7 光的衍射习题详解
光的衍射习题答案
思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显着。
对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显着。
2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。
由此可知,这时人眼看到的是夫琅和费衍射图样。
3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。
答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。
离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。
4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。
(B)光强之和。
(C)振动振幅之和的平方。
(D)振动的相干叠加。
答:衍射光强是所有子波相干叠加的结果。
选(D)。
5波长为?的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o,则缝宽的大小( )(A) a =?。
(B) a =?。
(C)a =2?。
(D)a =3?。
答:[ C ]6波长为?的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30?,则缝宽a 等于( )(A) a =? 。
(B) a =2?。
(C) a =23?。
(D) a =3?。
答:[ D ]7在单缝夫琅和费衍射实验中波长为?的单色光垂直入射到单缝上,对应于衍射角为30?的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) ? 。
(B) ?。
(C) 2?。
(D) 3?。
答:[ D ]8在单缝夫琅和费衍射实验中,波长为?的单色光垂直入射到宽度a=4?的单缝上,对应于衍射角为30?的方向,单缝处波面可分成的半波带数目为( ) (A)2个。
光的衍射习题答案
思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显着。
对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显着。
2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。
由此可知,这时人眼看到的是夫琅和费衍射图样。
3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。
答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。
离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。
4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。
(B)光强之和。
(C)振动振幅之和的平方。
(D)振动的相干叠加。
答:衍射光强是所有子波相干叠加的结果。
选(D)。
5波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o ,则缝宽的大小( )(A) a =。
(B) a =。
(C)a =2。
(D)a =3。
答:[ C ]6波长为的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30,则缝宽a 等于( )(A) a = 。
(B) a =2。
(C) a =23。
(D) a =3。
答:[ D ]7在单缝夫琅和费衍射实验中波长为的单色光垂直入射到单缝上,对应于衍射角为30的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) 。
(B) 。
(C) 2。
(D) 3。
答:[ D ]8在单缝夫琅和费衍射实验中,波长为的单色光垂直入射到宽度a=4的单缝上,对应于衍射角为30的方向,单缝处波面可分成的半波带数目为( ) (A)2个。
大学物理下毛峰版光的衍射+习题及答案
第15章 光的衍射 习题解答1.为什么声波的衍射比光波的衍射更加显着?解:因为声波的波长远远大于光的波长,所以声波衍射比光波显着。
2.衍射的本质是什么?衍射和干涉有什么联系和区别?解:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.3.什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第三级明条纹和第四级暗条纹,单缝处波阵面各可分成几个半波带?解:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第三级明条纹和第四级暗条纹,单缝处波阵面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a4.在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 解:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.5.若把单缝衍射实验装置全部浸入水中,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长? 解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin n k λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).6.单缝衍射暗纹条件与双缝干涉明纹的条件在形式上类似,两者是否矛盾?怎样说明? 解:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.7.光栅衍射与单缝衍射有何区别?为何光栅衍射的明纹特别明亮而暗区很宽? 解:光栅衍射是多缝干涉和单缝衍射的总效果.其明条纹主要取决于多缝干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.8. 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明纹缺级(1)2a b a +=;(2)3a b a +=;(3)4a b a +=解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即 可知,当k ab a k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.9.若以白光垂直入射光栅,不同波长的光将会有不同的衍射角。
第07章光的衍射习题答案
1习题7.1 已知单缝宽度0.6b mm =,使用的凸透镜焦距400f mm '=,在透镜的焦平面上用一块观察屏观察衍射图样.用一束单色平行光垂直照射单缝,测得屏上第4级明纹到中央明纹中心的距离为1.4mm .求:⑴该入射光的波长;⑵对应此明纹的半波带数?解:(1)单缝衍射的明纹:()sin 212b k λθ=+单缝衍射图样的第4级明纹对应的衍射角为:()()449sin 21241222k b b b λλλθθ≈=+=⨯+= 单缝衍射图样的第4级明纹中心的位置为 4449tan 2y f f f b λθθ'''=≈=⨯⇒429by f λ='20.6 1.49400⨯⨯=⨯84.6710mm -=⨯467nm = (2)对于第4级明纹对应衍射角方向,缝两边光线的光程差为 499sin 22b b b λλθ∆==⨯= 对应的半波带数 92922N λλλ∆=== 7.2 在单缝实验中,已知照射光波长632.8nm λ=,缝宽0.10b mm =,透镜的焦距50f cm '=.求:⑴中央明纹的宽度;⑵两旁各级明纹的宽度;⑶中央明纹中心到第3级暗纹中心的距离?解:(1)所以中央亮纹角宽度为02/b θλ∆=,宽度则为 6002632.810'500 6.3280.1l f mm θ-⨯⨯=∆=⨯= (2)各级亮纹 6632.810'500 3.1640.1k l f mm b λ-⨯==⨯= (3)中央明纹中心到第三暗纹中心的距离为 33'9.492y f mm bλ== 7.3 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+() 33sin 2312b λθ=⨯+() 且在同一位置处,则23sin sin θθ= 解得:325560042577nm λλ==⨯=7.4 用590nm λ=的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:根据光栅方程sin ,d k θλ=当90θ=︒时可以得到最多明条纹,所以 60.002590103j j -=⨯⨯⇒=所以可见7条明条纹。
光的衍射习题、答案与解法(2010.11.1)
光衍射习题、答案与解法一、填空题1.根据惠更斯—菲涅耳原理,若已知光在某时间的波阵面为S ,则S 的前方某点P 的光强取决于波阵面S 上所有面积元发出的子波各自传到P 点( D )(A )振动振幅之和 (B )光强之和 (C )振动振幅之和的平方 (D )振动的相干叠加 2.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变大时,除中央明纹的中心位置不变外,各级衍射条纹 ( A ) (A )对应的衍射角变小 (B )对应的衍射角变大(C )对应的衍射角也不变 (D )光强也不变 参考答案:λϕk a =sin ⎪⎭⎫⎝⎛=-a k λϕ1sin 3.在单缝夫琅禾费单缝衍射实验中,波长λ为的单色光垂直入射到单缝上,对应于衍射角为030的方向上,若单缝处波面可分为6个半波带,则缝宽度a 等于( B )(A )λ (B )λ6 (C )λ2 (D )λ4 参考答案:2sin λϕka = λλλϕλ6212630sin 26sin 20=⨯=⨯==ka4.一束波长为λ的平行单色光垂直入射到一单色AB 上,装置如图1所示,在屏幕P 上形成衍射图样,如果Q 是中央PQCλfALB亮纹一侧第二个暗纹的中心所在位置,则BC 得长度为 ( D )(A )2/λ (B )λ (C )2/3λ (D )λ2 参考答案:λϕk a =sin λλϕ2sin ==k a5. 波长为nm 600=λ)m 10nm 1(9-=的单色光垂直照射到宽mm 3.0=a 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一个屏幕,用以观测衍射条纹,今测得屏幕中央明条纹一侧第一个暗条纹和另一侧第一个暗条纹之间的距离为mm 4=∆x ,则凸透镜的焦距f 为 ( C )(A )m 2 (B ) m 1.0 (C )m 1 (D )m 5.0参考答案:⎪⎪⎩⎪⎪⎨⎧==-=∆=-12k x x x x k a f x k k k k λ ()m 1106002103.01042933=⨯⨯⨯⨯⨯=∆=---a x f λ6.一束平行单色光垂直入射在光栅上,当光栅常数()b a +,为下列哪种情况时(a 代表每条缝的宽度),k=3、6、9等级次的明纹均不出现 ( B )(A )a b a 2=+ (B )a b a 3=+(C )a b a 4=+(D )a b a 6=+参考答案:()⎪⎪⎪⎩⎪⎪⎪⎨⎧==='==+963sin sin k k k k a k b a λϕλϕ ===='=+392613k k a b a 7.一束白光垂直照射在一光栅上,在形成的同一级光栅谱中,离中央明纹最近的是 ( A )(A )紫光 (B )绿光 (C )黄光 (D )红光参考答案:()λϕk b a =+sin⎪⎭⎫ ⎝⎛+=-b a k λϕ1sin 红λλ〈3 8.若用衍射光栅准确测定一单色光可见光的波长,在下列各种光栅中选用那一种最为合适?( D )(A )mm 5.0(B ) mm 1(C )mm 01.0(D )mm 100.13-⨯参考答案:()⎪⎪⎩⎪⎪⎨⎧===+21sin πϕλϕk k b a()()mm 107nm 7001107001sin 49--⨯==⨯⨯==+ϕλk b a9.波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上,取⋅⋅⋅⋅±±=2,1,0k ,则决定出现明纹的衍射角θ的公式可写成( C )(A )λθk Na =sin (B )λθk a =sin (C )λθk d =sin (D )λθk Nd =sin 参考答案:()λϕk b a =+sin λϕk d =sin10.提高光仪器分辨率本领的方法是:( B ) ( A )增大透光孔径,增大入射光的波长 ( B )增大透光孔径,减小入射光的波长 ( C ) 减小透光孔径,增大入射光的波长 ( D ) 减小透光孔径,减小入射光的波长 参考答案:λ22.1D R = Dλθ22.1= 二、填空题1.在单缝夫琅禾费衍射实验中,波长nm 400=λ的平行光垂直入射单缝,所用凸透镜焦距m 5.1=f ,第三级暗纹离中央明纹中心m 100.33-⨯,另一波长为0λ的光的第二级暗纹在屏的同一位置上,则单缝的缝宽m 103.5-4⨯=a ,波长nm 0060=λ。
第07章 光的衍射习题答案
习题7.1 已知单缝宽度0.6b mm =,使用的凸透镜焦距400f mm '=,在透镜的焦平面上用一块观察屏观察衍射图样.用一束单色平行光垂直照射单缝,测得屏上第4级明纹到中央明纹中心的距离为1.4mm .求:⑴该入射光的波长;⑵对应此明纹的半波带数?解:(1) 单缝衍射的明纹: ()s i n 212b k λθ=+单缝衍射图样的第4级明纹对应的衍射角为: ()()449sin 21241222k bbbλλλθθ≈=+=⨯+=单缝衍射图样的第4级明纹中心的位置为 4449tan 2y f f f bλθθ'''=≈=⨯ ⇒ 429by f λ='20.6 1.49400⨯⨯=⨯84.6710mm -=⨯467nm = (2)对于第4级明纹对应衍射角方向,缝两边光线的光程差为 499sin 22b b b λλθ∆==⨯=对应的半波带数 92922N λλλ∆===7.2 在单缝实验中,已知照射光波长632.8nm λ=,缝宽0.10b mm =,透镜的焦距50f cm '=.求:⑴中央明纹的宽度;⑵两旁各级明纹的宽度;⑶中央明纹中心到第3级暗纹中心的距离?解:(1)所以中央亮纹角宽度为02/b θλ∆=,宽度则为 6002632.810'500 6.3280.1l f mm θ-⨯⨯=∆=⨯= (2)各级亮纹 6632.810'5003.1640.1k l f m m b λ-⨯==⨯= (3)中央明纹中心到第三暗纹中心的距离为 33'9.492y f m m bλ== 7.3 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+()33sin 2312b λθ=⨯+()且在同一位置处,则 23sin sin θθ= 解得: 325560042577nm λλ==⨯=7.4 用590nm λ=的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:根据光栅方程sin ,d k θλ=当90θ=︒时可以得到最多明条纹,所以60.002590103j j -=⨯⨯⇒=所以可见7条明条纹。
7光的衍射习题详解.doc
Y» = asin&ua— = 0.2 x 10~3 f ? X |-------- =10"6 m=l 000nm=2/i0.4即"2x2牛吟因此,一、选择题1.在单缝衍射实验小,缝宽d = 0.2mm,透镜焦距/=0.4m,入射光波长/l = 500nm,则在距离中央亮纹中心位置2mm处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为儿个半波带?[ ](A)亮纹,3个半波带;(B)亮纹,4个半波带;(C)暗纹,3个半波带;(D)暗纹,4个半波带。
答案:D解:沿衍射方向&,最人光程羌为根据单缝衍射亮、暗纹条件,可判断出该处是暗纹,从该方向上可分为4个半波带。
2.波长为632.8nm的单色光通过一狭缝发生衍射。
已知缝宽为1.2mm,缝与观察屏Z间的距离为D =2.3mo则屏上两侧的两个第8级极小之间的距离/匕为[ ](A) 1.70cm;(B) 1.94cm;(C) 2.18cm;(D) 0.97cm。
答案:B解:第k级暗纹条件为asin^ = Uo据题意有j 2注:总::Ax = 2D tan 0 « 2£>sin 0 = 2D —a代入数据得A c oa 8x632.8x10—9 2Ax = 2x2.3x --------------- -—— =1.94x10 m=1.94cm1.2x10』3.波长为600nm的单色光垂直入射到光栅常数为2.5xl()-3mm的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为[ ](A) 0、±1、±2、±3、±4;(B) 0、±1、±3:(C) ±1、±3;(D) 0、±2、±4o答案:B解:光栅公式dsing",最高级次为k祁=色=2.5"():“ (取整数)。
高考物理光的衍射题
高考物理光的衍射题光的衍射是光通过一个小孔或者绕过障碍物后,发生偏折和交叉现象的现象。
光的衍射是光的波动性质的重要表现,对光学的研究和应用具有重要意义。
下面我们将以高考物理中常见的一些光的衍射题为例,详细解析光的衍射原理和解题方法。
1. 单缝衍射题目:将单色光垂直入射到一个宽度为a的单缝上,当入射光波长为λ时,在离缝中心距离x处的衍射光亮度达到最大值。
求此时的衍射极限角。
解析:根据单缝衍射的原理,当衍射光达到最大亮度时,衍射极限角θ可以通过以下公式计算得到:sinθ = λ / a其中,λ为入射光波长,a为单缝宽度。
在解题过程中,我们可以根据已知条件代入公式,求解得到最终的答案。
2. 双缝衍射题目:将波长为λ的单色光垂直入射到一个由两个宽度为a的缝隙组成的缝隙上,两个缝距离为d。
在距离屏幕L处观察到光的衍射图样,求出观察到的第m级明条纹的夹角。
解析:双缝衍射是一种常见的光学现象,在解题过程中需要用到夫琅禾费衍射公式:asinθ = mλ其中,m代表观察到的明条纹级别,λ为入射光波长,a为单个缝隙宽度,d为两个缝隙的距离,θ为夹角。
在解答此类题目时,可以根据已知条件代入公式,求解得到最终的答案。
3. 狭缝衍射题目:将波长为λ的单色光垂直入射到一条宽度为a的狭缝上,通过一个观察屏幕上观察光的衍射现象。
如果将观察屏幕水平移动一个距离L,观察到的亮条纹数目N也移动了一个单位。
求解狭缝的宽度a。
解析:狭缝衍射是一种比较复杂的光学现象,需要运用夫琅禾费衍射公式结合几何关系来解答。
根据已知条件可以得到以下公式:a = λ * L / N其中,λ代表入射光的波长,L为观察屏幕的移动距离,N为亮条纹的移动单位。
通过代入已知条件,求解得到狭缝的宽度a。
通过对以上三个典型的高考物理光的衍射题的解析,我们可以发现光的衍射问题在高考物理中经常出现。
解答光的衍射题需要运用光的波动性质和几何关系相结合的方法,通过物理公式的运用来求解。
人教版高中物理选修一《光的衍射》练习题(含解析)(1)
第四单元光第5课光的衍射一、基础巩固1.下列属于光的衍射现象的是( )A.B.C.D.【答案】A【解析】A图中单色光通过狭缝后产生衍射现象;B是光的干涉现象;C是薄膜干涉;D是光的色散;故选A.2.如图,用激光照射直径小于激光束的不透明圆盘,例如小分币,我们可以在光屏上看到的图样为下图中的()A.B.C.D.【答案】B【解析】用激光照射直径小于激光束的不透明圆盘,会产生光的衍射现象,中央出现亮点,图样为B所示;故选B.3.用激光照射直径小于激光束的不透明圆盘,发现在不透明圆板的阴影中心,有一个亮斑,产生这个亮斑的原因是()A.光的反射B.光的衍射C.光的折射D.光的干涉【答案】B【解析】当用激光照射直径小于激光束的不透明圆盘时,在圆盘后屏上的阴影中心出现了一个亮斑,亮斑的周围是明暗相间的环状衍射条纹,这就是泊松亮斑,是激光绕过不透光的圆盘发生衍射形成的。
泊松最初做本实验的目的是推翻光的波动性,而实验结果却证明了光的波动性,故B正确,ACD错误;故选B。
4.用单色光通过小圆盘和小圆孔做衍射实验时,在光屏上得到衍射图形,它们的特征是A.中央均为亮点的同心圆形条纹B.中央均为暗点的同心圆形条纹C.用小圆盘时中央是暗的,用小圆孔时中央是亮的D.用小圆盘时中央是亮的,用小圆孔时中央是暗的【答案】A【解析】圆孔衍射实验图样,与单色光通过小圆盘得到的泊松亮斑,它们中央均为亮点的同心圆形条纹,故A正确,BCD错误。
5.单色光照射双缝,在像屏上观察到明暗相间的干涉条纹,现用遮光板将其中的一个缝挡住,则像屏上观察到的现象是()A.宽度均匀的明暗相间的条纹B.中央亮而宽,两边窄而暗条纹C.一条亮纹D.一片亮光【答案】B【解析】如果将双缝中一条缝挡住,其他不改变,光屏上出现的图案是光的衍射条纹即中央亮而宽,两边窄而暗条纹,故B正确,ACD错误。
故选B。
6.关于光的干涉和衍射现象,下列各种说法中正确的是()A.通过一个狭缝观察日光灯可看到彩色条纹是光的色散现象B.白光通过双缝后产生的干涉条纹是彩色的,是由于各种色光传播速度不同C.干涉和衍射的条纹都是明暗相间的,所以不能通过条纹来判断是干涉现象还是衍射现象D.光的干涉条纹和衍射条纹都是光波叠加的结果【答案】D【解析】通过一个狭缝观察日光灯可看到彩色条纹是光的衍射现象,故A错误;白光通过双缝后产生的干涉,由于各种色光波长不同,导致干涉条纹间距不同,从而出现彩色条纹,故B错误;干涉和衍射的条纹都是明暗相间的,干涉条纹是平行等距的,衍射条纹是不等距的,所以可以通过条纹来判断是干涉现象还是衍射现象,故C错误;光的干涉条纹和衍射条纹都是光波叠加的结果,故D正确。
光的衍射习题答案
思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住? 答:只有当障碍物的大小比波长大得不多时,衍射现象才显著。
对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显著。
2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样?为什么?答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。
由此可知,这时人眼看到的是夫琅和费衍射图样。
3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。
答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。
离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。
4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。
(B)光强之和。
(C)振动振幅之和的平方。
(D)振动的相干叠加。
答:衍射光强是所有子波相干叠加的结果。
选(D)。
5波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30º,则缝宽的大小( )(A ) a =0.5λ。
(B ) a =λ。
(C )a =2λ。
(D )a =3λ。
答:[ C ]6波长为λ的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30︒,则缝宽a 等于( )(A ) a =λ 。
(B ) a =2λ。
(C ) a =23λ。
(D ) a =3λ。
答:[ D ]7在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍射角为30︒的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) λ 。
(B) 1.5λ。
第07章 光的衍射 习题答案
可得暗纹位置
uk = π (b sinθk )λ = kπ
Δθk = kλ / b 所以中央亮纹角宽度为θ = 2λ / b ,宽度则为
(2)各级亮纹
l1
=
f
'θ
= 500× 2× 632.8×10−6 0.1
= 6.328mm
l2
=
f
'( k +1 λ − k λ) = 500× 632.8×10−6
解:根据光栅方程错误!未找到引用源。式,可得
⎧⎪0.02 ⎨
sin
θ1
⎪⎩0.02 sinθ1
= =
500 ×10−6 520 ×10−6
则
Δ
=
f
(θ2
− θ1 )
=
2000(520 ×10−6 0.02
−
500 ×10−6 ) = 0.02
2mm
7.9 在夫琅禾费圆孔衍射中,设圆孔半径为 0.10mm ,透镜的焦距为 50cm ,所用单色光的波长为
(2)干涉条纹宽度为:
l = 2λ f = 2× 480×10−6 × 500mm = 24mm 。
b
0.12
l ' = Nλ f = N × 480×10−6 × 500mm = 24mm
b
0.12
所以 N=12,再包括中央明纹一共有 13 条。
7.8 波长为 500nm 及 520nm 的平行单色光同时垂直照射在光栅常数为 0.02mm 的衍射光栅上,在光 栅后面用一焦距为 2m 的透镜把光线聚在屏上,求这两种单色光的第一级光谱线间的距离?
可见。
7.7 一双缝,两缝间距为 0.1mm ,每缝宽为 0.02mm ,用波长 λ = 480nm 的平行单色光垂直入射双
光的衍射习题答案
光的衍射习题答案光的衍射习题答案光的衍射是光波在通过一个孔或者绕过一个障碍物时发生的现象。
它是光的波动性质的直接证明,也是物理学中的重要概念之一。
在学习光的衍射时,我们经常会遇到一些习题,下面我将为大家提供一些光的衍射习题的答案。
1. 一束波长为500纳米的单色光通过一个宽度为0.1毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。
求出相邻两个亮纹之间的间距。
解答:根据衍射的基本公式,亮纹的位置可以通过以下公式计算:sinθ = mλ / a其中,θ是衍射角,m是亮纹的次序,λ是波长,a是狭缝的宽度。
由题可知,波长λ为500纳米,即0.5微米,狭缝宽度a为0.1毫米,即0.1微米。
代入公式可得:sinθ = m * 0.5微米 / 0.1微米由于sinθ的值很小,我们可以使用近似公式sinθ ≈ θ,即:θ ≈ m * 0.5微米 / 0.1微米根据小角近似,当θ很小时,sinθ ≈ θ。
因此,亮纹之间的间距可以近似为:d ≈ λ / sinθ代入已知数据可得:d ≈ 0.5微米 / (m * 0.1微米 / 0.1微米)化简得:d ≈ 5微米 / m所以,相邻两个亮纹之间的间距与亮纹的次序m成反比关系。
当m为1时,相邻两个亮纹之间的间距为5微米;当m为2时,相邻两个亮纹之间的间距为2.5微米,依此类推。
2. 一束波长为600纳米的单色光垂直照射到一个宽度为0.2毫米的狭缝上,距离狭缝1米处的屏上出现了衍射条纹。
求出最亮的亮纹的角度。
解答:最亮的亮纹对应的是m=0的情况,即中央最亮的部分。
根据衍射公式sinθ = mλ / a,代入已知数据可得:sinθ = 0 * 0.6微米 / 0.2微米sinθ = 0由于s inθ的值为0,我们可以得到θ的值为0。
因此,最亮的亮纹的角度为0度,即光线垂直照射到屏上。
3. 一束波长为400纳米的单色光通过一个宽度为0.3毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。
光的衍射参考答案
光的衍射参考解答(机械)一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将(A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ][参考解]一级暗纹衍射条件:λϕ=1s i n a ,所以中央明纹宽度af f f x λϕϕ2s i n 2t a n211=≈=∆中。
衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。
2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹(A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。
3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ][参考解]由光栅方程λϕk d ±=s i n及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。
4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。
[ D][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。
光的衍射单元测试题及答案
光的衍射单元测试题及答案
问题一:
一束波长为500 nm 的单色光照射到一条宽度为0.2 mm 的狭缝上,狭缝后面的屏幕距离狭缝10 m,屏幕上呈现出光的衍射现象。
1. 屏幕上的主极大位置是在哪里?
2. 如果把狭缝的宽度从0.2 mm 增加到 0.5 mm,屏幕上呈现出
的光的衍射现象会如何变化?
答案:
1. 主极大位置计算公式为X = (n * λ * D) / a,其中 X 表示主极
大位置(即屏幕上距离狭缝的位置),n 表示标志某一极大的整数,λ 表示光波的波长,D 表示狭缝到屏幕的距离,a 表示狭缝的宽度。
根据公式计算,主极大位置 X = (1 * 500 nm * 10 m) / 0.2 mm = 2500 mm = 2.5 m。
2. 当狭缝宽度增加到 0.5 mm,屏幕上呈现出的光的衍射现象
会发生如下变化:
- 主极大宽度会变窄,即在屏幕上的主极大位置左右两侧的亮区会缩小。
- 主极大强度会变弱,即主极大上的亮度会减弱。
- 衍射角会变大,即从屏幕上看,衍射光束的夹角会增大。
请注意,以上答案仅供参考,具体情况可能会因实际条件和实验设计的差异而略有不同。
高中物理光的衍射题解析
高中物理光的衍射题解析光的衍射是光的一种特性,指的是光通过一个孔或者绕过一个障碍物时发生的偏折现象。
在高中物理中,光的衍射是一个重要的考点,涉及到许多与衍射有关的题目。
本文将以具体的题目为例,分析解题思路和考点,并给出解题技巧,帮助高中学生更好地理解和应用光的衍射知识。
题目一:一束波长为500nm的单色光垂直照射到一个宽度为1mm的狭缝上,狭缝到屏幕的距离为2m,屏幕上出现了衍射条纹。
求出屏幕上相邻两条暗条纹之间的距离。
解析:这是一个光的单缝衍射问题。
首先,我们需要确定狭缝的宽度和屏幕到狭缝的距离。
根据题目给出的信息,狭缝宽度为1mm,屏幕到狭缝的距离为2m。
接下来,我们需要确定衍射条纹的特性。
在单缝衍射中,屏幕上会出现一系列的亮暗条纹,其中亮条纹对应着光的干涉增强,暗条纹对应着光的干涉抵消。
相邻两条暗条纹之间的距离可以用以下公式计算:d*sinθ = m*λ其中,d为狭缝宽度,θ为衍射角,m为暗条纹的级数,λ为光的波长。
根据题目给出的信息,波长为500nm,狭缝宽度为1mm,我们可以代入公式计算出衍射角θ。
si nθ = λ/d = 500nm/1mm = 0.5θ = arcsin(0.5) ≈ 30°接下来,我们需要确定相邻两条暗条纹之间的距离。
根据公式,我们可以计算出第一条暗条纹的级数m为1。
代入公式,我们可以得到:d*sinθ = m*λ1mm*sin30° = 1*500nm0.5mm = 0.5mm因此,相邻两条暗条纹之间的距离为0.5mm。
通过这个例题,我们可以看到,解决光的衍射问题需要确定狭缝宽度、屏幕到狭缝的距离以及光的波长。
同时,我们还需要了解光的衍射的特性,即亮暗条纹的形成原理。
掌握这些基本知识,并应用到具体的题目中,就能够解决光的衍射问题。
除了单缝衍射,还有其他形式的光的衍射问题,如双缝衍射、光栅衍射等。
解决这些问题的方法类似,只是需要根据具体的题目情况进行适当的变化。
《光的衍射》答案
第7章 光的衍射一、选择题1(D),2(B),3(D),4(B),5(D),6(B),7(D),8(B),9(D),10(B) 二、填空题(1). 1.2mm ,3.6mm (2). 2, 4 (3). N 2, N(4). 0,±1,±3,......... (5). 5 (6). 更窄更亮 (7). 0.025(8). 照射光波长,圆孔的直径 (9). 2.24×10-4 (10). 13.9 三、计算题1. 在某个单缝衍射实验中,光源发出的光含有两种波长1和2,垂直入射于单缝上.假如1的第一级衍射极小与2的第二级衍射极小相重合,试问 (1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合?解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a 由题意可知 21θθ= , 21sin sin θθ= 代入上式可得 212λλ=(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) a k /sin 222λθ=若k 2 = 2k 1,则1=2,即1的任一k 1级极小都有2的2k 1级极小与之重合.2. 波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a =0.10 mm 的单缝上,观察夫琅禾费衍射图样,透镜焦距f =1.0 m ,屏在透镜的焦平面处.求: (1) 中央衍射明条纹的宽度 x 0; (2) 第二级暗纹离透镜焦点的距离x 2解:(1) 对于第一级暗纹,有a sin 1≈因 1很小,故 tg 1≈sin1 = / a故中央明纹宽度 x 0 = 2f tg1=2f / a = 1.2 cm(2) 对于第二级暗纹, 有 a sin 2≈2 x 2 = f tg 2≈f sin 2 =2 f / a = 1.2 cm3. 如图所示,设波长为的平面波沿与单缝平面法线成角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角.解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-=由单缝衍射极小值条件a (sin -sin ) = k k = 1,2,……得 = sin —1( k / a+sin ) k = 1,2,……(k 0)4. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,1=400 nm ,=760 nm (1 nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) ()222231221sin λλϕ=+=k af x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ=,a f x /2322λ=则两个第一级明纹之间距为 a f x x x /2312λ∆=-=∆=0.27 cm (2) 由光栅衍射主极大的公式1111sin λλϕ==k d2221sin λλϕ==k d且有f x /tg sin =≈ϕϕ所以 d f x x x /12λ∆=-=∆=1.8 cm5.一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm ,在光栅后放一焦距f=1ABθϕABθϕDCm 的凸透镜,现以=600 nm (1 nm =10-9 m)的单色平行光垂直照射光栅,求: (1) 透光缝a 的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内,有几个光栅衍射主极大?解:(1) a sin = k tg = x / f 当 x << f 时,ϕϕϕ≈≈sin tg , a x / f = k , 取k = 1有x = f l / a = 0.03 m ∴中央明纹宽度为 x = 2x = 0.06 m (2) ( a + b ) sin λk '=='k ( a +b ) x / (f )= 2.5 取k = 2,共有k = 0,±1,±2 等5个主极大.6. 用一束具有两种波长的平行光垂直入射在光栅上,1=600 nm ,2=400 nm (1nm=10﹣9m),发现距中央明纹5 cm 处1光的第k 级主极大和2光的第(k +1)级主极大相重合,放置在光栅与屏之间的透镜的焦距f =50 cm ,试问: (1) 上述k =? (2) 光栅常数d =?解:(1) 由题意,1的k 级与2的(k +1)级谱线相重合所以d sin 1=k 1,d sin 1= (k+1) 2 , 或 k 1 = (k +1) 22212=-=λλλk(2) 因x / f 很小, tg 1≈sin 1≈x / f 2分∴ d = k 1 f / x=1.2 ×10-3 cm7. 氦放电管发出的光垂直照射到某光栅上,测得波长=0.668 m 的谱线的衍射角为=20°。
光的衍射习题(附问题详解)1(1)
光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度 a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为1 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为 4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2= 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小) 单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a= 1.0×10−2cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a = 1.0×10-3 cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1/ax 2=32f λ2/a则两个第一级明纹之间距为Δx1= x2− x1=32f Δλ/a = 0.27 cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1= 1λ1d sinφ2= k λ2= 1λ2且有sinφ = tanφ= x / f所以Δx1= x2− x1= fΔλ/a = 1.8 cm14.一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为λ= 480nm(1 nm = 10−9 m)的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ= kλ第k级亮条纹位置:x1= f tanθ1≈f sinθ1≈k f λ/ d相邻两亮纹的间距:Δx= xk +1− xk=(k + 1) fλ/ d −k λ/ d= f λ/ d= 2.4×10−3 m = 2.4 mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx0 = f tanθ1≈f sinθ1≈k f λ/ d = 12 mmΔx/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第±5 级主极大,同样可得出结论。
光的衍射选择题解答与分析
7光的衍射7.1惠更斯—菲涅耳原理1. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A) 振动振幅之和. (B) 光强之和. (C) 振动振幅之和的平方. (D) 振动的相干叠加. 答案:(D) 参考解答:惠更斯原理可以定性说明波遇到障碍物时为什么会拐弯,但是它不能解释拐弯之后波的强度的重新分布(对光而言,表现为出现明暗相间的衍射条纹)现象。
在杨氏双缝干涉实验的启发下,注意到干涉可导致波的能量出现重新分布,法国物理学家菲涅耳认为:同一波阵面上发出的子波是彼此相干的,它们在空间相遇以后发生相干迭加,使得波的强度出现重新分布,由此而形成屏上观察到的衍射图样。
这一经 “子波相干叠加”思想补充发展后的惠更斯原理,称为惠更斯-菲涅耳原理。
对所有选择,均给出参考解答,进入下一步的讨论。
2. 衍射的本质是什么?干涉和衍射有什么区别和联系?参考解答:根据惠更斯-菲涅耳原理,衍射就是衍射物所发光的波阵面上各子波在空间场点的相干叠加,所以衍射的本质就是干涉,其结果是引起光场强度的重新分布,形成稳定的图样。
干涉和衍射的区别主要体现在参与叠加的光束不同,干涉是有限光束的相干叠加,衍射是无穷多子波的相干叠加。
7.2单缝衍射1. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. 答案:(B) 参考解答:根据半波带法讨论的结果,单缝衍射明纹的角位置由下式确定,,2)12(sin λθ+±=k a 即...)3,2,1(2)12(sin =+±=k ak λθ.显然对于给定的入射单色光,当缝宽度a 变小时,各级衍射条纹对应的衍射角变大。
对所有选择,均给出参考解答,进入下一步的讨论。
2020春高中人教版:光的衍射含解析
A组:合格性水平训练
1.(衍射现象)点光源照在一个剃须刀片上.在屏上形成了它的影子.其边缘较为模糊.原因是()
A.光的反射 B.光强太小
C.光的干涉 D.光的衍射
答案 D
解析这是由于光在刀片边缘处产生衍射现象.在阴影边缘部分有光线到达.从而使其影子的边缘轮廓变得模糊不清.D正确。
2.(衍射图样的特点)如图所示是通过用两个刀片组成的宽度可以调节的狭缝观察日光灯光源时所看到的四个图象。
当狭缝宽度从 1.8 mm逐渐变小时.所看到的四个图象的顺序是()
A.abcd B.dcba C.bacd D.badc
答案 A
解析当孔、缝的宽度或障碍物的尺寸与波长相近甚至比波长更小时即能发生明显的衍射现象。
显然狭缝宽度 1.8 mm远大于光的波长.故不能发生明显的衍射现象.根据光的直线传播原理.此时我们看到的应该是条纹状的光斑.即图象 a.随狭缝的宽度的减小.光斑的宽度逐渐减小.在发生明显衍射前看到图象b;当发生明显衍射时.随狭缝的宽度逐渐变小.衍射条纹的宽度逐渐变大.而条纹宽度较小的是c.条纹宽度较大的是d.所以先观察到c.再观察到d。
综上所述.当狭缝宽度从0.8 mm 逐渐变小时.我们依次看到的四个图象的顺序是abcd.A正确。
3.(衍射图样的特点)观察单缝衍射现象时.把缝宽由0.2 mm逐渐增大到0.8 mm.看到的现象是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题七一、选择题1.在单缝衍射实验中,缝宽a = 0.2mm ,透镜焦距f = 0.4m ,入射光波长λ= 500nm ,则在距离中央亮纹中心位置2mm 处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为几个半波带? [ ](A )亮纹,3个半波带; (B )亮纹,4个半波带; (C )暗纹,3个半波带; (D )暗纹,4个半波带。
答案:D解:沿衍射方向θ,最大光程差为336210sin 0.21010m=1000nm=20.4x a a f δθλ---⨯=≈=⨯⋅=,即22422λλδ=⨯⋅=⋅。
因此,根据单缝衍射亮、暗纹条件,可判断出该处是暗纹,从该方向上可分为4个半波带。
2.波长为632.8nm 的单色光通过一狭缝发生衍射。
已知缝宽为1.2mm ,缝与观察屏之间的距离为D =2.3m 。
则屏上两侧的两个第8级极小之间的距离x ∆为 [ ](A )1.70cm ; (B )1.94cm ; (C )2.18cm ; (D )0.97cm 。
答案:B解:第 k 级暗纹条件为sin a k θλ=。
据题意有2tan 2sin 2k x D D Daλθθ∆=≈= 代入数据得9238632.8102 2.3 1.9410m=1.94cm 1.210x ---⨯⨯∆=⨯⨯=⨯⨯3.波长为600nm 的单色光垂直入射到光栅常数为2.5×10-3mm 的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为 [ ](A )0、±1、±2、±3、±4; (B )0、±1、±3; (C )±1、±3; (D )0、±2、±4。
答案:B解:光栅公式sin d k θλ=,最高级次为3max 62.510460010dk λ--⨯===⨯(取整数)。
又由题意知缺级条件2a bk k k a+''==,所以呈现的全部光谱级数为0、±1、±3(第2级缺,第4级接近90º衍射角,不能观看)。
4.用白光(波长范围:400nm-760nm )垂直照射光栅常数为2.4×10-4cm 的光栅,则第一级光谱的张角为 [ ](A )9.5︒; (B )18.3︒; (C )8.8︒; (D )13.9︒。
答案:C解:光栅方程sin d k θλ=。
111,sin k dλθ-==。
91111640010400nm,sin sin sin 0.179.52.410vv v d λλθ-----⨯=====︒⨯ 91111676010760nm,sin sin sin 0.3218.32.410r r r d λλθ-----⨯=====︒⨯ 第一级光谱张角:1118.8r v θθθ∆=-=︒5.欲使波长为λ(设为已知)的X 射线被晶体衍射,则该晶体的晶面间距最小应为 [ ]。
(A )λ/4; (B )2λ; (C )λ; (D )λ/2。
答案:D解:由布拉格公式2sin d k θλ=,得2sin k d λθ=由此可见,当1, 2k πθ==时,min d d =。
所以min 2d λ=二、填空题1.在单缝夫琅和费衍射实验中,设第一级暗纹的衍射角很小。
若以钠黄光(λ1=589nm)为入射光,中央明纹宽度为4.0mm ;若以蓝紫光(λ2=442nm)为入射光,则中央明纹宽度为________mm 。
答案:3mm 。
解:单缝衍射中央明纹宽度为122y y f aλλ∆==⋅∝,所以,1122y y λλ∆=∆ 由此得2211442 4.03mm 589y y λλ∆=∆=⨯=2.单色光1λ=720nm 和另一单色光2λ经同一光栅衍射时,发生这两种谱线的多次重叠现象。
设1λ的第1k 级主极大与2λ的第2k 级主极大重叠。
现已知当1k 分别为2, 4, 6,, 时,对应的2k 分别为3, 6, 9,, 。
,则波长2λ= nm 。
答案:480nm 。
解:在主极大重叠处,两谱线的衍射角相等,即1122)sin a b k k θλλ+==( 所以1212k k λλ=由题意知1223k k = 由此求得1211222720480nm 33k k λλλ===⨯=3.为测定一个光栅的光栅常数,用波长为632.8nm 的单色光垂直照射光栅,测得第一级主极大的衍射角为18°,则光栅常数d =_________;第二级主极大的衍射角θ =_______。
答案:2047.8nm ;38.3︒解:光栅方程sin d k θλ=,1632.8632.81,2047.8nm sin sin180.309k d λθ=====︒; 222632.8arcsinarcsin arcsin0.6238.32047.8d λθ⨯===≈︒4.一宇航员声称,他恰好能分辨他下方距他为H =160km 的地面上两个发射波长550nm 的点光源。
假定宇航员的瞳孔直径D =5.0mm ,则此两点光源的间距为x ∆= m 。
答案:21.5m 。
解:最小分辨角为 1 1.22Dλθ=又根据题意有1x Hθ∆=所以93131.2255010160101.2221.5m 510Hx H D λθ--⋅⨯⨯⨯⨯∆====⨯5.在比较两条单色X 射线谱线波长时,注意到谱线A 在与某种晶体的光滑表面成30︒的掠射角时出现第1级反射极大。
谱线B (已知具有波长0.097nm )则在与同一晶体的同一表面成60︒的掠射角时出现第3级反射极大,则谱线A 的波长为A λ= nm ;晶面间距为d =nm 。
答案:0.17nm ;0.168nm 。
解:设谱线A 的波长为λA ,谱线B 的波长为λB ,按给定条件,由布拉格公式有A d λ⨯=︒130sin 2,B d λ⨯=︒360sin 2将两式相除得3160sin 30sin 3=︒︒=B A λλ所以0.17nmA B Bλ==晶面间距0.0970.168nm2sin2sinB B A AB Ak kdλλθθ====三、计算题1.波长为600nm的单色光垂直照射到一单缝宽度为0.05mm的光栅上,在距光栅2m的屏幕上,测得相邻两条纹间距0.4cmx∆=。
求:(1)在单缝衍射的中央明纹宽度内,最多可以看到几级,共几条光栅衍射明纹?(2)光栅不透光部分宽度b为多少?答案:(1)最多可以看到第5级,共11条明纹;(2)0.25mm。
解:(1)单缝衍射中央明纹的半角宽度11sinaλθθ≈=中央明纹在屏上的半线宽度为71526100.024m=2.4cm510f faλρθ--⨯⨯≈⋅=⋅==⨯单缝衍射中央明纹宽度内干涉亮纹的最高级次m6kxρ==∆而该最高级次的衍射方向正好与单缝衍射第一级暗纹方向相重,为缺级,所以最多可以看到第5级明纹。
即在单缝衍射中央明纹宽度内可观察到01,2,3,4,5±±±±±,共11条明纹。
(2)由(1)知:当1k'=时,m6k k==,又由缺级公式知a bk ka+'=,所以660.050.3mmd a b a=+==⨯=0.30.050.25mmb d a=-=-=2.在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm的单色光的第2级明纹位置重合,求这光波的波长。
答案:428.6nm。
解:设所求波长为λ',则根据单缝衍射明纹条件得()()sin212122a k kλλθ''=+=+将3,600,2k kλ'===代入得()()23122122λλ'⨯+=⨯+75λλ'=55600nm=428.6nm 77λλ'==⨯3.波长为680nm 的单色可见光垂直入射到缝宽为41.2510cm a -=⨯的透射光栅 (b a >)上,观察到第四级谱线缺级,透镜焦距1m f =。
求:(1)此光栅每厘米有多少条狭缝;(2)在屏上呈现的光谱线的全部级次和条纹数。
答案:(1)2000条;(2)屏上出现01,2,3,5,6,7±±±±±±,级,共13条明纹。
解:(1)缺级公式为a bk k a+'=,由b a >及第四级谱线缺级知4k =,1k '=。
所以光栅常数44510cm a b a -+==⨯狭缝数4112000510N a b -===+⨯(条/厘米)(2)由光栅公式()sin a b k θλ+=得()sin a b k θλ+=。
2πθ=对应于最高衍射级次max k 。
将680nm λ=代入,得6max 7()5107.376.810a b k λ--+⨯====⨯(向前取整数)所以在屏上出现的光谱级数为01,2,3,5,6,7±±±±±±,,可看到共13条明纹。
4.波长为400nm~760nm 范围的一束复色可见光垂直入射到光栅常数44.810cm d -=⨯的透射光栅上,在屏上形成若干级彩色光谱。
已知透镜焦距 1.2m f =。
求:(1)第二级光谱在屏上的线宽度;(2)第二级与第三级光谱在屏上重叠的线宽度。
答案:(1)19.7cm ;(2)9cm 。
解:由光栅公式sin d k θλ=得第k 级衍射角arcsink k dλθ= 可见光为连续光谱,其最短波长和最长波长分别为min 400nm λ=和max 760nm λ=,因此其第k 级光谱分布的角宽度为max min k k k θθθ∆=-第k 级光谱在焦平面上的线宽度为max min max min tan tan k k k k k y y y f f θθ∆=-=⋅-⋅式中,max min max min arcsin , arcsin k k k k d dλλθθ==分别为同一级光谱中最长和最短波长的衍射角。
(1)令2k =,即可由上式算出第二级谱线宽度()()22max 2min tan tan 120.3330.1690.197m=19.7cm y f θθ∆=-=⋅⨯-=(2)当第三级光谱最短波长的衍射角3min θ小于第二级光谱最长波长的衍射角2maxθ时,将发生第二级与第三级光谱的重叠。
其重叠的线宽度为()2max 3min tan tan L f θθ∆=-令3k =,可解得3min tan 0.258θ=,所以()()2max 3min tan tan 120.3330.2580.09m=9cm L f θθ∆=-=⋅⨯-=计算提示:令max k A d λ=,min k B dλ=,则max min arcsin , arcsin k k A B θθ==。