原子发射光谱法

合集下载

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱分析法
2023-11-06
目录
• 原子发射光谱分析法概述 • 原子发射光谱仪 • 分析方法与样品处理 • 原子发射光谱法的应用 • 原子发射光谱法的优缺点 • 研究成果与应用实例
01
原子发射光谱分析法概述
定义与原理
定义
原子发射光谱分析法是一种基于原子发射光谱学的方法,通过对样品中原子 或离子的特征光谱进行分析,实现对其成分和含量的测定。
原理
当样品被加热或受到能量激发时,原子会从基态跃迁到激发态,并释放出特 征光谱。通过对这些光谱进行分析,可以确定样品中元素的种类和含量。
发展历程与重要性
发展历程
原子发射光谱分析法自19世纪末发展至今,经历了从经典光谱分析到现代光谱仪 器分析的演进过程。
重要性
原子发射光谱分析法在科学研究和工业生产中具有广泛的应用价值,为材料科学 、环境科学、生命科学等领域提供了重要的分析手段。
03
该方法广泛应用于地质、环保、生物医学等领域,用于研究复杂样品中元素的 含量、分布和化学形态。
05
原子发射光谱法的优缺点
优点
高灵敏度
原子发射光谱法可以检测到低浓度的元素 ,具有很高的灵敏度。
无需样品处理
原子发射光谱法不需要对样品进行复杂的 处理,可以直接进行分析。
快速分析
该方法可以实现多元素同时分析,大大缩 短了分析时间。
发和激发。
光谱仪的构造
包括入射狭缝、准直镜、光栅 、聚焦镜和ቤተ መጻሕፍቲ ባይዱ射狭缝。
光谱仪工作原理
样品被激发后,原子会产生不 同波长的光谱,通过光栅分光 后形成光谱,再经过聚焦镜聚 焦到出射狭缝,最后由检测器
进行检测。
光谱仪的分类与特点

《原子发射光谱法》课件

《原子发射光谱法》课件
激发温度:10000 K
优点:激发温度高,可分析固体,稳定性好。
缺点:蒸发温度低、检出限差,不宜分析微量元素,适宜高含量、 难激发元素和低熔点元素分析。
④ 电感耦合等离子体(ICP)
等离子体:物质的第四态,由离子、自由电子和中性原 子或分子组成,其正负电荷密度几乎相等,在总体上是 一种电中性的气体。
⒈ 激发光源的类型:
⑴ 电弧: 直流电弧和交流电弧 ⑵ 火花:高压和低压火花 ⑶ 电感耦合等离子体焰炬 ⑷ 激光 ⑸ 火焰
① 直流电弧
A R
外焰
阴极 阴极斑点 3000 K
DC 170~300 V
分析间隙
弧柱
阳极斑点4000 K 阳极
L
激发温度:4000 K ~ 7000 K
优点:阳极温度高(4000 K),蒸发温度高,灵敏度高。 缺点:稳定性差,只能作定性分析或半定量分析,不适合
3. 标准加入法
当测定低浓度元素时,是克服基体效应的最佳方法。
4. 工作曲线法
又称外标法。适用范围宽,是仪器分析常用的方法。
本章要求
⒈ 掌握原子发射光谱法的基本原理。 ⒉ 了解原子发射光谱法的各种光源及仪器特点。 ⒊ 掌握原子发射光谱法的分析方法及适用范围。
定量分析。
② 交流电弧
激发温度:4000~7000 K
T1变压器 可使220V电压上 升 至 3000V , G1 放 电 , 形 成 C1-L1-G1高频震荡放电;
T2 变 压 器 可 使 电 压 上 升 至 10000V , G2 放 电 , 形 成 R2-L2-G2 低压电弧放电;
C2可 将高频电 流沿 L2-G2-C2 与低频电弧电流分开,高频 电流不能进入低压电弧电路。
优点:电极温度高,蒸发能力快,检出限低;电弧温度高, 激发能力强;具有脉冲性;稳定性较好,可作定量分析。

第3讲 原子发射光谱法

第3讲 原子发射光谱法

最灵敏线、最后线、分析线进行定性分析。
2.定性分析的方法
A.标准样品与试样光谱比较法
相同条件下摄谱 比较特征谱线
样品(指定元素) 纯物质(指定元素)
若试样光谱中出现标准样品所含元素的2~3条 特征谱线(一般看最后线),就可以证实试样
中含有该元素,否则不含有该元素。
只适合于少数指定元素的定性分析,即判断样品中 是否含有某种或某几种指定元素时,可用此种方法
温度:6000-8000K 稳定性:很好 温度:10000K
稳定性:很好
温度:10000K,稳定性:好
交流电弧
直流电弧
温度:4000-7000K,稳定性:好
温度:4000-7000K,稳定性:差
火焰
温度:2000-3000K,稳定性:很好
如何选择光源?
• • • • • 易激发易电离元素,碱金属等——火焰光源 难挥发——直流电弧光源 难激发——交流,火花电弧 低含量——交流电弧 高含量——电弧
类型:
a、棱镜分光系统(折射) b、光栅分光系统(衍射和干涉)
1. 平面衍射光栅摄谱仪
感光板的乳剂面 物镜 凹面反射镜
平面光栅 三透镜
准光镜 反射镜 狭缝 光源
2.IRIS Advantage 中阶梯 光栅分光系统(实物图)
(三)检测器
1. 摄谱检测系统
1.1 摄谱步骤:
a.安装感光板在摄谱仪的焦面上 b.激发试样,产生光谱而感光 c.显影,定影,制成谱板 d.特征波长,定性分析 e.特征波长下的谱线强度,定量分析
谱线强度的基本公式
Iqp :谱线强度; Aqp :原子由q能态向p能态跃迁的概率 N0:基态原子数 hυqp:光子的能量;
gq 、g0:激发态和基态的统计权重(粒子在某一能级下可能 具有的几种不同的状态数) Eq :激发电位; T :温度K k :Boltzmann常数

原子发射光谱法(aes)

原子发射光谱法(aes)
谱线强度法
通过测量待测样品中某一元素的特征谱线强度,与已知浓度的标准样品进行比 较,大致确定待测样品中该元素的含量范围。
定性分析
谱线识别法
通过对比已知元素的标准谱线与待测样品的谱线,确定待测样品中存在的元素种 类。
特征光谱法
利用不同元素具有独特的特征光谱,通过比对特征光谱的差异,确定待测样品中 存在的元素种类。
电热原子化器利用电热丝加热 ,使样品中的元素原子化。
化学原子化器利用化学反应将 样品中的元素转化为气态原子

光源
01 光源用于提供能量,使样品中的元素原子 化并产生光谱信号。
02 光源类型有多种,如电弧灯、火花放电灯 等。
03
电弧灯利用电弧放电产生高温,使样品中 的元素原子化。
04
火花放电灯利用高压电场使气体放电,产 生高温,使样品中的元素原子化。
原子发射光谱法(AES)
目 录
• 原子发射光谱法(AES)概述 • AES的仪器与设备 • AES的样品制备与处理 • AES的分析方法与技术 • AES的优缺点与挑战 • AES的未来发展与展望
01 原子发射光谱法(AES)概 述
定义与原理
定义
原子发射光谱法(AES)是一种通过测量物质原子在受激发态跃迁时发射的特定波长的光来分析物质成分的方法。
02
发射光谱仪通常包括电 子激发源、真空系统、 光学系统、检测器等部 分。
03
电子激发源用于产生高 能电子,激发原子或离 子,使其跃迁至激发态。
04
真空系统用于维持仪器 内部的高真空环境,减 少空气对光谱信号的干 扰。
原子化器
01
02
03
04
原子化器是将样品转化为原子 蒸气的装置。

第三章 原子发射光谱法.

第三章 原子发射光谱法.
第三节 原子发射光谱仪
一 摄谱仪与光电直读 光谱仪
二 火焰光度计
3/31/2020
一 摄谱仪与光电直读光谱仪
摄谱仪:利用感光板来记录元素辐射的谱线,对试样元素 进行定性、定量分析
光电直读光谱仪:用光敏元件来接受分析谱线,并将其强 度信号转换成电信号,通过读出系统直接读出谱线强度 或分析结果。 二者均由激发源、分光系统和检测系统三个部分组成, 主要区别是检测系统。
第三章 原子发分析法 三 光电直读法 四 火焰光度法 五 原子荧光分析法
3/31/2020
一 原子发射光谱法(AES):
根据原子或离子在一定条件下受激后所发射的特征光谱来 研究物质化学组成及含量的方法。 二 摄谱法: 采用感光板照相记录,将所拍摄的谱片在映谱仪和测微光度 计上进行定性和定量分析。 三 光电直读法: 将元素特征的分析线强度通过光电转换元件转换为电信号直 接测量待测元素含量。 四 火焰光度法: 以火焰为激发源的原子发射光谱法。 五 原子荧光分析法: 以光能为激发源的原子发射光谱法。
3/31/2020
ICP-AES重要部件示意图
3/31/2020
几种光源的比较
光 源 蒸发温度
直流电弧

交流电弧

激发温度/K 4000~7000 4000~7000
放电稳 定性
稍差
应用范围
定性分析,矿物、 纯物质、难挥发元 素的定量分析
较好
金属合金低含量组 分的定量分析
火花

瞬间10000

金属与合金、难激 发元素的定量分析
3.检测系统:将原子的发射光谱记录或检测出来,以进行定
性或定量分析。 (1)摄谱检测系统:把感光板置于分光系统的焦平面处,通

第4章 原子发射光谱法

第4章 原子发射光谱法

23:23
6. 弧焰中原子、离子浓度的比例与元素的电离电位有关。电离 电位越低,离子浓度越大,离子线越强,电离电位越高,离子 浓度越小,原子线越强。
元素的电离电位,在周期表中,从左到右逐渐增加,从上到下 逐渐减少,故周期表中左下角元素Cs、Fr最易发出离子线,右 上角的元素B、C、Si、P很难发出离子线,即使原子线也很难激 发,多发生在200 nm以下的远紫外区。
23:23
三、 发射光谱法的局限性 (1)不宜定量分析,误差30~50%。 由于发射光谱法是建立在经验基础上,且样品组成的影响一般 比较严重,必须采用其组成与分析样品相匹配的参比样品,这 是限制该法检出能力、准确度及分析速度进一步提高的主要障 碍之一。 (2) 不适宜非金属元素分析。 理论上周期表中所有元素都可用发射光谱法测定。但是对于一 些非金属元素一般很难得到分析它们所必须的条件,这些元素 检出限很差或者无法分析。目前可用发射光谱法分析的元素仍 然主要局限在金属和少数非金属元素。 (3) 发射光谱法只能用于元素分析,而不能确定这些元素在样品 中存在的化合物状态。
I
Pj P0
A h N 0 e

E j E0 kT
(4 - 3)
(3)基态原子数
谱线强度与基态原子数成正比。
在一定条件下,基态原子数与试样中该元素浓度成正
比。
因此 在一定的实验条件下谱线强度与被测元素浓度成正 比,这是光谱定量分析的依据。
23:23
4.3 元素的光谱性质 一、元素的光谱性质与元素周期表的关系 所谓元素的光谱性质是指元素的电离电位、激发难易、谱线特 征、谱线强度以及元素的挥发性等。元素的这些性质与元素的 原子结构有关,因而,它与周期表有一定关系,而且有一定规 律性。

原子发射光谱法

原子发射光谱法
灵敏线 是元素激发电位低、强度较大的谱线,多是 共振线。
最后线 是指当样品中某元素的含量逐渐减少时,最 后仍能观察到的几条谱线。
谱线强度
I = A CB
赛伯-罗马金公式
影响谱线强度的因素:
激发电位 统计权重 原子密度
跃迁几率 光源温度 其他因素
仪器
光源
单色器
熔融、蒸发、 离解、激发
分光
检测器 检测
围要大,对于ICP而言准确性也较高。有些元素原子吸收是无 法测定的,但发射可测,如P、S 等;(3)AAS比较普遍,其
价格相对AES便宜,操作也比较简单。
AES理论基础
❖ 原子结构及原子光谱的产生 ❖ 原子的激发和电离 ❖ 谱线强度
原子结构及原子光谱的产生
❖ 原子结构 ❖ 原子光谱的产生
原子结构及原子光谱的产生
激发光源。 ❖ 在一定频率的外部辐射光能激发下,原子的外层电子在由一个
较低能态跃迁到一个较高能态的过程中产生的光谱就是原子吸
收光谱 (AAS)。 ❖ (1)一般来说AES在多元素测定能力上优于AAS,但是AES在
操作上比AAS来的复杂;还有就是AES由谱线重叠引起的光谱
干扰较严重,而AAS就小的多 ;(2)原子发射比吸收测定范
AES的发展简史
❖ 定量分析阶段 20世纪30年代,罗马金(Lomakin)和赛伯(Scheibe) 通过实验方法建立了谱线强度(I)与分析物浓度(c) 之间的经验式--- I = A CB 从而建立了AES的定量分析法。
❖ 等离子光谱技术时代
20世纪60年代,电感耦合等离子体(ICP)光源的 引入,大大推动了AES的发展。
激发光源
激发光源的作用及理想光源 光源 光源选择

原子发射光谱法

原子发射光谱法
第三章 原子发射光谱法
3.1 概论 3.2 基本原理 3.3 原子发射光谱仪器 3.4 原子发射光谱分析方法
Atomic emission spectroscopy
3.1 概论
原子发射光谱法:(atomic emission spectrometry,AES ) 是根据待测物质的气态 原子被激发时所发射的特征线状光谱的波长及 其强度来测定物质的元素组成和含量的一种分 析技术。
3.3.1.1 直流电弧 电源一般为可控硅整流器。常用高频电
压引燃支流电弧。 直流电弧工作时,阴极释放出来的电子
不断轰击阳极,使其表面上出现一个炽热的 斑点。这个斑点称为阳极斑。阳极斑的温度 较高,有利于试样的蒸发。因此,一般均将 试样置于阳极碳棒孔穴中。在直流电弧中, 弧焰温度取决于弧隙中气体的电离电位,一 般约40007000K,尚难以激发电离电位高的 元素。电极头的温度较弧焰的温度低,且与 电流大小有关,一般阳极可达3800℃,阴极 则在3000℃以下。
特点:
①电弧瞬间温度很高,激发能量大,可 激发电离电位高的元素。
②电极头温度低,不利于元素的蒸发。 ③稳定性高,再现性好。 ④自吸现象小,适用于高含量元素分析。 ⑤低熔点金属、合金的分析,高含量元 素的分析,难激发元素的分析。
3.3.1.4 电感耦合等离子体光源 等离子体是一种电离度大于0.1%的电离
交流电弧是介于直流电弧和电火花之间 的一种光源,与直流相比,交流电弧的电极 头温度稍低一些,但由于有控制放电装置, 故电弧较稳定。这种电源常用于金属、合金 中低含量元素的定量分析。
低压交流电弧的特点:(1)交流电弧电 流具有脉冲性,电流密度比直流电弧大,也 让电弧温度高,激发能力强;(2)交流电弧 的稳定性好,这种电源定量分析;(3)由于 交流电弧放电有间歇性,电极温度较低,蒸 发能力略低。

原子发射光谱法

原子发射光谱法

Nt = α τ CB
思考题: 思考题: 离子线的强度与等离子体中的离子密度有关, 离子线的强度与等离子体中的离子密度有关,试根 据上述思路求离子谱线的强度与浓度间的关系。 据上述思路求离子谱线的强度与浓度间的关系。
第三节
发射光谱分析的仪器
光源
单色器
检测器
一、激发光源 激发光源的作用是提供试样蒸发、原子化、 激发光源的作用是提供试样蒸发、原子化、激发所需的 能量。 能量。 温度高 对激发光源的要求是: 稳定,重现 对激发光源的要求是: 稳定, 背景小(无或少带光谱) 背景小(无或少带光谱) 简便、 简便、安全
∆E =Ei - Ej = hνij = hC/λ ν λ
频率反映了单个光子的能量, 频率反映了单个光子的能量,强度是群体谱线总能量 若激发态原子密度为
Ni,每个原子单位时间内发生 ,
Aij 次跃迁(跃迁几率) 次跃迁(跃迁几率)
则 根据
Iij = Aij hνijNi ν
Boltzmann 公式
R
D T D
R
L C G
E~
分析特性 • 火花作用于电极的面积小,时间短,电极温度 火花作用于电极的面积小,时间短, 低,不适于难蒸发的物质 • 火花放电的能量高,能激发激发电位很高的原 火花放电的能量高, 子线或离子线 •稳定性好,适于定量分析 稳定性好, 稳定性好 •电极面积小,适于微区分析 电极面积小, 电极面积小 电弧和火花光源适于固体样品分析,但温度低,基体 电弧和火花光源适于固体样品分析,但温度低, 影响严重,需要寻找更高蒸发、 影响严重,需要寻找更高蒸发、原子化和激发的光源
4、基体效应 基体效应指试样组成对谱线强度的影响。 基体效应指试样组成对谱线强度的影响。这种影响 主要发生在试样的蒸发和激发过程中。 主要发生在试样的蒸发和激发过程中。 (1)光源蒸发温度与试样成分有关 基体含大量低沸点物质——电极由低沸点物质控制, 电极由低沸点物质控制, 基体含大量低沸点物质 电极由低沸点物质控制 蒸发温度低 基体含大量高沸点物质——电极由高沸点物质控制, 电极由高沸点物质控制, 基体含大量高沸点物质 电极由高沸点物质控制 蒸发温度高 基体含不同沸点物质—— 出现不同的蒸发顺序,影 出现不同的蒸发顺序, 基体含不同沸点物质 响谱线强度 (2)光源激发温度与试样主体成分的电离电位有关 电离电位越高,光源激发温度越高, 电离电位越高,光源激发温度越高,影响谱线 强度。 强度。

第三章原子发射光谱法

第三章原子发射光谱法
2019/11/1
Questions:
(1)用这个所谓价电子的组态可表明价电子所处的原 子轨道,也能说明原子是处于基态还是激发态,那么它 能确切表示电子所处的能级吗? (2)在这个电子组态的表示式中,没有体现磁量子数 和自旋量子数,难道它们对电子的能量没有影响吗?
2019/11/1
举个例子
例如Na价电子组态的 3p1——激发态
2019/11/1
(2)总角量子数L
各价电子角动量相互作用,按一定方式耦合而成的原 子总的角量子数。 对于有两个价电子的原子,L的取值(只能) l1+l2, l1+l2 –1, l1+l2 –2,……,| l1-l2 | 例如:价电子为np1nd1的原子 l1=1,l2=2,所以L=3,2,1三个值 当L=0,1,2,3,…时分别用大写字母
2019/11/1
(2)关于发射过程
i.发射必须符合光谱选择定则; ii.发射线的波长反映的是单个光子的辐射能量,与辐 射前后原子所处的能级有关,l=hc/(E2-E1)=hc/DE; iii. 不同元素原子的结构不同,原子的能级状态不同, 能级之间的能级差不同,因此发射谱线的波长也不同, 每种元素都有其特征谱线,可定性。
这个符号表示的激发态实际上包涵两个能量相近的能 级,因此仅仅用3p1来表示并不能准确地反映在这种 状态下Na原子的能级状况。 Why ?
2019/11/1
Spin (s) and orbital (l) motion create magnetic fields that perturb each other (couple) if fields parallel - slightly higher energy if fields antiparallel - slightly lower energy

原子发射光谱方法

原子发射光谱方法

原子发射光谱方法是一种常用的元素分析方法,它利用物质原子在高温、高压或电子轰击等激发条件下发射出特定波长的光来确定物质中元素的含量。

其主要原理是将待分析样品中的原子或离子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

原子发射光谱方法主要包括以下几种:
1原子吸收光谱法(AAS):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时吸收特定波长的光,通过测量吸收光的强度和波长来确定元素的含量。

2.火焰原子发射光谱法(FAS):将待分析样品在高温火焰中燃烧,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

3.电感耦合等离子体原子发射光谱法(ICP-AES):将待分析样品通过电感耦合等离子体(ICP)的高温高压条件下进行原子化,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

4.原子荧光光谱法(XRF):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的X射线,通过测量发射光的强度和波长来确定元素的含量。

原子发射光谱方法具有高灵敏度、高分辨率、广泛的分析范围和快速分析速度等优点,因此在材料分析、环境监测、食品安全、生命科学等领域得到了广泛应用。

分析化学(仪器分析)第六章原子发射光谱法

分析化学(仪器分析)第六章原子发射光谱法

2. 光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为:
I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱中 存在着自吸现象,需要引入自吸常数 b ,则:
I a cb lg I b lg c lg a
发射光谱定量分析的基本关系式,称为塞伯-罗马金公式 (经验式)。自吸常数 b 随浓度c增加而减小(自吸越大,b 值越小);当浓度很小,自吸消失,b=1。
长小的则衍射角小,谱线靠近0级;波长大的,衍射角大 ,谱线距0级较远; 同样对于二级光谱而言,也有同样的情况。但可能造成二 级光谱与一级光谱的重叠,而且具有最大强度的光处于0级 (为未分开的白光)
平面反射光栅(闪耀光栅)
将平行的狭缝刻制成具有相同形状的刻槽(多为三角形 ),这时入射线的小反射面与光栅平面夹角一定,反射线 集中于一个方向,从而使光能集中于所需要的一级光谱上。
E1
由激发态直接跃迁至基态时辐射的谱线称为共振线。
由第一激发态直接跃迁至基态的谱线称为第一共振线。
3. 最灵敏线、最后线、分析线
E0
第一共振线一般也是元素的最灵敏线。
当该元素在被测物质里降低到一定含量时,出现的最后一条谱线, 这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。
4. 原子线、离子线
Iij ∝ C 定量分析的依据
不同温度(T)下的原子发射光谱(nm)
1.4 谱线的自吸与自蚀
等离子体:以气态形式存在的包含分子、离子、电子等粒子 的整体电中性集合体。
自吸:原子在高温时被激发,发射某一波长的谱线,而处于 低温状态的同类原子又能吸收这一波长辐射的现象。
I = I0e-ad

原子发射光谱法84158

原子发射光谱法84158

K 元素的能级图
原子发射光谱法包括了三个主要的过程
由光源提供能量使样品蒸发、形成气态原 子、并进一步使气态原子激发而产生光辐 射;
将光源发出的复合光经单色器分解成按波 长顺序排列的谱线,形成光谱;
用检测器检测光谱中谱线的波长和强度。
热能、电能
基态元素M
激发态M*
E
特征辐射
定性与定量分析的依据
1. 谱线强度与激发能量的关系
当基态原子与温度一定时,被激发的原子 所处的激发态能量越低,处于这种状态的 原子数也多,相应的跃迁概率就越大,谱 线强度也就越强。
2.谱线强度与气体温度的关系 温度较低时,温度升高,谱线增强。 超过某一温度后,原子线 减弱,离子线增强。
3.谱线强度与试样中元素含量的关系 在激发能与激发温度一定时,谱线强度与试
(2)振荡电压经B2的次级线圈升压到10kV,通过电容器 C2将电极间隙G的空气击穿,产生高频振荡放电;
(3)当G被击穿时,电源的低 压部分沿着已造成的电离气体通道 ,通过G进行电弧放电;
(4)在放电的短暂瞬间,电压 降低直至电弧熄灭,在下半周高频 再次点燃,重复进行;
玻耳兹曼常数;T为激发温度;
发射谱线强度: Iij = Ni Aijhij
h为Plank常数;Aij两个能级间的跃迁几率; ij发射谱线
的频率。将Ni代入上式,得:
Iij
gi g0
Aij h ij
N0
Ei
e kT
可见影响发射光强度的因素有:
1、激发能 2、激发温度 3、跃迁几率 4、统计权重 5、基态原子数
原子发射光谱仪
原子发射光谱分析仪器的类型有多种,如: 摄谱仪、 火焰发射光谱、 微波等离子体光谱仪、 感耦等离子体光谱仪、 光电光谱仪等;

原子发射光谱法

原子发射光谱法

3.3.6 光谱仪器类型
光电直读光谱仪分为多道直读光谱仪、 单道扫描光谱仪和全谱直读光谱仪三种。 前两种仪器采用光电倍增管作为检测器, 后一种采用固体检测器。 1.摄谱仪 2.多道直读光谱仪 3.单道扫描光谱仪 4.全谱直读光谱仪
3.3.6.1 摄谱仪
平面光栅摄谱仪
3.3.6.2 多道直读光谱仪
3.2 基本原理
3.2.1原子发射光谱的产生
原子的核外电子一般处在基态运动, 当获取足够的能量后,就会从基态 跃迁到激发态,处于激发态不稳定 (寿命小于10 -8 s),迅速回到基态 时,就要释放出多余的能量,若此 能量以光的形式出显,既得到发射 光谱。
8/6/2013
能量与光谱
ΔE=E2- E1 =h c/λ =hυ =hσc λ= h c/E2-E1 υ= c /λ σ= 1/λ
3.3.2.1 溶液试样
气动雾化器:利用动力学原理将液体试样 变成气溶胶并传输到原子化器的进样方式。
(a) 同心雾化器;
(b) 交叉型雾化器;
(c) 烧结玻璃雾化器; (d) Babington雾化器
3.3.2.1 溶液试样
超声雾化器进样是根据超声波振动的 空化作用把溶液雾化成气溶胶后,由载气 传输到火焰或等离子体的进样方法。

ICP
很高
6000~8000 最好
3.3.4 分光仪
原子发射光谱的分光仪目前采用棱镜和
光栅两种分光系统。请参阅第2章。
3.3.5 检测器
目视法:用眼睛来观测谱线强度的方法称 为目视法。仅适用于可见光波段。 摄谱法:用感光板记录光谱。 光电法:光电转换器件是光电光谱仪接收 系统的核心部分,主要是利用光电效应将 不同波长的辐射能转化成光电流的信号。

原子发射光谱法

原子发射光谱法

玻耳兹曼常数;T为激发温度;
发射谱线强度: Iij = Ni Aijhij
h为Plank常数;Aij两个能级间的跃迁几率; ij发射谱线
的频率。将Ni代入上式,得:
Iijgg0i AijhijN0ekEiT
可见影响发射光强度的因素有: 1、激发能 2、激发温度 3、跃迁几率 4、统计权重 5、基态原子数
1. 谱线强度与激发能量的关系
当基态原子与温度一定时,被激发的原子 所处的激发态能量越低,处于这种状态的 原子数也多,相应的跃迁概率就越大,谱 线强度也就越强。
2.谱线强度与气体温度的关系 温度较低时,温度升高,谱线增强。 超过某一温度后,原子线 减弱,离子线增强。
3.谱线强度与试样中元素含量的关系 在激发能与激发温度一定时,谱线强度与试
缺点: 弧光不稳,再现性差; 不适合定量分析。
2. 低压交流电弧
工作电压:110~220 V。 采用高频引燃装置点燃电弧,在每一交流半周时引燃一 次,保持电弧不灭;
工作原理
(1)接通电源,由变压器B1升压至2.5~3kV,电容器C1 充电;达到一定值时,放电盘G1击穿;G1-C1-L1构成振荡回 路,产生高频振荡;
原子发射光谱仪
原子发射光谱分析仪器的类型有多种,如: 摄谱仪、 火焰发射光谱、 微波等离子体光谱仪、 感耦等离子体光谱仪、 光电光谱仪等;
(一) 光源 光源的作用:为试样的气化原子化和激发提供能源;
1. 直流电弧
直流电作为激发能源,电压150 ~380V,电流5~ 30A; 两支石墨电极,试样放置在一支电极(下电极)的凹槽内; 使分析间隙的两电极接触或用导体接触两电极,通电,电 极尖端被烧热,点燃电弧,再使电极相距4 ~ 6mm;

《仪器分析》原子发射光谱法

《仪器分析》原子发射光谱法

ms =±1/2,±3/2,∙∙∙,±S (当S为半整数时)
共有2S+1个值。
总角动量量子数(也称总内量子数)J等于L和S的矢量和, 即J=L+S。J的取值为: J=L+S,L+S-1,L+S-2,∙∙∙,| L-S | 若L≥S ,数值从J=L+S到L-S,共有(2S+1)个; 若L<S,数值从J=L+S到S-L,共有(2L+1)个。 例如,L=2,S=1,即2S+1=3, 则J=3,2,1,有 3个J值。
n是主量子数。 L是原子总角量子数,用大写英文字母S,P,D,F ∙∙∙ 表示。 L = 0 , 1 , 2 , 3 , ∙∙∙ ,( 2S + 1 )的数值写在 L 符号的左上角, (2S+1)为光谱项的多项性,也可以用符号M表示。 因每一个光谱项有(2S+1)个不同的J值,把J值注在L的右 下角表示光谱支项,每一个光谱项有(2S+1)个光谱支项。 由于 L 与 S 的相互作用,光谱支项的能级略有不同,这( 2S +1)个略有不同的能级在光谱中形成(2S+1)条距离很短的 线,称为多重线。若2S+1等于2或者3,分别称为二重线和三重 线。 当 L<S 时,每一个光谱支项只有( 2L + 1 )个支项,但( 2S +1)还称为多重性,所以“多重性”的定义是(2S+1),不 一定代表光谱支项的数目。
原子发射光谱法(AES)
原子发射光谱是基于当原子或离子受激发的外 层电子从较高的激发态跃迁到较低的能级或者基态 能级,多余的能量以光的形式辐射出来,从而产生 发射光谱。这样产生的光谱是线光谱。
原子的线光谱是元素的特征,不同的元素具有 不同的特征光谱,是定性定量分析的基础。原子发 射光谱法是元素分析的重要方法之一。
跃迁的谱线称为第一共振线或主共振线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i
i0
雾翳
γ =S/ log H
感光板的反衬 度(对比度)
γ
Hi---为感光板的惰延量
B. 光电直读光谱仪的类型
真空紫外直读光谱仪:170~340nm 氦气、氮气保护 测定C、S、P etc
非真空直读光谱仪:200~900nm
❖ 扫描型直读光谱仪
C:全谱直读ICP-OES光谱仪
波长
转动光栅扫描
五、AES的定性定量分析方法
一、原子发射光谱法的分析过程
激发源(光源)
单色器
检测器
数据处理与显示
二、 激发源(光源)
A. 低压交流电弧
10KV 4000~7000K
高频高压引火线路
2.5~3KV A 低频低压燃弧线路
220V 50Hz
电极放电较稳定 特点与应用 适用于矿物、低含量金属的测定、只能测定固体粉末。
B. 电感耦合等离子体 ICP(Inductively coupled plasma)
第一部分 基本原理
一. 原子发射光谱的产生
E3 电能、热能、
光能等激发气态 E2 基态原子、离子
的核外电子受激 跃迁至高能态。
E1
气态、激发态原子、离子的 核外电子,迅速回到低能态时以 光辐射的形式释放能量。原子发 射光谱
(寿命小于10-8s)
hi
E0
1. 激发电位 2. 共振线、第一共振线 3. 最灵敏线、最后线、分析线
1. 谱线强度及其影响因素
谱线强度的基本公式:
Ii =[ gi/g0 e-Ei/kTAihυi (1-)k/ ] C E0
gi 、g0—激发态和基态的统计权重
Ei
—激发电位
K
— Boltzmann常数
T
—温度K
Ai
—蒸发出的原子数
K
—蒸发速率常数
—逸出速率常数
C
—试样中浓度
—电离度
当以上的影响因素恒定时:
Cs、K、Li、Na、Rb
相对灵敏度(%) 1~10-1
10-1~ 10-2 10-2~ 10-3
10-3~ 10-4
10-4~ 10-5 10-5~ 10-6
2.定性分析的方法(摄谱法)
A.标准样品与试样光谱比较法
❖ 用标准样品与试样在相同的条件下摄谱。 ❖ 比较标准样品与试样所出现的特征谱线。 ❖ 若试样光谱中出现标准样品所含元素的2~3条特征谱线,就可
三、 单色器(摄谱仪)
A. 平面光栅摄谱仪的色散系统
平面光栅衍射的线色散率、分辨率、聚光本领
四、 检测器
A. 摄谱法
❖安装感光板在摄谱仪的焦面上 ❖激发试样,产生光谱而感光 ❖显影,定影,制成谱板
⑴ 摄谱步骤 ⑵ 感光板
❖特征波长,定性分析 ❖特征波长下的谱线强度,定量分析
玻璃板为支持体,涂抹感光乳剂(AgBr+明胶+增感剂)
以证实试样中含有该元素。 ❖ 否则不含有该元素。
B.标准铁光谱图比较法 标准铁光谱图(一级)
❖ 2300~3500埃/15张,80埃/张。 ❖ 以铁光谱作为波长标尺。 ❖ 标有68种元素的480多条特征谱线。
❖ 上标:谱线的强度级(1~10级)。 ❖ 下标:原子线(Ⅰ)与离子线(Ⅱ→ +、 Ⅲ→ 2+、Ⅳ→ 3+ )。 ❖ 底标:波长十位后尾数,12.3→2712.3埃、47.3→ 2747.3埃。
Au、B、Bi、Co、Dy、Er、Eu、Hg、Gd、Ho、La、 Mn、Mo、Nb、 P、Pb、Pr、Pt、Rb、Rn、Ru、S、 Sb、Sn、Si、Ta、Tb、Ti、Tl、V、Zn、Zr
Al、Cd、Cr、Cs、F、Fe、Ga、Ge、In、Mg、Ni、 Pb、Sc、Y、Yb
Ag、Be、Cu、Ba、Sr、Ca
感光:
2AgX+2hυ→ Ag(形成潜影中心)+X2
显影: 对苯二酚
(海德洛)
对甲氨基苯酚 (米吐尔)
定影: AgBr +Na2S2O3 → NaAgS2O3 Na3Ag(S2O3)2 Na5Ag3(S2O3)4 硫代硫酸钠(海波)
⑶ 感光板乳剂特性曲线
A.曝光量(H) 与照度(E)的关系
B. 黑度(S)
S log i0 i
i0 未曝光部分的透光强度 i 曝光部分的透光强度
C.黑度(S)与曝光量(H) 的关系
黑度(S)与曝光量(H) 的关系 难以用一般的数学公式描述。
感光板γ:0.4~1.8
定量分析:采用γ较高的感光板---紫外 型感光板。
定性分析:采用Hi较小即灵敏度较高的 感光板---紫外型感光板。
3. 原子发射光谱法的半定量分析(摄谱法)
D. 标准铁光谱比较法操作:
❖ 在摄制试样光谱的同时,在感光板上摄制1~2条铁光谱。 ❖ 在8W-光谱投影仪上将感光板上光谱放大20倍。 ❖ 以铁光谱作为波长标尺,使感光板上的铁光谱与标准铁光谱
上的铁光谱对齐且平行。 ❖ 找出标准铁光谱上所标有各元素的特征谱线在试样光谱中是
否出现。 ❖ 若某元素的2~3条特征谱线出现,该元素就存在。 ❖ 再根据所出现的谱线相对强度级,估计相对含量。
Ii =[ A] C
2. 谱线的自吸与自蚀
A. 自吸
I = I0e-ad
I0 为弧焰中心发射的谱线 强度;
a 为吸收系数; B. 自蚀d 为弧层厚度
在谱线上,常用r表示自吸,R表示自蚀。在共振线上,自吸严 重时谱线变宽, 称为共振变宽。
考虑到自吸作用的影响时:
Ii =[ A] C b
第二部分 原子发射光谱仪
4.原子线(Ⅰ):M* M (I); 离子线(Ⅱ,Ⅲ) :M* + M + (Ⅱ) M*2+ M2+ (Ⅲ)
能级图
把原子中所可能存在的 光谱项--能级及能级跃迁用 平面图解的形式表示出来, 称为能级图。
Na (1s)2(2s)2(2p)6(3s)1
二.原子发射谱线强度与试样中元素浓度的关系
Ei
1.定性分析的基本原理(摄谱法、光电法)
原子的核外电子能级不同时,跃迁产生不同波长的光谱线, 通过检测特征光谱线存在否,确证某元素可否存在。
一般利用2~3根原子线、离子线的第一共振线、最灵敏线、 最后线、分析线进行定性分析。
光谱定性分析的相对灵敏度


C、Se
As、Ge、Ir级)
等级 1 2 3 4 5 6 7
8
含量 10 10~3 3~1 1~ 0.3~0. 0.1~0. 0.03~0. 0.01~
%
0.3 1 03 01 0.003
9
10
0.003~ 0.001
0.001
谱线消失法:随元素含量减少,低级谱线消失
谱线呈现法:随元素含量增加,低级谱线呈现
相关文档
最新文档