元B、-150元C、+50元D、-50元6、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向东走了-60m,此时小明的位置在< )eWS3yVib8yA、文具店B、玩具店C、文具店西边20mD、玩具店东边-60m7、下面是关于有理数的叙述:①有理数分为正有理数和负有理数两部分;②有理数分为整数和分数两部分;③有理数分为正数、负数和零三部分;④有理数分为正分数、负分数、正整数、负整数和零五部分;⑤有理数分为正整数、负整数和零三部分.其中正确的有< )A、1个B、2个C、3个D、4个8、一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是< )A、11℃B、4℃C、18℃D、-11℃二、填空题9、如果把顺时针转60°记作+60°,那么逆时针转30°记作__________.10、在电视上看到的天气预报中,绵阳王朗国家级自然保护区某天的气温为“-5℃”,表示的意思是__________.eWS3yVib8y11、孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰__________周年.<注:不存在公元0年)eWS3yVib8y12、把下列各数分别填入相应的括号:<1)整数集:{…};<2)正整数集:{…};<3)负整数集:{…};<4)分数集:{…};<5)正分数集:{…};<6)负分数集:{…};<7)有理数集:{…};<8)正有理数集:{…};<9)负有理数集:{…};三、解答题13、工商部门抽查了一些500g包装的白糖,检查的记录如下:10,-15,13,-20,-18,15,-31,24,-25,-5,-14,-9.你估计这里的正、负数表示什么?从这些数据中,你能获得哪些信息?14、用正、负数表示下面各组具有相反意义的量,并指出它们的分界点.<1)零上10℃与零下5℃;<2)高出海平面100m与低于海平面200m;<3)收入8元,支出6元.15、观察下列各数,找出规律后填空:<1)-1,2,-4,8,-16,32,……,第10个数是__________.<2)1,-3,5,-7,…,第15个数是__________.<3)1,-4,7,-10,13,…,第100个数是__________.【试题答案】一、选择题1、B2、B3、D4、D5、B6、A7、B8、B二、填空题9、-30° 10、零下5摄氏度 11、255712、<1)整数集:{20,-3,0,-1,+5…};<2)正整数集:{20,+5…};<3)负整数集:{-3,-1…};<4)分数集:<5)正分数集:{4.5,3.14…};<6)负分数集:<7)有理数集:<8)正有理数集:{20,4.5,3.14,+5…};<9)负有理数集:三、解答题13、正数表示包装超过500g,负数表示包装少于500g.一共抽查了12包白糖,其中不足500g的有8包,超过500g的只有4包,不足秤的约占67%,且个别不足秤的达到31g,是严重的短斤少两现象.eWS3yVib8y14、<1)+10℃,-5℃,它们的分界点是0℃<2)+100m,-200m,分界点是海平面,用0表示<3)+8元,-6元,它们的分界点是不收入也不支出,用0表示.eWS3yVib8y15、<1)512<2)29<3)-298申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
4.空间几何体的直观图 空间几何体的直观图常用 斜二测 画法来画,其规则是:(1)原图形中x轴,y轴,z 轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′ 轴所在平面 垂直 . (2)原图形中平行于坐标轴的线段,直观图中仍 平行于坐标轴 ;平行于x轴和z轴 的线段在直观图中保持原长度 不变 ;平行于y轴的线段在直观图中 长度为原来的一半 .
2.(必修2·1.1练习改编)某几何体的三视图如图所示,根据三视图可以判断这个几 何体为( )
A.圆锥 C.三棱柱
B.三棱锥 D.三棱台
答案:C
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
3.(必修2·1.2练习改编)利用斜二测画法得到的:
①三角形的直观图一定是三角形;
②正方形的直观图一定是菱形;
大小 是完全相同的; ②名称:三视图包括 正视图 、 侧视图 、 俯视图 .
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
(2)三视图的画法: ①在画三视图时,重叠的线只画一条,挡住的线要画成 虚线 . ②三视图的正视图、侧视图、俯视图分别是从几何体的 正前方、 正左方、
正上 方观察到的几何体的正投影图.
棱柱等的简单组合体)的三视图,能识别简单组合体 根据几何体的三视图求其
的三视图所表示的立体模型,会用斜二测画法画出它 体积与表面积.对空间几
们的直观图.
何体的结构特征、三视
3.会用平行投影方法画出简单空间图形的三视图与 图、直观图的考查,以选
直观图,了解空间图形的不同表示形式.
择题和填空题为主.
上一页
视图,故选C.
[答案] (1)B (2)D (3)C
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
名师点拨 三视图问题的常见类型及解题策略 1.由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示, 不能看到的部分用虚线表示. 2.由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明 确三视图的形成原理,结合空间想象将三视图还原为实物图. 3.由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还 原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.
返回导航
下一页
新课标高考第一轮总复习•数学(理)
(3)由正视图得该锥体的高是h= 22-12= 3,因为该锥体的体积为233,所以该
23 23
锥体的底面面积是S=
3 13h
=
3 3
=2,A项的正方形的面积是2×2=4,B项的圆的
3
面积是π×12=π,C项的大三角形的面积是
1 2
×2×2=2,D项不可能是该锥体的俯
上一页
返回导航
下一页
方法二 (估值法)由题意知,
1 2
V圆柱<V几何体<V圆柱,又V圆柱=π×32×10=90π,∴
45π<V几何体<90π.观察选项可知只有63π符合,故选B.
答案:B
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视 图,则该锥体的正视图可能是( )
③等腰梯形的直观图可以是平行四边形;
④菱形的直观图一定是菱形.
以上结论正确的个数是
.
答案:1
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
考点一|简单几何体的结构特征 (易错突破) 【例1】 (1)给出下列四个命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;
解析:方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面 虚线部分所得,如图所示.
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
将圆柱补全,并将圆柱从点A处水平分成上、下两部分.由图可知,该几何体的
体积等于下部分圆柱的体积加上部分圆柱体积的
1 2
,所以该几何体的体积V=
π×32×4+π×32×6×12=63π.故选B.
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;
④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是
() A.0
B.1
C.2
D.3
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
(2)给出下列四个命题:
①有两个侧面是矩形的棱柱是直棱柱;
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
名师点拨 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概 念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一 个反例即可. 2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面 中各元素的关系. 3.棱(圆)台是由棱(圆)锥截得的,所以在解决棱(圆)台问题时,要注意“还台为 锥”的解题策略.
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
(2)若本例4中直观图为如图所示的一个边长为1 cm的正方形,则原图形的周长是 多少?
上一页
返回导航
下一页
解析:将直观图还原为平面图形,如图.
新课标高考第一轮总复习•数学(理)
可知还原后的图形中OB=2 2,AB= 12+2 22=3, 于是周长为2×3+2×1=8(cm).
图形改变
2.“三不变”平 与等 x轴性平不行变的线段长度不变 相对位置不变
新课标高考第一轮总复习•数学(理)
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
跟踪训练 (1)若本例4条件不变,试求原图形的面积. 解析:原图为菱形,底边长为6,高为OD=4 2, ∴S=6×4 2=24 2(cm2).
2.旋转体的形成
几何体 旋转图形
旋转轴
圆柱
矩形
任一边 所台 直角梯形 垂直于底边的腰所在的直线
球
半圆
直径所在的直线
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
3.空间几何体的三视图 (1)三视图的形成与名称: ①形成:空间几何体的三视图是用平行投影得到的,在 这种投影之下,与投影面平行的平面图形留下的影子,与平面图形的 形状 和
[解析] 在直观图中,O′D′=cos245°=2 2,C′D′=2, 恢复平面图形后,OD=4 2,CD=2, ∴OC= 4 22+22=6, ∴OABC为菱形,故选C. [答案] C
上一页
返回导航
下一页
名师点拨 解决直观图问题的思路
坐标轴的夹角改变 1.“三变”与y轴平行的线段的长度改变减半
上一页
返回导航
下一页
[三基自测]
新课标高考第一轮总复习•数学(理)
1.(必修 2·1.1 练习改编)如图,长方体 ABCD-A′B′C′D′被截去一部分,其
中 EH∥A′D′.剩下的几何体是( )
A.棱台 C.五棱柱 答案:C
B.四棱柱 D.简单组合体
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
A.4 cm2 C.8 cm2
B.4 2 cm2 D.8 2 cm2
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
[解析] 依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底边的长与 BC,AD相等,高为梯形ABCD的高的2 2倍,所以原平面图形的面积为8 cm2. [答案] C
上一页
②侧面都是等腰三角形的棱锥是正棱锥;
③侧面都是矩形的直四棱柱是长方体;
④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.
其中不正确命题的序号是
.
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
[解析] (1)①错误,只有这两点的连线平行于轴时才是母线;②正确;③错 误.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是 圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底 面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相 等.
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
(2)认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析, 故①③都不正确,②中对等腰三角形的腰是否为侧棱未作说明,故也不正确,④ 中平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④也不正确. [答案] (1)B (2)①②③④
返回导航
下一页
新课标高考第一轮总复习•数学(理)
[基础梳理] 1.多面体的结构特征 (1)棱柱的侧棱都互相平行,上下底面是 全等 的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由 平行于底面 的平面截棱锥得到,其上下底面是相似多边形.
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
(2)观察三视图,可得直观图如图所示.该三棱锥A-BCD的底面BCD是直角三角 形,AB⊥平面BCD,CD⊥BC,侧面ABC,ABD是直角三角形;由CD⊥BC,CD ⊥AB,知CD⊥平面ABC,CD⊥AC,侧面ACD也是直角三角形,故选D.