机械故障诊断技术8_齿轮箱故障诊断
行星齿轮箱故障诊断方法
行星齿轮箱故障诊断方法1. 引言1.1 引言行星齿轮箱是一种常见的传动装置,在各种机械设备和车辆中被广泛应用。
它能够有效地将动力传递给机械系统,从而实现各种动力传动和转速调节的功能。
由于长时间的使用和磨损,行星齿轮箱可能会出现故障,导致设备性能下降甚至完全失效。
及时准确地诊断行星齿轮箱的故障非常重要。
本文将介绍行星齿轮箱的故障现象、可能的原因、诊断方法、常见解决方案和预防措施,帮助读者更好地了解行星齿轮箱故障的发生和处理方法。
通过掌握这些知识,读者可以及时发现和解决行星齿轮箱的故障,延长设备的使用寿命,提高设备的可靠性和安全性。
在本文的指导下,读者可以更加有效地管理和维护行星齿轮箱,确保设备的正常运行和高效工作。
愿本文能够为读者提供有价值的信息和帮助,使他们能够更好地了解和处理行星齿轮箱故障问题。
2. 正文2.1 故障现象故障现象是指在行星齿轮箱工作过程中可能出现的各种问题和异常情况。
通过观察和记录这些故障现象,可以帮助工程师们更快速、准确地诊断问题,并采取相应的处理措施。
常见的行星齿轮箱故障现象包括:轴承异响、运转噪音过大、温升异常、油品泄漏、齿轮磨损严重、工作效率下降等。
轴承异响可能是轴承损坏或润滑不良导致的;运转噪音过大可能是齿轮配合间隙过大或叶轮受损;温升异常可能是润滑油渗漏或油温过高所致;油品泄漏可能是密封件老化或松动;齿轮磨损严重可能是使用寿命到期或润滑不当引起的;工作效率下降可能是因为零部件磨损过大或系统故障。
通过仔细观察和分析这些故障现象,可以有针对性地进行故障诊断和解决方案的制定。
定期检查和维护行星齿轮箱,及时处理故障现象,可以提高设备的可靠性和工作效率,延长设备的使用寿命。
2.2 故障可能原因行星齿轮箱故障可能原因很多,主要包括以下几个方面:1. 润滑不足:行星齿轮箱在工作过程中需要足够的润滑油来减少摩擦和磨损,如果润滑油不足或质量不合格,就会导致齿轮箱零件间的摩擦增大,从而引起故障。
齿轮的故障诊断(推荐)
---------------------------------------------------------------最新资料推荐------------------------------------------------------齿轮的故障诊断(推荐)齿轮的故障诊断齿轮的故障诊断齿轮的故障诊断一、齿轮的常见故障一、齿轮的常见故障齿轮是最常用的机械传动零件,齿轮故障也是转动设备常见的故障。
据有关资料统计,齿轮故障占旋转机械故障的 10.3%。
齿轮故障可划分为两大类,一类是轴承损伤、不平衡、不对中、齿轮偏心、轴弯曲等,另一类是齿轮本身(即轮齿)在传动过程中形成的故障。
在齿轮箱的各零件中,齿轮本身的故障比例最大,据统计其故障率达 60%以上。
齿轮本身的常见故障形式有以下几种。
1. 断齿断齿是最常见的齿轮故障,轮齿的折断一般发生在齿根,因为齿根处的弯曲应力最大,而且是应力集中之源。
断齿有三种情况:①疲劳断齿由于轮齿根部在载荷作用下所产生的弯曲应力为脉动循环交变应力,以及在齿根圆角、加工刀痕、材料缺陷等应力集中源的复合作用下,会产生疲劳裂纹。
裂纹逐步蔓延扩展,最终导致轮齿发生疲劳断齿。
②过载断齿对于由铸铁或高硬度合金钢等脆性材料制成的齿轮,由于严重过载或受到冲击载荷作用,会使齿根危险截面上的应力超过极限值而发生突然断齿。
1 / 18③局部断齿当齿面加工精度较低、或齿轮检修安装质量较差时,沿齿面接触线会产生一端接触、另一端不接触的偏载现象。
偏载使局部接触的轮齿齿根处应力明显增大,超过极限值而发生局部断齿。
局部断齿总是发生在轮齿的端部。
2. 点蚀点蚀是闭式齿轮传动常见的损坏形式,一般多出现在靠近节线的齿根表面上,发生的原因是齿面脉动循环接触应力超过了材料的极限应力。
在齿面处的脉动循环变化的接触应力超过了材料的极限应力时,齿面上就会产生疲劳裂纹。
裂纹在啮合时闭合而促使裂纹缝隙中的油压增高,从而又加速了裂纹的扩展。
风力发电机组齿轮箱故障诊断
风力发电机组齿轮箱故障诊断1. 引言1.1 背景介绍齿轮箱是风力发电机组中的重要组成部分,承担着转动力传递和速度变换的功能。
由于长期运行和恶劣环境条件的影响,齿轮箱容易出现各种故障,影响发电机组的正常运行和发电效率。
及时准确地诊断齿轮箱故障尤为重要。
随着风力发电技术的飞速发展,齿轮箱故障诊断技术也在不断创新和完善。
通过对齿轮箱故障进行精确诊断,可以有效提高风力发电机组的运行可靠性和安全性,降低运维成本,延长设备寿命,最大限度地实现风能资源的利用。
本文旨在对风力发电机组齿轮箱故障诊断方法进行概述,探讨常见的齿轮箱故障特征,介绍故障诊断技术和原理,分析振动信号分析方法和温度监测技术的应用,并总结齿轮箱故障诊断的重要性和未来发展趋势。
希望通过本文的研究,为风力发电行业的技术进步和发展贡献一份力量。
1.2 研究目的研究目的:本文旨在探讨风力发电机组齿轮箱故障诊断的方法与技术,提供有效的故障诊断方案,为风力发电行业提供更加可靠、高效的运维保障。
通过对常见齿轮箱故障特征、故障诊断技术及原理、振动信号分析方法、温度监测技术等方面进行综合分析与研究,旨在提高齿轮箱故障的预警能力,减少故障带来的损失和影响,保障风力发电机组的安全稳定运行。
本研究还将探讨齿轮箱故障诊断的重要性,展望未来发展趋势,为该领域的深入研究和技术创新提供参考和借鉴。
通过本文的研究成果,期望能够为风力发电行业提供更加科学、可靠的齿轮箱故障诊断解决方案,推动行业的持续发展与进步。
1.3 研究意义风力发电机组在风能资源利用中起到至关重要的作用。
齿轮箱作为风力发电机组的核心部件之一,其故障诊断对于发电机组的正常运行至关重要。
研究齿轮箱故障诊断技术可以帮助提前发现和解决齿轮箱的故障问题,保障风力发电机组的运行稳定性和有效性。
齿轮箱故障诊断的研究意义主要体现在以下几个方面:在风力发电行业中,齿轮箱故障是一种常见的故障类型,及时准确地诊断齿轮箱故障可以有效降低故障率,延长齿轮箱的使用寿命,减少维修成本,提高发电效率;齿轮箱故障一旦发生,可能会导致整个风力发电机组的停机维修,给发电厂和电网带来损失,影响电力供应的稳定性,因此研究齿轮箱故障诊断技术对于保障电力供应的可靠性具有重要意义;齿轮箱故障诊断技术的研究也可以促进风力发电行业技术的进步和发展,推动我国清洁能源产业的发展。
齿轮箱故障的原因和诊断方法.ppt
齿轮箱是机械设备中应用最为广泛的传 动机构。 自身结构复杂,工作环境恶劣,非常容 易出故障。 齿轮箱故障将直接影响设备的安全可靠 运行,降低加工精度和生产效率。 由此,齿轮箱故障研究的目的和意义就 不言而喻了,比如:保障机器安全,有 效地运行;提高生产效率,保障产品质 量等等。
齿轮箱故障的原因
小波包函数
被定义为 :
式中 n=0,1 ,2 …为振荡参数 , J∈Z和 k∈Z 分别是尺度 参数和平移参数
齿轮箱故障诊断试验
三:小波包特征提取
对采集到的齿轮箱振动信号进行 3层小波包分解,采用Shannon熵准,可 得到从低频到高频的8个等宽频率的子频带,本文采样频率为2560kHz。
齿轮箱故障诊断试验
式中n=1,2,3,4, i=1,2,…,N, N为信号长度N=1024。
设所提取的 4个能量值为 网络的一组特征参数 将 P作为小波神经
齿轮箱故障诊断试验
四:小波特征提取
小波变换后的逼近信号和细节信号
齿轮箱故障诊断试验
五:小波神经网络小波神Βιβλιοθήκη 网络模型齿轮箱故障诊断试验
小波神经网络测试流程
齿轮箱故障诊断步骤
信号检测 号 根据齿轮箱的工作环境和性质,选样并测取能够反映 齿轮箱工作情况或状态的信号,这种信号称为原始信号。
特征提取
将原始信号进行信号分析和处理,提取反映 齿轮箱状态的有用信息(特征),形成待检模式。
状态识别
将待检模式与样式模式(故障档案)对比和状 态分类,判断齿轮箱是否工作正常或者说有无故障。
网络参数初始化 计算隐含层及输出层的输出
计算误差E和梯度向量p
行星齿轮箱故障诊断方法
行星齿轮箱故障诊断方法【摘要】本文介绍了行星齿轮箱故障诊断方法,包括常见的故障诊断方法、故障排除流程、故障诊断工具的选择、实例分析以及预防性维护措施。
结论部分总结了行星齿轮箱故障诊断方法的重要性,并探讨了技术发展方向。
通过本文的学习,读者可以了解如何准确快速地诊断行星齿轮箱故障,提高设备运行效率,延长设备使用寿命,从而实现更好的生产效益和经济效益。
行星齿轮箱作为工业机械设备中常见的部件,其正常运行对整个生产线的稳定性和高效性至关重要。
加强对行星齿轮箱故障诊断方法的研究和实践具有重要意义,有助于保障设备运行的安全可靠性,推动工业生产的持续发展。
【关键词】关键词:行星齿轮箱、故障诊断、方法、排除、流程、工具、实例分析、预防性维护、总结、技术发展、重要性1. 引言1.1 行星齿轮箱故障诊断方法行星齿轮箱是工业设备中常见的传动装置,其正常运转对于整个系统的稳定性和效率至关重要。
由于其复杂的结构和工作环境,行星齿轮箱也会出现各种故障。
及时准确地诊断行星齿轮箱的故障并进行修复,对于延长设备使用寿命、降低维修成本具有重要意义。
行星齿轮箱故障诊断方法是指通过对行星齿轮箱进行系统性的检测和分析,找出故障原因,并制定合理的修复方案。
常见的行星齿轮箱故障包括轴承损坏、齿轮磨损、润滑不良等。
通过故障排除流程和适当的故障诊断工具,可以快速准确地确定故障原因,并采取相应的维修措施。
在实际操作中,实例分析对于深入理解行星齿轮箱故障诊断方法非常重要。
通过分析实际案例,可以更好地掌握诊断技巧和方法。
预防性维护措施也是至关重要的。
定期检查维护行星齿轮箱,可以有效地降低故障率,延长设备寿命。
行星齿轮箱故障诊断方法对于保障设备的正常运转和延长使用寿命具有重要意义。
随着技术的不断发展,行星齿轮箱故障诊断方法也会不断完善,更加便捷高效地诊断故障。
掌握行星齿轮箱故障诊断方法是每位维护人员必备的技能。
2. 正文2.1 常见的行星齿轮箱故障诊断方法1. 异常噪声诊断:行星齿轮箱在运行过程中出现异常噪声可能是因为齿轮损坏、轴承故障或润滑不良等原因引起。
轴承和齿轮箱的故障诊断
齿 轮 的中心与 轴孔 中心不 同心 ,运行 中引起 振
设备 运行 正 常。 2 两 套 微 球 P 2风 机 由于振 动 大 ,根 据 监测 . 一 频谱 图及参 考 该设备 历史 振动 数据 的变化 ( 风机端 振 动 明显加 剧 、电机 内侧振 动上 涨 幅度 也 大 ) ,分 析认 为 ,造成 风机轴 承箱 振动 大 的主要原 因是 由于 风机 叶轮 动平衡 不好及 轴 承磨损 严重 和基 础共 振所 致 ;造 成 电机 内侧振 动大 的主要 原 因是 电机轴 承跑
3 频谱 上 出现 啮 合 频 率 及谐 波 , 即基 波 和 二 .
次 、三 次谐 波等 。 4 波形 图呈离 散型 ,收敛 性 。 .
5 齿 轮磨 损 时高次谐 波 比基 波增 长快 。 .
6 齿 轮 正 常 运行 时 ,啮合 频 率 比二 次 、三 次 .
谐 波大 。
后基 础振 动值 从检 修前 的 79 m s . / 下降 为 5 mm s m . /, 9 但仍 偏大 。检修 后该 设备运 行 正常 。
维普资讯
中 彀俺z 0. 阖 程278 0 0
篱l 妻 善 篓 器 蓉 冀 譬蔓 _ ≤ 曼 鹭 羹 壤 萋
状态监测与诊 断技术
文 章编 号 : 1 7 — 7 1 ( 0 7)0 — 0 3 0 6 10 1 20 80 5— 2
支 撑 瓦有 碰 摩迹 象 ,轴 承箱 后 端振 动 有增 大 趋 势 ,
@D0 = 。
匡 ⑤0 匡 ⑤ 匡 0
@
维普资讯
状 测与 技 态监 诊断 术
文章 编号 :1 7 - 7 (0 7 8 0 5 - 2 6 1 0 1 2 0 )0 - 0 4 0 1
机械故障诊断技术_其他故障诊断技术
如何从复杂的机械设备运行数据中提取出有用的故障特征,是故障诊断技术的关键。目前,一些先进的信号处理和特 征提取方法已经在故障诊断中得到了应用,但仍需要进一步完善和优化。
故障诊断准确性
提高故障诊断的准确性是故障诊断技术一直追求的目标。然而,由于机械设备种类繁多、故障模式复杂 多变等因素,实现高准确性的故障诊断仍然具有很大的挑战性。
光学与声学故障诊断技术
红外热像检测
利用红外热像仪检测设备 表面的温度分布,诊断设 备的过热、接触不良等故 障。
激光干涉测量
利用激光干涉仪测量设备 的微小位移和形变,诊断 设备的机械故障。
声发射检测
通过声发射传感器检测设 备内部裂纹扩展、应力波 等声发射信号,诊断设备 的疲劳、裂纹等故障。
04
机械故障诊断案例分析
故障预测与健康管理技术研究
故障预测与健康管理(PHM)技术是一种新兴的故障诊断 技术,它通过对机械设备的实时监测和数据分析,实现对 设备故障的早期预警和健康管理。未来,PHM技术将成为 故障诊断领域的重要研究方向之一。
THANKS
感谢观看
多技术融合
将多种故障诊断技术融合起来,形成优势互补,提高故障诊断的全面性和准确性。例如, 将振动分析、油液分析、红外测温等技术相结合,可以对机械设备进行更全面的状态监测 和故障诊断。
故障诊断技术面临的挑战与问题
数据获取与处理
在进行故障诊断时,需要获取大量的机械设备运行数据。然而,由于数据来源多样、数据质量参差不齐等问题,给数 据获取和处理带来了很大的挑战。
压路机振动轮、行走机构和转向系统等部件的故障。
05
其他故障诊断技术应用实例
电气设备故障诊断实例
电机故障诊断
齿轮故障诊断
第1章齿轮箱失效比重及失效形式齿轮箱在机械设备中扮演着非常重要的角色,通常情况下,原动机输出的转矩和转速不能直接用于执行元件执行操作,需要进行转矩放大和降低转速,通常使用的传动设备有齿轮减速箱、带传动、链传动等,由于齿轮箱传动瞬时传动比恒定、传动效率高、工作可靠、使用寿命长、结构紧凑、适用范围从1W到数万KW等优点,所以齿轮箱传动是机械传动系统中运用最广泛的一种传动形式。
1.1齿轮箱失效原因及比重机械设备中的齿轮箱从装配投入使用开始,除了设备维护以外,齿轮箱都需要保持一个稳定的运行状态,长期的高负荷运转使齿轮箱的故障率非常大,在机械设备中,造成齿轮箱故障的原因及失效比重如下表所示:齿轮箱失效原因及比重表由此可见,齿轮箱失效主要的原因是维护和操作不当,相邻的零件故障也会造成齿轮箱的故障,设计不合理也是严重影响齿轮箱使用的重要因素,为保障机械设备在运行中稳定可靠,除了合理设计齿轮箱外,正确选择相邻零件、合理操作维护是保障稳定运行的重要手段。
当出现故障时,能够准确找出故障是对齿轮箱维护的重要前提,因此,掌握齿轮箱故障诊断技术非常重要。
1.2齿轮箱失效零件及失效比重在齿轮箱中,失效的主要零件及失效比重如下表所示:齿轮箱失效零件及由此可见,齿轮失效是造成齿轮箱失效的主要原因,由于制造误差、装配不当或在不适当的条件(如载荷、润滑等)下使用,齿轮常发生损伤,从而导致机械设备不能够用稳定运行,甚至发生生产安全事故。
1.3齿轮的主要失效形式齿轮的主要失效形式有四种:轮齿断裂、齿面磨损、齿面疲劳、齿面塑性变形。
1.31 轮齿折断齿轮副在啮合传递运动时,主动轮的作用力和从动轮的反作用力都通过接触点分别作用在对方轮齿上,最危险的情况是接触点某一瞬间位于轮齿的齿顶部,此时轮齿如同一个悬臂梁,受载后齿根处产生的弯曲应力为最大,若因突然过载或冲击过载,很容易在齿根处产生过负荷断裂。
即使不存在冲击过载的受力工况,当轮齿重复受载后,由于应力集中现象,也易产生疲劳裂纹,并逐步扩展,致使轮齿在齿根处产生疲劳断裂。
齿轮箱故障分析与诊断策略
齿轮箱故障分析与诊断策略摘要:齿轮箱是许多机械的变速传动部件。
在聚丙烯装置最大的挤压造粒机组中,也是由它来提供扭矩和改变速度的。
,它的运行是否正常对整个机组的工作有较大影响。
然而设计不当、维护和操作不善都会引起齿轮箱出现一些故障。
这对其进一步的开发和使用带来明显的负面效应。
本文首先阐述齿轮箱的用途,接着对其故障表现和诊断对策分别进行系统描述。
关键词:齿轮箱故障用途诊断策略齿轮箱是一种工业用的组件,它能经由传动齿轮系完成功率的传递任务,同时,齿轮箱作为一种传送齿轮的机械配件,在化工方面的用途也很广。
本文由齿轮箱的应用,对齿轮箱的常见故障表现和诊断措施展开详尽的论述。
一、齿轮箱的用途齿轮箱的主要用途如下:首先,它可以通过齿轮组来改变传递的速度,在工业上常常把它叫做“变速齿轮箱”。
其次,齿轮箱能变换转动力矩,也就是说,在功率一样的前提下,转速越大的齿轮,齿轮轴所受到的力矩反而越小,反过来则越大;再次,齿轮箱用于动力的分配,在工业上,工作人员可用一台发动机,经由齿轮箱的主轴牵动若干个从轴,进而只要一台发动机就会牵引好几个负载;第四,齿轮箱有离合功能,刹车离合器就是利用的齿轮箱离合功能,人们能自由地将两个相互啮合的齿轮分隔开来,进而把负载和发动机分裂开;第五,变换传动方向,不妨采用两个扇形形态的齿轮把其中的力以垂直的方向有序地传导至另一侧的转动轴。
二、齿轮箱的典型失效故障的表现经由对齿轮箱实际应用的分析,不难测定其故障。
整个齿轮箱系统包含了轴承、齿轮、传动轴和箱体结构等部件,作为一类常用的机械动力系统,它在持续运动地同时,非常容易出现机械配件的故障,特别是轴承、齿轮和传动轴这三个零件,其他发生故障的几率明显比它们低。
齿轮执行任务时,因种种复杂的因素影响而缺乏工作的能力,功能参数的数值超越了允许的最大临界数值,这发生了典型的齿轮箱故障。
其表现形式也五花八门,通观全局,其主要分为两大类:第一是齿轮在日积月累的转动中逐渐产生的,因齿轮箱的外表面在承担相对大负载的过程中,互相啮合的齿轮的间隙中又会出现相对滚动力与滑动力,滑动时候的摩擦力与极点两端的方向刚好相反,久而久之,长期的机械运行会使齿轮胶合、出现裂隙、加大磨损的程度,齿轮断裂也就成为必然了。
基于时域波形和频谱分析的齿轮箱故障诊断
基于时域波形和频谱分析的齿轮箱故障诊断摘要:齿轮箱在风力发电机组传动系统中起着非常重要的作用,但由于风况不稳定、设备装配工艺不达标,整个传动系统的滚动轴承在振动过程中易造成磨损失效。
本文针对某风力发电机组,利用时域波形和频谱分析方法对齿轮箱轴承进行诊断,对工作异常轴承进行振动波形分析,精确诊断故障轴承的故障特征和故障程度,准确提出维护意见,避免机组的大部件损伤。
关键词:振动分析;时域波形;频谱分析;故障诊断Gearbox fault diagnosis based on time domain waveform and spectrum analysisZhou Zhuopin(China Resources Power Wind Energy (Yantai) Company Limited,Yantai 26000,China)Abstract: The gearbox plays a very important role in the transmission system of the wind turbine, but due to unstable wind conditions and equipment assembly process not up to standard, the rolling bearings of the entire transmission system are prone to wear and failure during vibration. This paper uses a time domain waveform and frequency spectrum analysis method to diagnose gearbox bearingsfor a wind turbine, and analyzes vibration waveforms for abnormal bearings, accurately diagnoses the fault characteristics and degree of faulty bearings, and accurately provides maintenance advice to avoid the unit Damage to large parts.Keywords:Vibration ;Time domain waveform; Bearing;Frequency Spectrum Analysis; FaultDiagnosis0引言随着国家大力倡导清洁能源的发展,风力发电已成为发展清洁能源的重要组成部分,截止2019年底,全国风电累计装机2.1亿千瓦,占全国总发电装机容量的10.40%。
齿轮箱振动信号频谱分析与故障诊断
齿轮箱振动信号频谱分析与故障诊断摘要:随着科技的快速发展,齿轮已经成为现代工业中主要的零部件之一,由于齿轮箱传动比是固定的,传动力矩大,结构紧凑,被各种机械设备广泛的应用,成为各种机械的变速传动部件,但是齿轮是诱发机械故障的重要部位,所以对齿轮箱故障诊断是十分必要的,本文基于齿轮箱振动及调制边频带形成机理的分析,提出用谱平均及倒频谱分析相结合的方法,对监测系统输出信号进行频域分析,诊断齿轮箱故障,并分析产生的原因。
关键词:齿轮箱;振动信号;频谱分析;故障诊断一、齿轮传动装置故障基本形式及振动信号特征对于齿轮传动装置来说零件失效的主要表现为齿轮和轴承,而齿轮所占比例很大,所以根据提取的故障信号特征,提出行之有效的诊断方法是十分必要的,这样才能更好地诊断齿轮传动装置的问题所在。
1.齿形误差当齿轮出现齿形误差的时候,频谱产生啮合频率及高次谐波为载波频率,齿轮所在的轴转频及倍频为调制频率的啮合频率调制现象,谱图上在啮合频率及倍频附近会产生幅值比较小的边频带,当齿形误差比较严重的时候,激振能量很大,就会产生固有频率,齿轮所在轴转频及倍频为调制频率的齿轮共振频率调制现象。
2.齿面均匀磨损当齿轮使用以后齿面会出现磨损失效,当磨损的时候,使得轮齿齿形的局部出现改变,箱体振动信号与齿形误差也有很大的不同之处,啮合频率及高次谐波的幅值也会增加,由于齿轮的均匀摩擦,就不会产生冲击振动信号,所以不会出现明显的调制现象。
当摩擦达到一定程度以后,啮合频率及谐波幅值就会增加,而且越来越大,同时振动能量也在增加。
3.箱体共振齿轮传动装置箱体共振是比较严重的问题,这主要是因为受到箱体外的影响,激发箱体的固有频率,导致共振的形成。
4.轴的弯曲轴轻度弯曲就会造纸齿轮齿形误差,形成以啮合频率及倍频为载波频率,如果弯曲轴上有多对齿轮啮合,就会对啮合频率调制,但是谱图上的边带数量少,但是轴向振动能量很大。
当轴严重弯曲的时候,时域会出现冲击振动,这于单个断齿和集中性故障产生的冲击振动有很大的区别,这是一个严重的冲击过程。
齿轮箱振动信号分析和故障诊断
存在的问题:
1、应该把不同转矩作用下振动信号数据同时进行对比, 可能效果更加明显; 2、没有设置故障齿轮,连续小波变换法不能直接做出故 障诊断; 3、对于自功率谱分析,其诊断结果显著性不是很强。
入转速下的振动信号比较,其时域特征并不能明显的做
出区分判断。
2、连续小波变换可以将机械信号很好地分解在有限的 时间—尺度范围内而保持信号的信息完整。 对比传统的频 谱分析,机械信号经过连续小波变换后,其内部蕴涵的故 障信息能在尺度域上很好地体现出来。通过比对不同输入 转速下齿轮(涡轮)传动的小波能量-尺度分布图,可以明
自功率谱分析
本实验的信号分析方法将采用Welch法,分别对齿轮 传动和涡轮传在不同输入转速下的振动信号进行自功率谱 分析,通过Matlab软件仿真估计,绘制出各个信号自功率 谱图。
齿轮传动振动信号功率谱(1495r/min)
齿轮传动振动信号功率谱(1457r/min)
齿轮传动振动信号功率谱(1402r/min)
程序如下:
clc clear close all hidden %%********************************读数据 l1=zeros(7,33); for i=1:7 l1(i,1)=i; end for i=1:7 fni=[num2str(i),'.txt']; fid=fopen(fni,'r'); x=fscanf(fid,'%f',inf); status=fclose(fid); n=length(x); c=cwt(x,1:32,'morl');%morlet小波 32维分解 a=zeros(32,1); for ii=1:32 for jj=1:n a(ii,1)=a(ii,1)+(c(ii,jj)).^2; end end %求每个尺度对应能量占总能量的百分比 sum1=0; for ii=1:32 sum1=sum1+a(ii); end b=zeros(32,1); for ii=1:32 b(ii,1)=a(ii,1)/sum1; end b=b'; l1(i,2:1:33)=b(1,:); end save data_l1 l1
齿轮故障诊断方法综述
齿轮故障诊断方法综述摘要齿轮是机械设备中常用的部件,而齿轮传动也是机械传动中最常见的方式之一。
在许多情况下,齿轮故障又是导致设备失效的主要原因.因此对齿轮进行故障诊断具有非常重要的意义。
介绍了故障的特点和几种诊断方法,并比较了基于粒子群优化的小波神经网络,基于相关分析与小波变换,基于小波包和BP神经网络和基于小波分析等故障诊断方法的优缺点,并提出了齿轮故障诊断的难点和发展方向。
关键字齿轮故障诊断诊断方法分析比较发展目录第一章齿轮故障诊断发展及故障特点 (1)1.1 齿轮故障诊断的发展 (1)1. 2齿轮故障形式与震动特征 (1)第二章齿轮传动故障诊断的方法 (2)2. 1高阶谱分析 (2)2。
1。
1参数化双谱估计的原理 (3)2.1.2试验装置与信号获取 (3)2。
1.3 故障诊断 (4)2.1.4应用双谱分析识别齿轮故障 (5)2.2基于边频分析的齿轮故障诊断 (6)2.2.1分析原理 (6)2。
2.2铣床振动测试 (6)2。
2。
3边频带分析 (8)2。
2.4故障诊断 (9)2. 3时域分析 (10)2.3。
1时域指标 (10)2。
3。
2非线性时间分析 (11)第一章齿轮故障诊断发展及故障特点1。
1 齿轮故障诊断的发展齿轮故障诊断始于七十年代初,早期的齿轮故障诊断仅限于在旋转式机械上测量一些简单的振动参数,用一些简单的方法进行诊断.这些简单的参数和诊断方法对齿轮故障诊断反应灵敏度较低,根本无法准确判断发生故障的部位。
七十年代末到八十年代中期,旋转式机械中齿轮故障诊断的频域法发展很快,其中R.B。
Randall和James1.Taylor等人做好了许多有益的工作,积累了不少故障诊断的成功实例,出现了一些较好的频域分析方法,对齿轮磨损和齿根断裂等故障诊断较为成功。
进入九十年代以后,神经网络、模糊推理和网络技术的发展和融合使得齿轮系统故障诊断进入了蓬勃发展的时期。
我国学者在齿轮故障诊断研究方面也做了大量工作。