章 传感器特性
第三章 传感器的静态特性和动态特性讲解
例1:一阶传感器的频率响应,系统输入量(压力) F 为F(t)= b0 x(t ),输出 量为位移y( t ),不考虑运动。
解:①列出微分方程
a1
dy dt
a0
y
b0
x
②作拉普-拉斯变换
Y (S )(a1S a0 ) b0 X (S )
③令H(S )中的S =jω,即σ= 0
H ( j ) Y (S ) b0 X (S ) ja1 a0
ΔLj=(b+kxj)-yj
均方差函数为: 取其极小值,有:
4)总精度 系统的总精度由其量程范围内的基本误差与满度值Y(FS)之
比的百分数表示。基本误差由系统误差与随机误差两部分组成, 迟滞与线性度所表示的误差为系统误差,重复性所表示的误差 为随机误差。
总精度一般可用方和根来表示,有时也可用代数和表示。
统示值范围上、下限之差的模。当输入量在量程范围以内 时,系统正常工作并保证预定的性能。
对于4-20mA标准信号,零位值 yo=so=4mA,上限值 yfs=20mA,量 程 y(FS)=16mA。
3)灵敏度 S 输出增量与输入增量的比值。即
① 纯线性传感器灵敏度为常数:S=a1。
② 非线性传感器灵敏度S与x有关。
4)分辨率
在规定的测量范围内,传感器所能检测出输入量 的最小变化值。有时用相对与输入的满量程的相对 值表示。即
2、静态特性的性能指标
1) 迟滞现象(回差EH )
回差EH 反映了传感器的输 入量在正向行程和反向行程全 量程多次测试时,所得到的特 性曲线的不重合程度。
2) 重复性 Ex (不重复性) 重复性 Ex 反映了传感器在输入量按同一方向(增或减)全
传感器的一般特性
• 通常用下面四个指标来表示传感器的动态性 能(P37): (1)时间常数τ (2)上升时间tr (3)响应时间t5、t2 (4)超调量
• 2.频域性能指标(P32) 通常在正弦信号作用下测定传感器动 态性能的频域指标,称为频率法。具体方 法是在传感器输入端加恒定幅值的正弦信 号,测出不同频率下稳定输出信号的幅值, 绘制出幅频特性曲线。 频域通常有下面三个动态性能指标: (1)通频带 b (2)工作频带 (3)相位误差
• 2.2传感器的动态特性 传感器的动态特性是指输入量随时间动态变 化时,其输出与输入的关系。传感器所检测的物 理量大多数是时间的函数,为使传感器输出信号 及时准确地反映输入信号的变化,不仅要求它具 有良好的静态特性,还要求它具有良好的动态特 性。 为研究传感器的动态特性,可建立其动态数 学模型,用数学中的逻辑推理和运算方法,分析 传感器在动态变化的输入量作用下,输出量如何 随时间改变。也常用实验手段研究传感器的动态 特性,即给传感器一个“标准”信号(正弦输入 和阶跃输入),测出其输出随时间的变化关系, 进而得到其各项动态特性技术指标。
1.理想的线性特性 当a0=a2 =a3=…=an=0时,具有这种特性。此时 y=a1x,静态特性曲线是一条直线,传感器的灵敏 度为Sn=y/x=a1=常数 2.非线性项仅有一次项和偶次项 即y= a1x+a2x2+a4x4+… 因不具有对称性,其线性范围较窄,所以在设 计传感器时一般很少采用这种特性。当出现 时,必须采取线性化补偿措施。
• 2.2.1传感器的动态数学模型 要精确建立传感器或其测试系统的数学 模型是很困难的,在工程上采取一些近似, 略去一些影响不大的因素。通常把传感器 看成一个线性时不变系统,用常系数线性 微分方程来描述其输出量y与输入量x之间的 关系。 对于一个复杂的系统或输入信号,求解 微分方程是很难的,常用一些足以反映系 统动态特性的函数,将系统的输出与输入 联系起来,这些函数有传递函数、频率响 应函数和脉冲响应函数等。
第3章传感器基本特性(精)
第3章传感器基本特性一、单项选择题1、衡量传感器静态特性的指标不包括( C )。
A. 线性度B. 灵敏度C. 频域响应D. 重复性2、下列指标属于衡量传感器动态特性的评价指标的是( A )。
A. 时域响应3、一阶传感器输出达到稳态值的50%所需的时间是( A )。
A. 延迟时间4、一阶传感器输出达到稳态值的90%所需的时间是( B )。
A. 延迟时间B. 上升时间5、传感器的下列指标全部属于静态特性的是( C )C.迟滞、重复性、漂移D.精度、时间常数、重复性6、传感器的下列指标全部属于动态特性的是( B )A.迟滞、灵敏度、阻尼系数B.幅频特性、相频特性7、不属于传感器静态特性指标的是( B )A.重复性 B.固有频率 C.灵敏度 D.漂移8、对于传感器的动态特性,下面哪种说法不正确( C )A.变面积式的电容传感器可看作零阶系统B.一阶传感器的截止频率是时间常数的倒数C.时间常数越大,一阶传感器的频率响应越好D.提高二阶传感器的固有频率,可减小动态误差和扩大频率响应范围9、属于传感器动态特性指标的是( B )A.重复性 B.固有频率 C.灵敏度 D.漂移10、无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频率时,该系统的位移与激振力之间的相位差必为( B )A. 0°B.90°11、传感器的精度表征了给出值与( B )相符合的程度。
A.估计值B.被测值C.相对值D.理论值12、传感器的静态特性,是指当传感器输入、输出不随( A )变化时,其输出-输入的特性。
A.时间13、非线性度是测量装置的输出和输入是否保持( C )关系的一种度量。
A.相等B.相似C.理想比例D.近似比例14、回程误差表明的是在( C )期间输出-输入特性曲线不重合的程度。
A.多次测量B.同次测量C.正反行程D.不同测量15、已知某温度传感器为时间常数τ3=秒的一阶系统,当受到突变温度作用后,传感器输出指示温差的三分之一所需的时间为( C )秒A.3 B.1 C. 1.2 D.1/3 二、多项选择题1.阶跃输入时表征传感器动态特性的指标有哪些?( ABC )A.上升时间B.响应时间C.超调量2.动态响应可以采取多种方法来描述,以下属于用来描述动态响应的方法是:(BCD )B.频率响应函数C.传递函数D.脉冲响应函数3. 传感器静态特性包括许多因素,以下属于静态特性因素的有( ABCD )。
第2章传感器特性
第2章 传感器基本特性
迟滞误差由满量程输出的百分数表示:
2.1 传感器静态特性
为正、反 行程输出值之间的最大差值
产生迟滞误差的原因:主要是由于敏感元件材料的物理 性质缺陷造成的。如弹性元件的滞后,铁磁体、铁电体 在加磁场、电场作用下也有这种现象。 迟滞误差的存在使输入输出不能一一对应。
传感器原பைடு நூலகம்及应用
第2章 传感器基本特性
2.1 传感器静态特性
—— 最大非线性绝对误差 —— 满量程输出 —— 线性度
线性度 是表征实际特性与拟合直线不吻合的参数
由于实际传感器总有(高次项)非线性存在,输入输出关系总是非线性关系,使近似后的拟合直线与实际曲线存在偏差。这个最大偏差称为传感器的非线性误差。 通常用相对误差表示线性度
正弦信号
单位阶跃信号
传感器原理及应用
第2章 传感器基本特性
(1) 传递函数
2.2 传感器动态特性
输入激励 x(t)
输出响应 y(t)
传感器系统
为了分析动态特性,首先要写出传感器的数学模型求出传递函数。 已知外界有一激励施加于系统时,系统对外界有一响应;
传感器是个信号转换元件,假设是测力传感器,系统存在阻尼,弹性和惯性元件; 当输入量随时间变化时,在力作用下,输出不仅与位移x有关,还与速度dx/dt、加速度d2x/dt2有关。
第2章 传感器基本特性
2.2 传感器动态特性
多数传感器输入信号是随时间变化的,只是变化的快慢不同而已。缓慢变化的信号容易跟踪,变化较快的信号跟踪性能会下降。 一个动态性能好的传感器输入与输出应具有相同的时间函数,但除理想状态外,输出信号一定不会与输入信号有相同时间函数。 这种输入输出之间的差异就是动态误差。
第一章 传感器的一般特性2zz
7、漂移
漂移是指传感器的被测量不变,而其输出 量却发生了不希望有的改变。
y 灵敏度漂移
零点漂移 灵敏度漂移 时间漂移(时漂) 温度漂移(温漂)
2 1 零点漂移 O x
8 分辨力和阈值
(1)阈值:当传感器的输入从零开始缓慢增加时, 只有在达到了某一值后,输出才发生可观测的变化,这 个值说明了传感器可测出的最小输入量,称为传感器的 阈值。 (2)分辨力:当传感器的输入从非零的任意值缓慢 增加时,只有在超过某一输入增量后,输出才发生可观 测的变化,这个输入增量称为传感器的分辨力。
取较大者为
RMax
ΔRmax2 ΔRmax1
R ( R Max yFS ) 100%
x
6.稳定性 稳定性表示传感器在较长时间内保持 其性能参数的能力,故又称长期稳定性。 稳定性可用相对误差或绝对误差表示。 表示方式如: 个月不超过 %满量程输 出。有时也采用给出标定的有效期来表示。
第一章 传感器的一般特性
在工程应用中,任何测量装置性能的优劣总要 以一系列的指标参数衡量,通过这些参数可以方便地 知道其性能。这些指标又称之为特性指标。 传感器可看作二端口网络,即有两个输入端和 两个输出端,输出输入特性是其基本特性,可用静态 特性和动态特性来描述。
输入
传感器
输出
1. 1 传感器的静特性
九、抗干扰能力
设计、选用、购买
1、量程和范围
传感器所能测量的最大被测量(输入量)的数值称为测量上
限,最小被测量称为测量下限,上限与下限之间的区间,则 称为测量范围。
量程---测量上限与下限的代数差。
测量范围为-20~+20℃,量程为40℃; 测量范围为-5~+10g,量程为15g; 测量范围为100~1000Pa,量程为900Pa;
传感器 课后题及答案
传感器课后题及答案第1章传感器特性1.什么是传感器?(传感器定义)2.传感器由哪几个部分组成?分别起到什么作用?3. 传感器特性在检测系统中起到什么作用?4.解释下列名词术语:1)敏感元件;2)传感器; 3)信号调理器;4)变送器。
5.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择?6.某传感器精度为2%FS ,满度值50mv ,求出现的最大误差。
当传感器使用在满刻度值1/2和1/8 时计算可能产生的百分误差,并说出结论。
7.一只传感器作二阶振荡系统处理,固有频率f0=800Hz,阻尼比ε=0.14,用它测量频率为400的正弦外力,幅植比ε=0.7时,,又为多少?,相角各为多少?8.某二阶传感器固有频率f0=10KHz,阻尼比ε=0.1若幅度误差小于3%,试求:决定此传感器的工作频率。
9. 某位移传感器,在输入量变化5 mm时,输出电压变化为300 mV,求其灵敏度。
10. 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、S2=2.0V/mV、S3=5.0mm/V,求系统的总的灵敏度。
11.测得某检测装置的一组输入输出数据如下:a)试用最小二乘法拟合直线,求其线性度和灵敏度;b)用C语言编制程序在微机上实现。
12.某温度传感器为时间常数T=3s 的一阶系统,当传感器受突变温度作用后,试求传感器指示出温差的1/3和1/2所需的时间。
13.某传感器为一阶系统,当受阶跃函数作用时,在t=0时,输出为10mV;t→∞时,输出为100mV;在t=5s时,输出为50mV,试求该传感器的时间常数。
14.某一阶压力传感器的时间常数为0.5s,若阶跃压力从25MPa,试求二倍时间常数的压力和2s 后的压力。
15.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后。
传感器与检测技术第3章 传感器基本特性参考答案
第3章传感器基本特性一、单项选择题1、衡量传感器静态特性的指标不包括()。
A. 线性度B. 灵敏度C. 频域响应D. 重复性2、下列指标属于衡量传感器动态特性的评价指标的是()。
A. 时域响应B. 线性度C. 零点漂移D. 灵敏度3、一阶传感器输出达到稳态值的50%所需的时间是()。
A. 延迟时间B. 上升时间C. 峰值时间D. 响应时间4、一阶传感器输出达到稳态值的90%所需的时间是()。
A. 延迟时间B. 上升时间C. 峰值时间D. 响应时间5、传感器的下列指标全部属于静态特性的是()A.线性度、灵敏度、阻尼系数B.幅频特性、相频特性、稳态误差C.迟滞、重复性、漂移D.精度、时间常数、重复性6、传感器的下列指标全部属于动态特性的是()A.迟滞、灵敏度、阻尼系数B.幅频特性、相频特性C.重复性、漂移D.精度、时间常数、重复性7、不属于传感器静态特性指标的是()A.重复性 B.固有频率 C.灵敏度 D.漂移8、对于传感器的动态特性,下面哪种说法不正确()A.变面积式的电容传感器可看作零阶系统B.一阶传感器的截止频率是时间常数的倒数C.时间常数越大,一阶传感器的频率响应越好D.提高二阶传感器的固有频率,可减小动态误差和扩大频率响应范围9、属于传感器动态特性指标的是()A.重复性 B.固有频率 C.灵敏度 D.漂移10、无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频率时,该系统的位移与激振力之间的相位差必为()A. 0°B.90°C.180°D. 在0°和90°之间反复变化的值11、传感器的精度表征了给出值与( )相符合的程度。
A.估计值B.被测值C.相对值D.理论值12、传感器的静态特性,是指当传感器输入、输出不随( )变化时,其输出-输入的特性。
A.时间B.被测量C.环境D.地理位置13、非线性度是测量装置的输出和输入是否保持( )关系的一种度量。
传感器原理与应用课件 第2章 传感器的特性及标定
温度补偿:用于补偿温度对 测量结果的影响
温度校准:用于校准其他传 感器的测量结果
温度监测:用于监测食品、 药品等物品的温度变化
流量传感器应用
工业生产:用于测量液体、气体的流量,如石油、天然气、水等 环保监测:用于监测污水、废气排放,确保环保达标 医疗设备:用于监测血液、尿液等液体的流量,辅助诊断和治疗 汽车电子:用于监测燃油、冷却液等液体的流量,确保车辆正常运行
Part Four
传感器应用实例
压力传感器应用
汽车领域:用于监测轮胎压力、发动机油压等 医疗领域:用于监测血压、呼吸压力等 工业领域:用于监测液压系统、气压系统等 航空航天领域:用于监测飞行器气压、发动机压力等
温度传感器应用
温度报警:用于监测高温、 低温等异常情况
温度控制:用于控制加热、 制冷等设备
标定误差处理:选 择合适的标定方法、 优化标定参数、消 除环境干扰等
标定实例
温度传感器:通过测量温度变化,确定传感器的灵敏度和精度 压力传感器:通过测量压力变化,确定传感器的灵敏度和精度 加速度传感器:通过测量加速度变化,确定传感器的灵敏度和精度 湿度传感器:通过测量湿度变化,确定传感器的灵敏度和精度
位移传感器应用
工业自动化:用于控制机械设备的 位置和速度
汽车电子:用于检测汽车的行驶速 度和位置
添加标题
添加标题
添加标题
添加标题
医疗设备:用于测量患者的生理参 数,如血压、体温等
航空航天:用于测量飞行器的位置 和姿态
THANKS
汇报人:
重复性与灵敏度
重复性:传感器在相同条件下多次测量同一物理量的能力 灵敏度:传感器对被测量变化的响应能力 影响因素:温度、湿度、压力等环境因素 提高方法:选择合适的传感器材料和结构,优化信号处理算法
第1章 传感器的特性
3.重复性(Repeatability) 传感器在同一工 作条件下输入量 按同一方向(同为 正行程或同为反 行程)作全量程连 续多次变动时所 得特性曲线的不 一致程度。
重复性误差:
Rmax R 100% YFS
△Rmax:正(反)行程中的最大重复偏差
特性曲线一致性好, 重复性就好,误差就小。
3
传感器的特性:传感器所有性质的总称。 传感器的基本特性:输出/输入特性。
概述
静态特性 : 被测参量基本不随时间变化或变化很缓慢时,传 感器的输出/输入特性。
动态特性 :
被测参量随时间变化时 ,传感器的输出/输入特 性。
5
传感器的特性
1.1 传感器静态特性方程与特性曲线 1.2 传感器的静态特性 1.3 传感器的动态特性
取2σ或3σ值即为传感器静态误差。静态误差也 可用相对误差表示,即:
3 100% y FS
静态误差是一项综合性指标,基本上包含了前面 叙述的非线性误差、迟滞误差、重复性误差、灵敏度 误差等。所以也可以把这几个单项误差综合而得,即:
L H R S
2 2 2
(3-3)
32
1.2 传感器静态特性的主要指标
• 由于受很多因素的影响,会引起灵敏度变化从而产生灵敏 度误差,习惯上用相对误差表示
s
k k
100%
• 灵敏度的量纲: 输出的量纲/输入的量纲。V/℃、mv/g、A/g、mv/mm
• 能量控制型传感器,灵敏度与供给sensor的电源电压有关。 例如:100(mv/mm.V) 某位移传感器,当电源电压为1V时,每1mm位移的变化量 引起输出电压变化100mv。
|
温度稳定性(温漂):传感器在外界温度变化情况下输 出量发生的变化,又称为温度漂移。 抗干扰能力稳定性:传感器对各种外界干扰的抵抗能力。
传感器技术与应用第2版-部分习题答案
第1章传感器特性习题答案:5.答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。
传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。
人们根据传感器的静特性来选择合适的传感器。
9.解:10. 解:11.解:带入数据拟合直线灵敏度 0.68,线性度±7% 。
,,,,,,13.解:此题与炉温实验的测试曲线类似:14.解:15.解:所求幅值误差为1.109,相位滞后33042,所求幅值误差为1.109,相位滞后33042,16.答:dy/dx=1-0.00014x。
微分值在x<7143Pa时为正,x>7143Pa时为负,故不能使用。
17.答:⑴20。
C时,0~100ppm对应得电阻变化为250~350 kΩ。
V0在48.78~67.63mV之间变化。
⑵如果R2=10 MΩ,R3=250 kΩ,20。
C时,V0在0~18.85mV之间变化。
30。
C时V0在46.46mV(0ppm)~64.43mV(100ppm)之间变化。
⑶20。
C时,V0为0~18.85mV,30。
C时V0为0~17.79mV,如果零点不随温度变化,灵敏度约降低4.9%。
但相对(2)得情况来说有很大的改善。
18.答:感应电压=2πfCRSVN,以f=50/60Hz, RS=1kΩ, VN=100代入,并保证单位一致,得:感应电压=2π*60*500*10-12*1000*100[V]=1.8*10-2V第3章应变式传感器概述习题答案9. 答:(1).全桥电路如下图所示(2).圆桶截面积应变片1、2、3、4感受纵向应变;应变片5、6、7、8感受纵向应变;满量程时:(3)10.答:敏感元件与弹性元件温度误差不同产生虚假误差,可采用自补偿和线路补偿。
11.解:12.解:13.解:①是ΔR/R=2(Δl/l)。
因为电阻变化率是ΔR/R=0.001,所以Δl/l(应变)=0.0005=5*10-4。
第2章 传感器的一般特性
y
a0
—— 输出量;
x
a1
—— 输入量; —— 理论灵敏度;
—— 零点输出;
a2,a3,...an
—— 非线性项系数。
各项系数不同,决定了特性曲线的具体形式不同。
传感器的静态特性
传感器静态特性的主要指标有以下几点: 2.1.1线性度(非线性误差) – 在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲 线之间的最大偏差,就称为非线性误差或线性度,通常用相 对误差来表示,即
传感器的静态特性
2.1.6重复性(续)
重复性所反映的是测量结果偶然误差的大小,
而不表示与真值之间的差别。有时重复性虽然
很好,但可能远离真值。
传感器的静态特性
2.1.7 零点漂移
零点漂移:传感器无输入(或某一输入值不变)时,每隔 一段时间进行读数,其输出偏离零值(或原指示值),即 为零点漂移(简称零漂)。
导致传感器无法正常进行测量。 输入信号随时间变化时,引起输出信号也随时间变化, 这个过程称为响应。动态特性就是指传感器对于随时间变化 的输入信号的响应特性,通常要求传感器不仅能精确地显示 被测量的大小,而且还能复现被测量随时间变化的规律,这 也是传感器的重要特性之一。
传感器的动态特性
传感器的动态特性是指传感器对于随时间变化的输入量的 响应特性,传感器所检测的非电量信号大多数是时间的函数。 为了使传感器输出信号和输入信号随时间的变化曲线一致或相 近,我们要求传感器不仅有良好的静态特性,而且还应具有良 好的动态特性。传感器的动态特性是传感器的输出值能够真实 地再现变化着的输入量能力的反映。
《测控技术》 第二章 传感器的一般特性
扬州大学 陈虹
传感器的一般特性
2.1 传感器的静态特性
第二章 传感器的特性及标定
不重复误差是属于随机误差性质的,校准数据的离散程度是与 随机误差的精度相关的,应根据标准偏差来计算重复性指标。重复性 误差eR又可按下式来表示:
式中
——标准偏差。 服从正态分布误差,可以根据贝赛尔公式来计算:
(2 ~ 3) eR 1000 0 yFS
式中
2 ( y y ) i i 1
X
2.1.3
迟滞
迟滞表示传感器在输入值增长的过程中(正行程)和减少的过程
中(反行程),同一输入量输入时,输出值的差别,如图所示,它是
传感器的一个性能指标。该指标反映了传感器的机械部件和结构材料 等存在的问题,如轴承摩擦、灰尘积塞、间隙不适当、螺钉松动、元 件磨损(或碎裂)以及材料的内部摩擦等。迟滞的大小通常由整个检
式中
y f x a0 a1x a2 x2 an xn
x ——输入信号; y ——输出信号; a0——零位输出; a1——传感器线性灵敏度; a2,a3,…,an——非线性系数。对于已知的输出——输
入特性曲线,非线性系数可由待定系数法求得。
X
多项式代数方程的四种情况:
an s nY s an1 s n1Y s a1 sY s a0Y s
m m 1
bm s X s bm1 s X s b1 sX s b0 X s
m m1
Y (s) bm s bm1s b1 s b0 H ( s) n n 1 X (s) an s an1s a1 s a0
初始值均为零时输出的拉氏变换和输入的拉氏变换之比dtdxdtdywwwnuceducn223频率响应函数初始值均为零时输出的傅立叶变换和输入的傅立叶变换之比是在频域中对系统传递信息特性的描述傅立叶变换a表示输出量幅值与输入量幅值之比相对于信号频率的关系称为幅频特性
传感器第2章基本特性
(2 ~ 3)σ γ =± × 100% y FS
标准偏差的计算用贝赛尔公式计算, 标准偏差的计算用贝赛尔公式计算,即
σ=
∑(y
i =1
n
i
y)
n 1
第 1 章 传感器基础知识
8)分辨力与阈值 定义:指能检测最小输入变化量(增量)的能力. 定义:指能检测最小输入变化量(增量)的能力. 由于分辨力易受噪声影响,所以常用相对于噪声电平N 由于分辨力易受噪声影响,所以常用相对于噪声电平N若干 的被测量为最小检测量. 倍c的被测量为最小检测量. 定义式: 定义式: cN
M=
k
C取1~5 取
阈值:输入量在零点附近的分辨力(最小检测量). 阈值:输入量在零点附近的分辨力(最小检测量).
第 1 章 传感器基础知识
思考 题 1.何为传感器的静态特性? 1.何为传感器的静态特性? 何为传感器的静态特性 2.静态特性的主要技术指标为哪些? 2.静态特性的主要技术指标为哪些? 静态特性的主要技术指标为哪些 3.某位移传感器,在输入量变化5mm时, 3.某位移传感器,在输入量变化5mm时 某位移传感器 5mm 输出电压变化为300mV,求其灵敏度. 300mV,求其灵敏度 输出电压变化为300mV,求其灵敏度. 4.某测量系统由传感器,放大器和记录仪组成, 4.某测量系统由传感器,放大器和记录仪组成,各环节的 某测量系统由传感器 灵敏度为S1 0.2mV/℃ S2=2.0V/mV,S3=5.0mm/V,求系 S1= 灵敏度为S1=0.2mV/℃, S2=2.0V/mV,S3=5.0mm/V,求系 统总的灵敏度. 统总的灵敏度.
y (t ) = B(ω ) sin[ωt + φ (ω )]
第 1 章 传感器基础知识
第1章 传感器的一般特性
1.2.1 动态特性的一般数学模型
1、零阶传感器的数学模型
a0Y (t ) b0 X (t )
Y (t )
b0 X (t ) KX (t ) a0
例3 图1-8所示线性电位器是一个 图1-8 线性电位器 零阶传感器。设电位器的阻值 沿长度L是线性分布的,则输出电压和电刷位移之间的关系为
0
1
1 2
1 2 2 1 2
1 d 2T1 2 dT1 T1 T0 2 2 0 dt 0 dt
1.2.2 传递函数
传递函数是输出量和输入量之间关系的数学表示。如 果传递函数已知,那么由任一输入量就可求出相应输出量。 传递函数的定义是输出信号与输入信号之比。 (an Dn an1Dn1 a1D a0 )Y (t )
根据一阶线性微分方程,如果已知T0的变化规律,求出微 分方程式的解,就可以得到热电偶对介质温度的时间响应。
1.2.1 动态特性的一般数学模型
3、二阶传感器的数学模型
( D2
d 2Y (t ) d Y (t ) a2 a1 a0Y (t ) b0 X (t ) 2 dt dt a0 b0 a1 / 2 a0 a2 0 K a2 a0
i 1
n
2
n 1
重复性所反映的是测量结果 偶然误差的大小,而不表示与真值 之间的差别。有时重复性虽然很好, 但可能远离真值。
图1-7 传感器的重复性
1.1.2 静态特性指标
7、零点漂移 传感器无输入(或某一输入值不变)时,每隔一段时间进 行读数,其输出偏离零值(或原指示值),即为零点漂移。 Y0 零漂 100% YFS 8、温漂 温漂表示温度变化时,传感器输出值的偏离程度。一般 以温度变化1 ℃输出最大偏差与满量程的百分比来表示。
第1章-传感器的特性
j=1, 2, …, m;
n ——
yji的含义是,若输入值x=xj,则在相同条件下进行n次 重复试验,获得n个输出值yj1~yjn
i —— y j ——算术平均值。
或
S Wn dn
(1.9)
第1章
式中: Wn——极差,是指某一测量点校准数据的最大
dn——极差系数。 极差系数可根据所用数据的数目n由表1.4查得。理 论与实践证明,n不能太大,如n大于12,则计算精度变差, 这时要修正dn 。
第1章 表1.4
第1章
3.
迟滞表明传感器在正(输入量增大)、反(输入
量减小)行程期间,输出-输入曲线不重合的程度。也就 是说,对应于同一大小的输入信号,传感器正、反行程的 输出信号大小不相等。迟滞是传感器的一个性能指标, 它反映了传感器的机械部分和结构材料方面不可避免
的弱点,如轴承摩擦、灰尘积塞、间隙不适当,元件磨蚀、
Δi=yi-(b+kxi)
第1章
n
按 最 小 二 乘 法 原 理 , 应 使 i2 最 小 。 故
n
n
i 1
由 i2 [ yi (kxi b)]2 min ,分别对k和b求一阶
偏导i数1 并令i其1 等于零,即可求得k和b:
n
k
n
xi yi xi2 (
xi xi )2
n b
设ai≥0, a0≥0。
1) 这种情况见图1.2(a)。此时
a0=a2=a3=…=an=0 于是
y=a1x
(1.2)
因为直线上任何点的斜率都相等,所以传感器的灵
敏度为
a1= y =k=常数(1.3 x
第1章
2) 输出这种情况见图1.2(b)。此时,在原点附近相当范 围内曲线基本成线性,式(1.1)只存在奇次项:
传感器基本特性
三、机电模拟 Electro-mechanical analog
机电模是基于能量流概念,由机械系统的微 分方程与等值的微分电路形式上的相似实现模拟。
常见的机电模拟形式有:
力-电压模拟
■
力-电流模拟
■
图2-9 二阶机械系统力学模型
①力——电压模拟
对上图所示的二阶机械系统,根据牛顿运动定 律可以写出:
F Fa Fc Fk
Fa代表系统的惯性力,它等于系统的质量m与加速度 的乘积;Fc代表系统的阻尼力,它与运动速度成正 比;Fk代表系统的弹性力,它与系统的形变成正比。
∴
F
m
d2x dt 2
c
dx dt
kx
m
dv dt
cv
k
(2)端点线性度
以校准曲线的两个端点相连成的直线作为 拟合直线所确定的线性度。
这种拟合方法比较简单直观,但其拟合精 度较低。
18
(3)平均选点线性度
此种拟和方法是将测得的ni个试n /验2 点n分 成数
目相等的两组,前半部 n/2个点为一组,后半 部 n/2个点为另一组,求出两组试验点的 “点系中心”,使各组试验点均分布在各自的 “点系中心”周围。通过两个点系中心的直线 就是所求的平均选点拟合直线。
1.时域分析法 Time lands analysis method
时域分析法——在已知传感器传递函数的前提 下,借助于拉氏逆变换求得输出对输入的时间响应 的一种数学方法。实际是指传感器对于单位阶跃信 号时间响应特性的分析方法。
已知传感器的拉氏传递函数为:
输出量的拉氏变换为:
H
第二章传感器的特性21传感器的静态特性
l 可靠度R(t) : 完成规定功能的概率P(T>t)
l 可靠寿命:年,月 l 失效率 (t) 在t时刻后单位时间发生失效的概
率
返回
上页
下页
2.2 传感器的动态特性
传感器对随时间变化的输入量的响应特性(测量 值大小、变化规律)
返回
上页
下页
标定系统组成
标定系统框图
传感器标定时,所用测量设备的精度至少要比待标 定传感器的精度高一个数量级。
返回
上页
下页
为了保证各种被测量量值的一致性和准确性,很多 国家都建立了一系列计量器具(包括传感器)检定的组织 和规程、管理办法。我国由国家计量局、中国计量科学 研究院和部、省、市计量部门以及一些大企业的计量站 进行制定和实施。国家计量局(1989年后由国家技术监 督局)制定和发布了力值、长度、压力、温度等一系列计 量器具规程,并于1985年9月公布了《中华人民共和国 计量法》,其中规定:计量检定必须按照国家计量检定 系统表进行。计量检定系统表是建立计量标准、制定检 定规程、开展检定工作、组织量值传递的重要依据。
返回
上页
下页
静态标定的目的是确定传感器静态特性指标,如 线性度、灵敏度、滞后和重复性等。传感器的静态 特性是在静态标准条件下标定的。
静态标准条件 所谓静态标准条件主要包括没有加速度、振动、冲 击及环境温度一般为室温 (20℃±5℃) 、相对湿度不 大于85%、大气压力(101±7)kPa 等条件。
返回
上页
下页
传感器的标定有两层含义: § 确定传感器的性能指标 § 明确这些性能指标所适用的工作环境
第2章 传感器的基本特性
dn y(t)
dn-1 y(t)
dy(t)
an dt n + an -1 dt n-1 + + a1 dt + a0 y(t)
=
bm
dm x(t) dt m
bm-1
d m-1 x(t ) dt m-1
b1
dx(t) dt
b0 x(t )
(2.3.1)
式中,an、an-1、…、a1、a0和bm、bm-1、…、b1、 b0均为与系统结构参数有关但与时间无关的常数。
➢ 除理想状态,多数传感器的输入信号是随时间变 化的,输出信号一定不会与输入信号有相同的时间函 数,这种输入输出之间的差异就是动态误差。
第2章第7传章 感器磁电的式基传本感器特性
1155
2.3.1数学模型
一般用线性时不变系统理论描述传感器的动态 特性,数学上可以用常系数线性微分方程表示系统 的输出量y与输入量x的关系。
第2章第7传章 感器磁电的式基传本感器特性
1122
2.2.2 静态特性参数
6、漂移 作用在传感器上的激励不变时,响应量随时间
的变化趋势。表征传感器的不稳定性。 产生漂移的原因:1、传感器自生结构参数的变化;
2、外界工作环境参数的变化。
7、量程及测量范围 – 测量上限值与下限值的代数差称为量程。 – 测量系统能测量的最小输入量(下限)至最大 输入量(上限)之间的范围称为测量范围。
Y ( jω) = y(t)e -jωtdt
0
0
Y ( jω)
H ( jω) = X ( jω)
H
(
jω)
=
bm an
( (
jω)m jω)n
bm-1( jω)m-1 b1( jω) b0 an-1( jω)n-1 a1( jω) a0
第1章 传感器的一般特性-2
31
(3) 传感器的时域动态性能指标 :
①上升时间tr ②峰值时间tp ③调节时间ts ④超调量σ%
32
tr-上升时间,系统输出响应从零开始第一次上升到稳态值时间。 tp-峰值时间,系统输出响应从零开始第一次到达峰值时间。 ts-调节时间,系统输出响应达到并保持在稳态值±5%(±2%)误差 33
yt y20 t
6
静态测量不确定度
又称静态误差,指传感器在其全量程内任 一点的输出值与其理论值的可能偏离程度。 常用标准差σ计算
1 n 2 (yi ) n 1 i 1
(2 ~ 3) 100% YFS
7
例子:
• 测控技术与仪器专业——“量子”科技创 新团队研制了一台称重传感器的样机,对 该传感器进行校准实验后获得下表所列的 数据。 • 试根据表中的数据确定该传感器的线性度 、灵敏度、迟滞等静态特性参数指标。
Lmax L 100% YFS
2
• 线性度计算时拟合直线常用的拟合方法有:
– – – – –
y YF S
理论拟合 过零旋转拟合 端点连线拟合 端点平移拟合 最小二乘拟合
Lm ax
y y
y YF S
Lm ax
L1 = Lm ax
YF S
YF S
L3 = Lm ax
28
(2) 二阶传感器的单位阶跃响应
二阶传感器的微分方程为
d 2 y (t ) dy(t ) 2 2 2 y ( t ) 0 0 0 kx(t ) 2 dt dt
设传感器的静态灵敏度k=1,其二阶传感器的传递函数为
2 0 H ( s) 2 2 s 20 s 0
9
例子:热电偶测温
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y x x y b n x ( x )
i 2 i
i
1.1.2 迟滞
传感器在正(输入量增大)反(输入量减小) 行程中输出与输入曲线不重合时称为迟滞。迟 滞大小一般由实验方法测得。迟滞误差一般以 满量程输出的百分数表示。
H
1 H max 100% 2 y FS
0.1 100% 100% 0.29% 2*17.15
(2)最小二乘法
例题
y=a+bx,
3 4 5 6 ∑ 2
设拟合直线方程为
序号 1
x
y
0
2.70 0 0
0.02
0.64 0.0004 0.0128
0.04
4.04 0.0016 0.1616
0.06
7.47 0.0036 0.4482
返回
上页
下页
图库
1.1.7 温度稳定性
温度稳定性: 又称为温度漂移。它是指传感器在外界温 度变化情况下输出量发生的变化。 温度稳定性误差:
测试时先将传感器置于一定温度(例如20℃) 下,将其输出调至零点或某一特定点,使温度上 升或下降一定的度数(例如5℃或10℃),再读 出输出值,前后两次输出之差即为温度稳定性误 差。温度稳定性误差用每若干℃的绝对误差或相 对误差表示,每℃的误差又称温度误差系数。
线性度 迟滞 重复性 灵敏度与灵敏度误差 分辨率与阈值 稳定性 温度稳定性 多种抗干扰能力 静态误差
返回 上页 下页 图库
静态特性:
1 m yi ( yui j ydij ),i 1, 2,...n 2m j 1
静态标定---在一定的标准条件下,利用一定的设
2 x i y i xi xi yi
n x
2 i
( xi )
2
所以,拟合直线方程为
y=-2.77+171.5x,
例题
压 力 (MPa) 0 0.02 0.04 0.06 0.08 0.10 标定平均值 (mV) -2.70 0.64 4.04 7.47 10.93 14.45 直线拟合值 (mV) -2.77 0.66 4.09 7.52 10.95 14.38 非线性误差 (mV) 0.07 -0.02 -0.05 -0.05 -0.02 0.07 最大非线性 误差 (mV)
4.11 7.52 10.99 14.46
例题
压 力 (MPa) (设为 x) 0 0.02 0.04 0.06 0.08 0.10
输ቤተ መጻሕፍቲ ባይዱ出 值 (mV) 第一次循环 第二次循环
反行 程 -2.68 0.68 4.09 7.53 10.93 14.47
第三次循环
正行程 反行程 -2.68 0.64 4.03 7.45 10.94 14.46 -2.69 0.69 4.11 7.52 10.99 14.46
y a0 a1 x a2 x2 ... an xn
y――输出量; x ――输入量; a0 ――零点输出; a1 ――理论灵敏度; a2,a3,…,an ――非线性项系数
静态特性曲线需要进行线性化处理
返回 上页 下页 图库
1.1.1 线性度
常用拟和方法 理论拟合 过零旋转拟合 端点拟合
-0.07
所以,最小二乘法所得非线性误差为
L
(yL )max yF . S 0.07 100% 100% 0.41% 171.5(0.1 0)
1.2 传感器的动态特性
研究动态特性可以从时域和频域两个方面采 用瞬态响应法和频率响应法来分析。经常采用的输 入信号为单位阶跃输入量和正弦输入量。
y k x
灵敏度误差
k 100% S k
返回
上页
下页
图库
1.1.5 分辨率与灵敏度误差
分辨率: 传感器能检测到的最小的输入增量。 分辨率可用绝对值表示,也可用与满量程 的百分比表示。 阈值: 在传感器输入零点附近的分辨率。
返回
上页
下页
图库
1.1.6 稳定性
稳定性: 传感器在长时间工作情况是输出量发生的 变化。有时称为长时间工作稳定性或零点漂移。 稳定性误差: 前后两次输出之差。 可用相对误差表示,也可用绝对误差来表 示。
图1-2 迟滞特性
返回 上页 下页 图库
1.1.3 重复性
重复性: 传感器在输入按同一方向作全量程连续多 次变动时所得特性曲线不一致的程度。
Rmax 100% R y FS
图1-3 重复特性
返回 上页 下页 图库
1.1.4 灵敏度与灵敏度误差
静态灵敏度: 传感器输出的变化量与引起该变化量的输 入变化量之比。
0 0.02 -2.73 -2.71 0.56 0.66 0.02 0.10 -2.71 -2.68 0.61 0.68 0.03 0.07 -2.68 0.64 -2.69 0.69 0.01 0.05
0.04
0.06 0.08 0.10
3.96
7.40
4.06
7.49
0.10
0.09 0
H
3.99
返回 上页 下页 图库
1.1.8 多种抗干扰能力
多种抗干扰能力:
传感器对各种外界干扰的抵抗能力。 例如抗冲击和振动能力、抗潮湿的能力、 抗电磁场干扰的能力等,评价这些能力比较复 杂,一般也不易给出数量概念,需要具体问题 具体分析。
返回
上页
下页
图库
1.1.9 静态误差
静态误差: 传感器在其全量程内任一点的输出值与其 理论输出值的偏离程度。 静态误差的求取方法: 把全部校准数据与拟合直线上对应值的残 差,看成随机分布,求出其标准偏差σ,即:
L H R S
2 2 2
2
△yi ― ―各种测试点的残差; n ― ―测试点数。
返回 上页 下页 图库
例题
某压力传感器的校准数据如下表所示,试用端点拟合法求 非线性误差和迟滞误差; 用最小二乘法求非线性误差
输 出 值 (mV) 压 力 (MPa) 0 第一次循环 正行程 -2.73 反行程 -2.71 第二次循环 正行程 -2.71 反行程 -2.68 第三次循环 正行程 -2.68 反行程 -2.69
备对传感器多次反复测试。
静态标定需要条件:
1 对环境的要求
2 对设备的要求---随机误差、系统误差 3 标定过程的要求: 正行程第j次循环i测点(xi, yuij) ; 反行程第j次循环i测点(xi, ydij) x1是被测量的最小值,xn是被测量的最大值
1.1.1 线性度
传感器的输入-输出关系或多或少地都存在 非线性问题。在不考虑迟滞、蠕变等因素的情况 下,其静态特性可用下列多项式代数方程来表示:
动态特性的数学描述 线性系统的传递函数 传感器的动态特性指标 动态响应分析的基本方法 典型环节的动态响应特性
返回 上页 下页 图库
1.2.1 动态特性的数学描述
解析法求解线性系统对激励的响应步骤:
I. 建立描述该系统的数学方程 II. 求满足初始条件的解 将输出量与输入量联系起来的方程是微分方 程,是基本的数学方程;集总参数的线性系统可 用有限阶的线性常系数微分方程来描述:
标定平均值 (mV)
L
(yL )max yF . S
0.12 100% 100% 0.7% 171.5(0.1 0)
求迟滞误差:
例题
输 出 值 (mV) 压 第一次循环 第二次循环 第三次循环 力 (MPa 正行 反行 正行 反行 正行 反行 迟滞 迟滞 迟滞 ) 程 程 程 程 程 程
0.08
10.93 0.0064 0.8744
0.10
14.45 0.01 1.445
0.3
34.83 0.022 2.942
x2 xy
例题
(2)最小二乘法
n xi yi xi yi n xi ( xi )
2 2
b a
171.5(mV / MPa) 2.77(mV )
dny d n1 y dy an n an1 n1 ...a1 a0 y dt dt dt d mx d m1 x dx bm m bm1 m1 ... b1 b0 x dt dt dt
返回 上页 下页 图库
典型传感器的微分方程
a (t) y b x ( t ) (t) y kx ( t ) 0 0 • 零阶
(mV/MPa)
拟合直线方程为: y=2.70+171.5x
求非线性误差:
压 力 (MPa) 0 0.02 0.04 0.06 0.08 0.10 -2.70 0.64 4.04 7.47 10.93 14.45
例题
直线拟合值 (mV) -2.70 0.73 4.16 7.59 11.02 14.45 非线性误差 (mV) 0 -0.09 -0.12 -0.12 -0.09 0
1 n 2 y i n 1 i 1
△yi ― ―各种测试点的残差; n ― ―测试点数。
返回 上页 下页 图库
1.1.9 静态误差
静态误差的求取方法:
取2σ或3σ值即为传感器静态误差。静态误 差也可用相对误差表示,即: 3 100% y FS 静态误差是一项综合性指标,基本上包含 了前面叙述的非线性误差、迟滞误差、重复性误 差、灵敏度误差等。所以也可以把这几个单项误 差综合而得,即:
7.43
4.09
7.53
0.10
0.10 0.0
4.03
7.45
4.11
7.52
0.08
0.07 0.05 0.0