原子发射光谱测定条件的选择

合集下载

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱分析法
2023-11-06
目录
• 原子发射光谱分析法概述 • 原子发射光谱仪 • 分析方法与样品处理 • 原子发射光谱法的应用 • 原子发射光谱法的优缺点 • 研究成果与应用实例
01
原子发射光谱分析法概述
定义与原理
定义
原子发射光谱分析法是一种基于原子发射光谱学的方法,通过对样品中原子 或离子的特征光谱进行分析,实现对其成分和含量的测定。
原理
当样品被加热或受到能量激发时,原子会从基态跃迁到激发态,并释放出特 征光谱。通过对这些光谱进行分析,可以确定样品中元素的种类和含量。
发展历程与重要性
发展历程
原子发射光谱分析法自19世纪末发展至今,经历了从经典光谱分析到现代光谱仪 器分析的演进过程。
重要性
原子发射光谱分析法在科学研究和工业生产中具有广泛的应用价值,为材料科学 、环境科学、生命科学等领域提供了重要的分析手段。
03
该方法广泛应用于地质、环保、生物医学等领域,用于研究复杂样品中元素的 含量、分布和化学形态。
05
原子发射光谱法的优缺点
优点
高灵敏度
原子发射光谱法可以检测到低浓度的元素 ,具有很高的灵敏度。
无需样品处理
原子发射光谱法不需要对样品进行复杂的 处理,可以直接进行分析。
快速分析
该方法可以实现多元素同时分析,大大缩 短了分析时间。
发和激发。
光谱仪的构造
包括入射狭缝、准直镜、光栅 、聚焦镜和ቤተ መጻሕፍቲ ባይዱ射狭缝。
光谱仪工作原理
样品被激发后,原子会产生不 同波长的光谱,通过光栅分光 后形成光谱,再经过聚焦镜聚 焦到出射狭缝,最后由检测器
进行检测。
光谱仪的分类与特点

化学实验报告原子发射光谱法

化学实验报告原子发射光谱法

原子发射光谱法-摄谱和译谱一、实验目的和要求1、熟悉光谱定性分析的原理;2、了解石英棱镜摄谱仪的工作原理和基本结构;3、学习电极的制作摄谱仪的使用方法及暗室处理技术;4、学会用标准铁光谱比较法定性判断试样中所含未知元素的分析方法;5、根据特征谱线的强度及最后线出现的情况对元素含量进行粗略的估计;6、掌握映谱仪的原理和使用方法。

二、实验内容和原理1、摄谱原子在受到一定能量的激发后,其电子在由高能级向低能级跃迁时将能量以光辐射的形式释放,各种元素因其原子结构的不同而有不同的能级,因此每一种元素的原子都只能辐射出特定波长的光谱线,它代表了元素的特征,这是发射光谱定性分析的依据。

一个元素可以有许多条谱线,各条谱线的强度也不同。

在进行光谱定性分析时,并不需要找出元素的所有谱线,一般只要检查它的几条(2~3条)灵敏线或最后线,根据最后线(灵敏线)是否出现,它们的强度比是否与谱线所表示的相符,就可以判断该元素存在与否。

经典电光源的试样处理:1)固体金属及合金等导电材料的处理棒状金属表面用金刚砂纸除氧化层后,可直接激发。

碎金属屑用酸或丙酮洗去表面污物,烘干后磨成粉末状后,最好以1:1与碳粉混合,在玛瑙研钵中磨匀后装入下电极孔内再激发。

2)非导体固体试样及植物试样非金属氧化物、陶瓷、土壤、植物等试样经灼烧处理后,磨细,加入缓冲剂及内标,置于石墨电极孔中用电弧激发。

3)液体试样处理液体样品经稀释后,滴到用液体石蜡涂过的平头石墨电极上,在红外灯下烘干后进行光谱分析。

摄谱法是用感光板记录光谱。

将光谱感光板置于摄谱仪焦面上,接受被分析试样的光谱作用而感光,再经过显影、定影等过程后,制得光谱底片,其上有许多黑度不同的光谱线。

然后用影谱仪观察谱线位置及大致强度,进行光谱定性及半定量分析。

用测微光度计测量谱线的黑度,进行光谱定量分析。

用发射光谱进行定性分析通常采用在同一块感光板上并列地摄取试样光谱和铁光谱,然后借助光谱投影仪使摄得的铁光谱与“元素标准光谱图”上的铁光谱重合,从“元素标准光谱图”上标记的谱线来辨认摄得的试样谱线。

原子吸收光谱法的定量分析方法和测定条件的选择

原子吸收光谱法的定量分析方法和测定条件的选择

Ax c 当A=0时, k
cx
A kc Ax
A—c曲线
方法
特点
适用范围
注意事项
横 向 比 较
标准 曲线 法
简便、快 速、可扣 除空白值
1.所用标准溶液系列浓度应在 A-C曲线的线性范围内 2.标准溶液与试样溶液要用相 组成简单、 同的试剂处理。 大量试样 3.扣除空白值。 的快速分 4.测定过程中,操作条件不变。 析 5.标准试样的组成应尽量与待 测溶液相同。
火焰的氧化性随火焰高度 的变化而变化
Mg Ag
Cr
原则:使测量光束从自由 原子浓度最大的火焰区通 过,保证最大的吸收灵敏 度。
相对吸收值 自由原子在火焰中的分布
5.狭缝宽度的选择
单色器分辨能力大,或光源辐射弱或共振线吸收 小,应选择较宽的狭缝宽度。 单色器分辨能力小,火焰的背景发射强,或吸收 线附近有干扰时,应选择较窄的狭缝宽度。 合适的狭缝宽度应通过实验确定 原则:能将吸收线与邻近的干扰线分开
一、AAS的定量分析方法
定量依据 标准曲线法
标准加入法
定量依据
强度为 I0 的某一波长的辐射通过均匀的原 子蒸气时,根据吸收定律,有 I I 0 exp( K 0l )
I0 和I分别为入射光和透射光的强度,K0为峰值吸收系数, l为原子蒸气层厚度
当在原子吸收线中心频率附近一定频率范围 Δv测量,则 v I 0 Ivdv
E K S lg ai
二、测定条件的选择
分析线 的选择 放大倍 数的选 择
狭缝宽 度
火焰原 子化法 仪器工 作条件
燃烧器 高度
空心阴 极灯电 流
火焰
1.分析线的选择
(1)一般选择最灵敏线(主共振线) (2)最灵敏线受干扰较大或测定高含量元素时,选 择次灵敏线或其它谱线 最适宜的分析线应视具体情况通过实验决定,其 原则是选用干扰小的谱线作为分析线。

第四章 原子吸收光谱法测定条件的选择

第四章 原子吸收光谱法测定条件的选择

第四章原子吸收光谱法测定条件的选择1.空心阴极灯测量条件的选择1.1 吸收线选择为获得较高的灵敏度、稳定性、宽的线性范围和无干扰测定 , 须选择合适的吸收线。

选择谱线的一般原则:a)灵敏度一般选择最灵敏的共振吸收线, 测定高含量元素时 , 可选用次灵敏线。

例如在测定高浓度钠时,不选择最灵敏线(589.0nm),而选择次灵敏线(330.2 nm)。

具体可参考Z-5000分析软件中提供各元素的谱线信息。

b)干扰谱线干扰当分析线附近有其他非吸收线存在时 , 将使灵敏度降低和工作曲线弯曲 , 应当尽量避免干扰。

例如 ,Ni230.Om 附近有 Ni231.98nm 、 Ni232.14 nm 、 Ni231.6nm 非吸收线干扰,因此,可选择灵敏度稍低的吸收线(341.48 nm)作为分析线。

而测定铷时,为了消除钾、钠的电离干扰,可用798.4nm代替780.0nm。

c)仪器条件大多数原子吸收分光光度计的波长范围是190 900 nm,并且一般采用光电倍增管作为检测器,它在紫外区和可见区具有较高的灵敏度.因此,对于那些共振线在这些区域附近或以外的元素,常选用次灵敏线作为分析波长。

例如测定铅时,为了克服短波区域的背景吸收和吸收和噪声,一般不使用217.0nm灵敏线而用283.3nm谱线。

1.2 电流的选择选择合适的空心阴极灯灯电流 , 可得到较高的灵敏度与稳定性,图4-1为Cd 灵敏对水灯电流变化的曲线。

从灵敏度考虑 , 灯电流宜用小 , 因为谱线变宽及自吸效应小 , 发射线窄 , 灵敏度增高。

但灯电流太小 , 灯放电不稳定,光输出稳定性差,为保证必要的信号输出,势必增加狭缝宽度或提高检测器的负高压,这样就会引起噪声增加,使谱线的信噪比降低,导致精密度降低。

从稳定性考虑 , 灯电流要大 , 谱线强度高 , 负高压低 , 读数稳定 , 特别对于常量与高含量元素分析 ,灯电流宜大些。

灯电流的选择原则是:保证稳定放电和合适的光强输出的前提下,尽可能选用较低的工作电流。

仪器分析-第六章 原子发射光谱-zcq-3

仪器分析-第六章 原子发射光谱-zcq-3
数n ,常数,不随波长改变,均排光谱(优于棱镜之处)。 ;线色散率还与仪器的焦距有关。
00:42:12
• (a)物镜焦距f越大,线 色散率也越大.f=1m 的光栅光谱仪,称为 一米光栅光谱仪.
• (b) 光谱级次越高,线 色散率越大,实际工 作中,习惯采用倒线 色散率表示.
• © 光栅色散率不随波 长而改变,光栅光谱 为均匀色散光谱
00:42:12
(一)棱镜摄谱仪 • 组成
1、照明系统 2、准光系统3、色散系统 4、记录系统
00:42:12
棱镜
棱镜对不同波长的光具有不同的折射率,波长长的光, 折射率小;波长短的光,折射率大。
平行光经过棱镜后按波长顺序排列成为单色光;经聚焦 后在焦面上的不同位置上成像,获得按波长展开的光谱;
00:42:12
光栅的分辨率R
光栅的分辨率R 等于光谱级次(n)与光栅刻痕条数(N)
的乘积:
R nN
光栅越宽、单位刻痕数越多、R 越大。
宽度50mm,N=1200条/mm, 一级光谱的分辨率: R=1×50×1200=6×104
00:42:12
例题:某光栅光谱仪,光栅刻数为600条/mm,光栅面积 5×5 cm2,试问:
等离子体中包含分子、原子、离子、电子等各种粒子, 它具有电中性和导电性。
等离子体光源:将高频电能通过电感,耦合到等离子体,使 等离子体放电的一种装置。
00:42:12
1、 ICP-AES的结构
structure of ICP-AES
1. 高频发生器和感应圈 由高频发生器产生高频
振荡电流:通过感应线圈耦 合到等离子体炬管上,产生 交变磁场。
当载气+试样,通过中间通道时,被 加热、解离、激发,产生发射光谱。

电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中铜、锌、钙、镁、铁

电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中铜、锌、钙、镁、铁

电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中铜、锌、钙、镁、铁王生进;张琳;刘春虎;董龙腾;韩夫强【摘要】样品经硝酸-高氯酸消化溶解,高氯酸冒烟,盐酸溶解盐类后,在盐酸(5%)介质中,在选定的测定条件下,用电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中微量元素铜、锌、铁、镁、钙.选择Cu 327.3、Zn 206.2、Fe 238.2、Mg 279.5、Ca 315.8 nm分别作为铜、锌、铁、镁、钙的分析线与混合标准溶液同时测定;方法加标回收率为98.6%~101%,铜、锌、铁、镁、钙的精密度(RSD,n=8)为0.37%~2%,准确度(RE)为-3.4%~1.15%,检出限分别为0.002 3、0.001 6、0.004 6、0.003 0、0.001 4 μg/mL.方法克服了分光光度法和原子吸收光谱法操作繁琐、周期长、成本高、灵敏度低等缺点.用于测定人发样品中的铜、锌、铁、镁、钙元素,测定结果与原子吸收光谱法测定值基本一致.经GB-WO7061标准物质和自制标样分析验证,测定值与标准值吻合,结果准确可靠.【期刊名称】《中国无机分析化学》【年(卷),期】2016(006)001【总页数】4页(P69-72)【关键词】铜;锌;铁;镁;钙;人发;电感耦合等离子体原子发射光谱法【作者】王生进;张琳;刘春虎;董龙腾;韩夫强【作者单位】河北省地矿局第十一地质大队,河北邢台054000;河北地质职工大学,石家庄050081;河北省地矿局第十一地质大队,河北邢台054000;河北省地矿局第十一地质大队,河北邢台054000;河北省地矿局第十一地质大队,河北邢台054000【正文语种】中文【中图分类】O657.31;TH744.11现代科学研究证明,微量元素在人体中起着极其重要的作用,它的缺乏或过剩与人的健康休戚相关,微量元素与人发有特殊的亲和力,身体中微量元素积蓄于人发中,其含量过高或偏低预示着会患有某种疾病的危险[1]。

原子发射光谱法测定方法

原子发射光谱法测定方法

原子发射光谱法测定方法原子发射光谱法是一种用于元素分析的传统方法,也是目前最常用的表征原子能级结构的方法。

本文将详细介绍原子发射光谱法的原理、测定方法以及应用。

一、原理原子发射光谱法基于原子能级结构的理论,利用激发源将样品原子激发为激发态,然后通过介质,将这些激发态原子的电子跃迁回到较低的能级,从而实现发射光谱。

每种元素的原子发射光谱是独特的,可以根据这些发射光谱来确定样品中各种元素的含量。

二、测定方法1. 原子发射光谱法的装置原子发射光谱法的装置一般包括以下部分:样品供给装置、激发源、光谱仪、信号放大器和信息处理装置。

2. 样品处理样品处理的重要性不言而喻,因为精确的分析结果必须从准确的样品中获得。

可以通过显微观察或分析其外观和颜色来确定样品中的化学成分和杂质。

灰吸收法和氮化方法常用于消除样品的有机和无机杂质。

3. 激发源激发源是原子发射光谱法中最关键的部分,它负责激发样品原子的电子从基态跃迁到激发态,强制性激发分为热力学激发和非热力学激发。

热力学激发是通过样品表面的火焰或电弧等电离条件来完成的,使原子达到雇员,它们可以受激光量输入并产生较高的激发能量。

非热力学激发则是通过化学气氛或单独的电离源激发,也必须使用高能量输入的激发源。

4. 光谱仪当样品中的原子被激发时,它们将发出放射性,从而产生辐射谱线。

重要的是收集这些发光谱线并将其分解成其组成部分。

这可以通过光谱仪完成,光谱仪利用棱镜或光栅将光谱分离成单色光信号并记录光谱。

光谱准确度与光谱仪精度有关,应选择质量好,精度高的光谱仪。

5. 信号放大器和信息处理信号放大器和信息处理是相互关联的,在信号处理程序中可以调整放大器的控制,以及记录和处理光谱图的算法和软件。

在信号放大器和信息处理的整个过程中,确定计算要素浓度的算法和过程是至关重要的。

三、应用原子发射光谱法在我们的日常工作中有着广泛应用的地方,如石化、机械、金属、环保、农业、医药、食品等各个领域。

仪器分析 第7章 原子发射光谱分析

仪器分析 第7章 原子发射光谱分析

摄谱法原理 ⑴ 摄谱步骤
安装感光板在摄谱仪的焦面上
激发试样,产生光谱而感光
显影,定影,制成谱板 特征波长—定性分析 特征波长下的谱线强度—定量分析
⑵ 感光板 玻璃板为支持体,涂抹感光乳剂(AgBr+明胶+增感剂) 感光:
2AgX+2hυ→ Ag(形成潜影中心)+X2
OH
O
显影: 对苯二酚
乳剂特性曲线:
感光板的反衬度
以黑度S与曝光量的对数lgH作图 在正常曝光部分:
γ
S lg H lg H i lg H i
α
乳 剂 特 性 曲 线
S lg( It ) i
Hi为感光板的惰延量
谱线黑度与辐射强度的关系:
S lg( It ) i
定量分析中,更主要是采用 内标法,测量分析线对的相 对强度
磁辐射,通过测定其波长或强度进行分析的方法
不涉及能级跃迁,物质与辐射作用,使其传播方 向等物理性质发生变化,利用这些改变进行分析 的方法
光分析法
非光谱分析法
光谱分析法
圆 折 二 射 色 法 性 法
X 射 干 线 涉 衍 法 射 法
原子光谱分析法 旋 光 法
X 射 线 荧 光 光 谱
分子光谱分析法
分 子 荧 光 光 谱 法 分 子 磷 光 光 谱 法 核 磁 共 振 波 谱 法
e. 波长尽可能靠近
(3) 摄谱法中的内标法基本关系式
• 摄谱法中谱线黑度S与辐射强度、浓度、曝光时间 、感光板的乳剂性质及显影条件有关,固定其他 条件不变,则感光板上谱线的黑度仅与照射在感 光板上的辐射强度有关
i0 S lg i
i0 未曝光部分的透光强度 i 曝光部分的透光强度

原子发射光谱法

原子发射光谱法
在原子谱线表中,罗马数Ⅰ表示中性原子发射光谱的 谱线,Ⅱ表示一次电离离子发射的谱线,Ⅲ表示二次电 离离子发射的谱线例如Mg Ⅰ285.21nm为原子线,MgⅡ
3
第一节 基本原理
280.27nm为一次电离离子线。
二、原子能级与能级图
原子光谱是原子的外层电子(或称价电子)在两个 能级之间跃迁而产生。原子的能级通常用光谱项符号表 示:
S 为总自旋量子数,自旋与自旋之间的作用也较强 的,多个价电子总自旋量子数是单个价电子自旋量子数ms 的矢量和。
S = ms,i 其值可取0,±1/2,±1,±3/2,
J 为内量子数,是由于轨道运动与自旋运动的相互
7
第一节 基本原理
作用即轨道磁矩与自旋量子数的相互影响而得出的,它 是原子中各个价电子组合得到的总角量子数L与总自旋量 子数S的矢量和。
n2s+1LJ
核外电子在原子中存在运动状态,可以用四个量子 数n、l、m、ms来规定。
主量子数n决定电子的能量和电子离核的远近。
4
第一节 基本原理
角量子数l 决定电子角动量的大小及电子轨道的形状, 在多电子原子中也影响电子的能量。
磁量子数m决定磁场中电子轨道小。
第二章 原子发射光谱法
原子发射光谱法是一种成分分析方法,可对约70种 元素(金属元素及磷、硅、砷、碳、硼等非金属元素) 进行分析。这种方法常用于定性、半定量和定量分析。
在一般情况下,用于1%以下含量的组份测定,检出 限可达ppm,精密度为±10%左右,线性范围约2个数 量级。但如采用电感耦合等离子体(ICP)作为光源,则 可使某些元素的检出限降低至10-3 ~ 10-4ppm,精密度达 到±1%以下,线性范围可延长至7个数量级。这种方法 可有效地用于测量高、中、低含量的元素。

原子发射光谱试题及答案

原子发射光谱试题及答案

原子发射光谱试题及答案原子发射光谱试题及答案一、选择题(50分)1.下列哪种激发光源的激发温度最高。

A、直流电弧B、交流电弧C、电火花D、高频电感耦合等离子体2.下列哪种光源不仅能激发原子光谱和离子光谱,而且许多元素的离子线强度大于原子线强度?A、直流电弧B、交流电弧C、电火花D、高频电感耦合等离子体3.原子发射光谱是由哪种跃迁产生的?A、辐射能使气态原子外层电子激发B、辐射能使气态原子内层电子激发C、电热能使气态原子内层电子激发D、电热能使气态原子外层电子激发4.下列哪种激发光源的分析线性范围最大?A、直流电弧B、交流电弧C、电火花D、高频电感耦合等离子体5.当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是?A、KB、CaC、ZnD、Fe6.进行光谱定性全分析时,应该选用下列哪种条件?A、大电流,试样烧完B、大电流,试样不烧完C、小电流,试样烧完D、先小电流,后大电流至试样烧完7.光栅作为单色器的色散元件,光栅面上单位距离内的刻痕线越少,则:A、光谱色散率变大,分辨率增高B、光谱色散率变大,分辨率降低C、光谱色散率变小,分辨率增高D、光谱色散率变小,分辨率降低8.下列哪种常用光源产生自吸现象最小?A、交流电弧B、等离子体光源C、直流电弧D、火花光源9.下列哪种常用激发光源的分析灵敏度最高?A、直流电弧B、交流电弧C、电火花D、高频电感耦合等离子体10.NaD双线[λ(D1)=5895.92.λ(D2)=5889.95.A由3P3/2跃迁至3S1/2]的相对强度比I(D1)/I(D2)应为:A、1/2B、1C、3/2D、211.发射光谱摄谱仪的检测器是:A、暗箱B、感光板C、硒光电池D、光电倍增管12.连续光谱是由哪种情况产生的?A、炽热固体B、受激分子C、受激离子D、受激原子13.发射光谱定量分析中,未扣除分析线上的背景会使工作曲线的下部向上弯曲。

14.在进行发射光谱定性分析时,只要找到2~3条灵敏线就可以说明有某元素存在。

光谱选择规则

光谱选择规则

按角动量
的跃迁是不允许的。
10
综上所述,辐射跃迁选择定则是能量守 恒定律、角动量守恒定律、宇称守恒定 律的体现, 这是选择定则的物理本质。
11
辐射跃迁中宇称也不变。
7
5.选择规则与守恒定律的关系
原子的辐射跃迁指原子发射或吸收光子的跃迁, 是电磁 相互作用的过程, 应遵守能量守恒、动量守恒、角动量 守恒、宇称守恒等守恒定律。我们从以下几个方面分 析:
1.玻尔的频率条件与能量、动量守恒
玻尔的频率条件hv=En-Em是能量守恒的体现,但 未考虑动量, 若考虑到动量守恒, 则原子发射光子后有 反冲, 从而具有一定的功能, 故严格的能量守恒关系式 为En-Em=hv+Ek,其中Ek为原子发射光子后的动能, 由 动量守恒定律可得Ek远小于hv,故Ek可以忽略。玻尔 的频率条件hv=En-Em实质是原子发射和吸收光子时频 率的选择定则。
1
简介
1、选择定则表明并非任何两能级之间的辐射跃迁都是 可能的,只有遵从选择定则的能级之间的辐射跃迁才 是可能的 ;
2、选择定则是确定原子光谱结构的重要规律。选择定 则可以从量子力学推导出来,它是角动量守恒定律和 宇称守恒定律的结果;
3、单价原子的选择定则是量子数满足Δi=±1,ΔJ=0, ±1;多电子原子(LS耦合)的选择定则是为奇性态为 偶性态,以及量子数满足ΔS=0,ΔL=0,±1 ,ΔJ= 0,±1(除去J=0→J=0)。
2
1. J 、 M 的选择规则
由于电偶极矩算符
是k=1不可约张
量算符之和,由W-E定理得,在耦合表象
中,当
跃迁矩阵元
。故上
面两式称为j、m的选择规则。
3
2.宇称选择定则
因为电偶级算符为奇宇称,所以要使得 不为零,在电偶极跃迁

《现代仪器分析教学》3.原子发射光谱分析法

《现代仪器分析教学》3.原子发射光谱分析法
整理课件
2、光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱 中存在着自吸现象,需要引入自吸常数 b ,则:
I acb
(自吸:原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的 辐射,这种现象称为自吸现象整理)课件
3.激发电位:原子中的电子从基态跃迁至激发态所需的 能量称为激发电位。
整理课件
4、原子发射光谱的产生:气态原子或离子的核外层电 子当获取足够的能量后,就会从基态跃迁到各种激发 态,处于各种激发态不稳定的电子(寿命<10-8s)迅速回 到低能态时,就要释放出能量,若以电磁辐射的形式
释放能量,即得到原子发射光谱。
(quantitative spectrometric analysis)
1.光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范 围;
谱线强度比较法:将被测元素配制成质量分数分别 为1%,0.1%,0.01%,0.001%四个标准。将配好的标样 与试样同时摄谱,并控制相同条件。在摄得的谱线 上查出试样中被测元素的灵敏线,根据被测元素的 灵敏线的黑度和标准试样中该谱线的黑度,用目视 进行比较。
2)光栅摄谱仪
光栅摄谱仪采用衍射光栅代替棱镜作为色散元件。 特点:适用波长范围广,色散和分辨能力大
整理课件
3.4 发射光谱分析的应用
3.4.1 光谱定性分析
1、定性依据:元素不同→电子结构不同→光谱不同 →特征光谱 2、定性分析基本概念 分析线:复杂元素的谱线可能多至数千条,只选择其 中几条特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的 谱线;

原子发射光谱方法

原子发射光谱方法

原子发射光谱方法是一种常用的元素分析方法,它利用物质原子在高温、高压或电子轰击等激发条件下发射出特定波长的光来确定物质中元素的含量。

其主要原理是将待分析样品中的原子或离子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

原子发射光谱方法主要包括以下几种:
1原子吸收光谱法(AAS):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时吸收特定波长的光,通过测量吸收光的强度和波长来确定元素的含量。

2.火焰原子发射光谱法(FAS):将待分析样品在高温火焰中燃烧,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

3.电感耦合等离子体原子发射光谱法(ICP-AES):将待分析样品通过电感耦合等离子体(ICP)的高温高压条件下进行原子化,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

4.原子荧光光谱法(XRF):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的X射线,通过测量发射光的强度和波长来确定元素的含量。

原子发射光谱方法具有高灵敏度、高分辨率、广泛的分析范围和快速分析速度等优点,因此在材料分析、环境监测、食品安全、生命科学等领域得到了广泛应用。

原子发射光谱

原子发射光谱

原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 磁量子数( m ): 描述核外电子云沿磁场方向的分量,即决 定了电子绕核运动的角动量沿磁场方向的 分量。 m = 0、1、 2、 3、……、 l
原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 自旋量子数( s ): 描述核外电子云自旋方向,即自旋角动量 沿磁场方向的分量。电子自旋的空间取向 只有两个,顺磁场和反磁场。s = 1/2 Na:(1s)2(2s)2(2p)6(3s)1 (3s)1 n = 3 l = 0 m=0
2、原子线和离子线
原子线(Ⅰ) :原子核外激发态电子跃迁回基态 所发射出的谱线,用罗马字母Ⅰ 标识,通常也指电弧线。 M*M (I) 离子线(Ⅱ,Ⅲ) : 离子核外激发态电子跃迁回基态 所发射出的谱线,用罗马字母Ⅱ Ⅲ等表示一级电离、二级电离离子 发射的谱线,通常也指火花线。 M+ * M+ (Ⅱ ) M2+* M2+ (Ⅲ )
光谱项
n2S+1LJ 或者nM LJ 原子发射光谱是由原子或离子的核外电子 在高低能级间跃迁而产生的,原子或离子的 能级通常用光谱项来表示。 n:主量子数; L:总角量子数; S:总自旋量子数; M=2S+1,体现了谱线的多重性 J:内量子数;又称光谱支项。
Na (1s)2(2s)2(2p)6(3s)1
原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 角量子数( l ):
描述核外电子云的形状,决定了电子绕核运 动的角动量,同一主量子数 n 下,按不同角 量子数 l 可分为n个亚层。 l = 0、1、 2、 3、 4、…… 符号: s、p、d、 f、 g、……

原子发射光谱光源选择

原子发射光谱光源选择

原子发射光谱光源选择
原子发射光谱光源的选择通常基于实验目的、样品类型和研究要求等因素。

下面列举一些常见的原子发射光谱光源供参考:
1. 火焰光源:常用于火焰原子光谱分析,适用于溶液样品,如火焰光度法等。

火焰光源能提供较高的灵敏度和分辨率,但限制了样品形态。

2. 电感耦合等离子体光源(ICP):常用于溶液样品的元素分析,如ICP-MS等。

ICP具有较高的灵敏度和多元素分析能力,同
时适用于固体、液体和气体样品。

3. 氩灯:氩灯是一种常用的波长标准光源,广泛用于光谱仪校正和质谱仪校正。

4. 氢灯:氢灯是一种常用的紫外光源,用于紫外-可见光谱仪
的校正和质谱仪的校正。

5. 汞灯:汞灯是一种常用的紫外-可见光源,具有广谱的辐射,用于光学元件校正和荧光分析。

6. 激光:激光可提供高强度、狭谱宽的光源,适用于原子吸收光谱和拉曼光谱,可以实现高分辨率和高灵敏度的分析。

以上仅为一些常见的原子发射光谱光源选择,具体选择还需根据实验需求和可行性进行考虑。

35 原子吸收光谱分析的测量条件和测量灵敏度

35 原子吸收光谱分析的测量条件和测量灵敏度

2、灵敏度和检出限(四) 、灵敏度和检出限(
光谱分析中,往往也指明方法的测定限 指明方法的测定限, 光谱分析中 , 往往也 指明方法的测定限, 又称测定下限, 又称测定下限,它是指定量分析方法能够测定 到的最低量或最低浓度。 到的最低量或最低浓度。它与检出限有不同的 定义。一般认为,检出限是指定性检测 指定性检测, 定义。一般认为, 检出限是 指定性检测,即断 定样品中确实存在着高于空白值的待测物质。 定样品中确实存在着高于空白值的待测物质。 高于空白值的待测物质 而测定限实际上是可以测定的极限。 测定限实际上是可以测定的极限。
2、灵敏度和检出限 、
灵敏度。1975年 a) 灵敏度。1975年,国际纯粹和应用化学联合会 校正曲线的斜率S IUPAC)建议把校正曲线的斜率 称为灵敏度, (IUPAC)建议把校正曲线的斜率S称为灵敏度, S=dA/dc。 即 S=dA/dc 。 它表示当被测元素浓度或含量改 变一个单位时,吸光度的变化量。 越大, 变一个单位时,吸光度的变化量。S 越大,灵 敏度越高, 敏度越高,必须注意的是不同浓度区域校正曲 线有不同的斜率,因此灵敏度必须指明浓度或 线有不同的斜率,因此灵敏度必须指明浓度或 含量范围。 含量范围。
3.6 原子吸收光谱分析的 特点和应用
原子吸收光谱分析的特点和应用
原子吸收分析法与其他一些仪器分析法( 原子吸收分析法与其他一些仪器分析法 ( 如 经典发射光谱、 极谱、 分光光度法) 比较, 经典发射光谱 、 极谱 、 分光光度法 ) 比较 , 有一 些突出的特点: 些突出的特点: a)选择性高。大多数情况下共存元素对原子吸 a)选择性高。 选择性高 收分析不产生干扰, 收分析不产生干扰 , 所以一般不需要分离共 存元素。 存元素。 b)灵敏度高 一般说, 灵敏度高。 b)灵敏度高 。一般说 ,原子吸收的灵敏度比较 高 。 火焰原子化法灵敏度在mg/L级以上,少 火焰原子化法灵敏度在mg/L级以上, mg/L 级以上 数达到ug/L ug/L级 数达到 ug/L 级 。 无火焰原子化有更高的灵敏 度。

原子发射光谱标准加入法

原子发射光谱标准加入法

原子发射光谱标准加入法原子发射光谱分析是一种重要的化学分析方法,它通过测定原子在高温条件下发射的特定波长的光线来确定样品中元素的含量。

在实际应用中,为了保证分析结果的准确性和可靠性,需要严格遵守一系列的标准加入法。

本文将介绍原子发射光谱标准加入法的相关内容,以帮助读者更好地理解和应用该分析方法。

首先,标准加入法是指在样品中加入已知浓度的标准溶液,通过比较标准溶液的光谱信号与样品的光谱信号来确定样品中元素的含量。

在进行原子发射光谱分析时,选择合适的标准溶液非常重要,标准溶液的浓度应该与样品中元素的含量相近,以确保分析结果的准确性。

此外,标准溶液的制备和保存也需要严格按照相关标准进行,避免因为标准溶液的不确定性而影响分析结果的准确性。

其次,标准加入法在实际操作中需要注意一些关键的步骤。

首先是样品的预处理,包括样品的溶解、稀释等操作,确保样品中的各种干扰物质得到有效的去除或者稀释,以减小对光谱分析结果的影响。

其次是标准溶液的加入,需要确保标准溶液的加入量足够小心,并且在加入后进行充分的混合和等待一定的时间,使得样品和标准溶液充分反应。

最后是测定样品和标准溶液的光谱信号,通过比较两者的光谱信号来确定样品中元素的含量。

在整个操作过程中,需要严格控制各种误差的产生,以保证分析结果的准确性和可靠性。

此外,标准加入法还需要注意一些常见的误差和干扰因素。

比如,样品中可能存在一些未知的干扰物质,这些干扰物质可能会影响光谱信号的测定结果。

因此,在进行原子发射光谱分析时,需要对样品进行充分的预处理和干扰物质的去除,以减小这些干扰因素对分析结果的影响。

另外,标准溶液的浓度和稳定性也是影响分析结果的重要因素,需要进行严格的控制和监测。

总之,原子发射光谱标准加入法是一种重要的化学分析方法,它通过加入已知浓度的标准溶液来确定样品中元素的含量。

在实际应用中,需要严格遵守相关的标准和操作规程,以保证分析结果的准确性和可靠性。

通过本文的介绍,相信读者对原子发射光谱标准加入法有了更深入的了解,能够更好地应用该方法进行化学分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子发射光谱测定条件的选择
原子发射光谱测定是一种用于确定物质中的化学元素类型和浓度的分析方法。

在进行原子发射光谱测定时,需要考虑以下条件的选择:
1. 光源选择:可以选择使用电弧、火焰、电感耦合等不同类型的光源。

不同类型的光源适用于不同的样品类型和待测元素。

2. 谱线选择:根据待测元素的特定谱线进行选择。

每个元素都有特定的谱线,其波长和强度是唯一的。

3. 确定谱线强度的时间:在探测待测元素的谱线时,需根据谱线的强度来选择合适的测定时间。

通常情况下,可以通过试验确定最佳的测定时间。

4. 标准曲线的建立:利用合适浓度的标准溶液进行测定,建立标准曲线可以用来确定样品中的待测元素浓度。

5. 样品制备:样品制备过程中需要考虑到待测元素的存在形式,例如是否需要溶解、蒸发等。

不同的样品制备方法会对测定结果产生影响。

6. 干扰的消除:在进行测定时,需要注意存在的干扰物质对测定结果的影响,并采取相应的消除或修正方法。

通过合理选择这些条件,可以提高原子发射光谱测定的准确性和可靠性,实现对待测化学元素的定量测定。

相关文档
最新文档