湖南省郴州市2020版中考数学一模试卷A卷

合集下载

湖南省郴州市2019-2020学年中考数学一模考试卷含解析

湖南省郴州市2019-2020学年中考数学一模考试卷含解析

湖南省郴州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,函数y1=x3与y2=1x在同一坐标系中的图象如图所示,则当y1<y2时()A.﹣1<x<l B.0<x<1或x<﹣1 C.﹣1<x<I且x≠0D.﹣1<x<0或x>1 2.2018的相反数是()A.12018B.2018 C.-2018 D.12018-3.实数6的相反数是()A.-6B.6C.6D.6-4.小苏和小林在如图①所示的跑道上进行450⨯米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次5.不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为()A.B.C.D.6.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.147.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.98.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩9.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A.0.316×1010B.0.316×1011C.3.16×1010D.3.16×101110.如图,已知直线PQ⊥MN 于点O,点A,B 分别在MN,PQ 上,OA=1,OB=2,在直线MN 或直线PQ 上找一点C,使△ABC是等腰三角形,则这样的 C 点有()A.3 个B.4 个C.7 个D.8 个11.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为()A.3 B.4 C.6 D.812.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B ,C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan ∠α=,有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD 与△DBE全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).14.如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P=46°,则∠BAC= ▲度.15.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____. 16.关于x 的一元二次方程x 2﹣2x+m ﹣1=0有两个实数根,则m 的取值范围是_____.17.如果x y 10+-=,那么代数式2y x y x x x ⎛⎫--÷⎪⎝⎭的值是______. 18.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表: 价格/(元/kg )12 10 8 合计/kg 小菲购买的数量/kg2226小琳购买的数量/kg1236从平均价格看,谁买得比较划算?( )A .一样划算B .小菲划算C .小琳划算D .无法比较三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:131|13|2sin 60(2016)83π-︒︒⎛⎫+--+-- ⎪⎝⎭.先化简,再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中22x =-. 20.(6分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC 是等边三角形,点D 为BC 的中点,且满足∠ADE=60°,DE 交等边三角形外角平分线CE 所在直线于点E ,试探究AD 与DE 的数量关系.(1)小明发现,过点D 作DF//AC ,交AC 于点F ,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD 与DE 的数量关系: ;(2)(类比探究)如图2,当点D 是线段BC 上(除B ,C 外)任意一点时(其它条件 不变),试猜想AD 与DE 之间的数量关系,并证明你的结论.(3)(拓展应用)当点D 在线段BC 的延长线上,且满足CD=BC (其它条件不变)时, 请直接写出△ABC 与△ADE 的面积之比.21.(6分)有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,甲机器人前2分钟的速度为 米/分; (2)若前3分钟甲机器人的速度不变,求线段EF 所在直线的函数解析式; (3)若线段FG ∥x 轴,则此段时间,甲机器人的速度为 米/分; (4)求A 、C 两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.22.(8分)计算:(3﹣2)0+(13)﹣1+4cos30°﹣|4﹣12|23.(8分)反比例函数kyx=在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数kyx=的图象于点M,△AOM的面积为2.求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数kyx=的图象上,求t的值.24.(10分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE 面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE 上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.25.(10分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sin∠ACD=32,求四边形ABCD的面积.26.(12分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.(1)求证:PC∥BD;(2)若⊙O的半径为2,∠ABP=60°,求CP的长;(3)随着点P的运动,PA PBPC的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.27.(12分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【详解】根据图象知,一次函数y1=x3与反比例函数y2=1x的交点是(1,1),(-1,−1),∴当y1<y2时,, 0<x<1或x<-1;故答案选:B.【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.2.C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.3.A【解析】【分析】根据相反数的定义即可判断. 【详解】实数6 的相反数是-6 故选A. 【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解. 4.D 【解析】 【详解】A.由图可看出小林先到终点,A 错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B 错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C 错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确. 故选D. 5.A 【解析】 【分析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可. 【详解】312840x x ->⎧⎨-≤⎩①② 解不等式①得,x>1; 解不等式②得,x>2; ∴不等式组的解集为:x≥2, 在数轴上表示为:故选A. 【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键. 6.A【解析】【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【详解】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=12AB=12×7=3.1.故选:A.【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.7.A【解析】【分析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.【详解】∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数=36030︒︒=1.故选:A.【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.8.C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】31600000000=3.16×1.故选:C.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示.10.D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.11.D【解析】【分析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=12 AB;在直角三角形ODC中,根据勾股定理,得22OA OD=4,∴AB=1.故选D.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.12.C【解析】【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.②③.【解析】试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①错误;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=,∴,∴,∴cosα=,∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,,∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=,AB=15,∴∴BD=1.当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=,AC=15,∴cosC=,∴CD=.∵BC=24,∴BD=24-=即当△DCE为直角三角形时,BD=1或.故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴,∴,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤,∴0<BE≤.故④错误.故正确的结论为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.14.1.【解析】【分析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数【详解】∵PA,PB是⊙O是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=000 18046=672.又∵PA是⊙O是切线,AO为半径,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.15.2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种, 所以其概率为挑选的两位教师恰好是一男一女的概率为812=23, 故答案为23. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 16.m≤1 【解析】 【分析】根据一元二次方程有实数根,得出△≥0,建立关于m 的不等式,求出m 的取值范围即可. 【详解】解:由题意知,△=4﹣4(m ﹣1)≥0, ∴m≤1, 故答案为:m≤1. 【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键. 17.1 【解析】分析:对所求代数式根据分式的混合运算顺序进行化简,再把10x y +-=变形后整体代入即可.详解:2,y x yx x x ⎛⎫--÷⎪⎝⎭ 22,x y x yx x x ⎛⎫-=-÷ ⎪⎝⎭()(),x y x y xxx y+-=⋅- .x y =+10,x y Q +-= 1.x y ∴+=故答案为1.点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.18.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1;(2)-1.【解析】【分析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式1﹣﹣1+1﹣2=1.(2)原式=[31x+﹣(1)(1)1x xx+-+]•21(2)xx++=(2)(2)1x xx-+-+•21(2)xx++=22xx-+,当﹣2时,原式-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.20.(1)AD=DE;(2)AD=DE,证明见解析;(3)13.【解析】试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.试题解析:(10分)(1)AD=DE.(2)AD=DE.证明:如图2,过点D作DF//AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3)13.考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.21.(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.【解析】【分析】(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+70﹣95x=21,解得,x=1.2,前2分钟﹣3分钟,两机器人相距21米时,由题意得,35x﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,,解得,则直线GH的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【点睛】本题考查了一次函数的应用,读懂图像是解题关键.. 22.4【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案. 【详解】2)0+(13)﹣1+4cos30°﹣|4|4﹣【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 23.(2)6y x(2)7或2. 【解析】试题分析:(2)根据反比例函数k 的几何意义得到12|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=6x; (2)分类讨论:当以AB 为一边的正方形ABCD 的顶点D 在反比例函数y=6x的图象上,则D 点与M 点重合,即AB=AM ,再利用反比例函数图象上点的坐标特征确定M 点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB 为一边的正方形ABCD 的顶点C 在反比例函数y=6x的图象上,根据正方形的性质得AB=BC=t-2,则C 点坐标为(t ,t-2),然后利用反比例函数图象上点的坐标特征得到t (t-2)=6,再解方程得到满足条件的t 的值. 试题解析:(2)∵△AOM 的面积为2, ∴12|k|=2, 而k >0, ∴k=6,∴反比例函数解析式为y=6x; (2)当以AB 为一边的正方形ABCD 的顶点D 在反比例函数y=6x的图象上,则D 点与M 点重合,即AB=AM , 把x=2代入y=6x得y=6, ∴M 点坐标为(2,6), ∴AB=AM=6,∴t=2+6=7;当以AB 为一边的正方形ABCD 的顶点C 在反比例函数y=6x的图象上, 则AB=BC=t-2, ∴C 点坐标为(t ,t-2), ∴t (t-2)=6,整理为t 2-t-6=0,解得t 2=2,t 2=-2(舍去), ∴t=2,∴以AB 为一边的正方形有一个顶点在反比例函数y=kx的图象上时,t 的值为7或2. 考点:反比例函数综合题.24.(1)y=﹣x ﹣1;(1)△ACE 的面积最大值为278;(3)M (1,﹣1),N (12,0);(4)满足条件的F点坐标为F 1(1,0),F 1(﹣3,0),F 3(,0),F 4(4,0). 【解析】 【分析】(1)令抛物线y=x 1-1x-3=0,求出x 的值,即可求A ,B 两点的坐标,根据两点式求出直线AC 的函数表达式;(1)设P 点的横坐标为x (-1≤x≤1),求出P 、E 的坐标,用x 表示出线段PE 的长,求出PE 的最大值,进而求出△ACE 的面积最大值;(3)根据D 点关于PE 的对称点为点C (1,-3),点Q (0,-1)点关于x 轴的对称点为M (0,1),则四边形DMNQ 的周长最小,求出直线CM 的解析式为y=-1x+1,进而求出最小值和点M ,N 的坐标; (4)结合图形,分两类进行讨论,①CF 平行x 轴,如图1,此时可以求出F 点两个坐标;②CF 不平行x 轴,如题中的图1,此时可以求出F 点的两个坐标. 【详解】解:(1)令y=0,解得11x =-或x 1=3, ∴A (﹣1,0),B (3,0);将C 点的横坐标x=1代入y=x 1﹣1x ﹣3得3y =-, ∴C (1,-3),∴直线AC 的函数解析式是1y x =--,(1)设P 点的横坐标为x (﹣1≤x≤1),则P 、E 的坐标分别为:P (x ,﹣x ﹣1),E (x ,x 1﹣1x ﹣3), ∵P 点在E 点的上方,()()221232PE x x x x x =-----=-++,∴当12x =时,PE 的最大值9,4= △ACE 的面积最大值()1327[21]228PE PE =--==, (3)D 点关于PE 的对称点为点C (1,﹣3),点Q (0,﹣1)点关于x 轴的对称点为K (0,1), 连接CK 交直线PE 于M 点,交x 轴于N 点,可求直线CK 的解析式为21y x =-+,此时四边形DMNQ 的周长最小, 最小值252CM QD =+=+,求得M (1,﹣1),102N ⎛⎫ ⎪⎝⎭,. (4)存在如图1,若AF ∥CH ,此时的D 和H 点重合,CD=1,则AF=1,于是可得F 1(1,0),F 1(﹣3,0),如图1,根据点A 和F 的坐标中点和点C 和点H 的坐标中点相同,再根据|HA|=|CF|,求出()()434747F F +,,,. 综上所述,满足条件的F 点坐标为F 1(1,0),F 1(﹣3,0),()347F ,,()447F ,. 【点睛】属于二次函数综合题,考查二次函数与x 轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.25.(1)证明见解析;(2)S 平行四边形ABCD .【解析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD ∥BC ,根据平行四边形的判定推出即可;(2)证明△ABE 是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE 和DE ,得出AC 的长,即可求出四边形ABCD 的面积.试题解析:(1)∵AB ∥CD ,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC ,∴∠ADC+∠BCD=180°,∴AD ∥BC ,∵AB ∥CD ,∴四边形ABCD 是平行四边形;(2)∵sin ∠ACD=2,∴∠ACD=60°, ∵四边形ABCD 是平行四边形,∴AB ∥CD ,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE 是等边三角形,∴AE=AB=2,∵DE ⊥AC ,∴∠CDE=90°﹣60°=30°,∴CE=12 CD=1,∴AC=AE+CE=3,∴S 平行四边形ABCD =2S △ACD26.(1)证明见解析;(2;(3)PA PB PC +的值不变,PA PB PC+=. 【解析】【分析】(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D ,根据平行线的判定定理证明;(2)作BH ⊥CP ,根据正弦、余弦的定义分别求出CH 、PH ,计算即可;(3)证明△CBP ∽△ABD ,根据相似三角形的性质解答.【详解】(1)证明:∵△ABC 是等腰直角三角形,且AC=BC ,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB 为⊙O 的直径,∴∠APB=90°,∵PD=PB ,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足为H,∵⊙O的半径为2,∠ABP=60°,∴2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC•cos∠6,BH=BC•sin∠2,在Rt△BHP中,2,∴62;(3)PA PBPC+的值不变,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴AD ABPC BC=2,∴PA PDPC+2,即PA PBPC+2.【点睛】本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.27.(1)详见解析;(2)①67.5°;②90°.【解析】【分析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,∴∠EAD=90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.。

湖南省郴州市2020版中考数学试卷A卷

湖南省郴州市2020版中考数学试卷A卷

湖南省郴州市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·河北期中) 下列叙述中,错误的是()A . 任何一个有理数都可以用数轴上的一个点表示B . 在数轴上,表示互为相反数的两个点与原点距离相等C . 在数轴上,到原点距离越远的点所表示的数一定越大D . 在数轴上,右边的点所表示的数比左边的点所表示的数大2. (2分)下列命题是真命题的是()A . 如果两个角不相等,那么这两个角不是对顶角B . 两互补的角一定是邻补角C . 如果a2=b2 ,那么a=bD . 如果两角是同位角,那么这两角一定相等3. (2分) (2019七下·海安月考) 下列说法正确的个数是()① 0的平方根是0;② 1的平方根是1;③ 0.01是0.1的一个平方根.A . 0个B . 1个C . 2个D . 3个4. (2分)已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A . AO=BOB . BO=EOC . 点A关于点O的对称点是点DD . 点D 在BO的延长线上5. (2分)当5个整数从小到大排列,其中位数是4,如果这组数据的唯一众数是6,则5个整数可能的最大的和是()A . 21B . 22C . 23D . 246. (2分)下列各式合并同类项结果正确的是()A . 3x2﹣x2=3B . 3a2﹣a2=2a2C . 3a2﹣a2=aD . 3x2+5x3=8x57. (2分)下列因式分解正确的个数是()①x2﹣4=(x+2)(x﹣2)②x2+6x+10=(x+2)(x+4)+2③7x2﹣63=7(x2﹣9)④(a+b)(a﹣b)=a2﹣b2⑤.A . 1B . 2C . 3D . 48. (2分)(2019·云南) 一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A . 48πB . 45πC . 36πD . 32π9. (2分) (2016九上·蓬江期末) 一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A . 0B . ﹣3C . 3D . 410. (2分) (2019八下·赵县期中) 如果一直角三角形两边的长分别为6、8,则第三边长是()A . 10B . 4 或2C . 10或2D . 以上都不对11. (2分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A .B .C .D .12. (2分)(2020·北辰模拟) 如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=16,BD=4. 平移,使点D与点B 重合,点A的对应点E落在CB的延长线上,点O的对应点F落在DB的延长线上,则DE的长是()A . 6B . 8C . 10D . 12二、填空题 (共6题;共8分)13. (1分)若代数式有意义,则字母x的取值范围是________ .14. (1分) (2020七下·富平期末) 一个氢原子的直径约为,将用科学记数法表示为________.15. (1分)(2020·成都模拟) 有六张正面分别标有数字﹣2,﹣1,0,2,3,4的不透明卡片,它们除数字不同外其余均相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使关于x的分式方程有正整数解的概率为________.16. (1分)(2019·广西模拟) 如图,已知Rt△ABC中,∠ACB=90° AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=________.17. (3分) (2019九上·杭州月考) 的图象开口向________,顶点坐标为________,当时,值随着值的增大而________.18. (1分) (2018八上·长寿月考) 在如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于________.三、解答题 (共8题;共68分)19. (10分) (2020七下·西华期末) 计算:(1)(2)20. (5分)(2020·宿州模拟) (1)计算:【答案】解:原式==10;(1)解方程:21. (8分) (2017八下·邗江期中) 为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表身高分组频数百分比x<155510%155≤x<160a20%160≤x<1651530%165≤x<17014bx≥170612%总计100%(1)填空:a=________,b=________;(2)补全频数分布直方图________;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?22. (5分)(2020·昆明模拟) 近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行如图,山东舰在一次测试中,巡航到海岛A北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶。

湖南省郴州市2020年中考数学试卷A卷

湖南省郴州市2020年中考数学试卷A卷

湖南省郴州市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共13分)1. (1分) (2019七上·岑溪期中) |﹣10|=________.2. (2分) (2017八下·桐乡期中) 某中学随机调查了15名学生,了解他们一周在学校参加体育锻炼时间,列表如下:锻炼时间(小时)5678人数2652则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是________;________.3. (1分)计算:﹣32•(﹣3)3=________ (结果用幂的形式表示)4. (1分) (2020八下·延平月考) 因式分解: ________.5. (1分)(2020·新疆模拟) 要使分式有意义,应满足的条件是________6. (1分)(2020·镇平模拟) 计算: ________.7. (1分)(2018·鼓楼模拟) 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为________.8. (1分)(2020·乐东模拟) 点(2,y1),(3,y2)在函数的图象上,则y1________y2(填“>”或“<”或“=”).9. (1分)(2018·常州) 如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是________.10. (1分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下4个结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0.其中正确的结论有________ .(填写序号)11. (1分) (2019九上·龙湾期中) 如图,边长为2的正方形的顶点、在一个半径为2的圆上,顶点、在该圆内.将正方形绕点逆时针旋转,当点第一次落在圆上时,点旋转到,则 ________ .12. (1分) (2020八下·姜堰期中) 如图,点E、F分别在平行四边形ABCD边BC和AD上(E、F都不与两端点重合),连结AE、DE、BF、CF,其中AE和BF交于点G,DE和CF交于点H.令,.若,且S□ABCD=36,则四边形FGEH的面积为________.二、选择题 (共5题;共10分)13. (2分) (2019七下·北京期末) 已知1纳米米,某种植物花粉的直径为35000纳米,则该花粉的直径为()A . 米B . 米C . 米D . 米14. (2分)(2016·滨州) 如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A .B .C .D .15. (2分)(2020·衢州模拟) 在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机从中摸取1个恰好是白球的概率为,则放入的黄球总数为()A . 5个B . 6个C . 8个D . 10个16. (2分)某公司市场营销部的个人收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售时(最低工资)的收入是()A . 3100元B . 3000元C . 2900元D . 28000元17. (2分) (2020九下·龙岗月考) 如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连结MC,设FE与DC相交于点N.则4个结论:①DN=DG;②△BFG∽△EDG∽△BDE;③CM垂直BD;④若MC= ,则BF=2;正确的结论有()个A . 4B . 3C . 2D . 1三、解答题 (共11题;共92分)18. (5分)(2017·天山模拟) 计算:4sin60°+|3﹣ |﹣()﹣1+(π﹣2017)0 .19. (12分)(2019·盘龙模拟) 设M=(1)化简M;(2)当a=1时,记此时M的值为f(1)=;当a=2时,记此时M的值为f(2)=;当a=3时,记此时M的值为f(3)=……当a=n时,记此时M的值为f(n)=________;则f(1)+f(2)+…+f(n)=________;(3)解关于x的不等式组:≤f(1)+f(2)+f(3)并将解集在数轴上表示出来.20. (5分) (2016九上·溧水期末) 某校学生会正筹备一个“迎新年”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请列举出所有等可能的不同的选取搭配方法,并求选出的两名主持人“恰好为一男一女”的概率.21. (5分)统计数据显示,在我国的座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的倍.求严重缺水城市有多少座?22. (10分) (2019八下·云梦期中) 如图,在△ABC中,点O是AC边上一动点,过点O作DE,使DE∥BC,DE交∠ACB的角平分线于点D,交∠ACB的外角平分线于点E.(1)求证:OD=OE;(2)当点O运动到何处时,四边形CDAE是矩形?请证明你的结论.23. (10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识,回答下列问题:(图中的数字表示每一级台阶的高度(单位:)).(1)请分别求出甲、乙两段路段每一级台阶高度的平均数.(2)哪段台阶路走起来更舒服?为什么?24. (5分)(2017·泾川模拟) 如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.25. (10分) (2019八上·江汉期中) 已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y 轴负半轴和x轴正半轴上的点,连接AB,AC,BC.(1)如图1,若OB=1,OC = ,且A,B,C在同一条直线上,求t的值;(2)如图 2,当 t =1,∠ACO +∠ACB = 180°时,求 BC + OC -OB 的值;26. (10分)(2017·奉贤模拟) 已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2) = .27. (10分) (2019八下·新余期末) 请用无刻度的直尺在如图1和图2中,按要求画菱形.(1)图1是矩形ABCD,E、F分别是AB、AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.28. (10分)(2020·中宁模拟) 在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式.当x为何值时,y的值最大,最大值是多少?参考答案一、填空题 (共12题;共13分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、选择题 (共5题;共10分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共11题;共92分)18-1、19-1、19-2、19-3、20-1、21-1、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、27-1、27-2、28-1、。

湖南省郴州市2020版中考数学模拟试卷(I)卷

湖南省郴州市2020版中考数学模拟试卷(I)卷

湖南省郴州市2020版中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A .B .C .D .2. (2分)(2020·自贡) 关于的一元二次方程有两个相等的实数根,则a的值为()A .B .C . 1D . -13. (2分) (2016九上·嘉兴期末) 对于抛物线y=﹣2(x﹣1)2+3,下列判断正确的是()A . 抛物线的开口向上B . 抛物线的顶点坐标是(﹣1.3)C . 当x=3时,y>0D . 方程﹣2(x﹣1)2+3=0的正根在2与3之间4. (2分) (2019九上·慈溪期中) 如图,在直角坐标系中,矩形OABC的顶点A、B在双曲线y=( x >0)上,BC与x轴交于点D.若点A的坐标为(2,4),则点D的坐标为()A . (,0)B . (,0)C . (,0)D . (,0)5. (2分) (2020八下·北京月考) 如图,在 ABCD中,BE平分∠ABC,交AD于点E,AE=3,ED=1,则ABCD的周长为()A . 10B . 12C . 14D . 166. (2分)下列说法中正确的是()A . 平分弦的直径平分弦所对的弧B . 圆内接正六边形,一条边所对的圆周角是30°C . 相等的圆周角所对的弧也相等D . 若两条平行直线被一个圆截得的线段长度相等,则圆心到这两条直线的距离相等7. (2分)下列函数关系中是反比例函数的是()A . 等边三角形面积S与边a的关系B . 直角三角形两锐角A与B的关系C . 长方形面积一定时,长y与宽x的关系D . 等腰三角形顶角A与底角B的关系8. (2分) (2016九上·海盐期中) 用“嘉兴”、“平安”、“创建”三个词语组句子,那么能够组成“嘉兴平安创建”或“创建平安嘉兴”的概率是()A .B .C .D .9. (2分)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A . 2B . m﹣2C . mD . 410. (2分)某厂今年七月份产品的产量为100吨,以后每月产品的产量与上月相比其增长率都是x,设九月份该产品的产量为y吨,则y关于x的函数关系式为()A . y=100(1﹣x)2B . y=100(1+x)2C . y=D . y=100+100(1+x)+100(1+x)211. (2分)如图,E是平行四边形ABCD的边BC的延长线上的一点,连接AE交CD于点F ,则图中共有相似三角形()A . 1对B . 2对C . 3对D . 4对12. (2分) (2019八上·宝鸡期中) 在中,,,高,则三角形的周长是()A . 42B . 32C . 42或32D . 37或3313. (2分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A .B .C .D .14. (2分)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF 沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF ,上述结论中正确的个数是()A . 1个B . 2个C . 3个D . 4个15. (2分)将抛物线y=2(x﹣7)2+3平移,使平移后的函数图象顶点落在x轴上,则下列平移正确的是()A . 向上平移3个单位B . 向下平移3个单位C . 向左平移7个单位D . 向右平移7个单位二、填空题 (共5题;共5分)16. (1分) (2016九上·黔西南期中) 把方程x(x+3)﹣2x+1=5x﹣1化成一般形式为:________.17. (1分)如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD=________.18. (1分)如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为________ m2 .19. (1分)扇形的弧长是20π,面积是240π,则此扇形的圆心角的度数是________20. (1分) (2019七下·香洲期末) 如图,正方形的各边分别平行于轴或轴,蚂蚁甲和蚂蚁乙都由点出发,同时沿正方形的边作环绕运动,蚂蚁甲按顺时针方向以3个单位长度秒的速度作匀速运动,蚂蚁乙按逆时针方向以1个单位长度/秒的速度作匀速运动,则两只蚂蚁出发后的第3次相遇点的坐标是________.三、计算题 (共2题;共25分)21. (10分) (2019七下·江汉期末) 解答下列各题:(1) 计算:【答案】解:;(1)计算:(2)解方程组:22. (15分)解方程:(1) x2=4(2) x2﹣2x﹣2=0(3) x2﹣3x+1=0.四、解答题: (共7题;共81分)23. (10分)(2016·嘉善模拟) 如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2 .(2)求点C1在旋转过程中所经过的路径长.24. (10分)(2018·吉林模拟) 甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.25. (5分) (2019八下·奉化期末) 为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)26. (10分) (2017八下·通州期末) 如图,在平行四边形中,点是边上任意一点,连接.过点作线段的平行线,交延长线于点.(1)证明:.(2)过点作,垂足为点.点为边中点,连接,.① 根据题意完成作图;② 猜想线段,的数量关系,并写出你的证明思路.27. (15分)(2017·海珠模拟) 如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.28. (15分)(2020·哈尔滨模拟) 已知:矩形ABCD内接于⊙O,连接BD,点E在⊙O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,⊙O上有一点N,连接CN分别交BD和AD于点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.29. (16分) (2020九下·龙江期中) 综合与探究已知:p、q是方程的两个实数根,且,抛物线的图像经过点、.(1)求这个抛物线的解析式;(2)设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和的面积;(3) P是线段OC上的一点,过点P作轴,与抛物线交于H点,若直线BC把分成面积之比为的两部分,请直接写出P点的坐标________;(4)若点M在直线CB上,点N在平面上,直线CB上是否存在点M,使以点C、点D、点M、点N为顶点的四边形为菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、计算题 (共2题;共25分)21-1、21-2、22-1、22-2、22-3、四、解答题: (共7题;共81分)23-1、23-2、24-1、24-2、25-1、26-1、26-2、27-1、27-2、27-3、28-1、28-2、29-1、29-2、29-3、29-4、。

湖南省郴州市2019-2020学年中考一诊数学试题含解析

湖南省郴州市2019-2020学年中考一诊数学试题含解析

湖南省郴州市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如果2(2)2a a -=-,那么( ) A .2x <B .2x ≤C .2x >D .2x ≥2.两个同心圆中大圆的弦AB 与小圆相切于点C ,AB=8,则形成的圆环的面积是( )A .无法求出B .8C .8πD .16π3.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C ..D .4.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是( ) A .a≥1B .a >1C .a≥1且a≠4D .a >1且a≠45.下列各数中是有理数的是( ) A .π B .0C .2D .356.计算 22x x x+-的结果为( ) A .1B .xC .1xD .2x x+ 7.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,) C .(﹣161255,) D .(﹣121655,) 8.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .9.下列条件中不能判定三角形全等的是( ) A .两角和其中一角的对边对应相等 B .三条边对应相等 C .两边和它们的夹角对应相等 D .三个角对应相等10.下列运算正确的是( ) A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =11.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( ) A .B .C .D .12.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x +C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B ,C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan ∠α=,有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD 与△DBE全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).14.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .15.如果一个正多边形的中心角等于30°,那么这个正多边形的边数是__________.16.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x 里,依题意,可列方程为________.17.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C ,乙船正好到达甲船正西方向的点B ,则乙船的航程为______海里(结果保留根号).18.在△ABC 中,点D 在边BC 上,BD=2CD ,AB a =u u u r r ,AC b =u u u r r ,那么AD u u u r= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.20.(6分)(1)计算:2201801()(1)4sin60(π1)2-------o(2)化简:221a 4a 2a 1a 2a 1a 1---÷++++ 21.(6分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C .求证:∠CBP=∠ADB .若OA=2,AB=1,求线段BP 的长.22.(8分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A .会;B .不会;C .有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A 组”所对应的圆心度数为______; (2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.23.(8分)解不等式组:1(1)1213x x ⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.24.(10分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系:7.5(04)510(414)x x y x x ≤≤⎧=⎨+<≤⎩工人甲第几天生产的产品数量为70件?设第x 天生产的产品成本为P 元/件,P与x 的函数图象如图.工人甲第x 天创造的利润为W 元,求W 与x 的函数关系式,并求出第几天时利润最大,最大利润是多少?25.(10分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.26.(12分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.解:过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底边上的高也是底边上的中线)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性质)即:BH=又∵(所作)∴AH为线段的垂直平分线∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)∴(等边对等角)27.(12分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 10 9.5 9.5 10篮球9.5 9 8.5 8.5 10 9.5 10 86 9.5 10 9.5 9 8.5 9.5 6整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.75 9.5 10篮球8.81 9.25 9.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:根据二次根式的性质2(0) 0(0)(0)a aa a aa a><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0)0(0)(0)a aa a aa a><⎧⎪===⎨⎪-⎩可求解.2.D【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=12AB=12×8=4cm.∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.故选D.考点:1.垂径定理的应用;2.切线的性质.3.B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形4.C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=223a-,由题意得:223a-≥1且223a-≠2,解得:a≥1且a≠4,故选C.点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.5.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C是无理数,故本选项错误;D故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.6.A【解析】【分析】根据同分母分式的加减运算法则计算可得.【详解】原式=22x x +-=xx=1, 故选:A . 【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则. 7.A 【解析】 【分析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案. 【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°, ∠1=∠2=∠1, 则△A 1OM ∽△OC 1N , ∵OA=5,OC=1, ∴OA 1=5,A 1M=1, ∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1, 则(1x )2+(4x )2=9, 解得:x=±35(负数舍去), 则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125). 故选A . 【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键. 8.B 【解析】解:过A 点作AH ⊥BC 于H ,∵△ABC 是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x ,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x ,∴y=•(4﹣x )•x=,故选B .9.D 【解析】 【详解】解:A 、符合AAS ,能判定三角形全等; B 、符合SSS ,能判定三角形全等;; C 、符合SAS ,能判定三角形全等;D 、满足AAA ,没有相对应的判定方法,不能由此判定三角形全等; 故选D . 10.B 【解析】 【分析】根据幂的运算法则及整式的加减运算即可判断. 【详解】 A. ()23x =x 6,故错误;B. ()55x x -=-,正确; C. 3x ·2x =5x ,故错误; D. 32x +2 3x 不能合并,故错误, 故选B. 【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.11.B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=.故选B.12.B【解析】【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.②③.【解析】试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①错误;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=,∴,∴,∴cosα=,∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,,∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=,AB=15,∴当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=,AC=15,∴cosC=,∴CD=.∵BC=24,∴BD=24-=即当△DCE为直角三角形时,BD=1或.故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴,∴,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤,∴0<BE≤.故④错误.故正确的结论为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.14.16设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n 15.12.【解析】【分析】根据正n 边形的中心角的度数为360n ︒÷进行计算即可得到答案.【详解】解:根据正n 边形的中心角的度数为360n ︒÷,则n=360÷30=12,故这个正多边形的边数为12, 故答案为:12.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.16.2481632378x x x x x x +++++=;【解析】【分析】设第一天走了x 里,则第二天走了2x 里,第三天走了4x 里…第六天走了32x 里,根据总路程为378里列出方程可得答案.【详解】解:设第一天走了x 里, 则第二天走了2x 里,第三天走了4x 里…第六天走了32x 里, 依题意得:3782481632x x x x x x +++++=, 故答案:3782481632x x x x x x +++++=. 【点睛】本题主要考查由实际问题抽象出一元一次方程.17.【解析】【分析】本题可以求出甲船行进的距离AC ,根据三角函数就可以求出AB ,即可求出乙船的路程.又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B 点,∴∠C=30°,∴AB=AC•tan30°=30×3=103海里. 答:乙船的路程为103海里.故答案为103海里.【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键. 18.1233a b +r r 【解析】【分析】首先利用平行四边形法则,求得BC uuu r 的值,再由BD=2CD ,求得BD u u u r 的值,即可求得AD u u u r 的值.【详解】∵AB a =u u u r r ,AC b =u u u r r ,∴BC uuu r =AC u u u r -AB u u u r =b r -a r,∵BD=2CD , ∴BD u u u r =23BC u u u r =2()3b a -r r , ∴AD u u u r =AB u u u r +BD u u u r =2()3a b a +-r r r =1233a b +r r .故答案为1233a b +r r . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)6y x =-;3342y x =-+;(2)2x <-或04x <<;(1)利用点A 的坐标可求出反比例函数解析式,再把B (4,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A ,B 两点的坐标即可写出一次函数的值大于反比例函数时自变量x 的取值范围.【详解】(1)m y x=Q 过点()2,3A -, 6m ∴=-, ∴反比例函数的解析式为6y x =-; Q 点()4,B n 在6y x=- 上, 32n ∴=-, 3(4,2B ∴- ), Q 一次函数y kx b =+过点()2,3A -,3(4,2B - ) 23342k b k b -+=⎧⎪∴⎨+=-⎪⎩, 解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴一次函数解析式为3342y x =-+; (2)由图可知,当2x <-或04x <<时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20.(1)2-;(2)-1;【解析】【分析】(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【详解】(1)2201801()(1)460(1)sin o π-------3 41412=--⨯-=41231---=2-23.(2)2214a21211aa a a a---÷++++=()()222111(1)2a a aa a a+-+ -⋅++-=1211aa a+-++=121aa--+=()11aa-++=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.21.(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB ,∴∠A=∠OBA ,∴∠CBP=∠ADB ;(2)解:∵OP ⊥AD ,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D ,∴△AOP ∽△ABD , ∴AP AO AD AB =,即1241BP +=, ∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.22.(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.【解析】【分析】(1)由C 组人数及其所占百分比可得总人数,用360°乘以A 组人数所占比例可得;(2)根据百分比之和为1求得A 组百分比补全图1,总人数乘以B 的百分比求得其人数即可补全图2; (3)总人数乘以样本中A 所占百分比可得;(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.【详解】(1)这次被抽查的学生共有25÷50%=50人, 扇形统计图中,“A 组”所对应的圆心度数为360°×1550=108°, 故答案为50、108°;(2)图1中A 对应的百分比为1-20%-50%=30%,图2中B 类别人数为50×20%=5, 补全图形如下:(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;(4)不正确,因为在样本中浪费粮食的人数所占比例不是20%,所以这种说法不正确.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.23.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()111213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.(1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.【解析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.本题解析:解:(1)若7.5x=70,得x=>4,不符合题意;则5x+10=70,(2)由函数图象知,当0≤x≤4时,P=40,当4<x≤14时,设P=kx+b,将(4,40)、(14,50)代入,得解得∴P=x+36.①当0≤x≤4时,W=(60-40)·7.5x=150x,∵W随x的增大而增大,∴当x=4时,W最大=600;②当4<x≤14时,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴当x=11时,W最大=845.∵845>600,∴当x=11时,W取得最大值845元.答:第11天时,利润最大,最大利润是845元.点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题.25.(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;【解析】【分析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,所以,人数最多的年龄段是11~30岁;(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,补全统计图如图.26.见解析【解析】【分析】根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底边上的高也是底边上的中线).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性质),即:BH=CH.∵AH⊥BC(所作),∴AH为线段BC的垂直平分线.∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).∴∠B=∠C(等边对等角).【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;27.130 小明平均数接近,而排球成绩的中位数和众数都较高.【解析】【分析】()1根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;()2根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.【详解】解:补全表格成绩:()1达到优秀的人数约为160130⨯=(人);16故答案为130;()2同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高.(答案不唯一,理由需支持判断结论)故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.【点睛】本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.。

〖精选4套试卷〗湖南省郴州市2020年中考第一次大联考数学试卷

〖精选4套试卷〗湖南省郴州市2020年中考第一次大联考数学试卷

2019-2020学年数学中考模拟试卷一、选择题1.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°2.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m3.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为()A.32B.3 C.94D.1544.如图,点A、B、C在圆O的圆周上,连OA、OC,OD⊥AB于点D,若AO平分∠CAB,∠CAB=50°,则∠OCB=( )A.40°B.35°C.30°D.25°5.如图,将矩形绕点顺时针旋转到知形的位置,旋转角为.若,则的大小是()A.32°B.20°C.22°D.28°6.甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是( )A.334 B.335 C.336 D.3377.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=kx(x>0)的图象上,若∠C=60°,AB=2,则k的值为()A.2B.3C.1 D.28.用计算器求35值时,需相继按“133”,“y x”,“5”,“=”键,若小颖相继按“””4”,“y x”,“(﹣)”,“3”,“=”键,则输出结果是()A.8 B.4 C.﹣6 D.0.1259.下列运算不正确的是()A.a2·a3=a5B.a6÷a3=a3C.(-3a2)2=9a4D.2m·3n=6m+n10.在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3B.-3C.4D.-411.平行四边形一定具有的性质是()A.四边都相等B.对角相等C.对角线相等D.是轴对称图形12.如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA、AB于点M、N,再以M、N为圆心,大于12MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P .若△OPA 与△OAB 相似,则点P 的坐标为( )A .(1,0)B .(3,0)C .(233,0)D .(23,0)二、填空题 13.如图,正方形OABC 的边长为2,以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,交点P 运动的路径长是_____.14.如图,在平面直角坐标系中,过点A(4,5)分别作x 轴、y 轴的平行线,交直线y=-x+6于B 、C 两点.若函数 (0 )k y x x=>的图象与△ABC 的边有公共点,则k 的取值范围是_______.15.已知直线a ∥b ,将一块含45°角的直角三角板(∠C =90°),按如图所示的位置摆放,若∠1=55°,则∠2的度数为_____.16.如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,已知平台CD 的高度为5 m ,则大树的高度为_______m(结果保留根号).17.某公路沿线有A ,B ,C 三个站点,甲、乙两车同时分别从A 、B 站点出发,匀速驶向C 站,最终到达C 站.设甲、乙两车行驶x (h )后,与B 站的距离分别为y 1、y 2(km ),y 1、y 2与x 的函数关系如图所示,则经过___小时后两车相遇.18.如图,在圆内接四边形ABCD 中,若∠A 、∠C 的度数之比为4:5,则∠C 的度数是_____.三、解答题19.阅读下列材料,并解决相关的问题按照一定顺序排列的一列数称为数列,排在第一位的数称为第1项,记为a 1,依此类推,排在第n 位的数称为第n 项,记a n ,一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差用字母d 表示,如数列1,3,5,7,9…为等差数列,其中a 1=1,d =2(1)等差数列1,6,11,16…公差d 为 ,第11项是 . (2)若一个等差数列的公差为d =3,第2项为10,求第1项a 1和第n 项a n (用含n 的表达式表示).20.化简:(1)a (a ﹣b )﹣(a+b )(a+2b );(2)2233222a a a a a a -⎛⎫÷-- ⎪++⎝⎭21.定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,△ABC 中,AC >AB ,DE 是△ABC 在BC 边上的中分线段,F 为AC 中点,过点B 作DE 的垂线交AC 于点G ,垂足为H ,设AC =b ,AB =c .①求证:DF =EF ;②若b =6,c =4,求CG 的长度;(2)若题(1)中,S △BDH =S △EGH ,求b c的值.22.先化简再求值()222+211121a a a a a a -÷++--+,其中3+1. 23.某人为了测量瞭美塔的高度,小张在山下与山脚B 在同一水平面的A 处测得塔尖点D 的仰角为45°,再沿AC 方向前进45米到达山脚点B ,测得塔尖点D 的仰角为60°,塔底点E 的仰角为30°,并画出了如图所示的示意图.请你根据相关数据求出塔ED的高度.(3≈1.73,2≈1.41,结果保留整数)24.如图10,在平面直角坐标系中,点A(0,6),点B是x轴正半轴上的一个动点,连结AB,取AB 的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.过点B作BD⊥x轴交直线AC于点D.设点B坐标是(t,0).(1)当t=4时,求直线AB的解析式;(2)①用含t的代数式表示点C的坐标: .②当△ABD是等腰三角形时,求点B坐标.25.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A C A C C B D D C B C13214.5≤k≤2015.80°16.5+17.43. 18.100°三、解答题19.(1)5,51;(2)a n =3n+4.【解析】【分析】(1)根据定义直接计算即可;(2)由a 2=a 1+d ,a 3=a 1+2d ,a 4=a 1+3d…可知:序列号n 比d 的系数小1,故:a n =a 1+(n-1)d .【详解】(1)如果一个数列a 1,a 2,a 3,a 4,…是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,……a n ﹣a n ﹣1=d ,所以a 2=a 1+d ,a 3=a 2+d =a 1+2d ,a 4=a 1+3d ,……由此可得a n =a 1+(n ﹣1)d (用a 1和d 的代数式表示);由此可得:d =6﹣1=5,第11项是:1+10×5=51,故答案为:5,51;(2)由题意得:a 1=10﹣3=7,由(1)得:a n =a 1+(n ﹣1)d =7+3(n ﹣1)=3n+4.【点睛】本题考查数字的变化类,解题的关键是明确题意,知道什么是等差数列,会用等差数列解决问题.20.(1)﹣4ab ﹣2b 2;(2)237a a --. 【解析】【分析】(1)根据整式乘法的运算法则即可得出答案;(2)根据分式混合运算法则即可化简原式.【详解】解:(1)原式22222a ab a ab ab b -+++-=() 22222a ab a ab ab b --=---242ab b =--;(2)原式2(3)7(2)2a a a a a a ---=÷++ 2(3)2(2)7a a a a a a --+=+-g 237a a -=-. 【点睛】本题主要考查了整式的化简与分式化简,熟知掌握整式化简的方法与分式化简的法则是解题关键.21.(1)①详见解析;②2;(2)53【解析】【分析】(1)①由题意得出DF是△CAB的中位线,得出DF=12AB=12c,AF=12AC=12b,CE=12(b+c),AE=12(b﹣c),求出EF=AF﹣AE=12c,即可得出结论;②过点A作AP⊥BG于P,由中位线定理得出DF∥AB,得出∠DFC=∠BAC,求出∠DEF=∠EDF,∠BAP+∠PAC=2∠DEF,由ED⊥BG,AP⊥BG,得出DE∥AP,得出∠PAC=∠DEF,∠BAP=∠DEF=∠PAC,再由AP ⊥BG,得出AB=AG=4,即可得出结果;(2)连接BE、DG,由S△BDH=S△EGH,得出S△BDG=S△DEG,推出BE∥DG,再由DF∥AB,得出△ABE∽△FDG,得出21AB AEDF FG==,推出FG=14(b﹣c),CF=12b=FG+CG=14(b﹣c)+(b﹣c),即可得出结果.【详解】(1)①证明:∵F为AC中点,DE是△ABC在BC边上的中分线段,∴DF是△CAB的中位线,∴DF=12AB=12c,AF=12AC=12b,CE=12(b+c),∴AE=b﹣CE=b﹣12(b+c)=12(b﹣c),∴EF=AF﹣AE=12b﹣12(b﹣c)=12c,∴DF=EF;②解:过点A作AP⊥BG于P,如图1所示:∵DF是△CAB的中位线,∴DF∥AB,∴∠DFC=∠BAC,∵∠DFC=∠DEF+∠EDF,EF=DF,∴∠DEF=∠EDF,∴∠BAP+∠PAC=2∠DEF,∵ED⊥BG,AP⊥BG,∴DE∥AP,∴∠PAC=∠DEF,∴∠BAP=∠DEF=∠PAC,∵AP⊥BG,∴AB=AG=4,∴CG=AC﹣AG=6﹣4=2;(2)解:连接BE、DG,如图2所示:∵S△BDH=S△EGH,∴S△BDG=S△DEG,∴BE∥DG,∵DF∥AB,∴△ABE∽△FDG,∴AB AE 2DF FG 1==, ∴FG =12AE =12×12(b ﹣c )=14(b ﹣c ), ∵AB =AG =c ,∴CG =b ﹣c , ∴CF =12b =FG+CG =14(b ﹣c )+(b ﹣c ), ∴3b =5c , ∴53b c =.【点睛】本题是三角形综合题,考查了新定义、等腰三角形的判定与性质、平行线的判定与性质、三角形中位线定理、相似三角形的判定与性质、同底三角形面积相等则高相等等知识;熟练掌握中位线定理与平行线的性质是解题的关键.22.31a a +-,431+ 【解析】【分析】先根据分式的运算法则进行化简,再进行二次根式的运算即可.【详解】原式=()()()()221111111a a a a a a ++-⨯+-+- =213111a a a a a +++=--- 当31a =时,原式344313+= 【点睛】掌握分式和二次根式化简方法.23.71m .【解析】【分析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=xm,则BE=2xm,DE=2xm,DC=3xm,BC =3xm,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.【详解】解:由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC﹣∠EBC=60°﹣30°=30°.又∵∠BCD=90°,∴∠BDC=90°﹣∠DBC=90°﹣60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=xm,则DE=BE=2EC=2xm,DC=EC+DE=x+2x=3xm,BC22BE EC22x-x(2)3,由题知,∠DAC=45°,∠DCA=90°,AB=45,∴△ACD为等腰直角三角形,∴AC=DC.3=3x,解得:x=45+1532,2x=3答:塔高约为71m.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度一般.24.(1)y=-32x+6;(2)①点C的坐标为(t+3,2t),②分三种情况进行分类讨论,点B的坐标为(3,0).点B的坐标为(12+50).当t≥0时,不存在BD=AB的情况.【解析】【分析】(1)当t=4时,B(4,0),设直线AB的解析式为y=kx+b.把A(0,6),B(4,0)代入解析式即可求出未知数的值,从而求出其解析式;(2)①根据点A和点B的坐标可以求得点M的坐标,从而可以求得点C的坐标;②分三种情况进行分类讨论:AD=BD,AB=AD,BD≠AB.【详解】(1)当t=4时,B(4,0).设直线AB的解析式为y=kx+b将A(0,6),B(4,0)代入,得:640b k b =+=⎧⎨⎩解得326k b ⎧⎪⎨⎪⎩=-= ∴直线AB 的解析式为y =-32x +6. (2)①)∵点A (0,6),点B (t ,0),点M 是线段AB 的中点, ∴点M 的坐标是(2t ,3), 又∵将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC , ∴点C 的坐标为:(t+3,2t ), 故答案为:(t+3,2t ); ②分三种情况进行分类讨论(1)AD =BD ,则∠BAD =∠ABD .∵BD ∥y 轴,∴∠OAB =∠ABD ,∴∠OAB =∠BAD .∴tan ∠OAB=tan ∠BAD又∵∠AOB =∠ABC=90°∴OB AO =BC AB =12,即6t =12,∴t =3. 此时点B 的坐标为(3,0).(2)若AB =AD方法一 :设直线AC 的解析式为6y kx =+∵点C 的坐标为(t +3,2t ) ∴(3)62t k t ++=∴12=26t k k -+ ∴12=626t y x k -++ ∴当=x t 时,23626t y t +=+ ∴23626t BD t +=+ 由题得=2BD AO∴236=1226t t ++ ∴22436t t -=∴1=12+65t 2=1265t (舍去) 方法二:过点A 作AH ⊥CG 于H ,则CH =HG =12CG .∵∠GEB =∠AOB =90°,∠GBE =∠ABO , ∴△GEB ∽△AOB . ∴GE BE =AOBO, ∴GE =6t ×3=18t. 又∵HE =AO =6,CE =2t ,GE +HE =HG =12CG =12(CE +GE). ∴18t +6=12(2t +18t),整理得t 2-24t -36=0. 解得t 1=12+65,t 2=12-65<0(不合题意,舍去). 此时点B 的坐标为(12+65,0).(3)当0≤t<12时,∠ADB 是钝角,△ADB 是钝角三角形,故BD ≠AB. 当t≥12时,BD≤CE<BC <AB . ∴当t≥0时,不存在BD =AB 的情况. 【点睛】本题考查了坐标与图形的变化-旋转, 解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答,注意分类讨论思想的应用. 25.(1)14;(2)16【解析】 【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A 区域只有1种情况,利用概率公式计算可得; (2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得. 【详解】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A 区域只有1种情况, ∴享受9折优惠的概率为14, 故答案为:14; (2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为21 126.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2019-2020学年数学中考模拟试卷一、选择题1.某种速冻水饺的储藏温度是-18℃±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是( ) A .-17℃B .-22℃C .-18℃D .-19℃2.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是( ) A .∠1=50°,∠2=40° B .∠1=40°,∠2=50° C .∠1=30°,∠2=60°D .∠1=∠2=45°3.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =4,b =5,则该矩形的面积为( )A.50B.40C.30D.20 4.若抛物线y =x 2﹣6x+m 与x 轴没有交点,则m 的取值范围是( ) A .m >9B .m≥9C .m <﹣9D .m≤﹣95.如图,曲线2C 是双曲线15:(0)C y x x=>绕原点O 逆时针旋转45︒得到的图形,P 是曲线2C 上任意一点,过点P 作直线PQ l ⊥于点Q ,且直线l 的解析式是y x =,则POQ △的面积等于( )A .5B .52C .72D .56.如图,ABC ∆内接于⊙O ,25OAC ∠=︒,则ABC ∠的度数为()A .110°B .115°C .120°D .125°7.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( )A .∠1=∠2B .∠3=∠5C .∠BAD=∠DCED .∠4=∠6 8.一次函数y 1=x +1与y 2=-2x +4图像交点的横坐标是( )A.4B.2C.1D.09.如图,在平面直角坐标系中,函数y =x 和y =﹣2x 的图象分别为直线l 1,l 2,过点(﹣1,0)作x 轴的垂线交l 2于点A 1…过点A 1作y 轴的垂线交l 1于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 1于点A 4,……依次进行下去,则点A 2019的坐标是( )A .(﹣21008,21009)B .(21008,﹣21009)C .(21009,﹣21010)D .(21009,21010)10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B 1在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3,…,在x 轴上已知正方形A 1,B 1,C 1,D 1,的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A n B n ∁n D n 的边长是( )A .12n⎛⎫ ⎪⎝⎭B .112n -⎛⎫ ⎪⎝⎭C .33D .133-11.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n -D.n m -12.休闲广场的边缘是一个坡度为i =1:2.5的缓坡CD ,靠近广场边缘有一架秋千.秋千静止时,底端A 到地面的距离AB =0.5m ,B 到缓坡底端C 的距离BC =0.7m .若秋千的长OA =2m ,则当秋千摆动到与静止位置成37°时,底端A′到坡面的竖直方向的距离A′E 约为( )(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)A .0.4mB .0.5mC .0.6mD .0.7m二、填空题13.在平面直角坐标系中,点A (﹣4,3)关于原点对称的点A′的坐标是_____. 14.计算432x x ⋅的结果等于__________. 15.正比例函数的图像与反比例函数的图象相交于A 、B 两点,其中点A(2,n),且n>0,当时,的取值范围是___________________.16.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).1712418618.已知⊙O 的半径为2cm ,弦AB 长为3,则这条弦的中点到弦所对劣弧中点的距离为_____cm . 三、解答题19.(1) 计算:(04cos301212+-o(2) 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩20.计算:(1)1(2)18sin 45-︒+;(2)(a+3)(a ﹣1)﹣(a+2)(a ﹣2). 21.如图,在平面直角坐标系中,直线122y x =-+分别交x 轴,y 轴于点A ,B 抛物线2322y ax x =--经过点A ,且交x 轴于另外一点C ,交y 轴于点D . (1)求抛物线的表达式; (2)求证:AB ⊥BC ;(3)点P 为x 轴上一点,过点P 作x 轴的垂线交直线AB 于点M ,交抛物线于点Q ,连结DQ ,设点P 的横坐标为m,当以B,D,Q,M为顶点的四边形是平行四边形时,求m的值.22.如图,已知在矩形ABCD中,E是BC边上的一个动点,点F,G,H分别是AD,AE,DE的中点.(1)求证:四边形AGHF是平行四边形;(2)若BC=10cm,当四边形EHFG是正方形时,求矩形ABCD的面积.23.如图,在△ABC中,AB=AC,点D是BC边上一点,且AD=BD,⊙O是△ACD的外接圆(1)求证:直线AB是⊙O的切线;(2)若AB=10,BC=16,求⊙O的半径.24.如图,M、N是边长为6的正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF.(1)求证:DE=BE;(2)判断DE与AM的位置关系,并证明;(3)判断线段CF是否存在最小值?若存在,求出来,若不存在,说明理由.25.2014年11月,某市某中学结合语文阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生3600名,那么请你估计最喜爱科普类书籍的学生人数.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D B A B B D C C D B D13.(4,﹣3).14.72x15.或16.①②④17.6-18.1三、解答题19.(1) 1; (2)2x<.【解析】【分析】(1)根据特殊角的三角函数值和零指数幂的意义得到原式=4×32333,然后合并即可.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(13333;(2)()21571023x xxx⎧+>-⎪⎨+>⎪⎩①②解①得:x<3, 解②得:x<2,则不等式组的解集为x<2. 【点睛】本题考查特殊角的三角函数值、零指数幂、解一元一次不等式组等,解题关键是熟练掌握三角函数值、零指数幂、解一元一次不等式组的方法.20.(1)2)2a+1. 【解析】 【分析】(1)将每一项解出然后合并同类项即可 (2)多项式乘多项式之后,再合并同类项即可 【详解】(1=(2)原式=a 2﹣a+3a ﹣3﹣a 2+4=2a+1. 【点睛】此题主要考查特殊角的三角函数以及整式乘法21.(1)y =12x 2﹣32x ﹣2;(2)见解析;(3)m 的值是2或或1. 【解析】 【分析】 (1)令y =﹣12x+2=0,解得:x =4,即可求解,然后把点A 的坐标代入抛物线解析式,借助于方程求得a 的值即可;(2)把由函数图象上点的坐标特征求得点B 、C 的坐标,然后利用两点间的距离公式和勾股定理的逆定理证得结论;(3)以B 、D 、Q ,M 为顶点的四边形是平行四边形时,利用|MQ|=BD 即可求解. 【详解】 (1)令y =﹣12x+2=0,解得:x =4,y =0,则x =2, 即:点A 坐标为:(4,0). 代入2322y ax x =--中,得16a ﹣8=0,得a =12. ∴该抛物线解析式为:y =12x 2﹣32x ﹣2. (2)由(1)知,抛物线解析式为:y =12x 2﹣32x ﹣2. ∴当y =0时,x 1=﹣1,x 2=4,的C (﹣1,0). 故OC =1.于是AB 2=20,BC 2=5,AC 2=25. 从而AB 2+BC 2=AC 2. ∴AB ⊥BC ;(3)由(1)知,抛物线解析式为: 213222y x x =--.当x =0时,y =2,得D (0,﹣2), ∴BD =4. 当MQ =(﹣12m+2)﹣213222m m ⎛⎫-- ⎪⎝⎭=212m -﹣m ﹣4=4时,得m =2或m =0(舍去).当MQ =(12m 2﹣32m ﹣2)﹣(﹣12m+2)=212m ﹣m ﹣4=4时,得m =1+17或m =1﹣17. 综上所述,m 的值是2或1+17或1﹣17. 【点睛】主要考查了二次函数综合题,需要注重二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.22.(1)详见解析;(2)50. 【解析】 【分析】(1)根据三角形中位线定理和平行四边形的判定解答即可; (2)利用正方形的性质和矩形的面积公式解答即可. 【详解】证明:(1)∵点F ,G ,H 分别是AD ,AE ,DE 的中点, ∴FH ∥AE ,GH ∥AD ,∴四边形AGHF 是平行四边形;(2)当四边形EGFH 是正方形时,连接EF ,可得:EF ⊥GH 且EF =GH ,∵在△BEC 中,点,H 分别是BE ,CE 的中点, ∴GH =12BC =12AD =5cm ,且GH ∥BC , ∴EF ⊥BC , ∵AD ∥BC ,AB ⊥BC , ∴AB =EF =GH =5cm ,∴矩形ABCD 的面积=211010502AB AD cm ⨯=⨯⨯=. 【点睛】此题考查正方形的性质,关键是根据三角形中位线定理和平行四边形的判定和正方形的性质解答. 23.(1)详见解析;(2)12524【解析】 【分析】(1)连接AO 并延长交⊙O 于E ,连接DE ,根据各边的关系,利用等量代换求出∠E =∠BAD ,再根据直径所对应的的圆周角等于90°,所以∠E+∠DAE =90°,等量代换∠BAD+∠DAE =90°,即可证出.(2) 过A 作AF ⊥BC 于F ,利用相似三角形求出BD 的长度,然后利用等腰三角形的三线合一性质求出BF 的长度,再根据勾股定理求出AF 的长,最后利用三角函数,根据比值关系求出AE 的长,即可知道⊙O 的半径.【详解】(1)证明:连接AO并延长交⊙O于E,连接DE,∵AB=AC,AD=BD,∴∠B=∠BAD,∠B=∠C,∴∠C=∠E,∴∠E=∠BAD,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠DAE=90°,∴∠BAD+∠DAE=90°,即∠BAE=90°,∴直线AB是⊙O的切线;(2)解:过A作AF⊥BC于F,∵∠B=∠BAD,∠B=∠C,∴∠BAD=∠C,∵∠B=∠B,∴△BAD∽△BCA,∴BDBA=BABC∴BD=2BABC=254,∴AD=BD=254,∵AB=AC,AF⊥BC,∴BF=12BC=8,∴AF=22AB BF=6,∵∠E=∠C=∠B,∴sinE=sinB,∴AFAB=ADAE,∴AE=125 12,∴⊙O的半径为12512÷2=12524.即⊙O的半径为125 24【点睛】本题考查切线的判定和圆半径的求解,本题要熟练掌握等腰三角形的性质、同弧所对的圆周角相等、相似三角形成比例、勾股定理等知识点.24.(1)见解析;(2)DE⊥AM,见解析;(3)存在最小值,最小值为353-.【解析】【分析】(1)证明△DAE≌△BAE(SAS)即可解决问题.(2)想办法证明∠DAM=∠EDC即可.(3)存在最小值.如图,取AD的中点O,连接OF、OC,利用三角形三边关系解决问题即可.【详解】解:(1)证明:在正方形ABCD中,AD=AB,∠DAE=BAE,又AE为公共边,∴△DAE≌△BAE(SAS),∴DE=BE.(2)结论:互相垂直.理由::在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD=90°,∵AM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN由(1)知DE=BE,又CD=CB,CE为公共边,∴△DCE≌△BCE(SSS),∴∠CDE=∠CBE∵∠ADF+∠CDE=∠ADC=90°∴∠DAF+∠ADF=90°∴∠DFA=180°﹣90°=90°即DE⊥AM.(3)存在最小值.如图,取AD的中点O,连接OF、OC,则OF=DO=12AD=3,在Rt△OCD中,OC22223635DO DC++=根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值为OC﹣OF=353.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用三角形三边关系解决最值问题,属于中考压轴题.25.(1)300名学生;(2)见解析;(3)48°;(4)960(人).【解析】【分析】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用360°乘以体育部分人数所占比例即可得;(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)90÷30%=300(名),故一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;折线图补充如图;(3)扇形统计图(图2)中,体育部分所对应的圆心角的度数为360°×40300=48°;(4)估计最喜爱科普类书籍的学生人数为3600×80300=960(人).【点睛】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.也考查了利用样本估计总体.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A.AC=EFB.BC=DFC.AB=DED.∠B=∠E 2.下列计算中,不正确的是( ) A .222a 2ab b (a b)-+=- B .2510a a a ⋅=C .()a b b a--=-D .32223a b a b 3a ÷=3.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )A .①和②B .②和③C .①和③D .①和④4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 65.由三角函数定义,对于任意锐角A ,有sinA=cos(90°-A)及sin 2A+cos 2A=1成立.如图,在△ABC 中,∠A ,∠B 是锐角,BC=a ,AC=b,AB=c,CD ⊥AB 于D ,DE//AC 交BC 于E ,设CD=h ,BE=a’,DE=b’,BD=c’,则下列条件中能判断△ABC 是直角三角形的个数是( )(1)a 2+b 2=c 2 (2)aa’+bb’=cc’ (3)sin 2A+sin 2B=1 (4)+= A.1个 B.2个C.3个D.4个6.如图,在菱形ABCD 中,120BAD ∠=︒ ,已知△ABC 的周长为15,则菱形ABCD 的对角线BD 的长为( ).A .3B 532C .3D 5347.如图,直径为单位1 的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A ,则点A 表A.2 B.2C.πD.48.如图,若MNP MEQ△≌△,则点Q应是图中的()A.点A B.点B C.点C D.点D9.若函数,则当函数值y=8时,自变量x的值是()A.±B.4C.±或4D.4或-10.小明沿着坡角为45°的坡面向下走了5米,那么他竖直方向下降的高度为( )A.1米B.2米C.55米D.522米11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论错误的是()A.4a+2b+c>0B.abc<0C.b<a﹣cD.3b>2c12.如图,己知点A是双曲线y=kx-1(k>0)上的一个动点,连AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=mx-1(m<0)上运动,则m与k的关系是()A.m= -k B.m=3C.m= -2k D.m= -3k二、填空题13.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2014个正方形的面积为_________。

湖南省郴州市2020版中考数学试卷A卷

湖南省郴州市2020版中考数学试卷A卷

湖南省郴州市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列计算正确的是()A . |﹣2|=﹣2B . a2•a3=a6C . (﹣3)﹣2=D . =2. (2分)(2020·海南模拟) 华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A . 1.03×109B . 10.3×109C . 1.03×1010D . 1.03×10113. (2分)下列运算正确的是()A . x+x=x2B . (x+y)2=x2+y2C . 3x3•2x2=6a5D . x8÷x2=x44. (2分) (2017七上·新会期末) 用两块完全相同的长方体搭成如图所示的几何体,从正面看得到的图形是()A .B .C .D .5. (2分)下列分解因式错误的是()A . 1-16a2=(1+4a)(1-4a)B . x3-x=x(x2-1)C . a2-b2c2=(a+bc)(a-bc)D . m2-0.01=(m+0.1)(m-0.1)6. (2分) (2019九上·玉田期中) 某电动自行车厂三月份的产量为辆,由于市场需求量不断增大,五月份的产量提高到辆,该厂四、五、六月份的月平均增长率相同,那么月平均增长率和六月份的产量分别为()A .B .C .D .7. (2分)函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c-2=0的根的情况是()A . 有两个不相等的实数根B . 有两个异号的实数根C . 有两个相等的实数根D . 没有实数根8. (2分)(2017·遵义) 我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A . 28°,30°B . 30°,28°C . 31°,30°D . 30°,30°9. (2分)(2017·黔西南) 四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A . ∠A=∠CB . AD∥BCC . ∠A=∠BD . 对角线互相平分10. (2分)设圆的面积为S,半径为R, 那么下列说法正确的是()A . S是R的一次函数B . S是R的正比例函数C . S是R2的正比例函数D . 以上说法都不正确二、填空题 (共4题;共4分)11. (1分)不等式2x﹣6≥0的解集是________.12. (1分) (2015九上·郯城期末) 计算:sin30°+cos30°•tan60°=________.13. (1分)已知一次函数y=ax+b中,x和y的部分对应值如表:x﹣2﹣10 1.523y642﹣1﹣2﹣4那么方程ax+b=0的解是________14. (1分)如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于________ .三、解答题 (共9题;共85分)15. (10分) (2019七下·红塔期中) 计算:(1)(﹣2)2× +| |+ ;(2) .16. (5分)解答题唐代大诗人李白喜好饮酒作诗,民间有“李白斗酒诗百篇”之说.《算法统宗》中记载了一个“李白沽酒”的故事.诗云:注:古代一斗是10升.大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的19升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.(1)列方程求壶中原有多少升酒;(2)设壶中原有a0升酒,在第n个店饮酒后壶中余an升酒,如第一次饮后所余酒为a1=2a0﹣19(升),第二次饮后所余酒为a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),….①用an﹣1的表达式表示an ,再用a0和n的表达式表示an;②按照这个约定,如果在第4个店喝光了壶中酒,请借助①中的结论求壶中原有多少升酒.17. (7分) (2017八下·通州期末) 阅读下面材料:学习了《平行四边形》单元知识后,小东根据学习平行四边形的经验,对矩形的判定问题进行了再次探究.以下是小东的探究过程,请你补充完整:(1)在平行四边形ABCD中,对角线AC与BD相交于点O.补充下列条件中能判断平行四边形ABCD是矩形的是(请将所有正确答案前的字母填写在横线上)A . AC⊥BDB . AC=BDC . AD=DCD . ∠DAB=∠ABC(2)小东进一步探究发现:在通过对“边、角、对角线”研究矩形的判定中,小东提出了一个猜想:“一组对边相等,一组对角均为直角的四边形为矩形.” 请你画出图形,判断小东的猜想是否是证明题.如果是真命题,请写出证明过程,如果不是,请说明理由.18. (11分)观察下列等式: =1﹣, = ﹣, = ﹣,将以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣ =1﹣ = .(1)猜想并写出: =________;(2)计算: + + +…+ ;(3)参照上述解法计算: + + +…+ .19. (5分)如图,大刚在晚上由灯柱A走向灯柱B,当他走到M点时,发觉他身后影子的顶部刚好接触到灯柱A的底部,当他向前再走12米到N点时,发觉他身前的影子刚好接触到灯柱B的底部,已知大刚的身高是1.6米,两根灯柱的高度都是9.6米,设AM=NB=x米.求:两根灯柱之间的距离.20. (10分)(2017·南开模拟) 如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 ,sin∠BCP= ,求⊙O的半径及△ACP的周长.21. (12分)(2016·葫芦岛) 某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有________人,在扇形统计图中,m的值是________;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.22. (10分) (2016九上·宾县期中) 已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.23. (15分) (2020八上·浦北期末) 如图,在等腰中,,D为BC的中点,过点C作于点G,过点B作于点B,交CG的延长线于点F,连接DF交AB于点E.(1)求证:;(2)求证:AB垂直平分DF;(3)连接AF,试判断的形状,并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共85分)15-1、15-2、16-1、17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。

湖南省郴州市2020年数学中考一模试卷A卷

湖南省郴州市2020年数学中考一模试卷A卷

湖南省郴州市2020年数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题:本大题有10个小题,毎小题3分,共30分. (共10题;共29分)1. (3分)如果a÷b(b≠0)的商是负数,那么()A . a,b异号B . a,b同为正数C . a,b同为负数D . a,b同号2. (3分)(2012·深圳) 第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高,将数143 300 000 000用科学记数法表示为()A . 1.433×1010B . 1.433×1011C . 1.433×1012D . 0.1433×10123. (3分) (2019八下·官渡期中) 已知,则x的取值范围是()A . x>0B . x>3C . x≥3D . x≤34. (3分)如图,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8m,要在窗子外面上方安装水平挡光板AC,使午间光线不能直接射入室内,那么挡光板的宽度AC为()A . 1.8tan80°mB . 1.8cos80°mC . 1.8sin 80°mD . m5. (3分)笔记本比水性笔的单价多2元,小刚买了5本笔记本和3支水性笔正好用去18元.如果设水性笔的单价为x元,那么下面所列方程正确的是()A . 5(x+2)+3x=18B . 5(x-2)+3x=18C . 5x+3(x+2)=18D . 5x+3(x-2)=186. (3分)如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A . 平均数改变,方差不变B . 平均数改变,方差改变C . 平均输不变,方差改变D . 平均数不变,方差不变7. (3分) (2017九上·金华开学考) 如图,已知AB,CD,EF都与BD垂直,垂足分别是B,D,F,且AB=1,CD=3,则EF的长是()A .B .C .D .8. (2分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是()A . 25°B . 30°C . 35°D . 40°9. (3分)用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是()A . ①④⑤B . ①③⑤C . ①②③D . ①②⑤10. (3分)(2018·荆门) 二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2 ,且x1<x2 ,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题:本大题有6个小题,每小题4分,共24分 (共6题;共22分)11. (2分)(2020·长春模拟) 因式分解:a3-16a=________。

2020年湖南省郴州市中考数学一模试卷 (含答案解析)

2020年湖南省郴州市中考数学一模试卷 (含答案解析)

2020年湖南省郴州市中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.如图,互为相反数的点是().A. 点A与点CB. 点B与点DC. 点B与点CD. 点A与点D2.2018年11月19日,我国成功发射了第四十二、四十三颗北斗导航卫星.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,可为用户提供定位、导航、授时服务,定位精度10米,测速精度0.2米/秒,授时精度0.00000001秒.数据0.00000001用科学记数法表示为()A. 0.1×10−7B. 1×10−8C. 1×10−9D. 10×10−93.下列图形是中心对称图形的是().A. B. C. D.4.下列计算正确的是()A. √5+√2=√7B. 7m−4m=3C. a5⋅a3=a8D. (13a3)2=19a95.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°,其中能判断a//b的是()A. ①③B. ②④C. ①③④D. ①②③④6.商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码3637383940数量/双15281395商场经理最关注这组数据的()A. 众数B. 平均数C. 中位数D. 方差7.如图,在边长为a的正方形纸板的一角,剪去一个边长为b的正方形,再将剩余图形沿虚线剪开,拼成一个长方形,依据这一过程可得到的公式是()A. (a±b)2=a2±2ab+b2B. a2±2ab+b2=(a±b)2C. (a+b)(a−b)=a2−b2D. a2−b2=(a+b)(a−b)8.如图,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=4,OB=3,函数k1x (x<0)和y=k2x(x>0)的图象分别经过点A、B,则k1k2=()A. 43B. −43C. 169D. −169二、填空题(本大题共8小题,共24.0分)9.当x=2时,分式2xx−2m 的值不存在,则当x=3时,2xx−2m的值为_____.10.已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=____.11.质检部门为了检测某品牌电器的质量,从同一批次共1万件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批产品中的次品有________件.12.一组数据a、b、c、d、e的方差是3,则新数据2a+4、2b+4、2c+4、2d+4、2e+4的方差是______.13.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.14.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,−6),则A点的对应点A′坐标为______.15.底面半径为6cm,母线长为10cm的圆锥的侧面展开图的面积为cm2。

2020年郴州市中考数学一模试题(带答案)

2020年郴州市中考数学一模试题(带答案)

2020年郴州市中考数学一模试题(带答案)一、选择题1.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )A .12B .4C .3D .62.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()6,0-B .()6,0C .()2,0-D .()2,03.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动,记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .4.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③5.下表是某学习小组一次数学测验的成绩统计表: 分数/分70 80 90 100 人数/人 1 3 x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( )A .80分B .85分C .90分D .80分和90分6.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元A .8B .16C .24D .327.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分8.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .189.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩10.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q11.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .4312.8×200=x+40解得:x=120 答:商品进价为120元.故选:B .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.14.若a ,b 互为相反数,则22a b ab +=________.15.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.16.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.17.分解因式:2x 2﹣18=_____.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.19.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.24.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?25.如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y =x﹣3的图象l交于点E(m ,﹣5).(1)m=__________;(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:设点A的坐标为(m,km),则根据矩形的面积与性质得出矩形中心的纵坐标为2km,求出中心的横坐标为m+6mk,根据中心在反比例函数y=kx上,可得出结果.详解:设点A的坐标为(m,km),∵矩形ABCD的面积为12,∴121212m BCkAB km===,∴矩形ABCD的对称中心的坐标为(m+6mk,2km),∵对称中心在反比例函数上,∴(m+6mk)×2km=k,解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.2.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.3.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.4.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.5.D解析:D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.6.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.7.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .考点:等腰三角形的性质.9.A解析:A【解析】【分析】【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩, 故选D .考点:由实际问题抽象出二元一次方程组.10.C解析:C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.11.C解析:C【解析】【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出222OG OB BG =-=,证出EOG ∆是等腰直角三角形,得出45,222OEG OE OG ∠=︒==,求出30OEF ∠=︒,由直角三角形的性质得出122OF OE ==,由勾股定理得出11DF =,即可得出答案. 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,221392OG OB BG =-=-=,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,222OE OG ==, ∵75DEB ∠=︒,∴30OEF ∠=︒,∴122OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=,∴2211CD DF ==;故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.12.无二、填空题13.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2 【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0, ∴m 2﹣2m=0且m≠0, 解得,m=2, 故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.14.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0 【解析】 【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0. 【详解】解:∵22a b ab = ab (a+b ),而a+b=0, ∴原式=0. 故答案为0, 【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.15.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1 【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k =-6,然后可得反比例函数的解析式为y =-6x,代入点(m ,6)可得m=-1. 故答案为:-1.16.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正解析:4×109 【解析】 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:1-2-12 2-4-22∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.19.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BA F根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果, ∴这两名同学的植树总棵数为19的概率为516. 三、解答题21.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆ 【解析】 【分析】(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形; (2)根据面积公式解答即可. 【详解】证明:∵AD 是△ABC 的中线, ∴BD=CD , ∵AE ∥BC , ∴∠AEF=∠DBF , 在△AFE 和△DFB 中,AEF DBF AFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩, ∴△AFE ≌△DFB (AAS ), ∴AE=BD , ∴AE=CD , ∵AE ∥BC ,∴四边形ADCE 是平行四边形; (2)∵四边形ABCE 的面积为S , ∵BD=DC ,∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S , ∴面积是12S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人. 【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得. 详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240, 补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N =100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息. 23.见解析 【解析】 【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED. 【详解】证明:∵AB ∥CD , ∴∠BAC=∠ECD , ∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD , ∴△BAC ≌△ECD (SAS ). ∴CB=ED. 【点睛】本题考查了平行线的性质,全等三角形的判定和性质.x=;(2)原分式方程中“?”代表的数是-1.24.(1)0【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()+-=-x5321x=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()+-=-m x321x=是原分式方程的增根,由于2x=代入上面的等式得所以把2()3221m+-=-m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.。

郴州市2020版中考数学试卷A卷

郴州市2020版中考数学试卷A卷

郴州市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·乐东模拟) 2的绝对值是()A . 2B . ﹣2C . 0.5D . ﹣0.52. (2分)的平方根是()A . 4B .C . 2D .3. (2分)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外时间活动时间”这组数据的众数、中位数、平均数分别是()户外活动的时间(小时)1236学生人数(人)2242A . 3、3、3B . 6、2、3C . 3、3、2D . 3、2、34. (2分) (2018九上·焦作期末) 如图所示的四棱柱的主视图为()A .B .C .D .5. (2分)下列命题中的真命题是()A . 全等的两个图形是中心对称图形B . 关于中心对称的两个图形全等C . 中心对称图形都是轴对称图形D . 轴对称图形都是中心对称图形6. (2分)(2017·泰安) “2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”,将数据3万亿美元用科学记数法表示为()A . 3×1014美元B . 3×1013美元C . 3×1012美元D . 3×1011美元7. (2分) (2019七下·峄城月考) 2020×= ()A . 2B . -2C .D .8. (2分)如图,所给条件:①∠C=∠ABE,②∠C=∠DBE,③∠A=∠ABE,④∠CBE+∠C=180°中,能判定BE∥AC 的条件有()A . ①②③B . ①②④C . ①③④D . ②③④9. (2分)(2016·眉山) 下列命题为真命题的是()A . 有两边及一角对应相等的两个三角形全等B . 方程x2﹣x+2=0有两个不相等的实数根C . 面积之比为1:4的两个相似三角形的周长之比是1:4D . 顺次连接任意四边形各边中点得到的四边形是平行四边形10. (2分)(2013·深圳) 分式的值为0,则()A . x=﹣2B . x=±2C . x=2D . x=011. (2分) (2020八下·扬州期中) 如图,平面直角坐标系xOy中,线段BC∥x轴、线段AB∥y轴,点B坐标为(4,3),反比例函数y=(x>0)的图像与线段AB交于点D,与线段BC交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,则点B'的纵坐标是()A .B .C .D .12. (2分) (2019九上·辽源期末) 如图,把直角△ABC的斜边AC放在直线l上,按顺时针的方向在直线l 上转动两次,使它转到△A2B1C2的位置,设AB=,∠BAC=30°,则顶点A运动到点A2的位置时,点A所经过的路线为()A . ( + )πB . ( + )πC . 2πD . π二、填空题 (共6题;共6分)13. (1分) (2019八上·长春月考) 因式分解: ________.14. (1分) (2019七上·江北期末) 在数轴上,若点A表示,则到点A距离等于2的点所表示的数为________.15. (1分) (2018八上·邢台期末) ,,的最简公分母为________.16. (1分)(2018·阳新模拟) 质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________17. (1分)(2017·兰州模拟) 如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD 交于点F,则△AFD与四边形DFEC的面积之比是________.18. (1分)(2019·南山模拟) 若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是,﹣1的差倒数为,现已知,x2是x1的倒差数,x3是x2的倒差数,x4是x3的倒差数,…,依此类推,则x2019=________三、解答题 (共8题;共75分)19. (5分)(2020·三明模拟) 计算:4cos30°﹣3tan60°+2sin45°•cos45°.20. (5分)(2016·金华) 解方程组.21. (10分)(2017·新野模拟) 某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄264257健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄23252632333739424852健康指数93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄22293136394043465155健康指数94908885827872766260根据上述材料回答问题:(1)小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据能够较好地反映出该单位职工健康情况表,绘制出青年职工、中年职工、老年职工健康指数的平均数的直方图.22. (10分) (2017九上·重庆开学考) 如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的面积.23. (5分)(2017·赤峰) 王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)24. (10分)某地地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率?(2)按照(1)中收到捐款的增长率不变,该单位三天一共能收到多少捐款?25. (15分)(2019·宝山模拟) 如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC , DC=3,AB=5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E ,射线EP于射线CB交于点F .(1)若AP ,求DE的长;(2)联结CP ,若CP=EP ,求AP的长;(3)线段CF上是否存在点G ,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.26. (15分)(2017·红桥模拟) 如图,直线y1=﹣ x+2与x轴,y轴分别交于B,C,抛物线y=ax2+bx+c (a≠0)经过点A,B,C,点A坐标为(﹣1,0).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点D,连接CD,点P是直线BC上方抛物线上的一动点(不与B,C重合),当点P运动到何处时,四边形PCDB的面积最大?求出此时四边形PCDB面积的最大值和点P坐标;(3)在抛物线上的对称轴上: 是否存在一点M,使|MA﹣MC|的值最大; 是否存在一点N,使△NCD是以CD为腰的等腰三角形?若存在,直接写出点M,点N的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

湖南郴州2020年中考数学试卷及解析

湖南郴州2020年中考数学试卷及解析

2020年郴州市初中学业水平考试试卷数学(试题卷)第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D2.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空.北斗卫星导航系统可提供高精度的授时服务,授时精度可达10纳秒(1秒=1000000000纳秒)用科学记数法表示10纳秒为( )A .8101-⨯秒B .9101-⨯秒C .91010-⨯秒D .9101.0-⨯秒3.下列图形是中心对称图形的是( ) A . B .C .D .4.下列运算正确的是( )A .44)(a a =-B .632a a a =⋅C .628=-D .523532a a a =+5.如图,直线b a ,被直线d c ,所截下列条件能判定b a //的是( )A .31∠=∠B .18042=∠+∠ C .54∠=∠ D .21∠=∠6.某鞋店试销一种新款男鞋,试销期间销售情况如下表:则该组数据的下列统计量中,对鞋店下次进货最具有参考意义的是( )A .中位数B .平均数C .众数D .方差7.如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .22)1(12-=+-x x xB .)1)(1(12-+=-x x xC .22)1(12+=++x x xD .)1(2-=-x x x x图1 图28.在平面直角坐标系中,点A 是双曲线)0(11>=x x k y 上任意一点,连接AO ,过点O 作AD 的垂线与双曲线)0(22<=x x k y 交于点B ,连接AB .已知2=BOAO ,则=21k k ( ) A .4 B .4- C .2 D .2-第Ⅱ卷(共106分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.若分式11+x 的值不存在,则=x . 10.已知关于x 的一元二次方程0522=+-c x x 有两个相等的实数根,则=c .11.质检部门从1000件电子元件中随机抽取100件进行检测,其中有2件是次品.试据此估计这批电子元件中大约有 件次品.12.某5人学习小组在寒假期间进行线上测试,其成绩(分)分别为:94,92,90,88,86,方差为0.82=s .后来老师发现每人都少加了2分,每人补加2分后,这5人新成绩的方差=2新s .13.小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为 . 14.在平面直角坐标系中,将AOB ∆以点O 为位似中心,32为位似比作位似变换,得到11OB A ∆.已知)3,2(A ,则点1A 的坐标是 .15.如图,圆锥的母线长为10,侧面展开图的面积为π60,则圆锥主视图的面积为 .16.如图,在矩形ABCD 中,8,4==AB AD .分别以点D B ,为圆心,以大于BD 21的长为半径画弧,两弧相交于点E 和F .作直线EF 分别与AB DB DC ,,交于点N O M ,,,则=MN .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. 计算:01)13(|21|45cos 2)31(+--+--18. 解方程:11412+-=-x x x 19. 如图,在菱形ABCD 中,将对角线AC 分别向两端延长到点E 和F ,使得CF AE =.连接BF BE DF DE ,,,.求证:四边形BEDF 是菱形.20. 疫情期间,我市积极开展“停课不停学”线上教学活动,并通过电视、手机APP 等平台进行教学视频推送.某校随机抽取部分学生进行线上学习效果自我评价的调查(学习效果分为:A .效果很好;B .效果较好;C .效果一般;D .效果不理想)并根据调查结果绘制了如下两幅不完整的统计图:(1)此次调查中,共抽查了 名学生;(2)补全条形统计图,并求出扇形统计图中∠a 的度数;(3)某班4人学习小组,甲、乙2人认为效果很好,丙认为效果较好,丁认为效果一般.从学习小组中随机抽取2人,则“1人认为效果很好,1人认为效果较好”的概率是多少?(要求画树状图或列表求概率)21. 2020年5月5日,为我国载人空间站工程研制的长征五号运较火箭在海南文昌首飞成功.运载火箭从地面O 处发射、当火箭到达点A 时,地面D 处的雷达站测得4000=AD 米,仰角为3.30 秒后,大箭直线上升到达点B 处,此时地面C 处的雷达站测得B 处的仰角为 45.已知D C ,两处相距460米,求火箭从A 到B 处的平均速度(结果精确到1米,参考数据:414.12,732.13≈≈)22.为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排B A ,两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A 型卡车;甲物资5吨和乙物资7吨可装满一辆B 型卡车.按此要求安排B A ,两型卡车的数量,请问有哪几种运输方案?23.如图,ABC ∆内接于⊙AB O ,是⊙O 的直径.直线l 与⊙O 相切于点A ,在l 上取一点D 使得DC DA =.线段AB DC ,的延长线交于点E .(1)求证:直线DC 是⊙O 的切线;(2)若 30,2=∠=CAB BC ,求图中阴影部分的面积(结果保留π).24.为了探索函数)0(1>+=x xx y 的图象与性质,我们参照学习函数的过程与方法. 列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点,如图1所示:图1 图2(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;(2)已知点),(),,(2211y x y x 在函数图象上,结合表格和函数图象,回答下列问题:若1021≤<<x x ,则1y 2y ;若210x x <<,则1y 2y ;若121=⋅x x ,则1y 2y (填“>”,“=”,“<”).(3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为5.0千元/平方米,设水池底面一边的长为x 米,水池总造价为y 千元.①请写出y 与x 的函数关系式;②若该农户预算不超过5.3千元,则水池底面一边的长x 应控制在什么范围内?25.如图1,在等腰直角三角形ADC 中,4,90==∠AD ADC.点E 是AD 的中点,以DE 为边作正方形DEFG ,连接CE AG ,.将正方形DEFG 绕点D 顺时针旋转,旋转角为)900( <<αα.图1 图2 图3(1)如图2,在旋转过程中,①判断AGD ∆与CED ∆是否全等,并说明理由;②当CD CE =时,AG 与EF 交于点H ,求GH 的长.(2)如图3,延长CE 交直线AG 于点P .①求证:CP AG ⊥;②在旋转过程中,线段PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.26.如图1,抛物线)0(32≠++=a bx ax y 与x 轴交于)0,3(),0,1(B A -,与y 轴交于点C .已知直线n kx y +=过C B ,两点.(1)求抛物线和直线BC 的表达式;(2)点P 是抛物线上的一个动点,①如图1,若点P 在第一象限内,连接PA ,交直线BC 于点D .设PDC ∆的面积为1S ,ADC ∆的面积为2S ,求21S S 的最大值; ②如图2,抛物线的对称轴l 与x 轴交于点E ,过点E 作BC EF ⊥,垂足为F .点Q 是对称轴l 上的一个动点,是否存在以点Q P F E ,,,为顶点的四边形是平行四边形?若存在,求出点Q P ,的坐标;若不存在,请说明理由.图1 图2 备用图。

湖南省郴州市2020版中考数学一模考试试卷(I)卷

湖南省郴州市2020版中考数学一模考试试卷(I)卷

湖南省郴州市2020版中考数学一模考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在实数0,-π,, -4中,最小的数是()A . 0B . -πC .D . -42. (2分)某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为A .B .C .D .3. (2分)(2017·襄阳) 下列图形中,既是中心对称图又是轴对称图形的是()A .B .C .D .4. (2分)如果单项式﹣x4a﹣by2与是同类项,那么这两个单项式的积是()A . x6y4B . ﹣x3y2C .D .5. (2分)掷一颗均匀的骰子,6点朝上的概率为()A . 0B .C . 1D .6. (2分) (2017八下·姜堰期末) 如图,在平面直角坐标系中,□ABCD的顶点B、C在x轴上,A、D两点分别在反比例函数(k<0,x<0)与(x>0)的图像上,若□ABCD的面积为4,则k的值为()A . -1B . -2C . -3D . -57. (2分) (2018九上·商南月考) 方程 ax2+bx+c=0(a≠0)有实数根,那么成立的式子是()A . b2-4ac>0B . b2-4ac<0C . b2-4ac≤0D . b2-4ac≥08. (2分) (2017七下·永春期中) 若是任意有理数,则下列不等式中一定成立的是()A . >0B . >0C . >D . >0.9. (2分)已知正三角形的边长为12,则这个正三角形外接圆的半径是()A . 2B .C . 4D . 310. (2分)(2019·抚顺模拟) 如图,已知在边长为4的菱形ABCD中,∠C=60°,E是BC边上一动点(与点B,C不重合).连接DE,作∠DEF=60°,交AB于点F,设CE=x,△FBE的面积为y.下列图象中,能大致表示y与x的函数关系的是()A .B .C .D .二、填空题 (共7题;共7分)11. (1分) (2016七上·嘉兴期中) 试举一例,说明“两个无理数的和仍是无理数”是错误的:________.12. (1分)(2017·钦州模拟) 分解因式:a2+2ab+b2=________.13. (1分)(2019·福州模拟) 正n边形的一个内角为120°,则n的值为________.14. (1分) (2018九上·开封期中) 点P(3,2)关于原点对称的点的坐标为________.15. (1分) (2018八上·达州期中) 某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:________.16. (1分)(2016·巴中) 如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为________.17. (1分)(2020七上·东台期末) 某同学在电脑中打出如下排列的若干个、,若将上面一组数字依此规律连续复制得到一系列数字,那么前个数字中共有________个 .三、解答题 (共8题;共81分)18. (5分) (2019七下·巴中期中) 计算(1)(2)(3)(4)19. (5分) (2019九下·义乌期中) 先化简,再求值:,其中0≤x<3,请你选择你喜欢的整数求值.20. (10分)(2018·中山模拟) 如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.21. (11分) (2020九上·莘县期末) 全面二孩政策于2016年1月1日正式实施,聊城市某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意 B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率。

湖南省郴州市名校2020届数学中考模拟试卷

湖南省郴州市名校2020届数学中考模拟试卷

湖南省郴州市名校2020届数学中考模拟试卷一、选择题1.如图,⊙O 是△ABC 的外接圆,∠BAC =50°,点P 在AO 上(点P 不与点A ,O 重合),则∠BPC 的度数可能是( )A.100°B.80°C.40°D.30°2.如图,在△ABC 中,∠B 的平分线为BD ,DE ∥AB 交BC 于点E ,若AB =9,BC =6,则CE 长为( )A.185B.165C.145D.1253.下列关于向量的等式中,不正确的是( )A .OE ED OD +=B .AB BC CA -= C .AB AC CB -=D .0AB BA +=4④ ) A .①②B .③④C .①③D .①④ 5.如图,在菱形ABCD 中,120BAD ∠=︒ ,已知△ABC 的周长为15,则菱形ABCD 的对角线BD 的长为( ).A .BC .D 6.如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角DAN ∠和DBN ∠分别是37°和60°(图中的点A B C D M N 、、、、、均在同一平面内,//CM AN ).则AB 的长度约为( )(结果精确到0.1米,)参考数据:.si n37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .9.4米B .10.6米C .11.4米D .12.6米7.2018年4月10日,历时四个月的“2018中国茶叶区域公用品牌价值评估”结果出炉,信阳毛尖较去年增加3.61亿元,以63.52亿元蝉联品牌价值排行榜第二名,并被评选为“最具品牌带动力”的三大品牌之一.数据63.52亿元用科学计数法表示为( )A .83.6110⨯B .73.6110⨯C .863.5210⨯D .96.35210⨯ 8.将一元二次方程2650x x -+=配方后,原方程变形( ) A .5)3(2=-x B .2(6)5x -= C .2(6)4x -= D .2(3)4x -=9.函数x 的取值范围是( )A .x≥-3B .x≠-3C .x>-3D .x≤-3 10.如图,在等边三角形ABC 中,AE =CD ,CE 与BD 相交于点G ,EF ⊥BD 于点F ,若EF =4,则EG 的长为( )A B C D .811.木匠有32米的木材,想要在花圃周围做边界,以下四种设计方案中,设计不合理的是( )A .B .C .D .12.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a|>|b|二、填空题13.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是 °.14.一种商品每件成本a 元,按成本增加30%定价,现因出现库存积压减价,按定价的80%出售,每件还能盈利_____元(结果用含a 的式子表示).15.如图,已知在△ABC 中,AB=AC ,BC=8,D 、E 两点分别在边BC 、AB 上,将△ABC 沿着直线DE 翻折,点B 正好落在边AC 上的点M 处,并且AC=4AM ,设BD=m ,那么∠ACD 的正切值是______(用含m 的代数式表示)16.一个三角板(含30、60角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A ,一边与三角板的两条直角边分别相交于点D 、点E ,且CD CE =,点F 在直尺的另一边上,那么BAF ∠的大小为_____°.17.如图1为两个边长为1的正方形组成的 格点图,点A,B,C,D 都在格点上,AB,CD 交于点P,则tan∠BPD=_____,如果是n 个边长为1的正方形组成的格点图,如图2,那么tan ∠BPD=_____.18.一次函数的图象经过第二、三、四象限,则的值可以是______(写出一个即可).三、解答题 19.如图,四边形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,AB =6,DF ⊥DC 交AB 于点E ,交CB 延长线于点F(1)当点E 为边AB 的中点时(如图1),求BC 的长;(2)当点E 在边AB 上时(如图2),连接CE ,求证:CD =2DE ;(3)连接AF (如图2),当△AEF 的面积为3时,求△DCE 的面积.20.(1)计算: 11tan 60|23-︒⎛⎫+- ⎪⎝⎭;(2)先化简22x -2x 1x -1+÷x-1-x 1x 1⎛⎫+ ⎪+⎝⎭,然后从.21.如图,正方形ABCD 中,AB =O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE ,CF(1)如图1,求证:AE =CF ;(2)如图2,若A ,E ,O 三点共线,求点F 到直线BC 的距离.22.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.23.先化简再求值.222142444a a a a a a a ⎛⎫+-+-÷⎪---+⎝⎭ ,其中a 为满足不等式组102251a a a -<⎧⎨-<+⎩的整数解24.如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,求证:BE =DC .25.在四边形ABCD 中,AB =AD ,请利用尺规在CD 边上求作一点P ,使得S △PAB =S △PAD ,(保留作图痕迹,不写作法).【参考答案】***一、选择题13.14.04a .15.316.15°17.18.-1(答案不唯一,即可) 三、解答题19.(1)9,(2)见解析,(3)25或73【解析】【分析】(1)证明△AED,△BEF,△DFC都是等腰直角三角形即可解决问题.(2)如图2中,连接BD.取EC的中点O,连接OD,OB.证明E,B,C,D四点共圆,可得∠DCE=∠ABD即可解决问题.(3)有两种情况:①如图3中,E在边AB上时,连接AF.设AE=x,FB=y,EB=m,由S△AEF=12•AE•FB=3,推出xy=6,由AD∥FB,推出AE ADEB BF=,推出3xm y=,可得xy=3m,推出6=3m,推出m=2,可得EB=2,AE=4,再利用勾股定理求出DE,DC即可解决问题.②E在AB的延长线上时,同理可得结论.【详解】解:(1)如图1中,∵AD∥BC,AB⊥BC,∴∠ABC=∠A=90°,∵AE=EB=3,AD=3,∴AD=AE,∴∠AED=∠ADE=∠BEF=∠F=45°,∴3EF DE FB===,∵DF⊥DC,∴∠FDC=90°,∴∠C=∠F=45°,∴DF DC==∴12CF==,∴BC=CF﹣BF=12﹣3=9.(2)如图2中,连接BD.取EC的中点O,连接OD,OB.∵∠EBC=∠EDC=90°,EO=OC,∴OD=OE=OC=OB,∴E,B,C,D四点共圆,∴∠DCE=∠ABD,∵tan ∠ABD =tan ∠DCE =31,62AD DE AB CD=== ∴CD =2DE ; (3)①当E 在边AB 上时,如图3,连接AF .设AE =x ,FB =y ,EB =m , ∵123AEF S AE FB =⋅⋅=, ∴xy =6,∵AD ∥FB , ∴,AE AD EB FB = ∴3x m y= ∴xy =3m ,∴6=3m ,∴m =2,∴EB =2,AE =4,在Rt △AED 中,DE =5,在Rt △DEC 中,∵tan ∠DCE =1,2DE DC = ∴DC =10, ∴151025212DEC S DE DC =⋅⋅=⨯⨯=.②当点E 在AB 的延长线上时,如图4,同法可得AE =8,DE ==∴2CD DE == ∴2317DEC S DE DC ⋅⋅==. 综上所述,△DEC 的面积为25或73.【点睛】本题属于四边形综合题,考查了相似三角形的判定和性质,四点共圆,平行线的性质,勾股定理,三角形的面积,锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用四点共圆解决问题,属于中考压轴题.20.(1)0;(2)12或-12. 【解析】【分析】(1)指数幂、二次根式、特殊角的三角函数值和绝对值的意义进行计算;(2)先通分做分式的加减法,再将除法转变成乘法,然后把多项式因式分解并进行约分化简.最后选择合适的数代入求值.【详解】解:(1)原式(2)原式=22-21-1x x x +÷-11x x +-()-1x =()()()2-11-1x x x +÷()()-1--111x x x x ++ =-11x x +÷()2-1--11x x x + =-11x x +÷2-1x x x + =-11x x +·()11x x x +-=-1x.∵满足-2,-1,0,1,2,又∵x=±1或x=0时,分母的值为0,∴x 只能取-2或2.当x=-2时,原式=12,当x=2时,原式=-12.(答对两种情况之一即得满分) 故答案为:12或-12. 【点睛】本题第1小题考查了实数的加减混合运算,整数指数幂,锐角三角函数值等知识点.第2小题考查了分式的四则混合运算和化简求值.熟练掌握实数和分式的运算法则是关键.21.(1)详见解析;(2)点F 到直线BC . 【解析】【分析】(1)由旋转的性质可得∠EDF =90°,DE =DF ,由正方形的性质可得∠ADC =90°,DE =DF ,可得∠ADE =∠CDF ,由“SAS”可证△ADE ≌△CDF ,可得AE =CF ;(2)由勾股定理可求AO 的长,可得AE =CF =3,通过证明△ABO ∽△CPF ,可得CF PF AO BO=,即可求PF 的长,即可求点F 到直线BC 的距离.【详解】证明:(1)∵将线段DE 绕点D 逆时针旋转90°得DF ,∴∠EDF =90°,DE =DF.∵四边形ABCD 是正方形,∴∠ADC =90°,DE =DF ,∴∠ADC =∠EDF ,∴∠ADE=∠CDF,且DE=DF,AD=CD,∴△ADE≌△CDF(SAS),∴AE=CF,(2)解:如图2,过点F作FP⊥BC交BC延长线于点P,则线段FP的长度就是点F到直线BC的距离.∵点O是BC中点,且AB=BC=∴BO∴AO5,∵OE=2,∴AE=AO﹣OE=3.∵△ADE≌△CDF,∴AE=CF=3,∠DAO=∠DCF,∴∠BAO=∠FCP,且∠ABO=∠FPC=90°,∴△ABO∽△CPF,∴CF PF AO BO=,∴35 =∴PF,∴点F到直线BC的距离为5.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,证明△ABO∽△CPF是本题的关键.22.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可。

2020年湖南省郴州市中考数学仿真试卷及答案解析

2020年湖南省郴州市中考数学仿真试卷及答案解析

2020年湖南省郴州市中考数学仿真试卷一、单选题1.一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )A .平均数B .中位数C .方差D .众数2.某病毒的直径为0.00000016,用科学记数法表示为( ) A .71610-⨯B .71.610-⨯C .70.1610-⨯D .81.610-⨯3.如图所示的四个图案是我国几家国有银行的图标,其中图标属于中心对称的有( )A .1个B .2个C .3个D .4个4.在边长为a 的正方形中剪掉一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形(如图).通过计算图形的面积,验证了一个等式,则这个等式是( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b -=+-D .2()a ab a a b -=-5.已知如图直线a ,b 被直线c 所截,下列条件能判断a ∥b 的是( )A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠2+∠5=180°6.下列运算正确的是()A.a3+a3=2a6B.(-2ab2)3=-6a3b6C.(28a3-14a2+7a)÷7a=4a2-2a D.a2·a3=a57.下列各组数中:①﹣32与32;②(﹣3)2与32;③﹣(﹣2)与﹣(+2);④(﹣3)3与﹣33;⑤﹣23与32,其中互为相反数的共有()A.4对B.3对C.2对D.1对8.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k kyx++=的图象上.若点A的坐标为(-2,-2),则k的值为()A.1 B.-3 C.4 D.1或-3 二、填空题9.当x=__时,分式1-2x无意义.10.某一次函数的图象过点(0,﹣1),且函数值y随x的增大而减小.请写一个符合上述条件的函数表达式_____.11.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为____.12.在一次射击训练中,某位选手五次射击的环数分别为6,9,8,8,9,则这位选手五次射击环数的方差为______.13.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为___14.已知关于x的一元二次方程2220ax x c++-=有两个相等的实数根,则1ca+的值等于_______.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.16.如图,在边长为1个单位长度的小正方形组成的8×10网格中,点A,B,C均为网格线的交点.(1)用无刻度的直尺作BC边上的中线AD(不写作法,保留作图痕迹);(2)①在给定的网格中,以A为位似中心将△ABC缩小为原来的12,得到△AB'C',请画出△AB'C'.②填空:tan∠AB'C'=.三、解答题17.计算:(1(-3)2+(-0.2)0;(2)(x―3)2―(x+2)(x―2).18.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2.(1)该班共有多少名学生?(2)请在图1中将“乒乓球”部分的图形补充完整;(3)若全年级共有1200名学生,估计全年级参加乒乓球活动的学生有多少名? (4)求出扇形统计图中表示“足球”的扇形的圆心角度数.19.超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v ,t 的一组对应值如下表:(1)根据表中的数据,求出平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式; (2)汽车上午7:30从超越公司出发,能否在上午10:00之前到达新时代市场?请说明理由. 20.解方程(1)()6511x x x x +=++ (2)28142xx x =--- 21.某中学计划从办公用品公司购买A ,B 两种型号的小黑板.经洽谈,购买一块A 型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元. (1)求购买一块A 型小黑板、一块B 型小黑板各需多少元;(2)根据该中学实际情况,需从公司购买A ,B 两种型号的小黑板共60块,要求购买A ,B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量不小于购买B 型小黑板数量的12.则该中学从公司购买A ,B 两种型号的小黑板有哪几种方案.哪种方案的总费用最低. 22.如图,在Rt ABC ∆中,90C =∠,点D 、E 、F 分别在AC 、BC 、AB 边上,以AF 为直径⊙O 的恰好经过D 、E ,且DE EF = (1)求证:BC 为⊙O 的切线; (2)若40B ∠=,求CDE ∠的度数;(3)若2CD =,4CE =,求⊙O 的半径及线段BE 的长23.钓鱼岛是我国的神圣领土,中国人民维护国家领土完整的决心是坚定的,多年来,我国的海监、渔政等执法船定期开赴钓鱼岛巡视.某日,我海监船(A 处)测得钓鱼岛(B 处)距离为20海里,海监船继续向东航行,在C 处测得钓鱼岛在北偏东45°的方向上,距离为AC 的距离.(结果保留根号)24.如图,抛物线y=ax 2+bx+c (a≠0)与x 轴交于原点及点A ,且经过点B (4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x 1,x 2(x 1<x 2),当211112x x -=时,求k 的值;(3)连接OB ,点P 为x 轴下方抛物线上一动点,过点P 作OB 的平行线交直线AB 于点Q ,当S △POQ :S △BOQ =1:2时,求出点P 的坐标.(坐标平面内两点M (x 1,y 1),N (x 2,y 2)之间的距离25.某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为腰作等腰直角三角形DAF ,使∠DAF =90°,连接CF . (1)观察猜想如图1,当点D 在线段BC 上时, ①CF 与BC 的位置关系为 ;②CF ,DC,BC 之间的数量关系为 (直接写出结论);(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=,请求出线段CE的长.26.如图,矩形ABCD的对角线相交于点O,PB//AC,PC//BD,PB、PC相交于点P.()猜想四边形PCOB是什么四边形,并说明理由;1()当矩形ABCD满足什么条件时,四边形PCOB是正方形.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省郴州市2020版中考数学一模试卷A卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共6题;共12分)
1. (2分) (2018七上·辛集期末) 一个数是10,另一个数比10的相反数小2,则这两个数的和为()
A . 18
B . ﹣2
C . ﹣18
D . 2
2. (2分)(2019·贺州) 某图书馆有图书约985000册,数据985000用科学记数法可表示为()
A . 985×103
B . 98.5×104
C . 9.85×105
D . 0.985×106
3. (2分)如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()
A . 1+
B . -1+
C . -1-
D . 1-
4. (2分)(2018·泸州) 某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:
年龄1314151617
人数12231
则这些学生年龄的众数和中位数分别是()
A . 16,15
B . 16,14
C . 15,15
D . 14,15
5. (2分) (2019八下·长沙期中) 一个三角形的三边长为15,20,25,则此三角形最大边上的高为()
A . 10
B . 12
C . 24
D . 48
6. (2分) (2018九上·宁城期末) 在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()
A .
B .
C .
D .
二、填空题 (共10题;共10分)
7. (1分) (2016七上·乐昌期中) ﹣2的相反数是________.
8. (1分) (2017九上·合肥开学考) 若二次根式有意义,则x的取值范围是________.
9. (1分)计算:•=________
10. (1分)要使关于x的方程有唯一的解,那么m≠________.
11. (1分)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,
BC的中点,则MN长的最大值是________
12. (1分) (2016九上·西青期中) 如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.
13. (1分)(2017·黔东南模拟) 设抛物线y=x2﹣x﹣1与x轴的两交点为A,B,则线段AB的长为________.
14. (1分) (2019七上·大东期末) 如图是某超市中某种洗发水的价格标签,一名服务员不小心将标签损坏,使得原价无法看清,请帮忙算一算该种洗发水的原价是________元/瓶.
15. (1分) (2017八下·海安期中) 在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,
根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有________个.
16. (1分)(2017·黄岛模拟) 如图,在△ABC中,OA=OB=6,∠O=120°,以点O为圆心的⊙O和底边AB相切于点C,则阴影部分的面积为________.
三、解答题 (共11题;共98分)
17. (5分)(2017·南京模拟) 解不等式组,并写出它的整数解.
18. (10分)计算。

(1)计算:;
(2)计算:.
19. (5分)已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD 于点F,求证:四边形CDEF是菱形.
20. (12分)(2017·淳安模拟) 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:
(1)这次调查中,一共调查了________名学生,图1中C类所对应的圆心角度数为________;
(2)请补全条形统计图;
(3)在非常喜欢外教的5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.
21. (15分)(2019·菏泽) 如图,抛物线与轴交于,两点,与轴交于点,点的坐标是,为抛物线上的一个动点,过点作轴于点,交直线于点,抛物线的对称轴是直线 .
(1)求抛物线的函数表达式;
(2)若点在第二象限内,且,求的面积.
(3)在(2)的条件下,若为直线上一点,在轴的下方,是否存在点,使是以
为腰的等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.
22. (6分) (2016七下·临河期末) 某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有________人,并补全条形统计图________;
(2)在扇形统计图中,m=________,n=________,表示区域C的圆心角为________度;
(3)全校学生中喜欢篮球的人数大约有________。

23. (5分) (2017八下·东营期末) 某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票.
24. (5分)先化简,再求值:,其中a=2sin45°﹣tan30°,b=tan45°.
25. (15分) (2017九上·萧山月考) 如图,等腰△ABC中,BA=BC,AO⊥BC于点O,AO=3CO=6.F是AB 边上的一个动点,过F作FE∥BC交AC边于点E,交AO于点G,连结FO,EO,设EF长为x,△EFO的面积为S.
(1)求OB的长;
(2)求S关于x的函数表达式和x的取值范围;
(3)判断:当△EFO的面积最大时,△EFO和△CBA是否相似并说明理由.
26. (10分)如图,已知AD∥CB,∠1=∠2,∠BAE=∠DCF。

试说明:
(1)
AE∥CF;
(2)
AB∥CD。

27. (10分) (2017八下·淅川期末) 某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
参考答案一、选择题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共10题;共10分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共11题;共98分)
17-1、18-1、18-2、
19-1、20-1、
20-2、20-3、21-1、
21-2、
21-3、
22-1、
22-2、22-3、
23-1、24-1、25-1、
25-2、
25-3、26-1、26-2、
27-1、27-2、。

相关文档
最新文档