第七章数据插值与曲线拟合
数值计算方法插值与拟合
数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。
插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。
本文将介绍插值和拟合的基本概念和常见的方法。
一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。
插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。
二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。
2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。
3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。
三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。
2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。
3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。
四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。
五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。
六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。
插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。
数据插值与曲线拟合
实验报告实验目的:掌握数据插值与曲线拟合的方法与应用。
掌握求数值倒数、数值积分、代数方程数值求解、常微分方程数值求解的方法 掌握定义符号对象、求符号函数极限及导数、求符号函数积分的方法实验内容:1 求22)ln(lim y x e x y ++2.计算I=dxdy y x dxdy x f D D )2(21)(--=⎰⎰⎰⎰,其中D 为直线2x y =所围部分 3.求下列变上限积分对变量x 的导数;.2dx x a x x ⎰+4 求高阶微分方程,022''=-++xyz z y y 确定了函数y z x z y x z z ∂∂∂∂=),.(format compact>> input('my name is:','s')my name is:liu yangans =liu yangclear>> fxy=sym('log(x+exp(y))/sqrt(x^2+y^2)')fxy =log(x + exp(y))/(x^2 + y^2)^(1/2)>> result=limit(limit(fxy,'x',1),'y',0)result =log(2)>> clearsyms x yf=(2-x-y)/2;y1=x;y2=x^2;X=solve('x-x^2=0')fdy=int(f,y,x^2,x)X =1fdy =(x*(x - 1)^2*(x + 4))/4>>I=int(fdy,x,X(1),X(2))I =11/120>> clear>> syms a x t y1 y2>> y1=sqrt(a+t)y1 =(a + t)^(1/2)>> y2=int(y1,t,x,x^2);Warning: Explicit integral could not be found. >> diff(y2,x)ans =2*x*(x^2 + a)^(1/2) - (a + x)^(1/2)clear>> y1=dsolve('D2y-10*Dy+9*y=exp(2*x)','Dy(0)=33/7,y(0)=6/7')y1 =exp(2*x)/9 - exp(t)*(exp(2*x)/8 - 3/8) + exp(9*t)*(exp(2*x)/72 + 27/56)clearsyms x y zf=x+2*y-2*sqrt(x*y*z);>> fx=diff(f,x);fy=diff(f,y);fz=diff(f,z);>> zx=-fx/fzzx =-(((y*z)/(x*y*z)^(1/2) - 1)*(x*y*z)^(1/2))/(x*y)>> zy=-fy/fzzy =-(((x*z)/(x*y*z)^(1/2) - 2)*(x*y*z)^(1/2))/(x*y)clear[x,y,z]=solve('x*y^2+z^2=0','y-z=1','x^2-5*x+6')x =2332y =1/3 + (2^(1/2)*i)/31/4 + (3^(1/2)*i)/41/4 - (3^(1/2)*i)/41/3 - (2^(1/2)*i)/3z =- 2/3 + (2^(1/2)*i)/3 - 3/4 + (3^(1/2)*i)/4 - 3/4 - (3^(1/2)*i)/4 - 2/3 - (2^(1/2)*i)/3。
插值与拟合
且 f(1.5) ≈L1(1.5) = 0.885。
Lagrange插值法的缺点
• 多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 (Runge)现象。
• 例:在[-5,5]上用n+1个等距节点作插值多项 式Ln(x),使得它在节点处的值与函数y = 1/(1+25x2)在对应节点的值相等,当n增大时, 插值多项式在区间的中间部分趋于y(x),但 对于满足条件0.728<|x|<1的x, Ln(x)并不趋 于y(x)在对应点的值,而是发生突变,产生 剧烈震荡,即Runge现象。
总结
• 拉格朗日插值:其插值函数在整个区间 上是一个解析表达式;曲线光滑;收敛 性不能保证,用于理论分析,实际意义 不大。
• 分段线性插值和三次样条插值:曲线不 光滑(三次样条已有很大改进);收敛 性有保证;简单实用,应用广泛。
1.2 二维插值
• 二维插值是基于一维插值同样的思想, 但是它是对两个变量的函数Z=f(x,y)进 行插值。
• n=5; • x0=-1:1/(n-1):1;y0=1./(1+25*x0.^2);y1=lagr(x0,y0,x); • subplot(2,2,2), • plot(x,z,'r-',x,y,'m-'),hold on %原曲线 • plot(x,y1,'b'),gtext('L8(x)','FontSize',12),pause %Lagrange曲线
基函数为
l0 (x)
x x1 x0 x1
x2 1 2
2
x
l1(x)
线性插值函数为
数据插值与曲线拟合
例3. 用一个3次多项式在区间[0,2π]内逼近函数。 解:x=linspace(0,2*pi,50);y=sin(x);P=polyfit(x,y,3) 得到P =0.0912 -0.8596 1.8527 -0.1649 即多项式P(x)=0.0912x^30.8596x^2+1.8527x -0.1649 利用绘图方法将多项式 P(x)与sin(x)进行比较: y1=polyval(P,x); plot(x,y,':o',x,y1,'-*')
linear——线性插值(默认) nearest——最近点插值 cubic——3次多项式插值 spline——3次样条插值 注意:X1的取值范围不 能超出X的给定范围,否 则,会给出“NaN”错误。
例1.用不同的插值方法计算y=sin(x)在π/2点的值。
解:x=0:0.2:pi;y=sin(x); interp1(x,y,pi/2)—————ans=0.9975 interp1(x,y,pi/2,'nearest')—ans=0.9996 interp1(x,y,pi/2,'cubic')——ans=0.9992 interp1(x,y,pi/2,'spine')——ans=1.000 spline(x,y,pi/2)—————ans=1.000
1.一维数据插值
一维插值是解决被插值函数是一个单变量函数 的问题。在MATLAB中,实现这些插值的函数是 interp1,其调用格式为: Y1=interp1(X,Y,X1,’method’) X,Y是两个等长的已知向量,分别描述采样点和 样本值,X1是一个描述欲插值的点或向量,Y1是一 个与X1等长的插值结果。method是插值方法:
曲线拟合与插值方法的数学原理
曲线拟合与插值方法的数学原理现代科学技术的发展离不开数学的支持,而在数学领域中,曲线拟合与插值方法是一种常用的数学原理。
本文将从数学角度探讨曲线拟合与插值方法的原理及其应用。
曲线拟合是指利用已知的数据点,通过一定的数学方法找到与这些数据点最为契合的曲线。
在实际应用中,往往通过曲线拟合方法来预测未知数值,从而达到分析数据、优化设计等目的。
而曲线插值则是指通过已知数据点之间的光滑曲线来逼近实际函数的方法。
曲线插值要求插值函数通过所有给定的数据点,从而保证精确度要求。
曲线拟合与插值方法的数学原理主要涉及到数值分析、逼近论、微积分等数学知识。
在曲线拟合中,常用的方法包括最小二乘法、最小二乘多项式拟合、最小二乘非线性拟合等。
最小二乘法是一种通过最小化误差平方和来确定未知参数的优化方法,能够有效降低数据测量误差对拟合结果的影响。
在曲线插值方法中,常用的技术包括拉格朗日插值、线性插值、样条插值等。
这些方法通过不同的插值基函数来逼近实际函数,其中拉格朗日插值是一种广泛应用的方法,它通过已知数据点构造一个插值多项式,从而达到对函数的逼近效果。
曲线拟合与插值方法在实际应用中有着广泛的应用。
例如,在工程领域中,曲线拟合与插值方法能够对大量的实验数据进行处理,从而找到数据背后的规律,为工程设计提供支持。
在金融领域中,曲线插值方法被广泛用于股票市场走势的分析与预测,通过对历史数据的插值拟合,为投资决策提供参考。
此外,在地理信息系统、生物医学和社会科学等领域,曲线拟合与插值方法也有着重要的应用价值。
总之,曲线拟合与插值方法作为一种重要的数学原理,在现代科学技术领域中有着广泛的应用。
通过对曲线拟合与插值方法的深入研究和探讨,我们能够更好地理解数据背后的规律,为科学研究和工程实践提供强大的支持。
希望本文能够对读者对曲线拟合与插值方法有所启发和帮助。
插值法和曲线拟合的主要差异
插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。
- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。
2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。
- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。
3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。
- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。
4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。
- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。
综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。
曲线拟合和插值运算原理和方法
实验10 曲线拟合和插值运算一. 实验目的学会MATLAB 软件中软件拟合与插值运算的方法。
二. 实验内容与要求在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。
当要求知道观测点之外的函数值时,需要估计函数值在该点的值。
要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。
根据测量数据的类型有如下两种处理观测数据的方法。
(1) 测量值是准确的,没有误差,一般用插值。
(2) 测量值与真实值有误差,一般用曲线拟合。
MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。
1.曲线拟合已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。
最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i ii f x y =-∑ 最小的f(x).格式:p=polyfit(x,Y ,n).说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。
[例 1.9]>>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值>>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值>>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数>>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值>>y1=polyval(p,1x ); %求出f(x)在1x 的值>>plot(x,y,‟*r ‟, 11,x y ‟-b ‟) %比较拟合曲线效果计算结果为:p=0.5614 0.8287 1.1560即用f(x)=0.56142x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。
《插值与拟合》课件
拟合的方法
1
最小二乘法
通过最小化残差平方和,找到与数据最匹配的函数。
2
局部加权回归
给予附近数据点更高的权重,拟合接近局部数据点的函数。
3
多项式拟合
用多项式函数逼近数据,通过选择合适的次数实现拟合。
插值与拟合的误差分析
插值和拟合都会引入近似误差,需要评估误差范围和影响因素。
插值与拟合在数据处理与分析中的应用
数据分析
通过插值和拟合方法对数据进 行探索和分析。
数据处理
在数据处理过程中使用插值和 拟合技术来填充缺失值和平滑 数据。
数据建模
利用插值和拟合模型对数据特 征进行捕捉和预测分析。
插值与拟合的推广和发展前景
随着数据科学和人工智能的不断发展,插值和拟合在各个领域的应用前景越 来越广阔。
插值与拟合的应用范围
科学研究
用于数据分析、信号优化设计、近似计算和 效能提升。
经济金融
用于市场分析、预测模型和 风险评估。
插值的方法
1
拉格朗日插值
基于多项式插值公式,用拉格朗日多项式逼近函数。
2
牛顿插值
基于差商的概念,用多项式逼近函数的值。
3
分段插值
将插值区间划分为多个子区间,并在每个子区间上进行插值。
《插值与拟合》PPT课件
插值与拟合是数值计算和数据分析中重要的概念。
插值与拟合的概念
插值
通过已知值的推算,计算在未知点的近似值。
拟合
通过曲线或曲面拟合已知数据,以描述和预 测未知数据。
插值与拟合的区别与联系
1 区别
2 联系
插值重点关注已知点的准确性,而拟合则 着重于整体形状的拟合。
插值和拟合都通过数学模型逼近离散数据, 以实现数据的补全和预测。
插值与拟合方法
插值与拟合方法在实际中,常常要处理由实验或测量所得到的一批离散数据.插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数与已知数据有较高的拟合精度.插值问题:要求这个近似函数(曲线或曲面)经过所已知的所有数据点.通常插值方法一般用于数据较少的情况.数据拟合:不要求近似函数通过所有数据点,而是要求它能较好地反映数据的整体变化趋势。
共同点:插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数的方法,由于对近似要求的准则不同,因此二者在数学方法上有很大的差异.插值问题的一般提法:已知某函数)(x f y =(未知)的一组观测(或试验)数据),,2,1)(,(n i y x ii⋅⋅⋅=,要寻求一个函数)(x φ,使iiy x =)(φ),,2,1(n i ⋅⋅⋅=,则)()(x f x ≈φ.实际中,常常在不知道函数)(x f y =的具体表达式的情况下,对于i x x =有实验测量值iy y =),,2,1,0(n i ⋅⋅⋅=,寻求另一函数)(x φ使满足:)()(i i i x f y x ==φ),,2,1,0(n i ⋅⋅⋅=称此问题为插值问题,并称函数)(x φ为)(x f 的插值函数,nx x x x ,,,,21⋅⋅⋅称为插值节点,),,2,1,0()(n i y x ii⋅⋅⋅==φ称为插值条件,即)()(iiix f y x ==φ),,2,1,0(n i ⋅⋅⋅=,则)()(x f x ≈φ.(1) 拉格朗日(Lagrange )插值设函数)(x f y =在1+n 个相异点nx x x x ,,,,21⋅⋅⋅上的函数值为ny y y y ,,,,21⋅⋅⋅,要求一个次数不超过n 的代数多项式nnnx a x a x a a x P +⋅⋅⋅+++=221)(使在节点i x 上有),,2,1,0()(n i y x P ii n ⋅⋅⋅==成立,称之为n 次代数插值问题,)(x P n称为插值多项式.可以证明n 次代数插值是唯一的.事实上: 可以得到j n j n i i j in y x x xx x P j i ∑∏==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=≠00)()( 当1=n 时,有二点一次(线性)插值多项式:101001011)(y x x x x y x x x x x P --+--=当n =2时,有三点二次(抛物线)插值多项式:2120210121012002010212))(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x P ----+----+----=(2)牛顿(Newton ) 插值牛顿插值的基本思想:由于)(x f y =关于二节点10,x x 的线性插值为)()()()()()()()()(00101000010101x x x x x f x f x p x x x x x f x f x f x p ---+=---+= 假设满足插值条件)2,1,0()()(2===i x p y x f iii的二次插值多项式一般形式为))(()()(1212x x x x c x x c c x p --+-+= 由插值条件可得⎪⎩⎪⎨⎧=--+-+=-+=)())(()()()()(21202202101011000x f x x x x c x x c c x f x x c c x f c 可以解出⎪⎪⎪⎩⎪⎪⎪⎨⎧------=--==020101121220101100)()()()()()(),(x x x x x f x f x x x f x f c x x x f x f c x f c所以))(()())(()()(10211020102x x x x c x p x x x x c x x c c x p --+=--+-+=类似的方法,可以得到三次插值多项式等,按这种思想可以得到一般的牛顿插值公式.函数的差商及其性质对于给定的函数)(x f ,用),,,(10n x x x f ⋅⋅⋅表示关于节点nx x x ,,,1⋅⋅⋅的n 阶差商,则有一阶差商:01011)()(),(x x x f x f x x f --=,121221)()(),(x x x f x f x x f --= 二阶差商:021021210),(),(),,(x x x x f x x f xx x f --=n 阶差商:0110211),,,(),,,(),,,(x x x x x f x x x f x x x f n n n n -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-差商有下列性质:(1)差商的分加性:∑∏=≠=-=⋅⋅⋅nk nk j j j kk n x xx f xx x f 0)(01)()(),,,(.(2)差商的对称性:在),,,(1nx x x f ⋅⋅⋅中任意调换jix x ,的次序其值不变.牛顿插值公式: 一次插值公式为))(,()()(01001x x x x f x f x p -+=二次插值公式为))()(,,()())()(,,())(,()()(1021011021001002x x x x x x x f x p x x x x x x x f x x x x f x f x p --+=--+-+=于是有一般的牛顿插值公式为)())()(,,,()()())()(,,,())()(,,())(,()()(11010111010102100100----⋅⋅⋅--⋅⋅⋅+=-⋅⋅⋅--⋅⋅⋅+⋅⋅⋅+--+-+=n n n n n n x x x x x x x x x f x p x x x x x x x x x f x x x x x x x f x x x x f x f x p可以证明:其余项为))(())()(,,,,()(11010n n n x x x x x x x x x x x x f x R --⋅⋅⋅--⋅⋅⋅=-实际上,牛顿插值公式是拉格朗日插值公式的一种变形,二者是等价的.另外还有著名的埃尔米特(Hermite )插值等.(3)样条函数插值方法样条,实质上就是由分段多项式光滑连接而成的函数,一般称为多项式样条.由于样条函数的特殊性质,决定了样条函数在实际中有着重要的应用.样条函数的一般概念定义 设给定区间],[b a 的一个分划b x x x a n=<⋅⋅⋅<<=∆1:,如果函数)(x s 满足条件:(1) 在每个子区间),,2,1](,[1n i x x ii ⋅⋅⋅=-上是k 次多项式; (2) )(x s 及直到k -1阶的导数在],[b a 上连续.则称)(x s 是关于分划△的一个k 次多项式样条函数,nx x x ,,,1⋅⋅⋅称为样条节点,121,,,-⋅⋅⋅n x x x 称为内节点,nx x ,0称为边界节点,这类样条函数的全体记作),(k S P∆,称为k 次样条函数空间.若),()(k S x s P∆∈,则)(x s 是关于分划△的k 次多项式样条函数.k 次多项式样条函数的一般形式为∑∑=-=+-+=ki n j k j jii k x x k i x x s 011)(!!)(βα其中),,1,0(k i i=α和)1,,2,1(-=n j jβ均为任意常数,而)1,,2,1(,0,)()(-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jj kj kj在实际中最常用的是2=k 和3的情况,即为二次样条函数和三次样条函数. 二次样条函数:对于],[b a 上的分划b x x x a n=<⋅⋅⋅<<=∆1:,则)2,()(!2!2)(11222102∆βαααP n j j jS x x x x x s ∈-+++=∑-=+其中)1,2,1(,0,)()(22-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x j j j j . 三次样条函数:对于],[b a 上的分划b x x xa n =<⋅⋅⋅<<=∆10:,则)3,()(!3!3!2)(1133322103∆βααααP n j j jS x x x x x x s ∈-++++=∑-=+其中)1,2,1(,0,)()(33-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jjj j .1 二次样条函数插值)2,()(2∆∈P S x s 中含有2+n 个待定常数,故应需要2+n 个插值条件,因此,二次样条插值问题可分为两类:问题(1):已知插值节点ix 和相应的函数值),,2,1,0(n i y i⋅⋅⋅=,以及端点0x (或n x )处的导数值0'y (或ny '),求)2,()(2∆∈PS x s 使得⎩⎨⎧'=''='⋅⋅⋅==))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.1)问题(2):已知插值节点ix 和相应的导数值),,2,1,0(n i y i⋅⋅⋅=',以及端点0x (或n x )处的函数值0y (或ny ),求)2,()(2∆∈P S x s 使得⎩⎨⎧==⋅⋅⋅='='))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.2)事实上,可以证明这两类插值问题都是唯一可解的.对于问题(1),由条件(5.1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=+='==-+++==++==++=∑-=00210211222102121211112020201002)(,,3,2,)(2121)(21)(21)(y x x s n j y x x x x x s yx x x s y x x x s j j i i j i jj j ααβααααααααα 引入记号T n ),,,,,(11210-=ββααα X 为未知向量,T nn y y y y ),,,,(10'= C 为已知向量, ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=-0010)(21)(21211)(212110211211021212212222211200x x x x x x x x x x x x x x x n n n n n A 于是,问题转化为求方程组C AX =的解Tn ),,,,,(1121-=ββααα X 的问题,即可得到二次样条函数的)(2x s 的表达式.对于问题(2)的情况类似.2.三次样条函数插值由于)3,()(3∆∈P S x s 中含有3+n 个待定系数,故应需要3+n 个插值条件,因此可将三次样条插值问题分为三类: 问题(1):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,n x 处的导数值0'y ,ny ',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧='='⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.3)问题(2):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,nx 处的二阶导数值0y '',n y '',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧=''=''⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.4)问题(3):类似地,求)3,()(3∆∈PSx s 使满足条件⎪⎩⎪⎨⎧=+=-==)2,1,0)(0()0(),,1,0()(0)(3)(33k x s x s n j y x s k n k j j(5.5)这三类插值问题的条件都是3+n 个,可以证明其解都是唯一的〔8〕.一般的求解方法可以仿照二次样条的情况处理方法,在这里给出一种更简单的方法.仅依问题(1)为例,问题(2)和问题(3)的情况类似处理.由于在)3,()(3∆PS x s ∈区间],[b a 上是一个分段光滑,且具有二阶连续导数的三次多项式,则在子区间],[1+j jx x 上)(3x s ''是线性函数,记),,,1,0)((3n j x s d jj =''=为待定常数.由拉格朗日插值公式可得nj x x h h x x d h x x d x s j j j jj j jj j ,,1,0,,)(1113=-=-+-=''+++显然jjj h d dx s -='''+13)(在],[1+j jx x上为常数.于是在],[1+j j x x 上有31233)(6)(2))(()(j jjj j j j j j x x h d d x x d x x x s y x s --+-+-'+=+(5.6)则当1+=j x x 时,由(5.6)式和问题(1)的条件得121231362)()(+++=-++'+=j j jj j j j j j j y h d d h d h x s y x s故可解得)2(6)(113+++--='j j j jjj j d d h h y y x s(5.7)将(5.7)式代入(5.6)式得)1,,1,0](,[,)(6)(2)()2(6)(1312113-=∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=++++n j x x x x x h d d x x d x x d d h h y y y x s j j j jj j j jj j j j j j j j(5.8) 在],[1j j x x-上同样的有),,2,1](,[,)(6)(2)()2(6)(131112111111113n j x x x x x h d d x x d x x d d h h y y y x s j j j j j j j j j j j j j j j j =∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=------------(5.9) 根据)(3x s的一阶导数连续性,由(5.9)式得)()2(6)0(311113j j j j j j j j x s d d h h y y x s '=++-=-'---- 结合(5.7)式整理得⎪⎪⎭⎫ ⎝⎛---+=++++--+-+----11111111162j j j j j j j j j j j j j j j j j h y y h y y h h d h h h d d h h h 引入记号⎪⎪⎭⎫ ⎝⎛---+=+=--+--111116,j j j j j j j j j j j j j h y y h y y h h c h h h a ,111--+=-j j j j h h h a .则)1,,2,1(,2)1(11-==++-+-n j c d a d d a j j j j j j(5.10)再由边界条件:nny x s y x s '=''=')(,)(33得⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--'=+⎪⎪⎭⎫ ⎝⎛'--=+----111100010106262n n n n n n n h y y y h d d y h y y h d d(5.11)联立(5.10),(5.11)式得方程组C D A =⋅(5.12)其中⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=----2121212112112200n n n n a a a a a aA ,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-n n d d d d 110 D ,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--'⎪⎪⎭⎫ ⎝⎛'--=----111110001066n n n n n n hy y y h c c y h y y h C 由方程组(6.12)可以唯一解出),,1,0(n j d j=,代入(5.8)式就可以得三次样条函数)(3x s 的表达式.B样条函数插值方法磨光函数实际中的许多问题,往往是既要求近似函数(曲线或曲面)有足够的光滑性,又要求与实际函数有相同的凹凸性,一般插值函数和样条函数都不具有这种性质.如果对于一个特殊函数进行磨光处理生成磨光函数(多项式),则用磨光函数构造出样条函数作为插值函数,既有足够的光滑性,而且也具有较好的保凹凸性,因此磨光函数在一维插值(曲线)和二维插值(曲面)问题中有着广泛的应用.由积分理论可知,对于可积函数通过积分会提高函数的光滑度,因此,我们可以利用积分方法对函数进行磨光处理.定义 若)(x f 为可积函数,对于0>h ,则称积分⎰+-=22,1)(1)(hx h x h dt t f h x f为)(x f 的一次磨光函数,h 称为磨光宽度.同样的,可以定义)(x f 的k 次磨光函数为)1()(1)(22,1,>=⎰+--k dt t f h x f hx h x h k h k事实上,磨光函数)(,x f h k 比)(x f 的光滑程度要高,且当磨光宽度h 很小时)(,x f h k 很接近于)(x f .等距B样条函数对于任意的函数)(x f ,定义其步长为1的中心差分算子δ如下:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=2121)(x f x f x f δ在此取0)(+=x x f ,则002121+++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=x x x δ是一个单位方波函数(如图5-1),记0)(+=Ωx x δ.并取1=h ,对)(0x Ω进行一次磨光得++++-+++-+++--+-+=-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+==⎰⎰⎰⎰)1(2)1(2121)()(11212100212101x x x dt t dt t dt t t dt t x x xx x x x x x ΩΩ显然)(1x Ω是连续的(如图5-2).)(1x Ωo1-1/2 0 1/2 x -1 0 1 x 图5-1图5-2类似地可得到k 次磨光函数为kk j jk j k j k x k C x ++=+⎪⎭⎫ ⎝⎛-++-=Ω∑21!)1()(11 实际上,可以证明:)(x kΩ是分段k 次多项式,且具有1-k 阶连续导数,其k 阶导数有2+k个间断点,记为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j x j.从而可知)(x kΩ是对应于分划+∞<<⋅⋅⋅<<<-∞∆+110:k x x x 的k 次多项式样条函数,称之为基本样条函数,简称为k 次B样条.由于样条节点为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j xj是等距的,故)(x k Ω又称为k 次等距B样条函数.对于任意函数)(x f 的k 次磨光函数,由归纳法可以得到 [4,8] :⎪⎭⎫⎝⎛+≤≤--Ω=⎰∞+∞--22)()(1)(1,h x t h x dt t f htx h x f k h k 特别地,当1)(=x f 时,有1)(11⎰+∞∞--=-dt htx hk Ω,从而1)(⎰+∞∞-=dx x k Ω,且当k ≥1时有递推关系⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-Ω⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛+Ω⎪⎭⎫ ⎝⎛++=Ω--212121211)(11x x k x k x k x k k k一维等距B样条函数插值等距B样条函数与通常的样条如下的关系: 定理设有区间],[b a 的均匀分划nab h n j jh x x j -=⋅⋅⋅=+=),,,1,0(:0∆,则对任意 k 次样条函数),()(k S x S p k ∆∈都可以表示为B样条函数族1021-=-=⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛+---n j k j k k j h x x Ω的线性组合[14].根据定理 5.1,如果已知曲线上一组点()jjy x ,,其中),,1,0,0(0n j h jh x x j⋅⋅⋅=>+=,则可以构造出一条样条磨光曲线(即为B样条函数族的线性组合)⎪⎭⎫⎝⎛--=∑--=j h x x c x S n kj k j k 01)(Ω 其中)1,,1,(-⋅⋅⋅+--=n k k j c j为待定常数.用它来逼近曲线,既有较好的精度,又有良好的保凸性.实际中,最常用的是3=k 的情况,即一般形式为⎪⎭⎫ ⎝⎛--=∑+-=j h x x c x S n j j 01133)(Ω 其中3+n 个待定系数)1,,0,1(+⋅⋅⋅-=n j c j可以由三类插值条件确定.由插值条件(5.3)得()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'='==-='=-'='∑∑∑+-=+-=+-=n n j j n i n j j i n j j y j n c h x S ni y j i c x S y j c h x S 113311330113031)(,,1,0,)(1)(ΩΩΩ(5.13)注意到)(3x Ω的局部非零性及其函数值:61)1(,32)0(33=±=ΩΩ,当2≥x 时0)(3=x Ω;且由)21()21()(223--+='x x x ΩΩΩ知,21)1(,0)0(33=±'='ΩΩ,当2≥x 时0)(3='x Ω.则(5.13)中的每一个方程中只有三个非零系数,具体的为⎪⎩⎪⎨⎧'=+-==++'=+-+-+--n n n i i i i y h c c n i y c c c y h c c 2,,1,0,6421111011(5.14)由方程组(5.14)容易求解出)1,,0,1(+⋅⋅⋅-=n j c j,即可得到三次样条函数)(3x S 表达式.类似地,由插值条件(5.4)得待定系数的)1,,0,1(+⋅⋅⋅-=n j c j所满足的方程组为⎪⎩⎪⎨⎧''=+-==++''=+-+-+--nn n n i i i i y h c c c n i y c c c y h c c c 21111021012,,1,0,642(5.15)由插值条件(5.5)得待定系数的)1,,0,1(+⋅⋅⋅-=n j cj所满足的方程组为⎪⎪⎩⎪⎪⎨⎧==++=-+---=-++-=-+-+-+-+--+--+--ni y c c c c c c c c c c c c c c c c c c c i i i i n n n n n n n n ,,1,0,640)()(2)(0)(0)(0)()(4)(1111011111111011(5.16)方程组(5.15),(5.16)也都是容易求解的.注:上述等距B样条插值公式也适用于近似等距的情形,但在端点0x 和n x 处误差可能较大,实际应用时,为了提高在端点0x 和nx 处的精度,可以适当向左右延拓几个节点.二维等距B样条函数插值设有空间曲面),(y x f z =(未知),如果已知二维等距节点()()τj y ih x y x ji++=0,,)0,(>τh 上的值为),,2,1,0;,,2,1,0(m j n i z ij⋅⋅⋅=⋅⋅⋅=,则相应的B样条磨光曲面的一般形式为⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛--=∑∑--=--=j y y i h x x c y x s l m lj k ij n ki τΩΩ0011),( 其中),,2,1,0;,,2,1,0(m j n i c ij⋅⋅⋅=⋅⋅⋅=为待定常数,l k ,可以取不同值,常用的也是2,=l k 和3的情形.这是一种具有良好保凸性的光滑曲面(函数),在工程设计中是常用的,但只能使用于均匀分划或近似均匀分划的情况.(4) 最小二乘拟合方法最小二乘拟合方法的思想:由于一般插值问题并不总是可解的(即当插值条件多于待定系数的个数时,其问题无解),同时,问题的插值条件本身一般是近似的,为此,只要求在节点上近似地满足插值条件,并使它们的整体误差最小,这就是最小二乘拟合法.最小二乘拟合方法可以分为线性最小二乘拟合方法和非线性最小二乘拟合方法.线性最小二乘拟合方法设{}m k kx 0)(=φ是一个线性无关的函数系,则称线性组合∑==mk k k x a x 0)()(φφ为广义多项式.如三角多项式:∑∑==+=mk k mk kkx b kx ax 0sin cos )(φ.设由给定的一组测量数据),(iiy x 和一组正数),,2,1(n i w i⋅⋅⋅=,求一个广义多项式∑==mk k k x a x 0)()(φφ使得目标函数[]21)(∑=-=ni i i i y x w S φ(5.17)达到最小,则称函数)(x φ为数据),,2,1)(,(n i y x ii⋅⋅⋅=关于权系数),,2,1(n i w i⋅⋅⋅=的最小二乘拟合函数,由于)(x φ关于待定系数ia 是线性的,故此问题又称为线性最小二乘问题. 注意:这里{}m k kx 0)(=φ可根据实际来选择,权系数iw 的选取更是灵活多变的,有时可选取1=i w ,或nw i 1=,对于nw i1=,则相应问题称为均方差的极小化问题.最小二乘拟合函数的求解要使最小二乘问题的目标函数(5.17)达到最小,则由多元函数取得极值的必要条件得),,2,1,0(0m k a Sk==∂∂ 即),,2,1,0(0)()(10m k x y x a w i k ni i m k i k k i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡-∑∑==φφ 亦即),,2,1,0()()()(001m k x y w a x x w n i i k i i j mj n i i k i j i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡∑∑∑===φφφ(5.18)是未知量为ma a a a ,,,,21⋅⋅⋅的线性方程组,称(5.18)式为正规方程组.实际中可适当选择函数系{}m k kx 0)(=φ,由正规方程组解出ma a a a ,,,,210⋅⋅⋅,于是可得最小二乘拟合函数∑==mk kk x a x 0)()(φφ.一般线性最小二乘拟合方法将上面一元函数的最小二乘拟合问题推广到多元函数,即为多维线性最小二乘拟合问题.假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=和一组线性无关的函数系{}N k nk x x x 021),,,(=⋅⋅⋅φ,求函数∑=⋅⋅⋅=⋅⋅⋅Nk n k k n x x x a x xx 02121),,,(),,,(φφ对于一组正数mw w w ,,,21⋅⋅⋅,使得目标函数[]2121),,,(∑=⋅⋅⋅-=mi ni i i i i x x x y w S φ达到最小.其中待定系数N a a a a,,,,210⋅⋅⋅由正规方程组),,2,1,0(),(),(0N k y a Nj k j k j⋅⋅⋅==∑=φφφ确定,此处ini i i k mi i k ni i i k mi ni i i j i k j y x x x w y x x x x x x w ),,,(),(),,,(),,,(),(21121121⋅⋅⋅=⋅⋅⋅⋅⋅⋅=∑∑==φφφφφφ注:上面的函数φ关于ia 都是线性的,这就是线性最小二乘拟合问题,对于这类问题的正规组总是容易求解的.如果φ关于ia 是非线性的,则相应的问题称为非线性最小二乘拟合问题.非线性最小二乘拟合方法假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=,要求一个关于参数),,2,1,0(N j a j⋅⋅⋅=是非线性的函数),,,;,,,(1021Nn a a a x x x ⋅⋅⋅⋅⋅⋅=φφ对一组正数mw w w ,,,21⋅⋅⋅使得目标函数[]21102110),,,;,,,(),,,(∑=⋅⋅⋅⋅⋅⋅-=⋅⋅⋅mi N ni i i i i N a a a x x x y w a a a S φ达到最小,则称之为非线性最小二乘问题.这类问题属于无约束的最优化问题,一般问题的求解是很复杂的,通常情况下,可以采用共轭梯度法、最速下降法、拟牛顿法和变尺度法等方法求解.实例:黄河小浪底调水调沙问题问题的提出2004年6月至7月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功.整个试验期为20多天,小浪底从6月19日开始预泄放水,直到7月13日恢复正常供水结束.小浪底水利工程按设计拦沙量为75.5亿立方米,在这之前,小浪底共积泥沙达14.15亿吨.这次调水调试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙.在小浪底水库开闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700立方米/每秒,使小浪底水库的排沙量也不断地增加.下面是由小浪底观测站从6月29日到7月10日检测到的试验数据:表5-1: 试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米·84··85·注:以上数据主要是根据媒体公开报道的结果整理而成的,不一定与真实数据完全相符.现在,根据试验数据建立数学模型研究下面的问题:(1) 给出估算任意时刻的排沙量及总排沙量的方法;(2) 确定排沙量与水流量的变化关系.模型的建立与求解对于问题(1),根据所给问题的试验数据,要计算任意时刻的排沙量,就要确定出排沙量随时间变化的规律,可以通过插值来实现.考虑到实际中排沙量应该是随时间连续变化的,为了提高精度,我们采用三次B样条函数进行插值.下面构造三次B样条函数)(x S y =.由试验数据,时间是每天的早8点和晚8点,间隔都是12个小时,共24个点)24,,2,1(⋅⋅⋅=i t i.为了计算方便,令)23,,,1,0(122128⋅⋅⋅=+⎥⎦⎤⎢⎣⎡⋅+-=i i t x i i(5.19)则it 对应于)23,,1,0(1⋅⋅⋅=+=i i x i.于是以)23,,1,0(⋅⋅⋅=i x i为插值节点(等距),步长1=h .其相应的排沙量为)23,,1,0(⋅⋅⋅=i y i 对应关系如下表:·86·表5-2: 插值数据对应关系单位:排沙量为公斤函数)(x S y =所满足的条件为 (1)23,,1,0,)(⋅⋅⋅==i y x S ii;(2) 3500)(,56400)(2223222323231212-=--≈'='=--≈'='x x y y x S y x xy yx S y .取)(x S 的三次B样条函数一般形式为∑-=⎪⎭⎫⎝⎛--=24103)(j j j h x x c x S Ω·87·其中)24,,1,0,1(⋅⋅⋅-=j cj为待定常数,1=h .在这里⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<+-+-≤+-=Ω2,021,342611,3221)(23233x x x x x x x x x且易知⎪⎪⎪⎩⎪⎪⎪⎨⎧≥±===Ω2,01,610,32)(3x x x x和⎪⎪⎩⎪⎪⎨⎧≥±===Ω'2,01,210,0)(3x x x x 根据B样条函数的性质,)(x S ''在[]23,x x 上连续,则有()∑-=--'='='2413)(j jj xx c x S y Ω由插值条件(1),(2)可得到下列方程组()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'=''=-'='⋅⋅⋅==-=∑∑∑-=-=-=23241323024130241323)()(23,,1,0,)(y j c x S y j c x S i y j i c x S j j j j i j j i ΩΩΩ 即⎪⎩⎪⎨⎧'=+-'=+-⋅⋅⋅==++-+-23242311112223,,1,0,64y c c y c c i y c c c i i i i 将232324112,2y c c y c c '+='-=-代入前24个方程中的第一个和最后一个,便可得到方程组F AC =,其中·88·⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅=⨯232102424,421410141014124c c c c C A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡'-'+=3400048000684000458400266626232322100 y y y y y y F显然A 为满秩阵,方程组F AC =一定有解,用消元法求解可得问题的解为56044.39830=c , 4117111.2031=c , 2159510.7882=c , 9189845.6433=c ,1203106.6364=c , 8239727.8115=c ,8249182.1166=c , 1263543.7217=c ,9287842.9988=c , 2302284.2839=c ,4317419.86810=c , 1304836.24311=c ,3307635.15912=c ,6305423.11913=c ,2270672.36214=c ,4240287.43115=c ,0154177.91216=c ,4103000.92017=c ,99818.406218=c , 43725.454719=c ,49279.775020=c ,32155.445221=c , 2098.444222=c ,7450.777923=c ,-450.777924311.2034,2232324011='+=='-=-y c c y c c . 将)24,,1,0,1(⋅⋅⋅-=j c j代入()∑-=--==24131)(j jj x c x S y Ω(5.20)即得排沙量的变化规律.由(5.19)和(5.20)式可得到第i 时间段(12小时为一段)内,任意时刻]12,0[∈t 的排沙量.则总的排沙量为()dt j t c dx x S Y j j⎰∑⎰-=--Ω==284824132411)(经计算可得1110844.1⨯=Y 吨,即从6月29日至7月10日小浪底水库排沙总量大约为1.844亿吨,此与媒体报道的排沙量基本相符.对于问题(2),研究排沙量与水量的关系,从试验数据可以看出,开始排沙量是随着水流量的增加而增长,而后是随着水流量的减少而减少.显然,变化规律并非是线性的关系,为此,我们问题分为两部分,从开始水流量增加到最大值2720立方米/每秒(即增长的过程)为一段,从水流量的最大值到结束为第二段,分别来研究水流量与排沙量的关系.具体数据如表5-3和5-4.表5-3: 第一阶段试验观测数据 单位:水流为立方米/每秒,含沙量为公斤/立方米表5-4: 第二阶段试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米对于第一阶段,由表5-3用Matlab作图(如图5-3)可以看出其变化趋势,我们用多项式作最小二乘拟合.·90··91·图5-3设拟合函数为∑==mk kk x a x 1)(φ确定待定常数),,1,0(m k ak=使得211111102])([∑∑∑===⎥⎦⎤⎢⎣⎡-=-=i i i m k k i k i i y x a y x S φ有最小值.于是可以得到正规方程组为m k x y a x mj i k i i j i j k i ,,1,0,0111111 ==⎪⎭⎫⎝⎛∑∑∑===+ 当3=m 时,即取三次多项式拟合,则3,2,1,0,1113111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑==+=+=+=k x y a x a x a x a x i k i i i k i i k i i k i i k i求解可得73321108423.1,103172.1,3.1784,-2492.9318--⨯=⨯-===a a a a .于是可得拟合多项式为332213)(x a x a x a a x +++=φ,最小误差为847.72=S ,拟合效果如图所示.·92·图:三次拟合效果,带*号的为拟合曲线.类似地,当4=m 时,即取四次多项式拟合,则正规方程组为4,3,2,1,0111411143111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑∑==+=+=+=+=k x y a x a x a x a x a x i ki i i k i i k i i k i i k i i k i求解可得104633210109312.1,1094.1,102626.7,12.0624,-7434.6557---⨯-=⨯=⨯-===a a a a a 于是可得拟合多项式为443322104)(x a x a x a x a a x ++++=φ,最小误差为102.66=S ,拟合效果如图5-5所示.图5-5:四次拟合效果,带*号的为拟合曲线.从上面的三次多项式拟合和四次多项拟合效果来看,差别不大.基本可以看出排沙量与水流量的关系.图5-6:第二段三·93··94· 次多项式拟合效果对于第二阶段,由表5-4可以类似地处理.我们用线性最小二乘法作三次和四多项式拟合.拟合效果如图5-6和5-7所示,最小误差分别为5.459=S 和1.236=S . 从拟合效果来看,显然四次多项式拟合要比三次多项式拟合好的多.图5-7:第二段四次多项式拟合效果。
插值法与曲线拟合_2023年学习资料
2.1插值法-分段线性插值示意图-x+1,f+1-x,f-0=X0-xx-Xk+1-x=b-例5:数据如例 ,应用分段线性插值计算f0.5,f0.75的近似值-®
2.1插值法-分段二次插值:-设fx是区间[a,b]上的函数,在节点ax。<x<„<xmb-上的函数值为0,f,„,fm-记h=maxxx+1-x则f闭的二次插值函数P,x-0≤k≤2m=1-定义为:-在区间X X2+2]上-.0-x)f0+-x-X2kx-x2k+2)-fx2k1-x2Xk+1x2K-七k+2)-X X2kX2K+X2K2-xx2kx-x2k+1-fx2k+2-X∈[x2k,x2k+2]-X2k+2X2k 2k+2-X2k+1-显然有p,x=f,k=0,1,,2m-®
2.1插值法-牛顿Newton插值多项式-◆记函数∫x在x,的值fx]=∫x,称f[x]为fx关于x,的阶差商。-◆称-f[xo,x1=-f[xx]-f[xo]-x-x0-为函数fx关于点x,x的一阶差商-◆一 地,fx关于一xo,X,,x的k阶差商为-xx„,x]=fxox2=fxo,x,x-Nxfxo+fxoxFF+f[xo,x,x]xFxoxTx+:F币-F+f[ox,,x]xxox-x-)年田田-®
2.1插值法-拉格朗日Lagrange插值多项式-0+1x=x-xox-xx=xn-D,x=xx-O一xk X1x-+】xxF光-L,x=∑yx-xaox)-k-O-Ix-x,-i=0-或者写成Lx=-i≠k-Y -k=0-xk一x-拉格潮明嫂垅锲应用拉格朗日多项式重新计算123-公式结构紧凑,在理论分析中方便,但如遇 点增减,所有数据需全部重算-®
插值与拟合问题
插值与拟合问题插值与拟合是数学和计算机科学领域中常见的问题,涉及到通过已知数据点来估计未知点的值或者通过一组数据点来逼近一个函数的过程。
在现实生活中,这两个问题经常用于数据分析、图像处理、物理模拟等领域。
本文将介绍插值与拟合的基本概念、方法和应用。
一、插值问题插值是通过已知的数据点来推断出未知点的值。
在插值问题中,我们假设已知数据点是来自于一个未知函数的取值,在这个函数的定义域内,我们需要找到一个函数或者曲线,使得它经过已知的数据点,并且可以通过这个函数或者曲线来估计未知点的值。
常见的插值方法包括线性插值、拉格朗日插值和牛顿插值。
线性插值是通过已知的两个数据点之间的直线来估计未知点的值,它简单而直观。
拉格朗日插值则通过构造一个关于已知数据点的多项式来估计未知点的值,这个多项式经过每一个已知数据点。
牛顿插值和拉格朗日插值类似,也是通过构造一个多项式来估计未知点的值,但是它使用了差商的概念,能够更高效地处理数据点的添加和删除。
不仅仅局限于一维数据点的插值问题,对于二维或者更高维的数据点,我们也可以使用类似的插值方法。
例如,对于二维数据点,我们可以使用双线性插值来估计未知点的值,它利用了四个已知数据点之间的线性关系。
插值问题在实际应用中非常常见。
一个例子是天气预报中的气温插值问题,根据已知的气温观测站的数据点,我们可以估计出其他地点的气温。
另一个例子是图像处理中的像素插值问题,当我们对图像进行放大或者缩小操作时,需要通过已知像素点来估计未知像素点的值。
二、拟合问题拟合是通过一组数据点来逼近一个函数的过程。
在拟合问题中,我们假设已知的数据点是来自于一个未知函数的取值,我们需要找到一个函数或者曲线,使得它能够与已知的数据点尽可能地接近。
常见的拟合方法包括多项式拟合、最小二乘拟合和样条拟合。
多项式拟合是通过一个多项式函数来逼近已知的数据点,它的优点是简单易用,但是对于复杂的函数形态拟合效果可能不好。
最小二乘拟合则是寻找一个函数,使得它与已知数据点之间的误差最小,这个方法在实际应用中非常广泛。
插值与拟合算法分析
插值与拟合算法分析在数学与计算机科学领域,插值与拟合算法是两种常用的数据处理技术。
插值算法通过已知数据点之间的内插来估算未知数据点的值,而拟合算法则通过求取最佳拟合曲线或函数来逼近已知数据点。
本文将对插值与拟合算法进行详细分析,并比较它们在不同应用中的优缺点。
一、插值算法插值算法主要用于通过已知数据点之间的内插来估算未知数据点的值。
常用的插值算法包括拉格朗日插值、牛顿插值、样条插值等。
这些算法根据插值函数的不同特点,适用于不同类型的数据处理。
1. 拉格朗日插值拉格朗日插值是一种基于代数多项式的插值方法。
它通过构造一个全局多项式函数来拟合已知数据点,并推导出未知数据点的估算值。
拉格朗日插值算法具有简单易懂、计算效率高等优点,但在处理大量数据点时可能会出现龙格现象,导致插值结果有一定误差。
2. 牛顿插值牛顿插值是一种基于差商的插值方法。
它通过计算差商的递推关系,构造一个分段多项式函数来拟合已知数据点。
相比于拉格朗日插值,牛顿插值算法具有更高的数值稳定性和精度,并且可以方便地进行动态插值。
3. 样条插值样条插值是一种基于分段函数的插值方法。
它将整个数据区间划分为若干小段,并使用不同的插值函数对每一段进行插值。
样条插值算法通过要求插值函数的高阶导数连续,能够更好地逼近原始数据的曲线特征,因此在光滑性较强的数据处理中常被使用。
二、拟合算法拟合算法主要用于通过最佳拟合曲线或函数来逼近已知数据点。
常用的拟合算法包括最小二乘拟合、多项式拟合、非线性拟合等。
这些算法可以使拟合曲线与已知数据点尽可能地接近,从而进行更精确的数据分析和预测。
1. 最小二乘拟合最小二乘拟合是一种通过最小化残差平方和来求取最佳拟合曲线的方法。
它利用数据点与拟合曲线的差异来评估拟合效果,并通过求取最小残差平方和的参数值来确定拟合曲线的形状。
最小二乘拟合算法广泛应用于线性回归和曲线拟合等领域。
2. 多项式拟合多项式拟合是一种通过多项式函数来逼近已知数据点的方法。
数学模型数据插值与曲线拟合
实验一数据插值与曲线拟合【实验目地】1.了解数据插值、曲线拟合地概念和原理.2.掌握一维、二维地数据插值方法.3.掌握多项式拟合方法和一般曲线拟合方法.【实验内容】<把题目和相应地完整命令写在下列文本框内)1.数据插值有什么插值方式?曲线拟合依据地基本原理是什么?数据插值与曲线拟合有什么不同点?答: <1)、数据插值方式有最邻近插值、线性插值、三次样条插值、立方插值和分段线性插值.<2)、曲线拟合依据地基本原理是构造一个相对简单地函数y p(x) ,使它在某种意义下最优,我们常用地最优标准是最小二乘法原理,也就是使得上述拟合地曲线在各点n) y )2达到最小.处地偏差 p( x i ) y i地平方和( p(xi ii 1<3)、数据插值与曲线拟合地不同点:若要求所求曲线 <面)通过所给所有数据点, 就是插值问题;若不要求曲线 <面)通过所有数据点, 而是要求它反映对象整体地变化趋势 , 这就是数据拟合, 又称曲线拟合或曲面拟合.曲线插值与拟合都是要根据一组数据构造一个函数作为近似 , 由于近似地要求不同 , 二者在数学方法上是完全不同地 .2、某实验室对一根长 10M地钢轨进行热源地温度在 60 秒内传播测试 .x: 表示测量点 ,h: 测量时间 ,t: 测量得到地温度. 数据如下表0 2.557.510xth09514000 30884832126 606764544841(1)用线性插值求出在 25 秒时 3.6M 处钢轨地温度 .(2)用样条插值求出在这 60 秒内每隔 20 秒, 钢轨每隔 1M处地温度 .解: <1)M 文件:x=[0,2.5,5,7.5,10] 。
h=[0,30,60] 。
t=[95,14,0,0,0 。
88,48,32,12,6。
67,64,54,48,41] 。
t1=interp2(x,h,t,3.6,25,'cubic'>运行结果: t1 =34.5049所以在 25 秒时 3.6M 处地温度为 34.5049<2) M 文件:x=[0,2.5,5,7.5,10] 。
第七章 数据插值与曲线拟合
Slide 16
第七章 数据插值与曲线拟合
实际数学建模中,在光滑性要求不高的条件下, 分段线性或二次插值基本可以满足需要。然而实际 问题中提出的插值问题,有一些插值函数曲线要求 具有较高的光滑性, 如飞机机翼的下轮廓线。
分段线性插值虽然简单,但插值函数在结点处的 这就导致了三次 一阶导数一般不存在,光滑性不高,
x y
144 12
169 13
225 15
这就是一个插值问题。我们可以先确定插值函数,再 利用所得的函数来求x=175处 y 的值。 需要说明的是这3组数据事实上已经反映出 x与y的 的函数关系为:y x ,当数据量较大时,这种函数 关系是不明显的。也就是说,插值方法在处理数据时, 不论数据本身对应的被插值函数 y f ( x) 是否已知, 它都要找到一个通过这些点的插值函数,此函数是被
数学模型与数学建模方法
Slide 3
第七章 数据插值与曲线拟合
插值函数的一个近似,从而通过插值函数来计算被 插值函数在未知点处的近似值。 对于所构造的插值 函数要求相对简单,便于计算,一般选用多项式函 数来逼近。 例2:观测物体的直线运动,得以下数据,求物体 的运动方程。 t(秒) s(米) 0 0 0.9 10 1.9 30 3.0 50 3.9 80 5.0 110
第七章 数据插值与曲线拟合
当 n=2 时为抛物插值。P2 ( x) 表示过三点
( x0 , y0 )、 ( x1 , y1 )、 ( x2 , y 2 )
的抛物线方程,仿照线性插值的情形取基函数
( x x1 )(x x2 ) l 0 ( x) ( x0 x1 )(x0 x2 )
数学模型与数学建模方法
插值与拟合方法
插值与拟合方法插值和拟合是数学中常用的方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。
插值和拟合方法是经典的数学问题,应用广泛,特别是在数据分析、函数逼近和图像处理等领域。
1.插值方法:插值方法是通过已知数据点的信息,推断出两个已知数据点之间的未知数据点的数值。
插值方法的目的是保证插值函数在已知数据点处与实际数据值一致,并且两个已知数据点之间的连续性良好。
最常用的插值方法是拉格朗日插值法和牛顿插值法。
拉格朗日插值法根据已知数据点的横纵坐标,构造一个多项式函数,满足通过这些数据点。
拉格朗日插值法可以用于任意次数的插值。
牛顿插值法是使用差商的概念进行插值。
差商是指一个多项式在两个数据点之间的斜率。
牛顿插值法通过迭代计算得到与已知数据点一致的多项式。
插值方法的优点是可以精确地经过已知数据点,但是在两个已知数据点之间的插值部分可能会出现震荡现象,从而导致插值结果不准确。
2.拟合方法:拟合方法是通过已知数据点的信息,找出一个函数或曲线,使其能够最好地拟合已知数据点。
拟合方法的目标是寻找一个函数或曲线,尽可能地逼近已知数据点,并且能够在未知数据点处进行预测。
最常用的拟合方法是最小二乘法。
最小二乘法是通过求解最小化残差平方和的问题来进行拟合。
残差是指已知数据点与拟合函数的差异。
最小二乘法的目标是找到一个函数,使得所有数据点的残差平方和最小。
拟合方法的优点是可以得到一个光滑的函数或曲线,从而可以预测未知数据点的数值。
但是拟合方法可能会导致过拟合问题,即过度拟合数据点,导致在未知数据点处的预测结果不准确。
除了最小二乘法,还有其他的拟合方法,如局部加权回归和样条插值等。
局部加权回归是一种基于最小二乘法的拟合方法,它通过赋予不同的数据点不同的权重,来实现对未知数据点的预测。
样条插值是一种基于多项式插值的拟合方法,它将整个数据集分段拟合,并且在分段部分保持连续性和光滑性。
总结:插值和拟合方法是数学中的经典方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。
曲线的插值与拟合matlab
在数学和统计学领域中,曲线的插值与拟合是一项重要的技术,它在数据分析、图像处理、工程计算等领域都有着广泛的应用。
曲线的插值与拟合可以帮助我们从有限的数据点中还原出连续的曲线,以便更好地理解数据的规律和特性。
1. 插值与拟合的概念在开始深入探讨曲线的插值与拟合之前,让我们先来了解一下这两个概念的含义。
插值是指通过已知数据点之间的连续函数,以得到介于已知数据点之间的数据点的值。
而拟合则是指通过已知数据点,找到拟合曲线以最好地逼近这些数据点。
2. 曲线插值的方法在实际操作中,我们可以使用不同的方法进行曲线的插值。
常见的方法包括线性插值、多项式插值、样条插值等。
在Matlab中,有丰富的函数库可以用来进行不同类型的曲线插值,例如interp1, interp2, interpn等,这些函数可以很方便地实现曲线的插值操作。
(1)线性插值线性插值是一种简单直接的插值方法,它通过已知的两个数据点之间的直线来逼近新的数据点。
虽然线性插值操作简单,但在一些情况下并不能很好地逼近数据的真实规律。
(2)多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近数据。
在Matlab中,可以使用polyfit和polyval函数来实现多项式插值操作,通过调整多项式的阶数可以得到不同精度的逼近结果。
(3)样条插值样条插值是一种更加复杂但精确度更高的插值方法,它通过已知的数据点构造出一系列的局部插值函数来逼近数据。
在Matlab中,可以使用spline函数来进行样条插值操作,通过调整插值节点的数量和类型可以得到不同精度的逼近结果。
3. 曲线拟合的方法除了插值方法之外,曲线的拟合也是一种常用的数据处理方法。
在实际操作中,我们可以使用不同的方法来进行曲线的拟合。
常见的方法包括最小二乘法拟合、多项式拟合、非线性拟合等。
在Matlab中,有丰富的函数库可以用来进行不同类型的曲线拟合,例如polyfit, lsqcurvefit, nlinfit等,这些函数可以很方便地实现曲线拟合操作。
曲线拟合和插值
曲线拟合与插值在大量的应用领域中,人们常常面临用一个解析函数描述数据(一般是测量值)的任务。
对那个问题有两种方式。
在插值法里,数据假定是正确的,要求以某种方式描述数据点之间所发生的情形。
这里讨论的方式是曲线拟合或回归。
人们设法找出某条滑腻曲线,它最佳地拟合数据,但没必要要通过任何数据点。
图说明了这两种方式。
标有'o'的是数据点;连接数据点的实线描画了线性内插,虚线是数据的最佳拟合。
1 曲线拟合曲线拟合涉及回答两个大体问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方式概念最佳拟合,并存在无穷数量的曲线。
所以,从这里开始,咱们走向何方?正如它证明的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。
数学上,称为多项式的最小二乘曲线拟合。
如图。
虚线和标志的数据点之间的垂直距离是在该点的误差。
对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。
这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。
最小二乘那个术语仅仅是使误差平方和最小的省略说法。
在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。
为了论述那个函数的用法,让咱们以上面图中的数据开始。
» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1];» y=[ ];为了用polyfit,咱们必需给函数给予上面的数据和咱们希望最佳拟合数据的多项式的阶次或度。
若是咱们选择n=1作为阶次,取得最简单的线性近似。
通常称为线性回归。
相反,若是咱们选择n=2作为阶次,取得一个2阶多项式。
此刻,咱们选择一个2阶多项式。
» n=2; % polynomial order» p=polyfit(x, y, n)p =polyfit的输出是一个多项式系数的行向量。
其解是y = -+-。
为了将曲线拟合解与数据点比较,让咱们把二者都绘成图。
曲线拟合与插值
1、曲线拟合在许多应用领域中,人们经常需要从一系列已知离散点上的数据集[(x1,y1),(x2,y2)],…(x n,y n)]得到一个解析函数y=f (x)。
得到的解析函数f(x)应当在原离散点x i上尽可能接近给定的y i的值,这一过程称为曲线拟合。
最常用的曲线拟合是最小二乘法曲线拟合。
似合结果可使误差的平方和最小,MATLAB提供的函数polyfit,根据给定的自变量数组x和函数数组y,按照拟合的阶数要求自动求解满足最小二乘意义的一阶或高阶解析函数f(x),使用很方便。
为了说明这个问题,我们取以下函数为例:2-y⨯=25.0xx=0:0.1:1;for i=1:length(x);y(i)=0.5-2*x(i)^2;end将y值进行一定的修改,输入如下的程序y=[0.52 0.45 0.4 0.35 0.18 0.02 -0.25 -0.4 -0.81 -1.1 -1.5]m=1;fxy1=polyfit(x,y,m) %获得拟合的多项式系数,存储在fxy1m=2;fxy2=polyfit(x,y,m)y1=poly val(fxy1,x) %多项式求值,x为输入值,y1为作图使用。
此处为了画出拟合之后的曲线,是运用了离散点的形式绘图,也可以直接使用函数形式来画图,与未拟合的离散点对比。
指令为:fun1=poly2sym(fxy1);ezplot(fun1,[x(1),x(2)]);y2=polyval(fxy2,x)plot(x,y,'o',x,y1,'k:',x,y2,'k')2、插值运算与曲线拟合不同,插值运算不是试图找出适合于所有自变量数组x的全局最优拟合函数Y=f(x〕,而是要找到一个解析函数连接自变量相邻的两个点(xi,xi十1),由此还可以找到两点间的数值。
根据自变量的维数不同,插值方法可以分为一维插值y=f(x)和二维插值z=f(x,y)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而与数对的排列次序无关。 3、多项式插值除拉格朗日多项式插值法外,还有 牛顿(Newton)插值法、埃尔米特(Hermite)插值法、 三次样条插值法等,可参看有关数值分析的书籍。 其中Newton插值是拉格朗日插值的一种等价变形, Hermite插值一种带导数插值条件的插值。
例 将 [0,/2] n 等分,用 g(x) = cos(x)产生 n+1个节 点,作Pn(x)(取 n =1,2) ,计算cos(/6) 。 解: n=1, (x0, y0)=(0,1), (x1,y1)=(/2,0), P1(x)=1-2x/, cos(/6)= P1(/6 )≈0.6667 n=2, (x0,y0)=(0,1), (x1,y1)=(/4,0.7071), (x2,y2)=(/2,0), P2(x)=8(x-/4)(x-/2)/2-16x(x-/2)0.7071/2 cos(/6)=P2(/6) ≈ 0.8508 精确值:cos (/6) ≈ 0.8660
( 1 7 5 ) 1 3 . 2 1 4 2 8 5 7 2 计算得 P ,于是 1
f ( 1 7 5 ) 1 3 . 2 1 4 2 8 5 7 2
用二次拉格朗日插值:
1 4 4 , x 1 6 9 , x 2 2 5 取x ,则 0 1 2
x x ) ( x x ) ( x x ) ( x x ) ( x x ) ( x x ) ( 0 2 0 1 1 2 P ( x ) y y y 2 0 1 2 ( x x ) ( x x ) ( x x ) ( x x ) ( x x ) ( x x ) 0 10 2 1 01 2 2 02 1
( 1 7 5 ) 1 3 . 2 3 0 1 5 8 7 3 计算得 P ,于是 2
f ( 1 7 5 ) 1 3 . 2 3 0 1 5 8 7 3
( 1 7 5 ) 1 3 . 2 2 8 7 5 6 5 6 ( 1 7 5 的准确值为 f )
由上例看出,二次插值的精度明显要比一次插值要高。 但对于拉格朗日多项式插值,是否插值其精度就一定 越高呢?
2 S(x ) C [ab , ]
() y ( i 0 , 1 , 2 , ,) n (3)对于在节点上给定的函数值 fx i i
S ( x ) 满足
S ( x ) y ( i 0 , 1 , 2 , ,) n i i
则称 S ( x ) 为 f ( x ) 在区间 [ a , b ] 上的三次样条插值函数。
) 是否已知, 不论数据本身对应的被插值函数 y f (x
它都要找到一个通过这些点的插值函数,此函数是被
插值函数的一个近似,从而通过插值函数来计算被 插值函数在未知点处的近似值。 对于所构造的插值 函数要求相对简单,便于计算,一般选用多项式函 数来逼近。 例2:观测物体的直线运动,得以下数据,求物体 的运动方程。 t(秒) s(米) 0 0 0.9 10 1.9 30 3.0 50 3.9 80 5.0 110
大多数数学建模问题都是从实际工程或生活中提炼
出来的,往往带有大量的离散的实验观测数据,要对
这类问题进行建模求解,就必须对这些数据进行处理。 其目的是为了从大量的数据中寻找它们反映出来的规 律。用数学语言来讲,就是要找出与这些数据相应的 变量之间的近似关系。对于非确定性关系,一般用统
计分析的方法来研究,如回归分析的方法。 对于确定
多项式存在且唯一。
P x ) 、 ( x ) 当n=1时为线性插值。 1 ( x) 表示过两点 ( 0, y 0 1, y 1
的直线方程,即
y y 1 0 P ( x ) y ( x x ) 1 0 0 x x 1 0
稍加整理,即得
x x x x 0 1 P ( x ) y y 1 0 1 x x x x 0 1 1 0
( x x )( x x ) 1 0 l ( x ) 2 ( x x )( x x ) 2 1 2 0
( x x )( x x ) 0 2 l ( x ) 1 ( x x )( x x ) 1 0 1 2
使它们满足
0 i j l x ( i ,j 0 , 1 , 2 ) i( j) 1 i j
当 n=2 时为抛物插值。P2 ( x) 表示过三点
( x , y ) 、 ( x , y ) 、 ( x , y ) 0 0 1 1 2 2
的抛物线方程,仿照线性插值的情形取基函数
( x x )( x x ) 1 2 l ( x ) 0 ( x x )( x x ) 0 1 0 2
是否存在较低次的 光滑性的阶次越高,则越光滑。 分段多项式达到较高阶光滑性的方法? 三次样条插值
就是一个很好的例子。
3 三次样条插值 三次样条插值是一种非常有效的插值方法,它在 实际工程中有着非常重要的应用。 三次样条插值的理论推导是比较复杂的,但在数 学软件MATLAB中有现成的调用程序,这样我们就 可直接借助计算机来进行运算。 下面简单介绍一下三次样条插值的基本原理。 定义:设给定区间 [ a , b ] 上的一个划分 : a xx xb 0 1 n 如果函数 S
例1:对于下面给定的4组数据,求在x=175处 y 的值。 x y 144 12 169 13 225 15
例1:对于下面给定的4组数据,求在x=175处 y 的值。
x y
144 12
169 13
225 15
这就是一个插值问题。我们可以先确定插值函数,再 利用所得的函数来求x=175处 y 的值。 需要说明的是这3组数据事实上已经反映出 x与y的 的函数关系为:y x ,当数据量较大时,这种函数 关系是不明显的。也就是说,插值方法在处理数据时,
例2:观测物体的直线运动,得以下数据,求物体 的运动方程。 t(秒) s(米) 0 0 0.9 10 1.9 30 3.0 50 3.9 80 5.0 110
这是一个拟合问题,其明显的特征是与数据对应的
函数未知,要找到一个函数来比较准确地表述这些数 据蕴藏的规律。显然,我们找出的函数不一定会通过 这些点,也没有必要,因为观测数据本身并不是完全
,x , ,x 简单地说,已经知道函数 y f ( x) 在节点 x 0ቤተ መጻሕፍቲ ባይዱ1 n
() y ( i 0 , 1 , 2 , ,) n ,现要求一个三次 上的函数值 fx i i
多项式函数 S ( x ) ,使满足 S ( x ) y ( i 0 , 1 , 2 , ,) n 且 i i
x x1 记 l0 (x) x0 x1
则它们满足:
x x0 l1 (x) x1 x0
0 ij l x ( i ,j 0 , 1 ) i( j) 1 i j
那么 P1 ( x) 是两个基函数的线性组合, 称 l i ( x ) 为基函数, 也称为Lagrange 线性插值函数。
2 S(x ) C [ab , ] 。
由定义可知, S ( x ) 是区间 [ a , b ] 上的分段三次插值
多项式,即
x [ x0 , x1 ] s0 ( x) s ( x) x [ x1 , x2 ] 1 S ( x) x [ xn 1 , xn ] sn 1 ( x)
答案是:对于某些函数,适当地提高插值多项式的 次数,会提高计算精度。 但与此同时,多项式的次数
增大可能造成插值函数的收敛性和稳定性越来越差, 逼近的效果往往不理想, 一个典型的例子是函数
1 f( x ) ,[ 5 ,5 ] 2 1 x
选取不同插值节点个数 n+1,其中 n 为插值多项式的 次数,使得它在结点的值与被插函数在对应结点的值 相等。当n分别取2,4,6, 8,10时,绘出的插值图形如下。
则 P2 ( x) 可表示为三个基函数的线性组合,即
P ( x ) l ( x ) y l ( x ) y l ( x ) y 2 0 0 1 1 2 2
也称为Lagrange 抛物插值函数。 一般地,满足插值条件的n次多项式为:
P ) li (x)yi n (x
n
其中基函数满足
n
i0
li (x)
ji, j0 n
(x x )
j i j
ji, j0
(x x )
(i 0 ,1 ,2 , , n)
上述多项式插值又称为n次Lagrange插值。
说明: 1、多项式插值的基函数仅与节点有关,而与被
) 无关; 插值的原函数 y f (x
x y ) ( i 0 , 1 , 2 , , n ) 2、插值多项式仅由数对 ( 确定, i, i
性的关系,即变量间的函数关系,一般可用数据插值 与拟合的方法来研究。 本讲学习数据插值与拟和的基本
方法和相关的MATLAB命令。
1 引例 简单地讲,插值是对于给定的n组离散数据,寻找 一个函数,使该函数的图像能严格通过这些数据对应
的点。 拟合并不要求函数图像通过这些点,但要求在
某种准则下,该函数在这些点处的函数值与给定的这 些值能最接近。
实际数学建模中,在光滑性要求不高的条件下, 分段线性或二次插值基本可以满足需要。然而实际 问题中提出的插值问题,有一些插值函数曲线要求 具有较高的光滑性, 如飞机机翼的下轮廓线。
分段线性插值虽然简单,但插值函数在结点处的 这就导致了三次 一阶导数一般不存在,光滑性不高,
样条插值的提出。 在数学上,光滑程度的定量描述是: 函数(曲线)的 k 阶导数存在且连续,则称该曲线具有 k 阶光滑性。
( x i , y i ) 为插值节点, [ a , b ] ( a min x b max x ) 为插值 i, i 0 i n 0 i n
P ( x ) y ( i 0 , 1 , 2 , , n ) 区间, 称为插值条件。 n i i