圆与方程练习

合集下载

高二圆与方程基础练习题

高二圆与方程基础练习题

高二圆与方程基础练习题1. 已知圆心坐标为O(2, 3),半径为r = 5。

求圆的方程。

解答:设圆的方程为(x-a)²+(y-b)²=r²,其中(a, b)为圆心坐标,r为半径。

代入已知数据,得到方程为(x-2)²+(y-3)²=5²。

2. 已知圆心坐标为M(-2, 4),圆上一点的坐标为A(3, -1)。

求圆的方程。

解答:设圆的方程为(x-a)²+(y-b)²=r²,其中(a, b)为圆心坐标,r为半径。

代入已知数据,得到方程为(x+2)²+(y-4)²=6²。

3. 已知圆心坐标为N(0, -5),半径为r = 7。

求圆的方程。

解答:设圆的方程为(x-a)²+(y-b)²=r²,其中(a, b)为圆心坐标,r为半径。

代入已知数据,得到方程为(x-0)²+(y+5)²=7²。

4. 已知圆心坐标为P(-3, 2),过点Q(4, 5)的直线交圆于两点。

求交点坐标。

解答:设直线方程为y=mx+c,其中m为斜率,c为截距。

将直线方程代入圆的方程,得到(x+3)²+(mx-2m+c)²=5²。

代入点Q的坐标,得到(4+3)²+(4m-2m+c)²=25。

化简为49+25m²-20m+c²=25。

化简后得到25m²-20m+c²=-24。

由于过点Q的直线交圆于两点,可以设两个交点的坐标为(x₁, y₁)和(x₂, y₂)。

根据交点的性质,有以下方程组:(x₁+3)²+(mx₁-2m+c)²=5²,(x₂+3)²+(mx₂-2m+c)²=5².解方程组得到交点坐标为(x₁, y₁)≈(-1.26, 6.37)和(x₂, y₂)≈(-5.42, -2.37)。

高二数学圆的方程练习题

高二数学圆的方程练习题

高二数学圆的方程练习题1. 某圆的半径为3,圆心坐标为(2, -1),求该圆的方程。

解析:设该圆的方程为(x-a)² + (y-b)² = r²(a为圆心横坐标,b为圆心纵坐标,r为半径)根据已知条件得到:(x-2)² + (y+1)² = 3²将方程展开得:x² - 4x + 4 + y² + 2y + 1 = 9整理得:x² + y² - 4x + 2y - 4 = 0所以该圆的方程为x² + y² - 4x + 2y - 4 = 02. 某圆的直径的两个端点分别为A(1, 2)和B(5, 6),求该圆的方程。

解析:首先求出圆心坐标:圆心的横坐标为直径的中点的横坐标,纵坐标为直径的中点的纵坐标圆心的横坐标 = (1+5)/2 = 3圆心的纵坐标 = (2+6)/2 = 4所以该圆的圆心为(3, 4)然后求出半径:半径的长度等于直径的长度的一半直径AB的长度= √[(5-1)² + (6-2)²] = 2√2所以半径等于直径的一半:r = (2√2)/2 = √2圆心坐标为(3, 4),半径为√2,所以该圆的方程为:(x-3)² + (y-4)² = (√2)²展开得:x² + y² - 6x - 8y + 13 = 0所以该圆的方程为:x² + y² - 6x - 8y + 13 = 03. 已知圆的方程为:x² + y² + 2x - 4y - 4 = 0,求该圆的圆心坐标和半径。

解析:根据已知方程可得:(x+1)² + (y-2)² = 9将方程展开得:x² + y² + 2x - 4y + 1 + 4 - 9 = 0整理得:x² + y² + 2x - 4y - 4 = 0可见,已知的方程与题目中给出的方程相同,所以该圆的圆心坐标为(-1, 2),半径为3。

圆的方程练习题

圆的方程练习题

3、1 圆的方程1、圆22460x y x y +-+=的圆心坐标为 。

2、曲线220x y ++-=关于( )A 、直线x =B 、直线y x =-轴对称C 、点(-中心对称D 、点()中心对称 3、若直线30x y a ++=过圆22240x y x y ++-=的圆心,则a 的值为( )A 、1-B 、1C 、3D 、3-4、圆心在y 轴上,半径为1,且过点()1,2的圆的方程为( )A 、()2221x y +-=B 、()2221x y ++=C 、()()22131x y -+-=D 、()2231x y +-= 5、过点()()1,1,1,1A B --且圆心在直线20x y +-=上的圆的方程为( )A 、()()22314x y -++=B 、()()22314x y ++-=C 、()()22114x y -+-= D 、()()22114x y +++= 6、若()2,1P -为圆()22125x y -+=的弦AB 的中点,则直线AB 的方程为( ) A 、30x y --= B 、230x y +-= C 、10x y +-= D 、250x y --=7、已知圆:()()22221212640x y m x m y m m +--+-+-+=过原点,则m 的取值范围是 。

8、设直线2310x y ++=和圆22230x y x +--=相交于A 、B ,则弦AB 的垂直平分线方程是 。

9、圆222430x y x y +++-=上到直线10x y ++= )A 、1个B 、2个C 、3个D 、4个10、在平面直角坐标系中,已知圆224x y +=上有且仅有四点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 。

11、已知圆()()221:111C x y ++-=和圆2C 关于直线10x y --=对称,在2C 的方程是( )A 、()()22221x y ++-=B 、()()22221x y -++=C 、()()22221x y +++=D 、()()22221x y -+-=12、已知直线:40l x y -+=与圆()()22:112C x y -+-=,则圆C 上各点到l 的距离的最小值为 。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程练习题圆的标准方程练习题圆是数学中的一个基本几何形状,它在我们的生活中随处可见。

在解决与圆相关的问题时,掌握圆的标准方程是非常重要的。

本文将通过一些练习题来帮助读者加深对圆的标准方程的理解和应用。

练习题一:求圆的标准方程1. 已知圆心为(2, -3),半径为5,求圆的标准方程。

解析:圆的标准方程为$(x - h)^2 + (y - k)^2 = r^2$,其中(h, k)为圆心坐标,r 为半径。

代入已知条件,得到$(x - 2)^2 + (y + 3)^2 = 25$。

2. 已知圆心为(-1, 4),过点(3, 2),求圆的标准方程。

解析:首先求得半径,半径的长度等于圆心到过点的距离。

利用距离公式$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,代入已知条件,得到$d = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{20} = 2\sqrt{5}$。

然后代入圆心和半径,得到$(x + 1)^2 + (y - 4)^2 = 20$。

练习题二:判断给定方程是否为圆的标准方程1. $x^2 + y^2 + 2x - 4y = 0$解析:这个方程可以通过将其进行配方来判断是否为圆的标准方程。

将方程进行配方,得到$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 0$,化简后得到$(x + 1)^2 + (y - 2)^2 = 5$。

因此,这个方程是圆的标准方程。

2. $x^2 + y^2 + 3x - 2y + 4 = 0$解析:同样地,将方程进行配方,得到$(x + \frac{3}{2})^2 - (\frac{3}{2})^2 + (y - 1)^2 - 1 = 0$,化简后得到$(x + \frac{3}{2})^2 + (y - 1)^2 = \frac{9}{4} + 1$。

因此,这个方程不是圆的标准方程。

高二数学圆与方程练习题

高二数学圆与方程练习题

高二数学圆与方程练习题1.已知曲线C的方程为x^2+y^2-4x-6y+9=0,求曲线C的圆心坐标及半径长度。

解:我们可以将方程进行配方变换,得到(x-2)^2-4+(y-3)^2-9+4+9=0,化简为(x-2)^2+(y-3)^2=4+9=13。

由此可见,该方程表示的曲线C为一个圆,圆心的横坐标为2,纵坐标为3,半径为√13。

2.已知三角形ABC中的顶角A为120°,边AB的长度为3,边BC的长度为2,求边AC的长度。

解:我们可以利用余弦定理来求解该问题。

根据余弦定理,边AC的平方等于边AB的平方加上边BC的平方减去2倍边AB与边BC的乘积再乘以A的余弦值(即cosA)。

代入已知数据,得到AC的平方等于3^2+2^2-2*3*2*cos120°。

化简计算可得AC的平方等于9+4-12*(-0.5),即AC的平方等于13。

因此,边AC的长度为√13。

3.已知函数f(x)满足f(x+1)=2f(x)-1,且f(0)=3,求f(2019)的值。

解:根据已知条件,我们可以通过迭代计算的方法来求解f(2019)。

首先,将f(x+1)的表达式代入方程中,得到f(x+1)=2f(x)-1,再将f(x)的表达式代入方程中,可得f(x+1)=2(2f(x)-1)-1。

将f(0)的值代入方程中,可得f(1)=2f(0)-1=2*3-1=5。

进一步迭代,我们可以得到f(2)=2f(1)-1=2*5-1=9,f(3)=2f(2)-1=2*9-1=17,依此类推。

观察上述结果,我们可以猜测f(x)的通项公式为f(x)=2^x+1。

通过数学归纳法可以证明该猜想成立。

首先,当x=0时,f(0)=2^0+1=1+1=2-1=3,与已知条件一致。

假设对任意的正整数k,都有f(k)=2^k+1成立。

那么对于k+1,根据迭代关系式,有f(k+1)=2f(k)-1=2(2^k+1)-1=2^(k+1)+1,即f(k+1)=2^(k+1)+1。

圆与方程综合练习题

圆与方程综合练习题

圆与方程综合练习题1.求下列各圆的方程:(1)圆心为M(-5,3),且过点A(-8,-1)的圆(2)过三点A(-2,4),B(-1,3),C(2,6)的圆(3)圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆2.与圆(x+2)2+y2=4关于原点O(0,0)对称的圆的方程是__________与圆(x+2)2+y2=4关于y=-x对称的圆的方程是__________与圆(x+2)2+y2=4关于x+y-1=0对称的圆的方程是__________3.圆:(x-2)2+(y+3)2=13和圆:x2+(y-3)2=9交于A,B两点,则AB的垂直平分线的方程为___________4.已知圆x2+y2=10和圆:x2+y2+2x+2y-14=0,则经过两圆交点的公共弦所在的直线方程为___________5.若圆:x2+y2=4和圆:x2+y2+4x-4y+4=0关于直线l对称,则直线l的方程为___________6.圆x2+y2=r2与圆(x-3)2+(y+1)2=r2(r>0)外切,则r的值为___________7.半径为3的圆C1与圆C2:x2+(y-3)2=1内切,切点为(0,2),求圆C1的方程.8.已知直线l :x-2y-5=0与圆C :x 2+y 2=50.求(1)交点A ,B 的坐标 ; (2)△AOB 的面积.9.已知实数x,y 满足(x-2)2+y 2=3,求(1)xy 的最值;(2)22)1(-+y x 的最值.10.过点(-2,0)的直线l 与圆x 2+y 2=2y 有两个交点,求直线l 的斜率k 的取值范围. 方法一:(代数法:联立求解,看△)方法二:(几何法:比较d 与r 的大小)11.设直线l 过点(0,-2),且与圆x 2+y 2=1相切,求直线l 的斜率.12.求直线3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦AB的长度.13.求m的取值范围,使得方程x2+y2-4x+2my+2m2-2m+1=0表示一个圆,并求出半径最大时圆的方程.14..求圆心在直线x+y=0上,且过两圆x2+y2-2x+10y-24=0,x2+y2+2x+2y-8=0交点的圆的方程15.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,(1)求证:直线l恒过定点(2)判断直线l被圆C截得的弦何时最长和何时最短?并求出截得的弦长最短时m的值及最短长度.16.直线y=x+b 与曲线21y x -=有且只有一个交点,求b 的取值范围.(数形结合!)。

高中圆的方程基础练习题及讲解

高中圆的方程基础练习题及讲解

高中圆的方程基础练习题及讲解### 高中圆的方程基础练习题及讲解#### 练习题一题目:已知圆心在原点的圆的方程为 \(x^2 + y^2 = r^2\),求半径为3的圆的方程。

解答:将 \(r = 3\) 代入圆的标准方程,我们得到:\[ x^2 + y^2 = 3^2 \]\[ x^2 + y^2 = 9 \]这就是半径为3的圆的方程。

#### 练习题二题目:圆 \(x^2 + y^2 + 6x - 8y + 20 = 0\) 与直线 \(x + y - 1 = 0\) 相切。

求圆的半径。

解答:首先,将圆的方程化为标准形式:\[ (x + 3)^2 + (y - 4)^2 = r^2 \]\[ x^2 + 6x + y^2 - 8y + 20 = r^2 \]\[ x^2 + y^2 + 6x - 8y = r^2 - 20 \]由于圆与直线相切,圆心到直线的距离等于圆的半径。

圆心坐标为\((-3, 4)\),直线方程可以写成 \(y = -x + 1\)。

使用点到直线距离公式:\[ \text{距离} = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]将距离等于半径代入:\[ r = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]\[ r = \frac{1}{\sqrt{2}} \]#### 练习题三题目:已知圆 \(x^2 + y^2 = 1\) 与直线 \(y = x + b\) 相切,求\(b\) 的值。

解答:由于圆与直线相切,圆心到直线的距离等于圆的半径,即1。

圆心坐标为 \((0, 0)\),直线方程可以写成 \(x - y + b = 0\)。

使用点到直线距离公式:\[ 1 = \frac{|0 - 0 + b|}{\sqrt{1^2 + (-1)^2}} \]\[ 1 = \frac{|b|}{\sqrt{2}} \]解得:\[ b = \pm \sqrt{2} \]#### 练习题四题目:求圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 的圆心坐标和半径。

圆的标准方程(经典练习及答案详解)

圆的标准方程(经典练习及答案详解)

2.4 圆的方程 2.4.1 圆的标准方程1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254. 答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A.10.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆O挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.-∞,-4√33∪4√33,+∞D.(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=a4x+a2,即ax-4y+2a=0,令d=√a2+16=1,化简后,得3a2=16,解得a=±4√33.再进一步判断便可得到正确答案为C.(方法2)(数形结合法)如图,设直线AB切圆O于点C在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C.11.(2020四川成都石室中学高二上期中)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)解析因为x2+y2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sinα+π6,所以√3x+y的取值范围是[-2,2].故选C.12.(多选题)若经过点P(5m+1,12m)可以作出圆(x-1)2+y2=1的两条切线,则实数m的取值可能是()A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即√32+42=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B-x A,Δy=y B-y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx,Δy为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x,y).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x2+y2=5.。

高一数学必修二第四章圆与方程练习题及答案

高一数学必修二第四章圆与方程练习题及答案

高一数学必修二第四章圆与方程练习题及答案高一数学(必修2)第四章圆与方程基础训练一、选择题1.圆(x+2)²+y²=5关于原点P(0,0)对称的圆的方程为()A。

(x-2)²+y²=5B。

x²+(y-2)²=5C。

(x+2)²+(y+2)²=5D。

x²+(y+2)²=52.若P(2,-1)为圆(x-1)²+y²=25的弦AB的中点,则直线AB 的方程是()A。

x-y-3=0B。

2x+y-3=0C。

x+y-1=0D。

2x-y-5=03.圆x²+y²-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。

2B。

1+√2C。

1-√2D。

1+2√24.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x²+y²+2x-4y=0相切,则实数λ的值为()A。

-3或7B。

-2或8C。

2或10D。

1或115.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。

1条B。

2条C。

3条D。

4条6.圆x²+y²-4x=0在点P(1,3)处的切线方程为()A。

x+3y-2=0B。

x+3y-4=0C。

x-3y+4=0D。

x-3y+2=0二、填空题1.若经过点P(-1,0)的直线与圆x²+y²+4x-2y+3=0相切,则此直线在y轴上的截距是-2.2.由动点P向圆x²+y²=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为x²+y²-x=0.3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为(x-1)²+(y+1)²=4.4.已知圆(x-3)²+y²=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为2.5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x²+y²-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是3.三、解答题1.点P(a,b)在直线x+y+1=0上,求a²+b²-2a-2b+2的最小值。

高二圆的方程练习题

高二圆的方程练习题

高二圆的方程练习题在高二数学中,圆是一个重要的几何形状。

了解圆的方程和性质是解决与圆相关问题的基础。

下面是一些高二圆的方程练习题,帮助你巩固和应用这方面的知识。

1. 已知圆C的半径为r,圆心坐标为(h, k)。

写出圆C的标准方程和一般方程。

解答:圆C的标准方程为:(x - h)² + (y - k)² = r²圆C的一般方程为:x² + y² - 2hx -2ky + h² + k² - r² = 02. 试写出过坐标原点的圆,半径为r的标准方程和一般方程。

解答:过坐标原点的圆的圆心坐标为(0, 0)。

标准方程为:x² + y² = r²一般方程为:x² + y² - r² = 03. 已知圆C过点A(2, 3)和B(4, 1),且圆心在y轴上。

写出圆C的方程。

解答:设圆C的圆心坐标为(0, k)。

由于圆心在y轴上,所以圆C的方程为x² + (y - k)² = r²。

将点A(2, 3)代入方程得:2² + (3 - k)² = r²。

将点B(4, 1)代入方程得:4² + (1 - k)² = r²。

由此可求得圆C的方程。

4. 已知圆C的直径的两个端点分别为A(3, 5)和B(-1, -2),写出圆C的方程。

解答:直径的中点坐标为[(3 + (-1))/2, (5 + (-2))/2] = (1, 1)。

由于直径的中点即为圆心,所以圆C的圆心坐标为(1, 1)。

圆C的半径为AB的一半,即√[(3 - (-1))² + (5 - (-2))²] / 2。

将圆心坐标和半径代入圆的标准方程可求得圆C的方程。

5. 已知圆C的方程为2x² + 2y² + 4x - 6y + 9 = 0,写出圆C的圆心坐标和半径。

圆的方程练习题

圆的方程练习题

圆的方程练习题圆是几何学中常见的一种形状,其方程是描述圆的数学表达式。

在解决与圆相关的问题时,掌握圆的方程是非常重要的。

本文将介绍一些关于圆的方程的练习题,帮助读者巩固对圆的方程的理解和运用。

练习题1:已知圆心坐标和半径,求圆的方程已知圆的圆心坐标为(x₁, y₁),半径为r,要求推导出圆的方程。

解答:圆的方程可以表示为:(x - x₁)² + (y - y₁)² = r²练习题2:已知圆上一点坐标和圆心坐标,求圆的方程已知圆上一点的坐标为(x₂, y₂),圆心坐标为(x₁, y₁),要求推导出圆的方程。

解答:根据题意,圆上一点到圆心的距离等于半径:√[(x₂ - x₁)² + (y₂ - y₁)²] = r进行平方运算得:(x₂ - x₁)² + (y₂ - y₁)² = r²练习题3:已知圆心和通过圆上两点的直径,求圆的方程已知圆的圆心坐标为(x₁, y₁),通过圆上两点的直径坐标为[(x₂, y₂), (x₃, y₃)],要求推导出圆的方程。

解答:通过圆上两点的直径可以求出圆心的坐标:圆心坐标(x₁, y₁) = [(x₂ + x₃) / 2, (y₂ + y₃) / 2]然后利用圆心和圆上一点坐标的求圆的方程公式:(x - x₁)² + (y - y₁)² = r²代入圆心坐标和圆上一点的坐标,可得:(x - [(x₂ + x₃) / 2])² + (y - [(y₂ + y₃) / 2])² = r²练习题4:已知圆在坐标轴上的截距,求圆的方程已知圆在x轴和y轴上的截距分别为a和b,要求推导出圆的方程。

解答:根据题意,圆在x轴和y轴上分别有两个点:(a, 0)和(0, b)。

圆心的坐标为(c, c),其中c是圆心到x轴和y轴的距离,即c = (a + b) / 2。

高中圆方程练习题

高中圆方程练习题

高中圆方程练习题题一:求圆的标准方程已知圆心坐标为(3,-4),半径为2,求圆的标准方程。

解:设圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心坐标为(a, b),半径为r。

代入已知条件:(x-3)² + (y+4)² = 2²化简得到圆的标准方程为(x-3)² + (y+4)² = 4。

题二:圆的切线方程已知圆的方程为(x-2)² + (y+1)² = 9,求过点(3,-2)的圆的切线方程。

解:首先,计算圆心坐标:圆心坐标为(a, b),其中a = 2,b = -1。

其次,计算圆的半径:半径r = √9 = 3。

然后,通过已知点(3,-2)和圆心坐标计算切线斜率:切线斜率k = (b - (-2))/(a - 3) = (-1 - (-2))/(2 - 3) = -1/1 = -1。

最后,带入切点坐标和切线斜率,得到切线方程:y - (-2) = -1(x - 3)y + 2 = -x + 3x + y - 1 = 0所以过点(3,-2)的圆的切线方程为x + y - 1 = 0。

题三:两圆的交点坐标已知圆A的方程为(x-1)² + (y-2)² = 4,圆B的方程为(x+2)² + (y-3)² = 9,求两圆的交点坐标。

解:将两个圆的方程相减:(x+2)² + (y-3)² - [(x-1)² + (y-2)²] = 9 - 4化简得到:4x - 4 = 54x = 9x = 9/4带入x的值,得到y的值:(9/4 + 2)² + (y-3)² - [(9/4 - 1)² + (y-2)²] = 9 - 4化简得到:(y-3)² - (y-2)² = 9 - 4 - (25/16 - 2/4)²(y-3)² - (y-2)² = 5 - (25/16 - 8/16)(y-3)² - (y-2)² = 5 - 17/16化简得到:4(y-3)² - 4(y-2)² = 5*16 - 174(y² - 6y + 9) - 4(y² - 4y + 4) = 80 - 174y² - 24y + 36 - 4y² + 16y - 16 = 63-8y + 20 = 63-8y = 63 - 20-8y = 43y = 43/-8y = -43/8所以两圆的交点坐标为(x, y) = (9/4, -43/8)。

圆与圆的方程练习题

圆与圆的方程练习题

圆与圆的方程练习题圆与圆的方程练习题圆是几何学中的重要概念之一,它具有许多独特的性质和特点。

在数学中,我们经常需要掌握圆与圆之间的关系和相互作用。

本文将通过一些练习题来帮助读者更好地理解圆与圆的方程。

题目一:已知圆心坐标和半径,求圆的方程假设有一个圆,已知它的圆心坐标为(x1, y1),半径为r。

我们需要求解这个圆的方程。

解答:圆的方程一般形式为(x-a)² + (y-b)² = r²,其中(a, b)为圆心坐标。

根据题目中给出的信息,我们可以得到该圆的方程为(x-x1)² + (y-y1)² = r²。

题目二:已知两个圆的方程,求解它们的交点坐标假设有两个圆,它们的方程分别为(x-a)² + (y-b)² = r₁²和(x-c)² + (y-d)² = r₂²,其中(a, b)和(c, d)分别为两个圆的圆心坐标,r₁和r₂为它们的半径。

我们需要求解这两个圆的交点坐标。

解答:首先,我们可以将两个方程相减,得到(x-a)² - (x-c)² + (y-b)² - (y-d)² =r₁² - r₂²。

化简后得到2ax - 2cx + 2by - 2dy + a² - c² + b² - d² = r₁² - r₂²。

然后,我们可以将上式分解为两个一次方程,得到2ax - 2cx = r₁² - r₂² - a²+ c² + b² - d²和2by - 2dy = r₁² - r₂² - a² + c² + b² - d²。

最后,我们可以解这两个方程,得到交点的横坐标和纵坐标。

高考数学一轮复习《圆与方程》练习题(含答案)

高考数学一轮复习《圆与方程》练习题(含答案)

高考数学一轮复习《圆与方程》练习题(含答案)一、单项选择题1.已知圆221:1C x y +=与圆()()222:121C x y -++=,则圆1C 与2C 的位置关系是( )A .内含B .相交C .外切D .外离2.已知点(1,1)在圆(x ﹣a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .(﹣1,1)B .(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .{1,﹣1}3.以点A (-5,4)为圆心,4为半径的圆的方程是 A . B . C .D .4.在平面直角坐标系xOy 中,过点()2,0P -的直线l 与圆O :221x y +=相切,且直线l 与圆C :()(22433x y -+=相交于A ,B 两点,则AB =( )A 5B 3C .2D 25.已知圆()()22:341C x y -+-=和两点(),0A m -,(),0B m ,()0m >.若圆C 上存在点P ,使得90APB ∠=︒,则m 的最小值和最大值分别为( ) A .4,7B .4,6C .5,7D .5,66.若虚数..i,,z x y x y R =+∈,且1|1|2z -=,则y x 的取值范围为( )A .33⎡⎢⎣⎦B .330,3⎡⎫⎛⎤⎪ ⎢⎥⎪ ⎣⎭⎝⎦C .[3,3]D .[3,0)3]-⋃7.已知两定点(3,0),(3,0)A B -,点P 在直线230x y --=上,使得PA PB ⊥,则这样的P 点个数有( )A .0个B .1 个C .2个D .3个8.圆是中华民族传统文化的形态象征,象征着“圆满”和“饱满”,是自古以和为贵的中国人所崇尚的图腾.如图,AB 是圆O 的一条直径,且 4.,AB C D =是圆O 上的任意两点,2CD =,点P 在线段CD 上,则PA PB ⋅的取值范围是( )A .3,2⎡⎤⎣⎦B .[]1,0-C .[]3,4D .[]1,29.已知直线20x y ++=和圆22220x y x y a ++-+=相交于,A B 两点.若||4AB =,则实数a 的值为( ) A .-2B .-4C .-6D .-810.设过点1,0A 的直线l 与圆()()22:344C x y -+-=交于,E F 两点,线段EF 的中点为M .若l 与y 轴的交点为N ,则AM AN的取值范围是( )A .(]0,2B .160,5⎛⎫ ⎪⎝⎭C .162,5⎫⎡⎪⎢⎣⎭D .162,5⎡⎤⎢⎥⎣⎦11.圆221:(1)(1)28O x y -+-=与222:(4)18O x y +-=的公共弦长为( )A .23B .26C .32D .6212.平面直角坐标系中,动圆T 与x 轴交于两点A ,B ,与y 轴交于两点C ,D ,若|AB |和CD 均为定值,则T 的圆心轨迹一定是( ) A .椭圆(或圆)B .双曲线C .抛物线D .前三个答案都不对二、填空题13.以双曲线C :()222103x y a a-=>的一个焦点F 为圆心的圆与双曲线的渐近线相切,则该圆的面积为________.14.过点()1,2M -作圆225x y +=圆的切线l ,则l 的方程是___________.15.若圆222430x y x y +++-=上到直线20x y a ++= 2 的点恰有3个,则实数a 的值为___________.16.已知()11,A x y 、()22,B x y 为圆22:4M x y +=上的两点,且121212x x y y +=-,设00(,)P x y为弦AB 的中点,则00|3410|x y +-的最小值为________.三、解答题17.求经过三点()0,0A ,()3,0B ,()1,2C -的圆的方程.1820y +-=与圆2220x y y =++的位置关系.19.已知圆C :22230x y y ++-=,直线l :30x y ++=. (1)求圆C 的圆心及半径;(2)求直线l 被圆C 截得的弦AB 的长度.20.已知圆221:(6)(7)25C x y -+-=及其上一点()2,4A .(1)设平行于OA 的直线l 与圆1C 相交于,B C 两点,且BC OA =,求直线l 的方程; (2)设圆2C 与圆1C 外切于点A ,且经过点()3,1P ,求圆2C 的方程.21.已知圆C :2240x y mx ny ++++=的圆心在直线10x y ++=上,且圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.22.已知抛物线E :22x py =过点()1,1,过抛物线E 上一点()00,P x y 作两直线PM ,PN 与圆C :()2221x y +-=相切,且分别交抛物线E 于M 、N 两点. (1)求抛物线E 的方程,并求其焦点坐标和准线方程;(2)若直线MN 的斜率为P 的坐标.23.已知椭圆E :2213x y +=上任意一点P ,过点P 作PQ y ⊥轴,Q 为垂足,且33QM QP =.(1)求动点M 的轨迹Γ的方程;(2)设直线l 与曲线Γ相切,且与椭圆E 交于A ,B 两点,求OAB 面积的最大值(O 为坐标原点).24.已知椭圆()2222:10x y E a b a b+=>>0y -+=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN面积的最大值,并求出此时直线l 的方程。

圆与方程教案及练习题

圆与方程教案及练习题

圆与方程一、圆的标准方程 1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。

(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点Mr = ①化简可得:222()()x a y b r -+-= ②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

1. 圆的标准方程:方程222()()(0)x a y b r r -+-=>表示圆心为A (a ,b ),半径长为r 的圆.2. 求圆的标准方程的一般步骤为:(1)根据题意,设所求的圆的标准方程为222)()(r b y a x =-+-.(2)根据已知条件,建立关于a ,b ,r 的方程组; (3)解此方程组,求出a ,b ,r 的值; .(4)将所得的a ,b ,r 的值代回所设的圆的方程中,就得到所求的圆的标准方程.3. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;(2)待定系数法:先根据条件列出关于a ,b ,r 的方程组,然后解出a ,b ,r ,再代入标准方程. 二、圆的一般方程1.方程022=++++F Ey Dx y x 表示的曲线不一定是圆,只有当0422>-+F E D 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程.2. 对于方程022=++++F Ey Dx y x .(1)当D 2+E 2-4F >0时,方程表示(1)当0422>-+F E D 时,表示以(-2D,-2E )为圆心,F E D 42122-+为半径的圆;(2)当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示一个点(-2D,-2E); (3)当0422<-+F E D 时,方程没有实数解,因而它不表示任何图形3.圆的一般方程的特点:(1)①x 2和y 2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D ,E ,F ,因之只要求出这三个系数,圆的方程就确定了.(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显. 例1.求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程练习题在解决圆的问题时,我们经常使用到的一个重要工具就是圆的标准方程。

通过掌握圆的标准方程的用法,我们可以更方便地进行圆的解析几何运算。

接下来,我将为大家提供一些圆的标准方程练习题,帮助大家加深对这一概念的理解。

练习题一:给定圆心和半径,求标准方程1. 已知圆心为 (2, 3),半径为 5,求圆的标准方程。

解析:设圆的标准方程为 (x-a)² + (y-b)² = r²,其中 (a, b) 为圆心坐标,r 为半径。

将已知数据代入方程,得到:(x-2)² + (y-3)² = 5²,即 (x-2)² + (y-3)² = 25。

练习题二:给定标准方程,求圆心和半径1. 已知圆的标准方程为 x² + y² - 6x + 8y + 9 = 0,求圆的圆心和半径。

解析:观察标准方程可得出:(x-3)² + (y+4)² = 16。

由此可知圆的圆心为 (3, -4),半径为 4。

练习题三:给定圆上一点,求标准方程1. 已知圆上一点为 (5, 2),圆心为 (3, 4),求圆的标准方程。

解析:设圆的标准方程为(x-a)²+ (y-b)²= r²。

将已知数据代入方程,可得到:(x-3)² + (y-4)² = r²。

由于圆上一点为 (5, 2),代入方程得到 (5-3)² + (2-4)² = r²,化简得 4 + 4 = r²,即 8 = r²。

所以圆的标准方程为 (x-3)² + (y-4)² = 8。

通过以上几道练习题,我们对圆的标准方程的应用有了更深入的了解。

掌握了圆的标准方程的求解方法,我们在解决与圆相关的数学问题时,就能更加得心应手。

不过,还需要注意的是,在使用圆的标准方程时,我们需要确保给定的数据准确无误。

圆解方程练习题带答案

圆解方程练习题带答案

圆解方程练习题带答案解方程是数学中重要的内容之一,帮助我们理解数学概念并解决实际问题。

在解方程的学习过程中,练习题是不可或缺的一部分。

本文将提供一些圆解方程的练习题及其答案,帮助读者加深对圆解方程的理解。

练习题1:已知圆的半径为3,求圆的面积。

解答:圆的面积公式为:S = π * r^2将半径r代入公式中,得到:S = π * 3^2S = π * 9S = 9π练习题2:已知圆心坐标为(2, 4),半径为5,求圆的方程。

解答:圆的方程为:(x - a)^2 + (y - b)^2 = r^2其中,(a, b)为圆心坐标,r为半径。

将已知数据代入方程中,得到:(x - 2)^2 + (y - 4)^2 = 5^2x^2 - 4x + 4 + y^2 - 8y + 16 = 25x^2 + y^2 - 4x - 8y - 5 = 0练习题3:已知圆心坐标为(-1, 2),过点(4, 1)的直线与圆交于两个点,求这两个点的坐标。

解答:设圆心为C(-1, 2),过点(4, 1)的直线为l。

首先求直线l的方程:设直线l的斜率为k。

k = (1 - 2) / (4 - (-1)) = -1/5直线l的方程为:y = -1/5 * x + b将过圆心C的直线l带入圆的方程中,求得交点:(-1)^2 + (2 - (-1)/5 * x + b)^2 = r^2x^2 - 2/5x + 2 - 2/5b + b^2 = r^2将直线l的方程代入上式中,得到:x^2 - 2/5x + 2 - 2/5(-1/5 * x + b) + b^2 = r^2x^2 - 2/5x + 2 + 2/25x - 2/25b + b^2 = r^2整理得:(1 + 2/25)x^2 + (-2/5 + 2/25b - 2/25x)x + (2 + b^2) - r^2 = 0令A = 1 + 2/25,B = -2/5 + 2/25b - 2/25x,C = 2 + b^2 - r^2则上式可化为:Ax^2 + Bx + C = 0由已知直线l与圆交于两个点可得到两个解,即求二次方程Ax^2 + Bx + C = 0的解。

圆的方程练习题

圆的方程练习题

圆的方程练习题一、选择题1. 已知圆心在(2,-3),半径为5的圆的方程是:A. \((x-2)^2+(y+3)^2=25\)B. \((x+2)^2+(y-3)^2=25\)C. \((x-2)^2+(y-3)^2=25\)D. \((x+2)^2+(y+3)^2=25\)2. 圆 \(x^2+y^2=9\) 与直线 \(y=x\) 相切,那么圆心到直线的距离是:A. 1B. 3C. \(\sqrt{2}\)D. \(\sqrt{3}\)3. 圆 \((x-1)^2+(y+2)^2=25\) 与 \(x\) 轴相交于两点,这两点的坐标分别是:A. (1, 2) 和 (1, -2)B. (6, 0) 和 (-4, 0)C. (4, 0) 和 (-2, 0)D. (3, 0) 和 (-2, 0)二、填空题4. 圆心在原点,半径为4的圆的方程是________。

5. 已知圆 \(x^2+y^2+Dx+Ey+F=0\) 与 \(y\) 轴相切,圆心在 \(x\) 轴上,且半径为1,求D和E的值。

6. 若圆 \((x-a)^2+(y-b)^2=r^2\) 经过点 (1,1),则a和b的值分别是________。

三、简答题7. 求经过点A(2,3)和B(-2,-3)的圆的方程。

8. 已知圆 \(x^2+y^2-4x-6y-10=0\),求该圆的圆心和半径。

9. 若圆 \(x^2+y^2-6x-8y+m=0\) 与 \(x\) 轴相切,求m的值。

四、解答题10. 已知圆 \(x^2+y^2-2x-4y-10=0\),求圆心、半径,并判断圆与直线 \(y=2x\) 是否相交。

11. 圆 \(x^2+y^2=9\) 内有一点P(1,1),求过点P的所有圆的切线方程。

12. 已知圆 \((x-3)^2+(y+1)^2=25\),求该圆上所有到直线\(2x+3y-5=0\) 距离为 \(\sqrt{2}\) 的点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆与方程一.解答题(共34小题)1.已知圆M:2x2+2y2﹣6x+1=0.(1)圆M的圆心坐标为;(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.2.已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.3.已知圆C的圆心C在直线y=x﹣1,且圆C经过曲线y=﹣x2+6x﹣8与x轴的交点.(1)求圆C的方程;(2)已知过坐标原点O的直线l与圆C交M,N两点,若=2,求直线l的方程.4.已知直线l1:4x+y=0,直线l2:x+y﹣1=0以及l2上一点P(3,﹣2).求圆心C在l1上且与直线l2相切于点P的圆的方程.5.已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A、B两点,若|AB|=,求m的值.6.已知直线l1:x﹣y+1=0,l2:x+y﹣1=0相交于点P,直线l3:ax+y﹣a+1=0(1)若点P在直线l3上,求a的值;(2)若直线l3交直线l1,l2分别为点A和点B,且点B的坐标为(3,﹣2),求△PAB的外接圆的标准方程.7.已知圆c过点A(1,2)和B(1,10),圆心C在第一象限,且与直线x﹣2y ﹣1=0相切.(1)求圆C的方程;(2)设P为圆C上的任意一点,定点Q(﹣3,﹣6),当点P在圆C上运动时,求线段PQ中点M的轨迹方程.8.已知动点E到点A(2,0)与点B(﹣2,0)的直线斜率之积为,点E的轨迹为曲线C.(1)求C的方程;(2)过点D(1,0)作直线l与曲线C交于P,Q两点,求的最大值.9.已知圆C经过点A(6,0),B(1,5),且圆心在直线l:2x﹣7y+8=0上.(1)求圆C的方程;(2)过点M(1,2)的直线与圆C交于A,B两点,问在直线y=2上是否存在定点N,使得K AN+K BN=0恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.10.已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线上,过点P作圆M的切线PA,PB,切点为A,B.(1)若点P的坐标为(1,),求切线PA,PB方程;(2)求四边形PAMB面积的最小值;(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点坐标.11.在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,记点P的轨迹为C.(Ⅰ)求C得方程;(Ⅱ)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.12.已知经过P(4,﹣2),Q(﹣1,3)两点的圆C半径小于5,且在y轴上截得的线段长为,(I)求圆C的方程;(II)已知直线l∥PQ,若l与圆C交于A,B两点,且以线段AB为直径的圆经过坐标原点,求直线l的方程.13.在平面直角坐标系xOy中,圆C经过P(3+2,0),Q(3﹣2,0),R (0,1)三点.(1)求圆C的方程;(2)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.14.已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的方程.15.已知圆C:(x﹣a)2+(y﹣a)2=a2(a>0)的面积为π.且与x轴、y轴分别交于A、B两点.(1)求圆C的方程;(2)若直线l:y=k(x+2)与线段AB相交,求实数k的取值范围;(3)试讨论直线l:y=k(x+2)与圆C:(x﹣a)2+(y﹣a)2=a2(a>0)的交点个数.16.在直角坐标系xOy中,F(1,0),动点P满足:以PF为直径的圆与y轴相切.(1)求点P的轨迹方程;(2)设点P的轨迹为曲线Г,直线l过点M(4,0)且与Г交于A,B两点,当△ABF与△AOF的面积之和取得最小值时,求直线l的方程.17.已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0.(1)试判断直线l与圆C的位置关系,并说明理由;(2)若直线l与圆C交于A,B两点,且,求m的值.18.已知以点(t∈R,t≠0)为圆心的圆与x轴交点为O、A,与y轴交于点O、B,其中O为坐标原点.(1)试写出圆C的标准方程,并证明△OAB的面积为定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的标准方程.19.已知圆C的圆心为点C(0,3),点D(﹣,2)在圆C上,直线l过点A (﹣1,0)且与圆C相交P,Q两点,点M是线段PQ的中点.(1)求圆C的方程:(2)若|AM|=3,求直线l的方程.20.已知点M 在圆x2+y2=4 上运动,N (4,0),点P 为线段MN 的中点(1)求点P 的轨迹方程;(2)求点P 到直线3x+4y﹣26=0 的距离的最大值和最小值.21.已知直线l过点P(0,1),圆C:x2+y2﹣6x+8=0,直线l与圆C交于A,B 两点.(I)求直线PC的方程;(I I)求直线l的斜率k的取值范围;(Ⅲ)是否存在过点Q(6,4)且垂直平分弦AB的直线l1?若存在,求直线l1斜率k1的值,若不存在,请说明理由.22.在平面直角坐标系xOy中,圆C的半径为1,其圆心在射线y=x(x≥0)上,且.(Ⅰ)求圆C的方程;(Ⅱ)若直线l过点P(1,0),且与圆C相切,求直线l的方程.23.已知圆C的圆心为(t∈R,t≠0),过定点A(0,a)(a>0),且与x轴交于点B,D.(1)求证:弦长BD为定值;(2)设,t为整数,若点C到直线2x+y﹣6=0的距离为,求圆C的方程.24.已知动点M(x,y)到定点A(1,0)的距离与M到直线l:x=4的距离之比为.①求点M的轨迹C的方程;②过点N(﹣1,1)的直线与曲线C交于P,Q两点,且N为线段PQ中点,求直线PQ的方程.25.已知圆C与y轴相切于点A(0,1),且被x轴所截得的弦长为,圆心C 在第一象限.(1)求圆C的方程;(2)若点P是直线l:3x+4y+5=0上的动点,过点P作圆C的切线,切点为B,求△PBC面积的最小值.26.在直角坐标系xOy中,点P到两点(0,﹣),(0,)的距离之和为4,设点P的轨迹为C,直线y=kx+1与A交于A,B两点.(1)写出C的方程;(2)若⊥,求k的值.27.已知点M(3,1),直线ax﹣y+4=0及圆(x﹣1)2+(y﹣2)2=4.(1)求过点M的圆的切线方程;(2)若直线ax﹣y+4=0与圆相交于A,B两点,且弦AB的长为,求a的值.28.已知圆C:x2+y2﹣6x﹣8y+m=0,其中m∈R.(Ⅰ)如果圆C与圆x2+y2=1相外切,求m的值;(Ⅱ)如果直线x+y﹣3=0与圆C相交所得的弦长为,求m的值.29.已知直线x﹣y+1=0与圆C:x2+y2﹣4x﹣2y+m=0交于A,B两点;(1)求线段AB的垂直平分线的方程;(2)若|AB|=2,求m的值;(3)在(2)的条件下,求过点P(4,4)的圆C的切线方程.30.已知曲线方程为:x2+y2﹣2x﹣4y+m=0.(1)若此曲线是圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值.31.已知圆C经过A(﹣2,1),B(5,0)两点,且圆心C在直线y=2x上.(1)求圆C的方程;(2)动直线l:(m+2)x+(2m+1)y﹣7m﹣8=0过定点M,斜率为1的直线m 过点M,直线m和圆C相交于P,Q两点,求PQ的长度.32.已知点A(﹣1,0),B(1,0),动点P满足|PA|+|PB|=,记动点P的轨迹为曲线T,(1)求动点P的轨迹T的方程;(2)直线y=kx+1与曲线T交于不同的两点C,D,若存在点M(m,0),使得|CM|=|DM|成立,求实数m的取值范围.33.已知动圆P过点并且与圆相外切,动圆圆心P的轨迹为W,轨迹W与x轴的交点为D.(Ⅰ)求轨迹W的方程;(Ⅱ)设直线l过点(m,0)(m>2)且与轨迹W有两个不同的交点A,B,求直线l斜率k的取值范围.34.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.圆与方程参考答案与试题解析一.解答题(共34小题)1.已知圆M:2x2+2y2﹣6x+1=0.(1)圆M的圆心坐标为(,0);(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.【分析】(1)直接把圆的一般式转化为标准式.(2)利用直线和圆的位置关系求出结果.【解答】解:(1)圆M:2x2+2y2﹣6x+1=0.转化为:.则圆M的圆心坐标为:().(2)直线l过点A(0,2)且与x轴交于点D.则:设直线的方程为:y=kx+2.与圆M在第一象限的部分交于两点B,C.且△OAB与△OCD的面积相等,则:AB=CD.即:AM=DM.设点A(x,0)则:,整理得:x2﹣3x﹣4=0,解得:x=4或﹣1(负值舍去).则:A(4,0)由于点A在直线y=kx+2上,解得:k=﹣故直线的斜率为﹣.故答案为:(,0);直线的斜率为﹣.【点评】本题考查的知识要点:圆的方程的转化,直线与圆的位置关系的应用.2.已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.【分析】(1)由约束条件得出其可行域是直角三角形及其内部,被圆C及其内部所覆盖,覆盖它的且面积最小的圆是其外接圆,求出即可;(2)设出直线l的方程,直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,则圆心C到直线l的距离是,利用点到直线的距离公式即可求出.【解答】解:(1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,由于覆盖它的且面积最小的圆是其外接圆,∴圆心是Rt△OPQ的斜边PQ的中点C(2,1),半径r=|OC|==,∴圆C的方程是(x﹣2)2+(y﹣1)2=5.(2)设直线l的方程是:y=x+b.∵CA⊥CB,∴圆心C到直线l的距离是=,即,解之得,b=﹣1±.∴直线l的方程是:y=x﹣1±.【点评】正确由约束条件得出其可行域是直角三角形及其内部,覆盖它的且面积最小的圆是其外接圆,进而即可得出其圆的方程.熟练掌握直线与圆相交问题的解题模式及点到直线的公式是解题的关键.3.已知圆C的圆心C在直线y=x﹣1,且圆C经过曲线y=﹣x2+6x﹣8与x轴的交点.(1)求圆C的方程;(2)已知过坐标原点O的直线l与圆C交M,N两点,若=2,求直线l的方程.【分析】(1)直接利用已知条件求出圆的方程.(2)利用直线和曲线的位置关系,整理成一元二次方程,进一步利用向量的坐标运算建立等量,最后求出直线的方程.【解答】解:(1)因为圆C经过曲线y=﹣x2+6x﹣8与x轴的交点.则令y=0,解得:x=2或4.故与x轴的交点坐标为:(2,0)、(4,0).设圆C的方程为:(x﹣a)2+(y﹣b)2=r2,则依题意得:,解得:a=3,b=2,r=.所以:圆C的方程为:(x﹣3)2+(y﹣2)2=5.(2)直线l的斜率显然存在,故设直线l的斜率为k,则直线l的方程为:y=kx,联立,整理得:(1+k2)x2﹣(6﹣4k)x+8=0,设M(x1,y1),N(x2,y2),则:,.已知,则:x2=2x1,所以:,,整理得:,解得:k=0或,故直线的方程为:y=0或12x﹣5y=0.【点评】本题考查的知识要点:圆的方程的求法,向量的坐标运算,直线和曲线的位置关系的应用.一元二次方程根与系数的关系的应用.4.已知直线l1:4x+y=0,直线l2:x+y﹣1=0以及l2上一点P(3,﹣2).求圆心C在l1上且与直线l2相切于点P的圆的方程.【分析】设圆心为C(a,b),半径为r,依题意,得b=﹣4a.由PC⊥l2,直线l2的斜率k2=﹣1,从而过P,C两点的直线的斜率k PC==1,由此能出圆的方程.【解答】解:设圆心为C(a,b),半径为r,依题意,得b=﹣4a.又PC⊥l2,直线l2的斜率k2=﹣1,∴过P,C两点的直线的斜率k PC==1,解得a=1,b=﹣4,r=|PC|=2.故所求圆的方程为(x﹣1)2+(y+4)2=8.【点评】本题考查圆的方程式的求法,考查圆、直线方程、直线与直线垂直、直线的斜率等基础知识,考查推理论证能力、运算求解能力,是中档题.5.已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A、B两点,若|AB|=,求m的值.【分析】(1)直线l解析式变形后得到直线l恒过(1,1)点,而(1,1)点在圆C内,即可确定出直线l与圆C总有两个不同的交点;(2)由圆的半径及弦长.利用垂径定理及勾股定理求出圆心到直线的距离d,利用点到直线的距离公式列出关于m的方程,求出方程的解即可得到m的值.(1)∵直线l:y﹣1=m(x﹣1)过定点P(1,1),且|PC|=【解答】解:=1<,即P点在圆C内,∴直线l与圆C总有两个不同的交点;(2)∵圆半径r=,|AB|=,∴圆心(0,1)到l的距离d==,即=,解得:m=±.【点评】此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,勾股定理,熟练掌握公式及定理是解本题的关键.6.已知直线l1:x﹣y+1=0,l2:x+y﹣1=0相交于点P,直线l3:ax+y﹣a+1=0(1)若点P在直线l3上,求a的值;(2)若直线l3交直线l1,l2分别为点A和点B,且点B的坐标为(3,﹣2),求△PAB的外接圆的标准方程.【分析】(1)联立方程组求得P的坐标,代入直线l3:ax+y﹣a+1=0即可求得a 值;(2)把B的坐标代入l3:ax+y﹣a+1=0,求得a值,可得l3,进一步求得A的坐标,设出圆的一般方程,利用待定系数法求得D、E、F的值,则圆的一般方程可求,利用配方法化为标准方程.【解答】解:(1)联立,解得P(0,1),∵点P在直线l3上,∴1﹣a+1=0,即a=2;(2)如图,∵直线l3:ax+y﹣a+1=0过B(3,﹣2),∴3a﹣2﹣a+1=0,即a=,可得直线l3:x+2y+1=0.∴A(﹣1,0),又P(0,1),设△PAB的外接圆的方程为x2+y2+Dx+Ey+F=0.则,解得D=﹣2,E=2,F=﹣3.∴△PAB的外接圆的方程为x2+y2﹣2x+2y﹣3=0,化为标准方程:(x﹣1)2+(y+1)2=5.【点评】本题考查直线与圆的位置关系,考查圆的标准方程的求法,是中档题.7.已知圆c过点A(1,2)和B(1,10),圆心C在第一象限,且与直线x﹣2y ﹣1=0相切.(1)求圆C的方程;(2)设P为圆C上的任意一点,定点Q(﹣3,﹣6),当点P在圆C上运动时,求线段PQ中点M的轨迹方程.【分析】(1)圆心在线段AB的垂直平分线y=6上,设圆心为(a,6),半径为r,则圆C的标准方程为(x﹣a)2+(y﹣6)2=r2,点B在圆上,圆C与直线x﹣2y ﹣1=0相切,求解即可.(2)设点M的坐标为(x,y),点P的坐标为(x0,y0),利用中点坐标公式,转化求解即可.【解答】解:(1)圆心显然在线段AB的垂直平分线y=6上,设圆心为(a,6),半径为r,则圆C的标准方程为(x﹣a)2+(y﹣6)2=r2,由点B在圆上得(1﹣a)2+(10﹣6)2=r2,又圆C与直线x﹣2y﹣1=0相切,则r=.于是(a﹣1)2+16=,解得a=3或a=﹣7(舍),则r=2所以圆C的标准方程为(x﹣3)2+(y﹣6)2=20(2)设点M的坐标为(x,y),点P的坐标为(x0,y0),由M为PQ的中点,则,即,又点P(x0,y0)在圆C上,有(x0﹣3)2+(y0﹣6)2=20,则(2x+3﹣3)2+(2y+6﹣6)2=20,整理得x2+y2=5,得点M的轨迹方程为:x2+y2=5.【点评】本题考查轨迹方程的求法,直线与圆的位置关系的应用,考查转化思想以及计算能力.8.已知动点E到点A(2,0)与点B(﹣2,0)的直线斜率之积为,点E的轨迹为曲线C.(1)求C的方程;(2)过点D(1,0)作直线l与曲线C交于P,Q两点,求的最大值.【分析】(1)设P(x,y),由题意知利用斜率计算公式即可得到,(x≠±2),化简即可求出曲线C的方程.(2)当l垂直于轴时,l的方程为x=1,求出点P,Q的坐标,根据向量的数量积即可求出,当l不垂直于x轴时,依题意可设y=k(x﹣1)(k≠0),代入+y2=1得(1+4k2)x2﹣8k2x+4k2﹣4=0,根据韦达定理和向量的数量积即可求出【解答】解:(1)设E(x,y),则x≠±2.因为E到点A(2,0),与点B(﹣2,0)的斜率之积为,所以,整理得C的方程为.(2)当l垂直于轴时,l的方程为x=1,代入得P(1,),Q(1,﹣),所以=(1,)•(1,﹣)=,当l不垂直于x轴时,依题意可设y=k(x﹣1)(k≠0),代入+y2=1得(1+4k2)x2﹣8k2x+4k2﹣4=0.因为△=16(1+3k2)>0,设P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=,===综上,当l垂直于x轴时等号成立,故的最大值是.【点评】本题综合考查了椭圆的标准方程、直线与椭圆相交问题转化为方程联立得到根与系数的关系,向量的数量积公式,考查了推理能力和计算能力.9.已知圆C经过点A(6,0),B(1,5),且圆心在直线l:2x﹣7y+8=0上.(1)求圆C的方程;(2)过点M(1,2)的直线与圆C交于A,B两点,问在直线y=2上是否存在定点N,使得K AN+K BN=0恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.【分析】(1)由已知求出直线m的方程,联立直线l与直线m,求得圆心坐标,再由两点间的距离公式求得半径,则圆的方程可求;(2)假设存在点N(t,2)符合题意,设交点坐标为A(x1,y1),B(x2,y2),当直线AB斜率存在时,设直线AB方程为y﹣2=k(x﹣1),联立直线方程与圆的方程,利用根与系数的关系结合K AN+K BN=0求得t值,已知AB斜率不存在时成立,可得在直线y=2上存在定点N(,0),使得K AN+K BN=0恒成立.【解答】解:(1)∵直线AB的斜率为﹣1,∴AB的垂直平分线m的斜率为1,AB的中点坐标为(),因此直线m的方程为x﹣y﹣1=0,又圆心在直线l上,∴圆心是直线m与直线l的交点.联立方程租,得圆心坐标为C(3,2),又半径r=,∴圆的方程为(x﹣3)2+(y﹣2)2=13;(2)假设存在点N(t,2)符合题意,设交点坐标为A(x1,y1),B(x2,y2),①当直线AB斜率存在时,设直线AB方程为y﹣2=k(x﹣1),联立方程组,消去y,得到方程(1+k2)x2﹣(2k2+6)x+k2﹣4=0.则由根与系数的关系得,.∵K AN+K BN=0,∴,即.∴2x1x2﹣(1+t)(x1+x2)+2t=0,∴.解得t=,即N点坐标为(,0);②当直线AB斜率不存在时,点N显然满足题意.综上,在直线y=2上存在定点N(,0),使得K AN+K BN=0恒成立.【点评】本题考查圆的方程的求法,考查直线与圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.10.已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线上,过点P作圆M的切线PA,PB,切点为A,B.(1)若点P的坐标为(1,),求切线PA,PB方程;(2)求四边形PAMB面积的最小值;(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点坐标.【分析】(1)当切线斜率不存在时,切线方程为x=1,当切线斜率存在时,设直线方程为,由直线和圆相切,求出,由此能求出切线PA,PB 方程.(2),当PM最小时,四边形面积最小.由此能求出四边形PAMB面积的最小值.(3)设点P(),M(0,2),过P,A,M三点的圆即以PM为直径的圆,由此能求出定点坐标.【解答】解:(1)当切线斜率不存在时,切线方程为x=1…(2分)当切线斜率存在时,设直线方程为,因为直线和圆相切,所以,解得,此时直线方程为y=﹣(x﹣1)+,即5x+12y﹣11=0,所以切线PA,PB方程x=1,5x+12y﹣11=0.…(4分)(2)…(6分)故当PM最小时,四边形面积最小.而所以四边形PAMB面积的最小值…(10分)证明:(3)设点P(),M(0,2),过P,A,M三点的圆即以PM为直径的圆即()2+()2=()2,…(12分)所以,从而,解得定点坐标为(0,2)或(,).…(16分)【点评】本题考查圆的切线方程、直线方程、四边形面积的求法,涉及到圆、直线方程、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.11.在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,记点P的轨迹为C.(Ⅰ)求C得方程;(Ⅱ)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)由动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,可得动点P的轨迹是以点F(1,0)为焦点,直线x=﹣1为准线的抛物线,由已知求得p,则抛物线方程可求;(Ⅱ)设A(),则B(,0),可得直线AB的斜率为k=.则与AB 平行,且与抛物线C相切的直线为y=﹣,联立直线方程与抛物线方程,利用判别式等于0可得b与m的关系,求得D的坐标,分和两类分析得答案.【解答】解:(Ⅰ)∵动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,∴动点P的轨迹是以点F(1,0)为焦点,直线x=﹣1为准线的抛物线.设C的方程为y2=2px,则,即p=2.∴C的轨迹方程为y2=4x;(Ⅱ)设A(),则B(,0),∴直线AB的斜率为k=.设与AB平行,且与抛物线C相切的直线为y=﹣,由,得my2+8y﹣8b=0,由△=64﹣32mb=0,得b=﹣,∴y=﹣,则点D().当,即m≠±2时,直线AD的方程为:,整理得,∴直线AD过点(1,0).当,即m=±2时,直线AD的方程为x=1,过点(1,0),综上所述,直线AD过定点(1,0).【点评】本题考查轨迹方程的求法,考查直线与抛物线位置关系的应用,考查计算能力,是中档题.12.已知经过P(4,﹣2),Q(﹣1,3)两点的圆C半径小于5,且在y轴上截得的线段长为,(I)求圆C的方程;(II)已知直线l∥PQ,若l与圆C交于A,B两点,且以线段AB为直径的圆经过坐标原点,求直线l的方程.【分析】(Ⅰ)设圆的方程为x2+y2+Dx+Ey+F=0,根据经过P(4,﹣2),Q(﹣1,3)两点的圆C半径小于5,且在y轴上截得的线段长为,求出D,E,F,即可求圆C的方程;(Ⅱ)利用直线的平行关系设出直线的方程,利用设而不求的思想得到关于所求直线方程中未知数的方程,通过方程思想确定出所求的方程,注意对所求的结果进行验证和取舍.【解答】解:(Ⅰ)设圆的方程为x2+y2+Dx+Ey+F=0,令x=0⇒y2+Ey+F=0,∴y1+y2=﹣E,y1•y2=F,∴,∴E2﹣4F=48①…(2分)又圆过P(4,﹣2),Q(﹣1,3)两点,∴⇒2E+F=﹣12…②由①②得:或…(4分)∵圆的半径小于5,∴圆的方程为x2+y2﹣2x﹣12=0…(6分)(Ⅱ),∴设l的方程为:x+y+m=0…(7分)由⇒2x2+(2m﹣2)x+m2﹣12=0,设A(x1,y1),B(x2,y2),则…(9分)∵以AB为直径的圆过原点,∴OA⊥OB,…(10分)∴x1•x2+y1•y2=x1•x2+(﹣x1﹣m)•(﹣x2﹣m)=0整理得:m2+m﹣12=0⇒m=3或m=﹣4,…(11分)且m=3或m=﹣4均满足△>0…(12分)∴l的方程为x+y+3=0或x+y﹣4=0…(13分)【点评】本题考查直线与圆的综合问题,考查直线方程的求解方法和圆方程的求解方法,注意待定系数法的运用,考查学生对直线与圆相交弦长有关问题的处理方法,考查设而不求思想的运用,考查方程思想和转化与化归的思想,是中档题.13.在平面直角坐标系xOy中,圆C经过P(3+2,0),Q(3﹣2,0),R (0,1)三点.(1)求圆C的方程;(2)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.【分析】(1)利用已知条件求出圆的一般式方程.(2)首先求出弦AB的值,进一步利用点到直线的距离公式求出结果.【解答】解(1)设圆的方程为:x2+y2+Dx+Ey+F=0,圆C经过P(3+2,0),Q(3﹣2,0),R(0,1)三点.则:1+E+F=0,令y=0,则:圆的方程转化为:x2+Dx+F=0,则:,解得:D=﹣6.利用:,解得:F=1.故:E=﹣2.所以圆的方程为:x2+y2﹣6x﹣2y+1=0.(2)圆x2+y2﹣6x﹣2y+1=0,转化为标准式为:(x﹣3)2+(y﹣1)2=9.由于圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,则:|AB|=,所以:圆心(3,1)到直线x﹣y+a=0的距离d=,解得:a=1或﹣5.【点评】本题考查的知识要点:圆的方程的求法,直线和圆的位置关系的应用.点到直线的距离公式的应用.14.已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的方程.【分析】(1)直线l经过定点(1,1),定点(1,1)在圆C内,由此能证明对m∈R,直线l与圆C总有两个不同的交点.(2)由圆心(0,1)到直线mx﹣y+1﹣m=0的距离d=,圆的弦长|AB|=2=,由此能求出直线方程.【解答】证明:(1)直线l:mx﹣y+1﹣m=0转化为m(x﹣1)﹣y+1=0,∴直线l经过定点(1,1),∵12+(1﹣1)2<5,∴定点(1,1)在圆C内,∴对m∈R,直线l与圆C总有两个不同的交点.解:(2)由圆心(0,1)到直线mx﹣y+1﹣m=0的距离d==,而圆的弦长|AB|=2=,即2=,17=4(4+),m2=3,解得m=,故所求的直线方程为或﹣.【点评】本题考查直线与圆总有两个交点的证明,考查直线方程的求法,考查直线过定点、圆、点到直线的距离公式、弦长等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15.已知圆C:(x﹣a)2+(y﹣a)2=a2(a>0)的面积为π.且与x轴、y轴分别交于A、B两点.(1)求圆C的方程;(2)若直线l:y=k(x+2)与线段AB相交,求实数k的取值范围;(3)试讨论直线l:y=k(x+2)与圆C:(x﹣a)2+(y﹣a)2=a2(a>0)的交点个数.【分析】(1)圆C的半径r=a,从而πa2=π,求出a=1,由此能求出圆C的方程.(2)由圆C的方程为(x﹣1)2+(y﹣1)2=1,得点A(1,0),B(0,1).由直线l:y=k(x+2)与线段AB相交,得到•≤0,由此能求出实数k的取值范围.(3)圆心C(1,1)到直线l:kx﹣y+2k=0的距离d=,根据d>1,d=1,d<1三种情况,能判断直线l与圆C的交点个数.【解答】(本题满分(14分),第1小题满分(4分),第2小题满分(4分),第3小题满分6分)解:(1)因为圆C:(x﹣a)2+(y﹣a)2=a2(a>0),则圆的半径r=a,所以,πa2=π,即a=1,…(3分)所以,圆C的方程为(x﹣1)2+(y﹣1)2=1.…(1分)(2)因为圆C的方程为(x﹣1)2+(y﹣1)2=1,所以,点A(1,0),B(0,1).由题意,直线l:y=k(x+2)与线段AB相交,所以d1•d2=•≤0,…(2分)整理,得3k(2k﹣1)≤0,解得0,所以实数k的取值范围为[0,].…(2分)(3)因为圆心C(1,1)到直线l:kx﹣y+2k=0的距离d=,当d>1时,8k2﹣6k>0,即k<0或k>时,直线l与圆C没有交点;…(2分)当d=1,即k=0或k=,直线l与圆C有一个交点;…(2分)当d<1,即0<k<时,直线l与圆C有两个交点.…(2分)【点评】本题考查圆的方程的求法,考查实数的范围的求法,考查直线与圆的交点个数的判断,考查直线、圆、点到直线距离公式等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想,是中档题.16.在直角坐标系xOy中,F(1,0),动点P满足:以PF为直径的圆与y轴相切.(1)求点P的轨迹方程;(2)设点P的轨迹为曲线Г,直线l过点M(4,0)且与Г交于A,B两点,当△ABF与△AOF的面积之和取得最小值时,求直线l的方程.【分析】(1)设点P(x,y),圆心N(x0,y0),由圆与y轴相切于点C,得|PF|=2|NC|,结合两点间的距离公式整理可得点P的轨迹方程为:y2=4x;(2)(ⅰ)当直线l的斜率不存在时,方程为:x=4,可得S△ABF +S△AOF=14.(ⅱ)当直线l的斜率存在时,设方程为:y=k(x﹣4),A(x1,y1),B(x2,y2),联立直线方程与抛物线方程,可得关于y的一元二次方程,利用根与系数的关系可得,y1y2=﹣16,再由S△ABF+S△AOF=S△AOM+S△BFM=,结合等号成立的条件求得y1,y2的值,进一步得到k值,则△ABF与△AOF的面积之和取得最小值时,直线l的方程可求.【解答】解:(1)设点P(x,y),圆心N(x0,y0),圆与y轴相切于点C,则|PF|=2|NC|,∴,又点N为PF的中点,∴,∴,整理得:y2=4x.∴点P的轨迹方程为:y2=4x;(2)(ⅰ)当直线l的斜率不存在时,方程为:x=4,可得S△ABF +S△AOF=14.(ⅱ)当直线l的斜率存在时,设方程为:y=k(x﹣4),A(x1,y1),B(x2,y2),由消去x并整理得:ky2﹣4y﹣16k=0,∴,y1y2=﹣16,S△ABF+S△AOF=S△AOM+S△BFM=,当且仅当4|y1|=3|y2|时等号成立,又|y1||y2|=16,∴,或,,∴,解得:k=.∵,∴当两个三角形的面积和最小时,直线l的方程为:y=(x﹣4).【点评】本题考查轨迹方程的求法,考查数学转化思想方法与数形结合的解题思想方法,训练了利用基本不等式求最值,是中档题.17.已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0.(1)试判断直线l与圆C的位置关系,并说明理由;(2)若直线l与圆C交于A,B两点,且,求m的值.【分析】(1)圆心C(0,1)到直线l:mx﹣y+1﹣m=0的距离d=≤1(m∈R),即d<r=,由此推导出直线l与圆C相交.(2)由r=,d=,|AB|=,根据垂径定理及勾股定理得:=,由此能求出m.【解答】解:(1)直线l与圆C相交,理由如下:∵圆C:x2+(y﹣1)2=5的圆心坐标为C(0,1),半径为r=,∴圆心C到直线l:mx﹣y+1﹣m=0的距离:d==≤1(m∈R),即d<r=,∴直线l与圆C相交.(2)∵r=,d=,|AB|=,∴根据垂径定理及勾股定理得:=,即,整理得:m2=3,解得:m=±.【点评】本题考查直线与圆的位置关系的判断,考查实数值的求法,考查直线、圆、点到直线距离公式、垂径定理及勾股定理等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想,是中档题.18.已知以点(t∈R,t≠0)为圆心的圆与x轴交点为O、A,与y轴交于点O、B,其中O为坐标原点.(1)试写出圆C的标准方程,并证明△OAB的面积为定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的标准方程.【分析】(1)由已知求出圆的半径,得到圆的方程,求出A,B的坐标,代入三角形面积公式得答案;(2)由|OM|=|ON|,可得OC垂直平分线段MN,求出直线OC的方程,得到OC的斜率,利用斜率的关系求得t值,可得圆C的标准方程.【解答】解:(1)∵圆C过原点O,∴,即圆C标准方程为.令x=0,得y1=0,;令y=0,得x1=0,x2=2t.∴,即△OAB的面积为定值4;(2)∵|OM|=|ON|,∴OC垂直平分线段MN,直线OC的方程为,即,得t=2或t=﹣2.当t=2时,满足题意;当t=﹣2时,直线y=﹣2x+4与圆C不相交,舍去.∴圆C的标准方程为(x﹣2)2+(y﹣1)2=5.【点评】本题考查圆的标准方程,考查直线与圆位置关系的应用,考查两直线垂直与斜率的关系,是中档题.19.已知圆C的圆心为点C(0,3),点D(﹣,2)在圆C上,直线l过点A (﹣1,0)且与圆C相交P,Q两点,点M是线段PQ的中点.(1)求圆C的方程:(2)若|AM|=3,求直线l的方程.【分析】(1)可得圆的半径R=.即可得圆C的方程为:x2+(y﹣3)2=4,(2)设点M(x,y),由|AM|=3,(x+1)2+y2=9,点M是线段PQ的中点,即=﹣1,y2﹣3y+x2+x=0,由①②得x+3y﹣8=0,从而可得答案.【解答】解:(1)∵圆C的圆心为点C(0,3),点D(﹣,2)在圆C上,∴圆的半径R=.∴圆C的方程为:x2+(y﹣3)2=4,(2)∵点M是线段PQ的中点,∴AM⊥CM,可得AM2+d2=R2,当直线l的斜率为k时,设方程为kx﹣y+k=0d=解得k=,即直线l的方程为:4x﹣3y+4=0,当直线l的斜率不存在时,直线x=﹣1符合题意.综上所述:直线l的方程为:4x﹣3y+4=0或x=﹣1.【点评】本题考查了圆的方程、直线与圆的位置关系,属于中档题.20.已知点M 在圆x2+y2=4 上运动,N (4,0),点P 为线段MN 的中点(1)求点P 的轨迹方程;(2)求点P 到直线3x+4y﹣26=0 的距离的最大值和最小值.【分析】(1)用x和y表示出M的坐标代入圆的方程即可求得P的轨迹方程.(2)利用点到直线的距离求得圆心到直线的距离,进而利用圆心到直线的距离加或减半径即可求得最大和最小值.【解答】解:(1)∵点P(x,y)是MN的中点,∴x0=2x﹣4,y0=2y,将用x,y表示的x0,y0代入到x02+y02=4中得(x﹣2)2+y2=1.此式即为所求轨迹方程.(2)由(Ⅰ)知点P的轨迹是以Q(2,0)为圆心,以1为半径的圆.点Q到直线3x+4y﹣26=0的距离d==4.故点P到直线3x+4y﹣26=0的距离的最大值为4+1=5,最小值为4﹣1=3.。

相关文档
最新文档