2015-2016年人教版八年级数学下学期期末模拟试题(5)
新人教版八年级第二学期下册期末模拟数学试卷(含答案)
新人教版八年级第二学期下册期末模拟数学试卷(含答案)一、选择题(共8小题;共40分)1. 在下列各式中,不是二次根式的有① ;② ;③ (,同号且);④ ;⑤ .A. 个B. 个C. 个D. 个2. 要使代数式有意义,则的A. 最大值是B. 最小值是C. 最大值是D. 最小值是3. 下列计算结果正确的个数是① ;② ;③;④当时,.A. B. C. D.4. 下列式子中为最简二次根式的是A. B. C. D.5. 下列计算正确的是A. B.C. D.6. 算式的值为A. B. C. D.7. 若是整数,则正整数的最小值是A. B. C. D.8. 甲、乙两人计算的值,当的时候得到不同的答案,甲的解答是;乙的解答是.下列判断正确的是A. 甲、乙都对B. 甲、乙都错C. 甲对,乙错D. 甲错,乙对二、填空题(共9小题;共45分)9. 若,则.10. 已知,则.11. 把进行化简,得到的最简结果是(结果保留根号).12. 计算:等于.13. 在实数范围内分解因式:.14. 对于任意不相等的两个数,,定义一种运算“”如下:.如,那么.15. 设,,则.16. 若实数,在数轴上的对应点的位置如图所示,则的化简结果为.17. 若,则.三、解答题(共6小题;共78分)18. 计算:Ⅰ;Ⅱ.19. 已知,求的值.20. 已知,,求下列代数式的值:Ⅰ;Ⅱ.21. 已知,,满足.Ⅰ求,,的值.Ⅱ以,,为边能否构成三角形?若能构成,求出三角形的周长;若不能构成,请说明理由.22. 已知是的小数部分,求的值.23. 阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为,,,记,则三角形的面积,此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得,,,你能求出李大爷这块菜地的面积吗?试试看.答案第一部分1. B2. A3. B4. A5. C6. D7. B8. D第二部分9.10.11.12.13.14.15.16.17. 答案:解析:.第三部分18. (1)(2)19. ,,,..20. (1).,..(2)原式变形为.,..21. (1),,,.,,.(2)以,,为边能构成三角形,其周长为.22. .,.23. ,,,李大爷这块菜地的面积为.最新人教版八年级第二学期下册期末模拟数学试卷(答案)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各组数中,可以组成直角三角形的是()A.1:2:3B.2,3,4C.3,4,5D.32,42,52 3.(3分)下列计算正确的是()A.+=B.3﹣=2C.2+=2D.=24.(3分)汽车在匀速行驶过程中,路程s、速度v、时间t之间的关系为s=vt,下列说法正确的是()A.s、v、t都是变量B.s、t是变量,v是常量C.v、t是变量,s是常量D.s、v是变量,t是常量5.(3分)数据0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4B.2和2C.1和2D.3和26.(3分)正比例函数y=2x的图象必经过点()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)7.(3分)已知点A(﹣2,y1),B(1,y2)都在直线y=﹣2x+2上,则y1、y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.y1≥y28.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm9.(3分)在▱ABCD中,已知AB=6,BE平分∠ABC交AD边于点E,点E将AD分为1:3两部分,则AD的长为()A.8或24B.8C.24D.9或2410.(3分)正方形ABCD,正方形CEFG如图放置,点B、C、E在同一条直线上,点P在BC边上,P A=PF,且∠APF=90°,连接AF交CD于点M.有下列结论:①EC=BP;②AP=AM:③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CGFE=2S△APF,其中正确的是()A.①②③B.①③④C.①②④⑤D.①③④⑤二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的众数为.13.(3分)将直线y=2x+3向下平移2个单位,得直线.14.(3分)矩形两条对角线的夹角为60°,对角线长为14,则该矩形较长的边长为.15.(3分)如图所示,直线y=x+1与y轴相交于点A1,以OA1为边作正方形OA1B1C1,记作第一个正方形;然后延长C1B1与直线y=x+1相交于点A2,再以C1A2为边作正方形C1A2B2C2,记作第二个正方形;同样延长C2B2与直线y=x+1相交于点A3,再以C2A3为边作正方形C2A3B3C3,记作第三个正方形;…,依此类推,则第n个正方形的边长为.三、解答题(本大题共8小题,共55分.解答应写出文字说明、证明过程或演算步骤)16.(10分)计算:(1)()﹣()(2)(3)(3)17.(6分)如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.18.(6分)如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD的中点.求证:四边形EFGH是平行四边形.19.(6分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示.(1)A,B两城相距km;(2)哪辆车先出发?哪辆车先到B城?(3)甲车的平均速度为km/h,乙车的平均速度为km/s?(4)你还能从图中得到哪些信息?20.(6分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:根据以上信息,请解答下面的问题:(1)α=,b=,c=;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会.(填“变大”、“变小”或“不变”)21.(7分)某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式;(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A型、B型电脑各多少台,才能使销售总利润最大?22.(7分)如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.23.(7分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x 轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.2018-2019学年河南省开封市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.【解答】解:A、被开方数含分母,不是最简二次根式;B、是最简二次根式;C、被开方数含能开得尽方的因数,不是最简二次根式;D、被开方数含能开得尽方的因数,不是最简二次根式;故选:B.2.【解答】解:A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;B、22+32≠42,根据勾股定理的逆定理不是直角三角形,故此选项错误;C、32+42=52,根据勾股定理的逆定理是直角三角形,故此选项正确;D、(32)2+(42)2≠(52)2,根据勾股定理的逆定理不是直角三角形,故此选项错误.故选:C.3.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、2与不能合并,所以C选项错误;D、原式==2,所以D选项正确.故选:D.4.【解答】解:汽车在匀速行驶过程中,速度v不变,是常量,t、s是变量;故选:B.5.【解答】解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.故选:B.6.【解答】解:A、∵当x=﹣1时,y=﹣2,∴此点在正比例函数的图象上,故本选项正确;B、∵当x=﹣1时,y=﹣2≠2,∴此点不在正比例函数的图象上,故本选项错误;C、当x=1时,y=2≠﹣2,∴此点不在正比例函数的图象上,故本选项错误;D、当x=2时,y=4≠1,∴此点不在正比例函数的图象上,故本选项错误.故选:A.7.【解答】解:∵一次函数y=﹣2x+2中,k=﹣2<0,∴y随x的增大而减小,∵﹣2<1,∴y1>y2.故选:C.8.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选:D.9.【解答】解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠CBE,∴∠ABE=∠BEA,∴AB=AE=6.∵点E将AD分为1:3两部分,∴DE=18或DE=2,∴当DE=18时,AD=24;当DE=2,AD=8;故选:A.10.【解答】解:①∵∠EPF+∠APB=90°,∠APB+∠BAP=90°,∴∠EPF=∠BAP.在△EPF和△BAP中,有,∴△EPF≌△BAP(AAS),∴EF=BP,∵四边形CEFG为正方形,∴EC=EF=BP,即①成立;②无法证出AP=AM;③∵FG∥EC,∴∠GFP=∠EPF,又∵∠EPF=∠BAP,∴∠BAP=∠GFP,即③成立;④由①可知EC=BP,在Rt△ABP中,AB2+BP2=AP2,∵P A=PF,且∠APF=90°,∴△APF为等腰直角三角形,∴AF2=AP2+EP2=2AP2,∴AB2+BP2=AB2+CE2=AP2=AF2,即④成立;⑤由④可知:AB2+CE2=AP2,∴S正方形ABCD+S正方形CGFE=2S△APF,即⑤成立.故成立的结论有①③④⑤.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)11.【解答】解:由二次根式有意义,得到x﹣3≥0,解得:x≥3,故答案为:x≥312.【解答】解:在数据10,10,11,12,8,10中,因为10出现了3次,所以10为这组数据的众数,故答案为:10.13.【解答】解:将直线y=2x+3向下平移2个单位,得到直线y=2x+3﹣2,即y=2x+1.故答案为:y=2x+1.14.【解答】解:如图,在矩形ABCD中,AC、BD相交于点O,∠AOB=60°,则OA=OB=×14=7,∴△AOB为等边三角形,∴AB=7,Rt△ABC中,由勾股定理得:BC====7,故答案为:7.15.【解答】解:根据题意不难得出第一个正方体的边长=1,那么:n=1时,第1个正方形的边长为:1=20n=2时,第2个正方形的边长为:2=21n=3时,第3个正方形的边长为:4=22…第n个正方形的边长为:2n﹣1故答案为:2n﹣1三、解答题(本大题共8小题,共55分.解答应写出文字说明、证明过程或演算步骤)16.【解答】解:(1)原式=2﹣﹣﹣=﹣;(2)原式=18﹣3=15.17.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+62=(10﹣x)2.解得:x=3.2答:折断处离地面的高度是3.2尺.18.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F、G、H分别是OA、OB、OC、OD的中点,∴EF∥AB,EF=AB,GH∥CD,GH=CD,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形.19.【解答】解:(1)由图示知:A,B两城相距300km;(2)由图示知,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城.答:甲车先出发,乙车先到达B城;(3)如图所示:甲车的平均速度为:=60(km/h),乙车的平均速度为:=100(km/h),答:甲、乙两车的平均速度分别是60km/h、100km/h.(4)300﹣60×4=60(千米),答:乙车到达B城时,甲车距离B城的距离60千米.故答案为:300;60;100.20.【解答】解:(1)由题可得,a=(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如下:(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定.(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=[(5﹣8)2+(9﹣8)2+(10﹣8)2+(9﹣8)2+(8﹣8)2]=2.5<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为:变小.21.【解答】解:(1)由题意可得,y=100x+150(100﹣x)=﹣50x+15000,即y与x的函数关系式是y=﹣50x+15000;(2)由题意可得,100﹣x≤2x,解得,x≥,∵y=﹣50x+15000,∴当x=34时,y取得最大值,此时y=13300,100﹣x=66,即商店购进A型34台、B型电脑66台,才能使销售总利润最大.22.【解答】解:(1)∵正方形ABCD的对角线AC、BD相交于点O,AM⊥BE,∴∠AOB=∠BOE=∠AMB=90°,∵∠AFO=∠BFM(对顶角相等),∴∠OAF=∠OBE(等角的余角相等),又∵OA=OB(正方形的对角线互相垂直平分且相等),∴△AOF≌△BOE(ASA),∴OE=OF.故答案为:OE=OF;(2)成立.理由如下:∠AOF=∠BOE=90°,OA=OB,∵∠ABC=90°,∴∠EBC+∠ABM=90°,∵∠ABM+∠BAF=90°,∴∠EBC=∠BAF,又∵∠OAB=∠OBC=45°,∴∠OAM=∠OBE,∴△AOF≌△BOE(ASA),∴OE=OF.23.【解答】解:(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,∴点C(2,4),∵直线y=﹣x+b过点C,4=﹣+b,b=5;(2)①由题意得:PD=t,y=x+2中,当y=0时,x+2=0,x=﹣2,∴A(﹣2,0),y=﹣x+5中,当y=0时,﹣x+5=0,x=10,∴D(10,0),∴AD=10+2=12,∵△ACP的面积为10,∴•4=10,t=7,则t的值7秒;②存在,分三种情况:i)当AC=CP时,如图1,过C作CE⊥AD于E,∴PE=AE=4,∴PD=12﹣8=4,即t=4;ii)当AC=AP时,如图2,AC=AP1=AP2==4,∴DP1=t=12﹣4,DP2=t=12+4;iii)当AP=PC时,如图3,∵OA=OB=2∴∠BAO=45°∴∠CAP=∠ACP=45°∴∠APC=90°∴AP=PC=4∴PD=12﹣4=8,即t=8;综上,当t=4秒或(12﹣4)秒或(12+4)秒或8秒时,△ACP为等腰三角形.最新人教版八年级(下)期末模拟数学试卷【含答案】一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列式子中,属于最简二次根式的是( )A B C D 2.下列四个点中,在函数3y x =的图象上的是( )A .(-1,3)B .3(,-1)C .(1,3)D .(3,1) 3.如图,在△ABC 中,∠ACB =90°,AB =10,点D 是AB 的中点,则CD =( )A .4B .5C .6D .84( )A B .C D .15.以下列三个数据为三角形的三边,其中能构成直角三角形的是( )A .2,3,4B .4,5,6C .5,12,13D .5,6,76.现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别为2s =0.51甲,2s =0.35乙,那么两个队中队员的身高较整齐的是( )A .甲队B .乙队C .两队一样高D .不能确定 7.菱形的对角线长分别为6和8,则该菱形的面积是( )A .24B .48C .12D .108.一次函数24y x =-的图象经过( )A .一、二、三象限B .一、二、四象限C .二、三、四象限D .一、三、四象限9.已知E 、F 、G 、H 分别是菱形ABCD 的边AB 、BC 、CD 、AD 的中点,则四边形EFGH 的形状一定是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,菱形ABCD 中,点M 是AD 的中点,点P 由点A 出发,沿A →B →C →D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。
2015-2016八年级下册数学期末模拟试卷
20. BD 相交于点 O, E 是 CD 中点, 已知: 如图, 在矩形 ABCD 中, 对角线 AC、 连结 OE. 过 点 C 作 CF∥BD 交线段 OE 的延长线于点 F,连结 DF.求证: (1)△ ODE≌△FCE; (2)四边形 ODFC 是菱形.
21. (本题满分 8 分)中学生带手机上学的现象越来越受到社会的关注.某市记者随机调查 了一些家长对这种现象的态度(A:无所谓;B:反对;C:赞成) ,并将调査结果绘制 成图①和图②的统计图(不完整) .
(1)如图②,当点 E 恰好在直线 l 上时(此时 E1 与 E 重合),试说明 DD1=AB; (2)在图①中,当 D、E 两点都在直线 l 的上方时,试探求三条线段 DD1、EE1、AB 之间 的数量关系,并说明理由; (3)如图③,当点 E 在直线 l 的下方时,请直接写出三条线段 DD1、EE1、AB 之间的数量 关系.(不需要证明)
三、解答题(本大题共 8 小题,共 66 分,解答时应写出文字说明、说理过程或演算步骤. ) 17. (本题共有 2 小题,每小题 4 分,共 8 分)计算:
2 (1) 12-| 3-3|+( 3) ;(2) =来自先化简,在求值:( 18.
-
)
,其中 m 是不等式 3m-1>-7 的负整数解
19.已知反比例函数 y= (k 为常数,k≠0)的图象经过点 A(2,3). (1)求这个函数的解析式; (2)当﹣3<x<﹣1 时,求 y 的取值范围.
25.(2010 年安徽省 B 卷 。本小题满分 8 分)甲、乙两辆汽车沿同一路线赶赴 距出发地 480 千米的目的地,乙车比甲车晚出发 2 小时(从甲车出发时开始计 时).图中折线 、线段 分别表示甲、乙两车所行路程 (千米)与时 表示甲出发不足 2 小时因故
【人教版】八年级数学下期末模拟试卷(附答案)
一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是()A.6℃B.6.5℃C.7℃D.7.5℃2.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为().A.1 B.6C.1或6 D.5或63.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177808280A.80,80B.81,80C.80,2D.81,24.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2 5.甲,乙两车分别从A,B两地同时出发,相向而行.乙车出发2h后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x(h),甲,乙两车到B地的距离分别为y1(km),y2(km),y1,y2关于x的函数图象如图.下列结论:①甲车的速度是45akm/h;②乙车休息了0.5h;③两车相距a km时,甲车行驶了53h.正确的是( )A .①②B .①③C .②③D .①②③ 6.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 7.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<< 8.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米;④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④ 9.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .3010.下列运算正确的是( )A .235⋅=B .193627⋅=C .6212⋅=D .32462⋅= 11.下列说法正确的是( )A .有一个角是直角的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .有一组邻边相等的菱形是正方形D .各边都相等的四边形是正方形 12.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③二、填空题13.若这8个数据-3, 2,-1,0,1,2,3,x 的极差是11,则这组数据的平均数是______. 14.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12_______________ S 22(填“>”、“=”或“<”).15.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___. 16.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.17.如图,圆柱形玻璃杯的高为12cm ,底面圆的周长为10cm ,在杯内离底4cm 的点N 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上2cm 与蜂蜜相对的点M 处,则蚂蚁到达蜂蜜所爬行的最短路程为________cm .18.计算22(2)(3)x x -+-的结果是________.19.如图,矩形ABCD 中,2AB =,4=AD ,点E 是边AD 上的一个动点;把BAE △沿BE 折叠,点A 落在A '处,如果A '恰在矩形的对称轴上,则AE 的长为______.20.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.三、解答题21.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下: 学部 平均数 中位数 最高分 众数 初一88 a 98 98 初二 88 86 100 ba =(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?22.已知一组数据x 1,x 2,x 3,…,x n 的平均数为5,求数据x 1+5,x 2+5,x 3+5,…,x n +5的平均数23.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式;(2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.24.已知:如图所示,在平行四边形ABCD 中,DE 、BF 分别是∠ADC 和∠ABC 的角平分线,交AB 、CD 于点E 、F ,连接BD 、EF .(1)求证:BD 、EF 互相平分;(2)若∠A =60°,AE =2EB ,AD =4,求线段BD 的长.25.计算下列各题(1)11274833-+ (20)()220803215+-- 26.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命器(填“真”或“假”)①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”. 命题①是_______命题,命题②是______命题;(2)如图2, Rt ABC .90︒∠=C ,30B ,3AC =Rt ABC 是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度:若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【详解】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8,中位数为:6+72=6.5,故选B.【点睛】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2.C解析:C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.3.A解析:A【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.4.D解析:D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯ 方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2) 1.5610⨯-+⨯-+⨯-+⨯-+-= 故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5.A解析:A【分析】根据速度=路程÷时间即可算出甲的速度,由此可判断①,甲乙相遇时甲走路程为2akm ,计算出时间可判断②,分甲乙相遇前和相遇后两个时间段考虑甲乙相距akm 时的时间,可判断③.【详解】解:由函数图象可知,甲5小时到达,速度为4/5a km h ,故①正确; 甲与乙相遇时,时间为42 2.545a a h a -=,所以乙休息了2.520.5h -=,②正确; 乙的速度为:2/2a akm h =, 在2小时时,甲乙相距4242255a a a akm --⋅=, ∴在2小时前,若两车相距a km 时,445a a a a t t -=⋅+⋅,解得53t h =, 当两车相遇后,即2.5小时后,若两车相距a km 时,44(0.5)5a a a a t t +=⋅-+⋅, 解得5518t h =, ∴两车相距a km 时,甲车行驶了53h 或5518h ,故③错误; 故选:A .【点睛】本题考查一次函数的应用.解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6.B解析:B【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱.故选:B .【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.7.B解析:B【分析】由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.8.A解析:A【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高; ②设直线AC 的解析式为y =kx +b (k ≠0),然后利用待定系数法求出直线AC 线段的解析式,③把x =40代入②的结论进行计算即可得解;④把x =50代入②的结论进行计算即可得解.【详解】解:∵CD ∥x 轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC 的解析式为y =kx +b (k ≠0),∵经过点A (0,6),B (30,12),∴30126k b b +=⎧⎨=⎩, 解得156k b ⎧=⎪⎨⎪=⎩,所以,直线AC 的解析式为165y x =+(0≤x ≤50), 故②的结论正确;当x =40时,14065y =⨯+=14, 即第40天,该植物的高度为14厘米;故③的说法正确;当x =50时,15065y =⨯+=16, 即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A .【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.9.C解析:C【分析】延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒ 90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.10.D解析:D【分析】根据各个选项中的式子进行计算得出正确的结果,从而可以解答本题.【详解】解:236= B. 119393279==,故本选项错误; 6212=D.33242436622⋅=⨯==,故本选项正确. 故选:D.【点睛】 本题考查二次根式的乘法运算,解答本题的关键是明确二次根式乘法运算的计算方法. 11.B解析:B【分析】根据正方形的判定:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角进行分析即可.【详解】解:A.有一个角是直角的平行四边形是正方形,说法错误,应是矩形,不符合题意;B.对角线互相垂直的矩形是正方形,说法正确,符合题意;C.一组邻边相等的矩形是正方形,说法错误,不合题意;D.各边都相等的四边形是菱形,不是正方形,不合题意.故选B .【点睛】本题主要考查了正方形的判定,关键是掌握正方形的判定方法.12.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =, 又在Rt FBE △中,22222CE BE BF BE FE +=+= 又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积. 二、填空题13.15或-05【分析】根据极差的概念求出x 的值然后根据平均数的概念求解【详解】一组数据-32-10123x 的极差是11当x 为最大值时x ﹣(﹣3)=11x=8平均数是:;当x 是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x 的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x 的极差是11,当x 为最大值时,x ﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=() ;当x 是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键14.=【解析】分析:根据方差公式分别计算出这两组数据的方差比较即可解答详解:数据12345的平均数为3方差S12=;数据678910的平均数为8方差S22=;∴S12=S22故答案为=点睛::本题考查了解析:=【解析】分析:根据方差公式分别计算出这两组数据的方差,比较即可解答.详解:数据1、2、3、4、5的平均数为3,方差S 12=2222211(13)(23)(33)(43)(53)10255⎡⎤-+-+-+-+-=⨯=⎣⎦ ; 数据6、7、8、9、10的平均数为8,方差S 22=2222211(68)(78)(88)(98)(108)10255⎡⎤-+-+-+-+-=⨯=⎣⎦ ; ∴S 12=S 22.故答案为=. 点睛::本题考查了方差、平均数等知识,解题的关键是利用方差公式计算出这两组数据的方差.15.【分析】先求出y=2x+3与y 轴交点坐标为(03)代入y=3x ﹣2b 即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y 轴交点为(03)将(03)代入y=3x ﹣2b 中得-2b= 解析:32- 【分析】先求出y=2x+3与y 轴交点坐标为(0,3),代入y=3x ﹣2b ,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y 轴交点为(0,3),将(0,3)代入y=3x ﹣2b 中,得-2b=3,解得b=32-, 故答案为:32-. 【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键. 16.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟 解析:()15,0+()15,0-()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =,22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2), 故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.17.【分析】过N 作NQ ⊥EF 于Q 作M 关于EH 的对称点M′连接M′N 交EH 于P 连接MP 则MP+PN 就是蚂蚁到达蜂蜜的最短距离求出M′QNQ 根据勾股定理求出M′N 即可【详解】解:如图:沿过A 的圆柱的高剪开得 解析:55.【分析】过N 作NQ ⊥EF 于Q ,作M 关于EH 的对称点M′,连接M′N 交EH 于P ,连接MP ,则MP+PN 就是蚂蚁到达蜂蜜的最短距离,求出M′Q ,NQ ,根据勾股定理求出M′N 即可.【详解】 解:如图:沿过A 的圆柱的高剪开,得出矩形EFGH ,过N 作NQ ⊥EF 于Q ,作M 关于EH 的对称点M′,连接M′N 交EH 于P ,连接MP ,则MP+PN 就是蚂蚁到达蜂蜜的最短距离,∵ME=M′E ,M′P=MP ,∴MP +PN=M′P+PN=M′N ,∵NQ=12×10cm=5cm ,M′Q=12cm -4cm+2cm=10cm , 在Rt △M′QN 中,由勾股定理得:2251055+=.故答案为:55【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,关键是找出最短路线.18.【分析】利用二次根式有意义的条件得到x≤2再利用二次根式的性质化简得到原式=2﹣x+|x ﹣3|然后去绝对值后合并即可【详解】解:∵∴∴故答案为:【点睛】此题考查了二次根式的化简掌握二次根式的性质和是解析:52x -.【分析】利用二次根式有意义的条件得到x≤2,再利用二次根式的性质化简得到原式=2﹣x+|x ﹣3|,然后去绝对值后合并即可.【详解】解:∵20x -≥,∴2x ≤, ∴22(2)(3)2352x x x x x -+-=-+-=-.故答案为:52x -.【点睛】此题考查了二次根式的化简,掌握二次根式的性质2()(0)a a a =≥和2 (0)0? (0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键. 19.2或【分析】分两种情况:①过A′作MN ∥CD 交AD 于M 交BC 于N 则直线MN 是矩形ABCD 的对称轴得出AM=BN=AD=2由勾股定理得到A′N=0求得A′M=2再得到A′E 即可;②过A′作PQ ∥AD 交解析:2或233 【分析】分两种情况:①过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,得出AM=BN=12AD=2,由勾股定理得到A′N=0,求得A′M=2,再得到A′E 即可;②过A′作PQ ∥AD 交AB 于P ,交CD 于Q ;求出∠EBA′=30°,再利用勾股定理求出A′E ,即可得出结果.【详解】解:分两种情况:①如图1,过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,∴AM=BN=12AD=2, ∵△ABE 沿BE 折叠得到△A′BE ,∴A′E=AE ,A′B=AB=2,∴A′N=22A B BN '-=0,即A′与N 重合,∴A′M=2= A′E ,∴AE=2;②如图2,过A′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP=PB ,AD ∥PQ ∥BC ,∴A′B=2PB ,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,设A′E=x ,则BE=2x ,在△A′EB 中,()22222x x =+,解得:x=233, ∴AE=A′E=23;综上所述:AE 的长为223, 故答案为:223. 【点睛】 本题考查了翻折变换—折叠问题,矩形的性质,勾股定理;正确理解折叠的性质是解题的关键.20.8【分析】过C 作于点F 根据正方形的性质找出对应相等的边和角求证出得到即可求三角形的面积【详解】如图所示过C 作于点F 四边形ABCD 是正方形又又在和中故答案为8【点睛】此题考查了正方形的性质和三角形全等 解析:8【分析】过C 作CF l ⊥于点F ,根据正方形的性质找出对应相等的边和角,求证出ABE BCF ≅得到 4CF BE ==即可求三角形的面积.【详解】如图所示,过C 作CF l ⊥于点F ,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,又AE BE ⊥,CF BF ⊥,90AEB BFC ∴∠=∠=︒,又18090ABE CBF ABC ∠+∠=︒-∠=︒,18090ABE BAE AEB ∠+∠=︒-∠=︒,CBF BAE ∴∠=∠,∴在ABE △和BCF △中, AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE BCF ∴≅,4CF BE ∴==,12BCE S BE CF ∴=⨯⨯1442=⨯⨯8=, 故答案为8.【点睛】此题考查了正方形的性质和三角形全等的判定,以及三角形面积的公式,难度一般.三、解答题21.(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人.【分析】(1)根据条形图排序中位数在C 组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可; (2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可.【详解】解:(1)A 与B 组共有6个,D 组有6个为此中位数落在C 组,而C 组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上,第8个数据为85,中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100, 100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=,答:此次测试成绩达到90分及以上的学生约有320人.【点睛】 本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.22.10【分析】本题首先将1x ,2x ,3x ,…,n x 的和表示出来,继而将其求和值代入目标式子中求解本题.【详解】∵1x ,2x ,3x ,…,n x 的平均数为5,∴1235n x x x x n +++⋅⋅⋅+=,∴15x +,25x +,35x +,…,5n x +的平均数为:[]1231231155(5)(5)(5)(5)(5)10n n n n x x x x x x x x n n n n +⨯++++++⋅⋅⋅++=⨯+++⋅⋅⋅++==.【点睛】本题考查平均数,解题关键在于理解其概念,其次注意计算精度.23.(1)1364y x =-+,21y 12x =+;(2)15;(3)存在,理由见解析. 【分析】(1)直接把点A (0,6)代入l 1解析式中,求出m 的值;把点B (-2,0)代入直线l 2,求出k 的值即可;(2)首先求出点C 的坐标,然后求出点D 坐标,进而根据S △ABD =S △ACB +S △ACB 求出答案; (3)分点P 在点B 的左边和右边两种情况进行讨论,利用三角形面积公式求出点P 的坐标.【详解】解:(1)∵直线113:4l y x m =-+与y 轴交于A (0,6), ∴m =6, ∴1364y x =-+, ∵22:1l y kx =+分别与x 轴交于点B (−2,0),∴−2k +1=0,∴k =12, ∴21y 12x =+; (2)令21y 12x =+中x =0,求出y =1, ∴点C 坐标为(0,1), 联立364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩ , 解得x =4,y =3∴点D 的坐标为(4,3), ∴11(61)2522ACB S AC BO =⨯=⨯-⨯=△ 154102ACD S =⨯⨯=△ ∴51015ABD ACD ACD S S S =+=+=△△△;(3)设点P 坐标为(m ,0),当点P 在B 点的右侧时,BP =m +2,114(2)615223ABP S BP AO m =⨯=⨯+⨯=⨯△, 解得m =143, 则点P 坐标为(143,0), 当点P 在B 点的左侧时,BP =−2−m ,114(2)615223ABP S BP AO m =⨯=⨯--⨯=⨯△, 解得m =−263, 则点P 坐标为(−263,0), 综上点P 的坐标为(143,0)或(−263,0). 【点睛】本题考查了一次函数综合题的知识,本题涉及到求一次函数解析式、两直线交点问题,三角形面积等知识,解本题(2)的关键是求出D 点的坐标,解答(3)的关键是进行分类讨论.24.(1)证明见解析;(2)27【分析】(1)证明EF 、BD 互相平分,只要证DEBF 是平行四边形,利用两组对边分别平行来证明;(2)过D 点作DG ⊥AB 于点G ,通过已知可证△ADE 是等边三角形,所以CE=2,DE=4,由勾股定理可求DG ,继而可求得BD .【详解】(1)证明:∵四边形ABCD 是平行四边形,∴CD ∥AB ,CD=AB ,AD=BC ,∵DE 、BF 分别是∠ADC 和∠ABC 的角平分线,∴∠ADE=∠CDE ,∠CBF=∠ABF ,∵CD ∥AB ,∴∠AED=∠CDE ,∠CFB=∠ABF ,∴∠AED=∠ADE ,∠CFB=∠CBF ,∴AE=AD ,CF=CB ,∴AE=CF ,∴AB-AE=CD-CF ,即BE=DF ,∵DF ∥BE ,∴四边形DEBF 是平行四边形,∴BD 、EF 互相平分;(2)如图,过D 点作DG ⊥AB 于点G ,∵∠A=60︒,AE=AD ,∴△ADE 是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB ,∴BE=2,在Rt △ADG 中,AD=4,∠A=60︒, ∴122AG AD ==,∴=∴BD === 【点睛】本题考查平行四边形的判定和性质、等边三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题.25.(1)2)13【分析】(1)先将原式中的二次根式化成最简二次根式,然后再合并即可得到答案;(2)先进行化简和根据完全平方公式去括号,再进行计算即可.【详解】解:(1=13⨯==(2()21-==6-=13-【点睛】此题考查二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.26.(1)假,真;(2)2【分析】(1)根据“和谐分割线”的定义即可判断;(2)如图作∠CAB的平分线,只要证明线段AD是“和谐分割线”即可,并求AD的长;【详解】解:(1)①从等边三角形一个顶点出发,所分成的两个三角形必定不是等边三角形,不与原三角形的三个内角分别相等,故等边三角形不存在“和谐分割线”,是假命题;②如图,△ABC中,∠ACB=2∠ABC,CD平分∠ACB,则∠B=∠BCD=∠ACD,即△BCD是等腰三角形,在△ACD和△ABC中,∠A=∠A,∠ACD=∠B,∠ADC=∠ACB=2∠B,故△ABC必存在“和谐分割线”,正确,是真命题,故答案为:假,真;(2)Rt△ABC存在“和谐分割线”,理由是:如图作∠CAB的平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠B=30°,∴DA=DB,∴∠DAB=∠B=∠CAD=30°,又∠C=∠C,∠ADC=∠CAB=60°,∴△ADB是等腰三角形,且△ACD和△ABC三个内角相等,∴线段AD是△ABC的“和谐分割线”,∴3=2.【点睛】本题考查三角形综合题、等腰三角形的判定和性质、三角形内角和、“和谐分割线”的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。
2015—2016学年人教版八年级下期末数学试题及答案
2015—2016学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1x 的取值范围是 A.3x 2≥ B. 3x 2> C. 2x 3≥ D. 2x 3> 2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是A.平行四边形B. 菱形C.正方形D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米 10.如图,已知ABCD 的面积为48,E 为AB连接DE ,则△ODE 的面积为 第4题图第10题图 B DA.8B.6C.4D.3二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
【人教版】2015-2016学年八年级下数学期末考试数学试题及答案
15-16学年(下)厦门市八年级质量检测一、选择题(本大题10小题,每小题4分,共40分) 1.下列式子中,表示y 是x 的正比例函数的是( )A .5+=x yB .x y 3=C .23x y =D .x y 32=2.在△ABC 中,若∠BAC =90°,则( )A .BC =AB +AC B .AC 2=AB 2+BC 2 C .AB 2= AC 2 + BC 2D .BC 2=AB 2+AC 2 3.某地2月份上旬的每天中午12时的气温(单位:°C )如下:18,18,14,17,16,15,18,17,16,14. 则这10天中午12时的气温的中位数是( )A .16B .16.5C .17D .18 4.比5大的数是( )A .1B .3C .2D .25 5.如图1,已知四边形ABCD 是矩形,对角线AC ,BD 交于点P ,则下列结论正确的是() A .AC 是∠BAD 的平分线 B .AC ⊥BD C .AC =BD D .AC >2BP6.如图2,在四边形ABCD 中,点E ,F ,G 分别是边AB ,AD ,DC 的中点, 则EF =( ) A .BD 31 B .BD 21 C .BG 21D .BG7.如图3,某个函数的图象由线段AB 和BC 组成,其中点A (0,2), B (23,1),C (4,3),则此函数的最大值是( ) A .1 B .2 C .3 D .48.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为节约成本车间规定每天生产的螺钉和螺母刚好配套.设每天安排x 个工人生产螺钉,则下列方程中符合题意的是( )A .()x x 12002222000⨯=- B .()x x 12002220002=-⨯ C .()x x 20002221200⨯=- D .()x x 20002212002=-⨯ 9.如图4,在正方形ABCD 的外侧作等边三角形DCE ,若∠AED =15°, 则∠EAC =( )A .15°B .28°C .30°D .45° 10.在下列直线中,与直线3+=x y 相交于第二象限的是( )A .x y =B .x y 2=C .)1(12≠++=k k kx yD .()012≠+-=k k kx y 图1图4图2图3二、填空题(本大题有6小题,每小题4分,共24分) 11.计算:()=210 .12.六边形的内角和是 .13.设甲组数据:6,6,6,6的方差为2甲S ,乙组数据:1,1,2的方差为2乙S ,则2甲S 与2乙S 的大小关系是 .若这16名学生投进球数的中位数是2.5,则众数是 .15.已知等腰三角形的周长为24,底边长y 关于腰长x 的函数解析式是 . 16.如图5,在菱形ABCD 中,AC 交BD 于点O ,AE ⊥CD .若AE =OD , 且AO +OD +AD =33+,则菱形ABCD 的面积是 .三、解答题(共86分)17.(7分)已知△ABC 的顶点的坐标分别是A (-4,0),B (-3,2),C (-1,1),△ABC 与△A 1B1C 1关于y 轴对称.请画出一个平面直角坐标系,并在该平面直角坐标系上画出△ABC 及△A 1B 1C 1 .18.(7分)计算:()32323318⨯-+19.(7分)解不等式组⎩⎨⎧->+>+5631312x x x20.(7分)解方程()21231+-=-x x x图521.(7分)如图6,点D ,E 在△ABC 的边BC 上,AB =AC ,BD =CE .求证:△ADE 是等腰三角形.22.(7分)某公司欲招聘一名工作人员,对甲、乙两名应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩5和3的权,平均成绩高的被录,判断谁将被录取,并说明理由.23.(7分)已知32-=x ,求代数式()22223473232444x xx x x x x ++-+÷-++的值.24.(7分)古希腊的几何学家海伦(约公元50年)在研究中发现:如果一个三角形的三边长分别为a ,b ,c ,那么三角形的面积S 与a ,b ,c 之间的关系式是2222ac b b c a c b a c b a S -+⋅-+⋅-+⋅++=① 请你举出一个例子,说明关系式①是正确的.图625.(7分)已知四边形ABCD 的四个顶点A ,B ,C ,D 的坐标分别为(1,b ),(m ,m +1)(m >0),(c ,b ),(m ,m +3),若对角线AC ,BD 互相平分,且4=+m b ,求∠ABC 的值. 26.(11分)已知△ABC 是直角三角形,∠ABC =90°,在△ABC 外作直角三角形ACE ,∠ACE =90°. (1)如图7,过点C 作CM ⊥AE ,垂足为M ,连接BM ,若AB =AM ,求证:BM ∥CE ; (2)如图8,延长BC 至D ,使得CD =BC ,连接DE ,若AB =BD ,∠ECA =45°,AE =10, 求四边形ABDE 的面积.图7 图827.(12分)在平面直角坐标系中,O 为原点,点A (0,2),B (1,1). (1)若点P (m ,23)在线段AB 上,求点P 的坐标; (2)以点O ,A ,B ,C (1,0)为顶点的四边形,被直线)0(<-=k k kx y 分成两部分,设含原点的那部分多边形的面积为S ,求S 关于k 的函数解析式.2015—2016学年(下) 厦门市八年级质量检测数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 10. 12. 720°. 13. s 2甲<s 2乙. 14.2 . 15. y =24-2x (6<x <12). 16. 23. 17.(本题满分7分)解:正确画出坐标系; …………………1分 正确画出△ABC (正确画各顶点,每点得1分); …………………4分 正确画出△A 1B 1C 1 (正确画各顶点,每点得1分). …………………7分18.(本题满分7分)解: (18+33-23)×2 3=(18+3)×2 3 ……………………………3分 =66+6. ……………………………7分19.(本题满分7分)解:解不等式2x +1>3,得x >1. …………………………3分 解不等式1+3x >6x -5,得x <2. ……………………………6分∴ 不等式组⎩⎨⎧2x +1>3,1+3x >6x -5的解集是 1<x <2. …………………………7分20.(本题满分7分)解:去分母得 2x =3+4(x -1). ……………………………3分 解得x =12. …………………………6分经检验x =12是原方程的解.∴ 原方程的解为x =12. ……………………………7分21.(本题满分7分)证明:∵ AB =AC , ……………1分 ∴ ∠ABD =∠ACE . ……………3分 又 BD =CE , ……………4分 ∴ △ABD ≌△ACE . ……………5分 ∴ AD =AE . ……………6分 ∴ △ADE 是等腰三角形. …………7分E D CB A解:由题意得甲应聘者的加权平均数是5×84+3×905+3=86.25(分). …………………3分乙应聘者的加权平均数是5×91+3×805+3=86.875(分). ………………6分∵ 86.875>86.25,∴ 乙应聘者被录取. ……………………7分23.(本题满分7分)解: x 2+4x +4x 2-4 ÷x +23x 2-23x+(7+43)x 2 =(x +2)2(x -2) (x +2)×3x (x -2)x +2+(7+43)x 2 …………………………4分=3x +(7+43)x 2 …………………………5分当x =2-3时,原式为3(2-3)+(7+43)(2-3)2=23-3+1=23-2. ……………………………7分24.(本题满分7分)解:设△ABC 的三边的长分别为a =3,b =4,c =5. ∵ 52=32+42,,∴ △ABC 是直角三角形.∴ S △ABC =6. …………………………3分 依题意得S = a +b +c 2·a +b -c 2·a +c -b 2·b +c -a2 =3+4+52·3+4-52·3+5-42·4+5-32=6. …………………………6分此例说明关系式 是正确的. …………………………7分25.(本题满分7分)解:∵ A (0,b ),C (c ,b ),∴ AC ∥x 轴. ………………………1分 又 B (m ,m +1),D (m ,m +3), ∴ BD ∥y 轴.∴ BD =2,且AC ⊥BD . ……………2分记AC 与BD 的交点为P ,则P (m ,b ) . ………………3分 ∵ b +m =4,∴ b =4-m . ∵ AC ,BD 互相平分, ∴ PB =1,AC =2m . 又 y P -y B =PB∴ 4-m -(m +1) =1.∴ AC =2. ………………………4分 ∵ AC ,BD 互相平分,∴ 四边形ABCD 是平行四边形. ∵ AC ⊥BD ,∴ 平行四边形ABCD 是菱形. ………………………5分 又 AC =BD =2,∴ 平行四边形ABCD 是矩形. ………………………6分 ∴ 平行四边形ABCD 是正方形.∴ ∠ABC =90°. ………………………7分26.(本题满分11分) (1)(本小题满分4分)证明:∵ AB =AM ,∠ABC =∠AMC =90°,AC 是公共边,∴ Rt △ABC ≌Rt △AMC . ………………1分 ∴ ∠BAC =∠MAC . 由AB =AM 得△ABM 是等腰三角形. ………………2分 ∴ AC ⊥BM . ………………3分 ∵ AC ⊥CE ,∴ BM ∥CE . ………………4分 (2)(本小题满分7分)解:∵ ∠ACE =90°,∠EAC =45°,∴ △ACE 是等腰直角三角形. ………………1分 ∵ AE =10,∴ AC =5. ………………2分 ∵ AB =BD ,CD =BC , ∴ AB =2BC . 在Rt △ABC 中,AB 2+BC 2=AC 2, 5BC 2=AC 2,∴BC =1. ………………3分设P 是线段AB 的中点,连接PC ,∴ AP =CD . ………………4分 ∵ ∠ACE =90°,即∠ACB +∠ECD =90°, 又 ∠BAC +∠ACB =90°,∴ ∠BAC =∠ECD . ………………5分 ∵ AC =EC ,∴ △APC ≌△CDE . ………………6分∴ S △ACP +S △BCP +S △CED =32.∴ S △ACE =52.∴ 四边形ABDE 的面积=4. ………………7分MEC B APED C B A27.(本题满分12分) (1)(本小题满分4分)解:设直线AB 的解析式为y =kx +b ,由题意得⎩⎨⎧k +b =1,b =2.………………1分 解得 ⎩⎨⎧k =-1,b =2.………………2分∴ y =-x +2. ………………3分 ∴ 32=-m +2.∴ m =12.∴点P (12,32) ………………4分(2)(本小题满分8分)解:∵ 当x =1时,y =kx -k (k <0)=0,∴ 直线y =kx -k (k <0)经过点C . ………………2分① 当直线y =kx -k (-2<k <0)与线段OA 相交时与点M (0,n )时(点M 与点A 不重合), 则n =-k . ………………3分S =12×n ×OC=-12k (-2<k <0). ………………5分(注:解析式1分,自变量取值范围1分)② 当直线y =kx -k (k ≤-2)与线段AB 相交时与点M (m ,n )时, 有-m +2=km -k得 ⎩⎪⎨⎪⎧m =k +2k +1,n =k k +1.………………6分由(1)得直线AB : y =-x +2.它与x 轴交与点E (2,0), ∴ S =S △AOE -S △MCE=2-k2k +2=3k +42k +2(k ≤-2). ………………8分 (注:解析式1分,自变量取值范围1分)。
新人教版2015-2016学年八年级下学期期末考试数学试题及答案
新人教版2015-2016学年度八年级下期末考试数 学 试 卷时间120分钟,满分150分 2015.8.5A 卷(100分)一、选择题(每题3分,共30分)1.下列图案中是中心对称图形但不是轴对称图形的是 ( ▲ )A .B .C .D .2.不等式组⎩⎨⎧->≤31x x 的解集在数轴上表示正确的是(▲ )3.下列因式分解正确的是( ▲) A 、()ay ax y x a +=+ B 、()1255102-=-t t t tC 、1)2(3422--=+-y y yD 、()()x x x x x 3443162+-+=+- 4.在分式aba b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( ▲ )A .扩大为原来的2倍B .缩小为原来的21C .不变D .不确定5.使分式21xx -有意义...的x 的取值范围是( ▲ ) (A)x ≥21 (B )x ≤21 (C )12x >(D )12x ≠6.等腰三角形的底角是700,则顶角为 ( ▲ ) A .40° B .70° C .55° D .45° 7.多项式3262x x +中各项的公因式是( ▲ )-3 1 0 A . -3 1 0 B . -310 C .-31 0 D .A .2x B. x 2 C.32x D. 22x8.关于x 的分式方程:a xx x --=--2121有增根,则增根可能是(▲ )A .1=xB .0=xC .2=xD .a x =9.如图所示,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( ▲ )A .AB=DCB .∠1=∠2C .AB=AD D .∠D=∠B 10.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( ▲ ).A .0>xB .0<xC .2-<xD .2->x二、填空题(每空4分,共16分)11.命题“等角的补角相等”的逆命题是: ▲ .12.因式分解:x x -3= ▲ .13.当x = ▲ 时,分式44x x --的值等于零.14. 如图,△ABC 以点O 为旋转中心,旋转180°后得到△A ′B ′C ′.ED 是△ABC 的中位线,经旋转后为线段E ′D ′.已知BC=8,则E ′D ′= ▲ 。
人教版八年级下册数学期末模拟试题5套(带答案)已排版
一、选择题 1. 当分式13-x 有意义时,字母x 应满足( ) A. 0=x B. 0≠x C. 1=x D. 1≠x2.若点(-5,y 1)、(-3,y 2)、(3,y 3)都在反比例函数y= -3x 的图像上,则( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 3>y 1>y 2 D .y 1>y 3>y 23.(08年四川乐山中考题)如图,在直角梯形ABCD 中,AD BC ∥,点E 是边CD 的中点,若52AB AD BC BE =+=,,则梯形ABCD 的面积为( ) A .254B .252C .258D .254.函数k y x=的图象经过点(1,-2),则k 的值为( )A.12 B. 12- C. 2 D. -2 5.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )A B C D 6.顺次连结等腰梯形各边中点所得四边形是( )A .梯形 B.菱形 C.矩形 D.正方形7.若分式34922+--x x x 的值为0,则x 的值为( )A .3 或-38.(2004年杭州中考题)甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的( ) A.bba +倍 B.ba b+倍 C.ab ab -+倍 D.ab ab +-倍 9.如图,把一张平行四边形纸片ABCD 沿BD 对折。
使C 点落在E 处,BE 与AD 相交于点D .若∠DBC=15°,则∠BOD=A .130 ° ° ° °10.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( )A .4二、填空题11.边长为7,24,25的△ABC 内有一点P 到三边距离相等,则这个距离为 12. 如果函数y=222-+k kkx 是反比例函数,那么k=____, 此函数的解析式是__ ______13.已知a1-b1=5,则bab a bab a ---+2232的值是14.从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm )都减去,其结果oy xy xoyxoy xoADE CB如下:−,,−,,,−这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)15.如图,点P 是反比例函数2y x=-上的一点,PD ⊥x 轴于点D ,则△POD 的面积为 三、计算问答题 16.先化简,再求值:112223+----x x xx x x ,其中x =217.(08年宁夏中考题)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表: 捐款(元)10 15 3050 60 人数3611136因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元. (1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少18.已知如图:矩形ABCD 的边BC 在X 轴上,E 为对角线BD 的中点,点B 、D 的坐标分别为B (1,0),D (3,3),反比例函数y =kx的图象经过A 点, (1)写出点A 和点E 的坐标;(2)求反比例函数的解析式;(3)判断点E 是否在这个函数的图象上19.已知:CD 为ABC Rt ∆的斜边上的高,且a BC =,b AC =,c AB =,h CD =(如图)求证:222111h b a =+642-2-4-55ED CBAYXO f x () =3x参考答案1.D 2.B 3. A 4.D 5.C 6.B 7.C 8.C 9.C 10.B12. -1或21 y=-x -1或y=121-x14.19.1cm,16. 2x-1 ,3 17.解:(1) 被污染处的人数为11人设被污染处的捐款数为x 元,则 11x +1460=50×38解得 x =40答:(1)被污染处的人数为11人,被污染处的捐款数为40元.(2)捐款金额的中位数是40元,捐款金额的众数是50元.18.解:(1)A (1,3),E (2,32 ) (2)设所求的函数关系式为y =kx 把x =1,y =3代入, 得:k =3×1=3 ∴ y =3x 为所求的解析式 (3)当x =2时,y =32∴ 点E (2,32 )在这个函数的图象上。
人教版数学八年级下期末复习试卷(五)数据的分析含教学反思设计案例学案说课稿
期末复习(五)数据的分析各个击破命题点1平均数、中位数、众数【例1】为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是()A.中位数是40C.平均数是20.5 D.平均数是41【思路点拨】由题意可知排序后第5,6户的用电量都是40度,故中位数是40;用电量40度的户数有4户,故众数是40;平均数为25+30×2+40×4+50×2+6010=40.5.【方法归纳】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(数据总数为奇数)或两个数的平均数(数据总数为偶数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个;平均数为所有数据的和除以数据的个数.1.(锦州中考)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:那么这15A.320,210,230 B.320,210,210C.206,210,210 D.206,210,2302.(德阳中考)如图是某位射击选手5次射击成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7,8 B.7,9 C.8,9 D.8,10命题点2方差【例2】(德州中考)在甲、乙两位同学中选拔一人参加“中华好诗词”知识竞赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是________,乙成绩的平均数是________;(2)经计算知s2甲=6,s2乙=42.你认为选派谁参加比赛更合适,说明理由.【思路点拨】(1)根据平均数的定义列式计算;(2)由平均数所表示的平均水平及方差所衡量的成绩稳定性综合判断.【方法归纳】 计算方差:“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.3.(朝阳中考)六箱救灾物资的质量(单位:千克)分别是17,20,18,17,18,18,则这组数据的平均数、众数、方差依次是( )A .18,18,3B .18,18,1C .18,17.5,3D .17.5,18,14.(达州中考)已知一组数据0,1,2,2,x ,3的平均数为2,则这组数据的方差是____________.命题点3 用样本估计总体【例3】 某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是x =x 1+x 2+…+x nn;第二步:在该问题中,n =4,x 1=4,x 2=5,x 3=6,x 4=7;第三步:x =4+5+6+74=5.5.①小宇的分析是从哪一步开始出现错误的?②请你帮他计算正确的平均数,并估计这260名学生共植树多少棵.【思路点拨】 (1)结合扇形统计图中数据分别计算各种类型的人数,再与条形统计图中数据对照;(2)根据条形统计图及扇形统计图得出众数与中位数即可;(3)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.【方法归纳】用样本估计总体是统计的核心思想.具体的有用样本平均数估计总体平均数,用样本百分率估计总体百分率,用样本方差估计总体方差等.5.某果园有果树200棵,从中随机地抽取5棵,每棵果树的产量如下(单位:千克):98,102,97,103,105,这5棵树的平均产量为____________千克;估计这200棵果树的总产量约为____________千克.命题点4分析数据作决策【例4】(青岛中考)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【思路点拨】(1)利用加权平均数的计算公式直接计算平均分即可;将乙的成绩按从小到大的顺序重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差公式计算即可;(2)结合平均数、中位数、众数和方差四方面的特点进行分析.【方法归纳】分析数据作出决策,取决于对数据分析的角度.平均数相同的情况下,方差越小的那组数据越稳定.6.在甲、乙两名学生中选拔一人参加国家数学冬令营集训.经统计,两人近期的8次测试成绩分别制作成统计图、表如下.如果让你选拔,打算让谁参加?统计图、表中,哪一种较能直观地反映出两者的差异?中位数乙74.6 77.6 无167 35整合集训一、选择题(每小题3分,共30分)1.命中环数(单位:环) 7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0A.甲比乙高B.甲、乙一样C.乙比甲高D.不能确定2.(江西中考)某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,则这组数据的众数和中位数分别是()A.25,25 B.28,28C.25,28 D.28,313.(茂名中考)甲、乙两个同学在四次模拟测试中,数学的平均成绩都是112分,方差分别是s2甲=5,s2乙=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定4.已知数据:-4,1,2,-1,2,则下列结论错误的是()A.中位数为1 B.方差为26C.众数为2 D.平均数为05.对于数据组3,3,2,3,6,3,8,3,6,3,4.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的结论有()A.4个B.3个C.2个D.1个6.某校四个绿化小组一天植树的棵数如下:10,x,10,8.已知这组数据的众数与平均数相等,则这组数据的中位数是()A.8 B.9 C.10 D.127.张大叔有一片果林,共有80棵果树.某日,张大叔开始采摘今年第一批成熟的果子,他随机选取1棵果树的10个果子,称得质量分别为(单位:kg)0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23.如果一棵树平均结有120个果子,以此估算,张大叔收获的这批果子的单个质量和总质量分别约为()A.0.25 kg,2 400 kg B.2.5 kg,2 400 kgC.0.25 kg,4 800 kg D.2.5 kg,4 800 kg8.(厦门中考)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b 岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13C.a>13,b<13 D.a>13,b=139.(兰州中考)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数10.(通辽中考)一次“我的青春,我的梦”演讲比赛,有五名同学的成绩如下表所示,有两个数据被遮盖,A.80,2C.78,2 D.78, 2二、填空题(每小题4分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是____________分.12.(呼和浩特中考)某校五个绿化小组一天植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是____________.13.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定.根据图中的信息,估计这两人中的新手是____________.14.为了发展农业经济,致富奔小康,李伯伯家2013年养了4 000条鲤鱼,现在准备打捞出售,那么,15.(牡丹江中考)一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是____________.16.已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是____________.三、解答题(共46分)17.(8分)某专业养羊户要出售100只羊.现在市场上羊的价格为每千克11元,为了估计这100只羊能卖多少钱,该专业养羊户从中随机抽取5只羊,称得它们的质量(单位:kg)分别为26,31,32,36,37.(1)估计这100只羊中每只羊的平均质量;(2)估计这100只羊一共能卖多少钱.18.(12分)某校八年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书400册.特别值得一提的是李保、王刚两位同学在父母的支持下各捐献了90册(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.19.(12分)(山西中考)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,(1)(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.20.(14分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:(1)(2)①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?参考答案【例1】 A【例2】(1)x 甲=(79+86+82+85+83)÷5=83;x 乙=(88+79+90+81+72)÷5=82.(2)选派甲参加比赛比较合适.因为甲的平均成绩高于乙的平均成绩,并且甲的方差小于乙的方差,说明甲成绩更好更稳定,因此选派甲参加比赛比较合适. 【例3】(1)D 错误,理由:∵共随机抽查了20名学生每人的植树量,由扇形图知D 占10%,∴D 的人数为20×10%=2≠3.(2)众数为5,中位数为5.(3)①小宇的分析是从第二步开始出现错误的.②x =4×4+5×8+6×6+7×220=5.3,估计260名学生共植树5.3×260=1 378(棵). 【例4】(1)甲的平均成绩:a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7,∵乙射击的成绩从小到大排列为3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数:b =7+82=7.5.其方差:c =110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2.(2)从平均成绩看,甲、乙二人的成绩相等均为7环; 从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多而乙射中8环的次数最多;从方差看,甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大. 题组训练1.B 2.A 3.B 4.535.101 20 2006.由发展趋势宜选拔乙参加,折线图反映两者差异比较明显. 整合集训1.B 2.B 3.A 4.B 5.D 6.C 7.A 8.A 9.D 10.C 11.88 12.1.6 13.小李 14.6 800 15.3 16.217.(1)每只羊的平均质量为x =15×(26+31+32+36+37)=32.4(kg).则可估计这100只羊中每只羊的平均质量约为32.4 kg. (2)32.4×100×11=35 640(元).答:估计这100只羊一共能卖约35 640元.18.(1)设捐7册图书的有x 人,捐8册图书的有y 人. ∴⎩⎪⎨⎪⎧4×6+5×8+6×15+7x +8y +90×2=400,6+8+15+x +y +2=40.解得⎩⎪⎨⎪⎧x =6,y =3. (2)平均数是10,中位数是6,众数是6.其中平均数10不能反映该班同学捐书册数的一般情况,因为40名同学中38名同学的捐书册数都没有达到10册,平均数主要受到捐书90册的2位同学的捐书册数的影响,故而不能反映该班同学捐书册数的一般情况.19.(1)∵x 甲=93+86+733=84(分),x 乙=95+81+793=85(分),∴x 甲<x 乙.∴乙将被录用.(2)∵x 甲′=93×3+86×5+73×23+5+2=85.5(分),x 乙′=95×3+81×5+79×23+5+2=84.8(分),∴x 乙′<x 甲′.∴甲将被录用.(3)甲一定被录用,而乙不一定能被录用.理由:由直方图可知成绩最高一组分数段85≤x<90中有7人,公司招聘8人,又x 甲′=85.5分,显然甲在该组,所以甲一定能被录用;在80≤x<85这一组内有10人,仅有1人能被录用,而x乙′=84.8分在这一组内不一定是最高分,所以乙不一定能被录用.由直方图知,应聘人数共有50人,录用人数为8人,所以本次招聘人才的录用率为8 50×100%=16%.20.(1)125757572.570①从平均数和方差相结合看:甲、乙两名同学的平均数相同,但甲成绩的方差为125,乙同学成绩的方差为33.3,因此乙同学的成绩更为稳定.②从折线图中甲、乙两名同学分数的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.。
2015-2016学年人教版八年级下册期末考试数学试题及答案
2015-2016学年八年级下期期末测试数 学本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题.第Ⅰ卷1至2页, 第Ⅱ卷和B 卷3至6页.考试结束时,监考人将第Ⅰ卷及第Ⅱ卷和B 卷的答题卡收回.A 卷(共100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在密封线内相应位置上.2.第Ⅰ卷各题均有四个选项,只有一项符合题目要求,每小题选出答案后,填在对应题目的答题卡上.3. A 卷的第II 卷和B 卷用蓝、黑钢笔或圆珠笔直接答在答题卡上.4.试卷中注有“▲”的地方,是需要你在答题卡上作答的内容或问题.一、选择题(每小题3分,共30分)1、若分式32-x 有意义,则x 应满足的条件是( ▲ )A . 0≠xB . 3≥xC . 3≠xD . 3≤x2、如图,△ OAB 绕点O 逆时针旋转80°得到△ OCD ,若∠ A=110°,∠ D=40°,则∠ α的度数是( ▲ )A . 30°B . 40°C . 50°D . 60°3、下列图形中是中心对称图形的是( ▲ ) A . B . C .D .4、如上图,将边长为2个单位的等边△ ABC 沿边BC 向右平移1个单位得到△ DEF ,则四边形ABFD 的周长为( ▲ ) A . 6 B . 8 C . 10 D . 125、若一个多边形的每个外角都等于60°,则它的内角和等于( ▲ )A . 180°B . 720°C . 1080°D . 540°第2题 第4题6、把不等式组:的解集表示在数轴上,正确的是( ▲ )A .B .C .D .7、若解分式方程441+=+-x mx x 产生增根,则( ▲ )A.1B. 0C.4-D. 5- 8、能判定四边形ABCD 是平行四边形的是( ▲ )A . AB ∥ CD ,AD=BC B.∠ A=∠ B,∠C=∠DC . A B=CD ,AD=BC D . A B=AD ,CB=CD9、下列命题,其中真命题有( ▲ )①4的平方根是2;②有两边和一角相等的两个三角形全等;③顺次连接任意四边形各边中点得到的四边形是平行四边形. A. 0个 B. 3个 C. 2个 D. 1个10、炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ▲ ) A. 25060-=x x B. x x 50260=- C. 25060+=x x D. xx 50260=+第Ⅱ卷(非选择题,共70分)二、填空题(每小题3分,共15分)11、分解因式:=-42x ▲ ; 12、若代数式22+-x x 的值等于零,则=x ▲ ; 13、如图,数轴所表示的不等式的解集是 ▲ ;14. 将点A (1-,2)沿x 轴向右平移3个单位长度,再沿y 轴向下平移4个长度单位后得到点A ′的坐标为 ▲ ; 15、如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点.若OE=3cm ,则AD 的长是 ▲ cm .第8题 36042>-≥-x x 第13题 第15题三、解答题(共55分.其中16题每小题6分共18分, 17题6分,18题9分,19题10分,20题12分。
2015年新人教版八年级数学下册期末测试题及答案(精心整理5套)
一、选择题(每空 2分,共14分)1、若兀》为实数,且何+1+山- 2=气则顷的值为( )A. 1B . 一1C . 2D. -22、有一个三角形两边长为 4和5,要使三角形为直角三角形,则第三边长为()10、若口A?C 的三边 a 、b 、C 满足kT+(6T2)'+后H = 11、 请写出定理:“等腰三角形的两个底角相等” 的逆定理: .12、 如图,在口 ABCM ,对角线 AC, BD 相交于O,AC+BD=16 BC=6,贝"^ AOD 勺周长为 。
13、 如图,矩形 ABCW, AE 2, B 『3,对角线 AC 的垂直平分线分别交 AD, BC 于点E 、 F,连接CM 则CE 的长.14、如图所示:在正方形 ABCD 勺边BC 延长线上取一点 E,使CE=AC 连接AE 交C" F,7、某班第一小组 7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25 ,这组数据的中位数和众数分别是()A. 23,25B. 23,23C. 25,23二、填空题(每空 2分,共20分)8、函数'r + 2中,自变x 的取值范,是2015春期末考试八年级数学试题19、计算:(V2+1)2000 步1)2000= A 、3 B 、而 C 、3或画D 、3或-面3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )7 9 n15 UA. 7, 24, 25 B .2,2,2 C . 3, 4, 5D . 4, " , 24、 如下图,在△站C 中, 如= 10,则现的长为( A. 3 B . 45、 已知点(-2 , y 。
, ( -1 C . 5D . 6,y2), ( 1, y3)都在直线 y= — 3x + b 上, 16、 已知直线y = 2x + 8与x 轴和y 轴的交点的坐标分别是 ;与两条坐标 轴围成的三角形的面积是 .17、 一组有三个不同的数:3、8、7,它们的频数分别是3、5、2,这组数据的平均数是的大小关系是( 18、若一组数据气次亦一’孔的平均数是或,方差是占,贝- 3,4 一 3,队-3 A. y 1>y 2>y 3 B . y 1<y 2<y 3 C . y 3>y 1>y 2 D . y 3<y 1<y 2 6、一次函数凡=般+由与已=天+”的图像如下图,则下列结论:①k <0;②式>0;③ 的平均数是 ,方差是 .三、计算题(19、5,20、5,21、6 共 16 分)当式<3时,>L 《山中,正确的个数是() 0,则△ ABC 的面积为23、(8分)已知:P是正方形ABCEX角线BD上一点,PE^ DC PF1BC, E、F分别为垂足, 求证:AP=EF21、先化简后求值.四、简答题22、(7分)如图,WC中,CD 1 AB于D,若曷=2皿心3,凯* 求召口的长。
人教版八年级数学下册期末考试模拟试卷附答案
(人教版)八年级下期数学模拟试题及答案-•填空题(30分)BC5•某工厂储存了 t 天用的煤ni 吨,要使储存的煤比预定的时间多用d 天,每天应节约用煤 吨。
6•三个连续自然数的和小于15,这样的自然数组共有 _________________ 组。
7•电视节目主持人在主持节目时,站在舞色的黄金分割点处最自然得体。
若舞台AB 长为20m, 试计算主持人应走到离A 点至少二二Lzm 处比较得体。
k x43 - x 33x 有增根,则k 的值是 ______________ o 8.已知关于冬的芬斑方穆x32乙 9•化简 xllx ______________________________ °10•甲、乙两名学生在5次数学考试中,得分如下:甲:89, 85, 91, 95, 90;乙:98, 82, 80, 95, 95。
- 的成绩比较稳定, _____________ 的潜力大。
二•选择题(30分)221.若9xkxy4y 是一个完全平方式,则k 的值为()A. 6B. ±6C. 12D. ±122•某市有7万名学生参加中考,要想了解这7万名学生的数学考试成绩,从中抽取了 1000名考 生的数学成绩进行分析,以下说法正确的是()1 •命题“等角的补角相等”的条件是 结论是 ______________2. 若不等式组 xm3. 分解因式xxyyx 21无解,则m 的取值范围是 )+( 一 )=4•如图,DE//BC, AD=15cm,AC.这种调查方式是普查D. 7万名考生的数学成绩是总体3・下列命题中真命题的个数是()(1)有一个锐角相等的两个直角三角形相似(2) 斜边和一直角边对应成比例的两个直角三角形相似(3) 任意两个矩形一定相似(4) 有一个内角相等的两个菱形相似 A. 1个B. 2个C ・3个D ・4个4•已知:如图,AB 〃CD, ZD=38° ,ZB=80° , 则ZP 耳()A t-7B / / /C> 夕DpA. 52°B. 42°C. 10°D. 40° 5•如图,AABC 中,P 为AB 上一点,有下而四个条件中:(1) ZACP=ZB ; (2) ZAPC= 22; (4) AB2CP= AP2CB,能满足AAPC 与AACB 相似的条件ZACB ; (3) ACAPAB是() .BCA. 125°B. 110°C. 100°D. 150°7•某同学想测量旗杆的高度,他在某一时间测得Im 长的竹竿竖直放置时得影长为1.5m,在同一 时刻测量旗杆的影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,他测得 落在地面上的影长为25,留在墙上的影长为2m,则旗杆的高度是()moA. (1)(2) (3) B. (1) (3) (4) C. (2)(3) (4) D. 6. A ABC, BF> (1) CF 是角平分线,()A. 25°B. 30°C. 35°D. 45°9.如图, 四边形ABCD为平行四边形, 则图中共有()(不包括全等三角形)。
2015—2016学年度第二学期期末模拟试卷初二数学附答案
2015—2016学年度第二学期期末模拟试卷初二数学一、我会选!(下列每题给出的4个选项中只有一个正确答案,相信你会将它正确挑选出来!每小题3分) 1、要使二次根式42-x 有意义,字母x 应满足的条件为( ) A . x >2 B . x <2 C . x ≥2 D . x >-2 2、把分式)0(≠+xy yx x中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A.扩大2倍 B.缩小2倍 C.改变为原来的41D.不变 3、两个相似等腰直角三角形的面积比是4:1,则它们的周长比是( ) A. 4:1B. 2:1C. 8:1D. 16:14、在Rt △ABC 中,∠C=90o ,∠A=∠B ,则sinA 的值是( ) A .21 B .22 C .23 D .1 5、函数y =x 和y 2-=在同一直角坐标系中的图象大致是( )6、已知点A (2-,y 1)、B (5,y2)、C (3,y 3)都在反比例函数xy 3-=的图象上,则( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 37、已知:如图,小明在打网球时,要使球恰好能打过而且落在离网5米的位置上(网球运行轨迹为直线),则球拍击球的高度h 应为( ).A. 0.9m B. 1.8m C. 2.7m D. 6m8、兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( ) A .9.5米 B .10.75米 C .11.8米 D .9.8米二、我会填!(本大题共11小题,第9小题和第10小题,每空1。
5分,其它每空3分共30分) 请注意:考生必须..将答案写在题中横线上。
2015年新人教版八年级数学下册期末试题及答案
2015年新人教版八年级数学下册期末试题及答案2015年新人教版八年级数学下册期末试题(附答案)一、选择题1、下列计算结果正确的是()A。
$(-3)^2\times(-2)^3=-108$B。
$(-3)^2\times(-2)^3=108$C。
$(-3)^2\times(-2)^3=-36$D。
$(-3)^2\times(-2)^3=36$2、已知$\dfrac{1}{x}+\dfrac{1}{y}=1$,那么$\dfrac{x}{y}$的值为()A。
$\dfrac{y-x}{y}$B。
$\dfrac{y}{y-x}$C。
$\dfrac{x}{y-x}$D。
$\dfrac{y-x}{x}$3、在$\triangle ABC$中$AB=15$,$AC=13$,$AD\perp BC$,$AD=12$,则$\triangle ABC$的周长为()A。
42B。
32C。
42或32D。
37或334、$\triangle ABC$中,若$AB=15$,$AC=13$,$AD\perp BC$,$AD=12$,则$\triangle ABC$的周长是()A。
42B。
32C。
42或32D。
37或335、如图,在$ABCD$中,$\angle ABC$的平分线交$AD$于$E$,$\angle BED=150^\circ$,则$\angle A$的大小为()A。
150°B。
130°C。
120°D。
100°6、如图,在菱形$ABCD$中,对角线$AC$,$BD$相交于点$O$,$E$为$BC$的中点,则下列式子中,一定成立的是()A。
$OE=EC$B。
$OE=OD$XXXD。
$OE=EA$7、已知点$(-2,y_1)$,$(-1,y_2)$,$(1,y_3)$都在直线$y=-3x+b$上,则$y_1$,$y_2$,$y_3$的大小关系是()A。
$y_1>y_2>y_3$B。
新人教版2015-2016年八年级数学下册期末试卷含答案
2016-2017学年八年级(下)期末数学试卷一、选择题1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.下列计算正确的是()A.=±2 B.C.2﹣=2 D.3.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2 B.C.D.4.为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋的尺码的众数和中位数分别为()A.25.5,25.5 B.25.5,26 C.26,25.5 D.26,265.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.367.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A. B. C.D.8.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.939.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8) C.(0,8)D.(0,16)二、填空题(本大题8个小题,每小题4分,共32分)在每小题中,请将正确答案直接填在题后的横线上.11.计算﹣=.12.函数y=的自变量x的取值范围是.13.已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.14.写出同时具备下列两个条件的一次函数(正比例函数除外)表达式(写出一个即可)(1)y随着x的增大而减小;(2)图象经过点(﹣1,2).15.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).16.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=,菱形ABCD的面积S=.17.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.18.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.三、解答题(本题共9题,共90分)19.计算:(1)+(π﹣1)0﹣4+(﹣1)(2)+﹣(﹣)(3)|2﹣3|﹣(﹣)﹣2+.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.21.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m 的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)22.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.23.如图,已知直线l:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标;(2)若直线y=mx经过线段AB的中点P,求m的值.24.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.25.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工人,每人所创年利润的众数是,平均数是;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?26.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.27.如图,在平面直角坐标系中,直线分别与x轴、y轴交于点B、C,且与直线交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2016-2017学年八年级(下)期末数学试卷参考答案与试题解析一、选择题1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.下列计算正确的是()A.=±2 B.C.2﹣=2 D.【考点】二次根式的混合运算.【专题】计算题.【分析】根据算术平方根的定义对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选B.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.3.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2 B.C.D.【考点】勾股定理;实数与数轴.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.【解答】解:AC===,则AM=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4.为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋的尺码的众数和中位数分别为()A.25.5,25.5 B.25.5,26 C.26,25.5 D.26,26【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中26是出现次数最多的,故众数是26;处于这组数据中间位置的数是26、26,那么由中位数的定义可知,这组数据的中位数是(26+26)÷2=26;故选D.【点评】本题为统计题,考查众数与中位数的意义,解题的关键是准确认识表格.5.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定【考点】一次函数图象上点的坐标特征.【分析】分别把各点代入一次函数y=﹣1.5x+3,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点(﹣3,y1)、(﹣1,y2)、(2,y3)在一次函数y=﹣1.5x+3的图象上,∴y1=﹣1.5×(﹣3)+3=7.5;y2=﹣1.5×(﹣1)+3=1.5;y3=﹣1.5×2+3=0,∵7.5>1.5>0,∴y1>y2>y3.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.36【考点】菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4cm×9cm=18cm2,故选:B.【点评】本题考查了根据对角线计算菱形的面积的方法,根据菱形对角线求得菱形的面积是解题的关键,难度一般.7.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A. B. C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较最粗,第二个容器较粗,那么每个阶段的函数图象水面高度h随时间t的增大而增长缓陡,用时较短,故选C.【点评】本题考查了函数的图象,解决本题的关键是根据三个容器的高度相同,粗细不同得到用时的不同.8.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【考点】勾股定理;点到直线的距离;三角形的面积.【专题】计算题.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB 乘以斜边上的高CD 除以2来求,两者相等,将AC ,AB 及BC 的长代入求出CD 的长,即为C 到AB 的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt △ABC 中,AC=9,BC=12,根据勾股定理得:AB==15,过C 作CD ⊥AB ,交AB 于点D ,又S △ABC =AC •BC=AB •CD ,∴CD===,则点C 到AB 的距离是. 故选A【点评】此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.10.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 8的坐标是( )A .(﹣8,0)B .(0,8)C .(0,8)D .(0,16)【考点】规律型:点的坐标.【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从A 到A 3的后变化的坐标,再求出A 1、A 2、A 3、A 4、A 5,得出A 8即可.【解答】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从A到A3经过了3次变化,∵45°×3=135°,1×()3=2.∴点A3所在的正方形的边长为2,点A3位置在第四象限.∴点A3的坐标是(2,﹣2);可得出:A1点坐标为(1,1),A2点坐标为(0,2),A3点坐标为(2,﹣2),A4点坐标为(0,﹣4),A5点坐标为(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),故选:D.【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大.二、填空题(本大题8个小题,每小题4分,共32分)在每小题中,请将正确答案直接填在题后的横线上.11.计算﹣=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣=.故答案为:.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.12.函数y=的自变量x的取值范围是x≤3且x≠﹣2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2.故答案为:x≤3且x≠﹣2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为等腰直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:算术平方根;等腰直角三角形.【专题】计算题;压轴题.【分析】已知等式左边为两个非负数之和,根据两非负数之和为0,两非负数同时为0,可得出c2=a2+b2,且a=b,利用勾股定理的逆定理可得出∠C为直角,进而确定出三角形ABC为等腰直角三角形.【解答】解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形【点评】此题考查了勾股定理的逆定理,非负数的性质:绝对值及算术平方根,以及等腰直角三角形的判定,熟练掌握非负数的性质及勾股定理的逆定理是解本题的关键.14.写出同时具备下列两个条件的一次函数(正比例函数除外)表达式y=﹣x+1(写出一个即可)(1)y随着x的增大而减小;(2)图象经过点(﹣1,2).【考点】一次函数的性质.【专题】开放型.【分析】由题可知,需求的一次函数只要满足k<0且经过点(﹣1,2)即可.【解答】解:设函数关系式是y=kx+b∵y随着x的增大而减小∴k<0∴可设k=﹣1,将(﹣1,2)代入函数关系式,得b=1∴一次函数表达式为y=﹣x+1.(此题答案不唯一)【点评】此类题要首先运用待定系数法确定k,b应满足的一个确定的关系式,再根据条件确定k 的值,进一步确定b的值,即可写出函数关系式.15.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件AF=CE,使四边形AECF是平行四边形(只填一个即可).【考点】平行四边形的判定与性质.【专题】开放型.【分析】根据平行四边形性质得出AD∥BC,得出AF∥CE,根据有一组对边相等且平行的四边形是平行四边形推出即可.【解答】解:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.故答案为:AF=CE.【点评】本题考查了平行四边形的性质和判定的应用,主要考查学生运用性质进行推理的能力,本题题型较好,是一道开放性的题目,答案不唯一.16.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=1:2,菱形ABCD的面积S=16.【考点】菱形的性质.【分析】由菱形的性质可知:对角线互相平分且垂直又因为AC:BD=1:2,所以AO:BO=1:2,再根据菱形的面积为两对角线乘积的一半计算即可.【解答】解:∵四边形ABCD是菱形,∴AO=CO,BO=DO,∴AC=2AO,BD=2BO,∴AO:BO=1:2;∵菱形ABCD的周长为8,∴AB=2,∵AO:BO=1:2,∴AO=2,BO=4,∴菱形ABCD的面积S==16,故答案为:1:2,16.【点评】本题考查了菱形性质和勾股定理,注意:菱形的对角线互相垂直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一半.17.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是小林.【考点】方差;折线统计图.【专题】应用题;压轴题.【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.【解答】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.【考点】待定系数法求一次函数解析式;一次函数的应用.【分析】先运用待定系数法求出y与x之间的函数关系式,然后把x=240时代入解析式就可以求出y的值,从而得出剩余的油量.【解答】解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+35.当x=240时,y=﹣×240+3.5=2(升).故答案为:2.【点评】本题考查了运用待定系数法求一次函数的运用,根据自变量求函数值的运用,解答时理解函数图象的含义求出一次函数的解析式是关键.三、解答题(本题共9题,共90分)19.计算:(1)+(π﹣1)0﹣4+(﹣1)(2)+﹣(﹣)(3)|2﹣3|﹣(﹣)﹣2+.【考点】二次根式的加减法;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)先根据零指数幂的意义计算,再把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)先利用绝对值和负整数指数的意义计算,再把化简,然后合并即可.【解答】解:(1)原式=3+1﹣2+﹣=+;(2)原式=2+2﹣+3=+5;(3)原式=3﹣2﹣4+3=﹣1.【点评】本题考查了二次根式的加减运算:先把各二次根式化为最简二次根式,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.【考点】矩形的判定与性质;三角形中位线定理.【专题】证明题.【分析】由DE、DF是△ABC的中位线,可证得四边形DECF是平行四边形,又由在Rt△ABC中,∠ACB=90°,可证得四边形DECF是矩形,根据矩形的对角线相等,即可得EF=CD.【解答】证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.【点评】此题考查了矩形的判定与性质以及三角形中位线的性质.此题难度不大,注意掌握数形结合思想的应用.21.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m 的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【考点】勾股定理的应用.【专题】应用题.【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.【点评】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意题目中单位的统一.22.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS 证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.【点评】此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质.23.如图,已知直线l:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标;(2)若直线y=mx经过线段AB的中点P,求m的值.【考点】一次函数图象上点的坐标特征.【分析】(1)令x=0求得与y轴的交点纵坐标,令y=0求得与x轴的交点横坐标,由此得出点A、点B的坐标;(2)由(1)求得中点P的坐标,代入函数解析式y=mx求得m的值即可.【解答】解:(1)令x=0,则y=3,令y=0,则x=﹣4,所以点A的坐标为(﹣4,0);点B的坐标为(0,3);(2)点P的坐标为(﹣2,),代入y=mx得=﹣2m,解得m=﹣.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和坐标轴的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.24.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.【考点】菱形的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;(2)根据菱形的对角线互相平分求出AO,再根据等边三角形的性质可得DE=AO.【解答】解:(1)∵E为AB的中点,DE⊥AB,∴AD=DB,∵四边形ABCD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.∴∠DAB=60°.∵菱形ABCD的边AD∥BC,∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,即∠ABC=120°;(2)∵四边形ABCD是菱形,∴BD⊥AC于O,AO=AC=×4=2,由(1)可知DE和AO都是等边△ABD的高,∴DE=AO=2.【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记各性质是解题的关键.25.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工50人,每人所创年利润的众数是8万元,平均数是8.12万元;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)求出3万元的员工的百分比,5万元的员工人数及8万元的员工人数,再据数据制图.(2)利用3万元的员工除以它的百分比就是抽取员工总数,利用定义求出众数及平均数.(3)优秀员工=公司员工×10万元及(含10万元)以上优秀员工的百分比.【解答】解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人)5万元的员工人数为:50×24%=12(人)8万元的员工人数为:50×36%=18(人)(2)抽取员工总数为:4÷8%=50(人)每人所创年利润的众数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12万元故答案为:50,8万元,8.12万元.(3)1200×=384(人)答:在公司1200员工中有384人可以评为优秀员工.【点评】此题考查了条形统计图,扇形统计图,以及加权平均数的计算公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,(2)由(1)则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.【解答】(1)证明:∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS);(2)∵△EAB≌△GAD,∴EB=GD,∵四边形ABCD是正方形,AB=3,∴BD⊥AC,AC=BD=AB=6,∴∠DOG=90°,OA=OD=BD=3,∵AG=3,∴OG=OA+AG=6,∴GD==3,∴EB=3.【点评】此题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.27.如图,在平面直角坐标系中,直线分别与x轴、y轴交于点B、C,且与直线交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】一次函数综合题;解二元一次方程组;一次函数图象上点的坐标特征;待定系数法求一次函数解析式;三角形的面积;菱形的性质.【专题】计算题.【分析】(1)把x=0,y=0分别代入直线L1,即可求出y和x的值,即得到B、C的坐标,解由直线BC和直线OA的方程组即可求出A的坐标;(2)设D(x,x),代入面积公式即可求出x,即得到D的坐标,设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入即可求出直线CD的函数表达式;(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,根据菱形的性质能写出Q的坐标.【解答】解:(1)直线,当x=0时,y=6,当y=0时,x=12,∴B(12,0),C(0,6),解方程组:得:,∴A(6,3),答:A(6,3),B(12,0),C(0,6).(2)解:设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴y=﹣x+6,答:直线CD的函数表达式是y=﹣x+6.(3)答:存在点Q,使以O、C、P、Q为顶点的四边形是菱形,点Q的坐标是(6,6)或(﹣3,3)或.【点评】本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
2015-2016学年度新人教版八年级下期期末试题及答案
八年级数学第1页共8页八年级数学下期期末测试题(满分150分,考试时间120分钟)得分评卷人一、选择题:(本大题12个小题,每小题4分,共48分)在每小题给出的四个选项中,只有一项符合题意.1. 在a 中,a 的取值范围是()A .0³aB .0£a C .0>a D .0<a 2. 下列运算中错误的是()A. 632=´ B. 532=+ C. 228=¸ D.3)3(2=-3. 某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。
为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是()A. 甲的成绩比乙的成绩稳定B. 乙的成绩比甲的成绩稳定C. 甲、乙两人的成绩一样稳定D. 无法确定甲、乙的成绩谁更稳定4. P 1(x 1,y 1)、P 2(x 2,y 2)是正比例函数xy 21-=图象上的两点,下列判断中,正确的是()A 、y 1>y 2B 、y 1<y 2 C 、当x 1<x 2时,y 1<y 2D 、当x 1<x 2时, y 1>y 25. 如图是某射击选手5次射击成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A .8 、9 B .7 、9 C .7 、8 D .8 、10 6. 甲、乙两艘客轮同时离开港口,航行的速度都是40m/min ,甲客轮用15min 到达A ,乙客轮用20min 到达B .若A 、B 两处的直线距离为1000m ,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A .北偏西30°B .南偏西30°C .南偏西60°D .南偏东60°7. 不能判定四边形ABCD 为平行四边形的条件是()A .AB=CD ,AD=BC B .AB=CD ,AB ∥CD C .AB=CD ,AD ∥CD D .AD=BC ,AD ∥BC 8. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为()ODCBA5题图A, 30° B. 60° C. 90° D. 120°9. 如图,把一个小球垂直向上抛出,则下列描述该小球的运动速如图,把一个小球垂直向上抛出,则下列描述该小球的运动速 度v (单位:m/s )与运动时间(单位:s )关系的函数图象中,)关系的函数图象中, 正确的是(正确的是( )A B C D 10. 已知一个直角三角形的两边长分别为8和15,则第三边长是(,则第三边长是( )A .17 B .289 C .161D .17或16111.如图所示,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm 2, 第②个图形的面积为18cm 2,第③个图形的面积第③个图形的面积 为36 cm 2,……,那么第⑥个图形的面积为( )A. 84 cm2 B. 90 cm 2 C. 126 cm 2 D. 168 cm 2 12.如图,直线233+-=x y与x 轴,y 轴分别交于A 、B 两点,把两点,把△AOB 沿着直线AB 翻折后得到△AO´AO´B B ,则点O´的坐标是(的坐标是( ) A .(3,3) B .(3,3) C .(2,32) D .(32,4)13. 计算:28-= . 14. 如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,若BC=6,得分得分 评卷人评卷人 二、填空题:(本大题6个小题,每小题4分,共24分)ABOxy AB OO ´x y12题图题图9题图题图11题图题图则DE= .15. 如图已知函数b x y +=2与函数3-=kx y 的图像交于点P ,则,则 不等b x kx +>-23的解集是的解集是 .16. 有一组数据:3,a ,4,6,7.它们的平均数是5,那么这组数据的方差是________. 17. 如图,直线42+=x y 与x 、y 轴分别交于点A 、B 两点,以OB 为边在y 轴右侧作等边△OBC ,将点C 向左平移,使其对应点C´恰好落在直线AB 上,则点C´的坐标为的坐标为 . 18. 如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论:①∠BGD=120°;②△BDF ≌△CGB ;③BG+DG=CG ;④S △ADE=43AB 2. 其中正确的有其中正确的有 . 19. 计算:1)31()12(132---+-20. △ABC 中,∠C=90°,BC=3,AB=5,CD ⊥AB 于D , (1)求AC 长;长; (2)求CD 长.长.得分得分 评卷人评卷人 三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须写出必要的演算过程.17题图题图18题图题图15题图题图得分得分 评卷人评卷人 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理过程.21. 先化简,再求值:)1()1112(2-×++-x x x ,其中x=313-.22. 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两 人的成绩如下表(单位:分):项目人员项目人员 阅读阅读 思维思维 表达表达 甲93 86 73 乙 95 81 79 (1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那)若根据三项测试的平均成绩在甲、乙两人中录用一人,那 么谁将能被录用?么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得)根据实际需要,公司将阅读、思维和表达能力三项测试得 分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两的比确定每人的最后成绩,若按此成绩在甲、乙两 人中录用一人,谁将被录用?人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成)中的成绩计算方法,将每位应聘者的最后成 绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数 值,不包含右端数值,如最右边一组分数x 为:85≤x <90),并,并 决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说名员工,甲、乙两人能否被录用?请说 明理由,并求出本次招聘人才的录用率.明理由,并求出本次招聘人才的录用率.23. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的解析式;的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.ABOxyAO Cxy24.如图,在平行四边形ABCD 中,∠C =60°60°,,M 、N 分别是AD 、BC 的中点,BC =2CD (1)求证:四边形MNCD 是平行四边形;是平行四边形; (2)求证:BD =3MN得分得分 评卷人评卷人 五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须写出必要的演算过程或推理过程.25. 某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“梦想梦想中国秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不元资金,并约定利用经营的利润偿还债务(所有债务均不24题图题图计利息).已知该店代理的品牌服装进价为每件40元,该品牌服装日销售量y (件)与销售价x (元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天 82元,每天还应支付其它费用为106元(不包含债务). (1)求日销售量(件)和销售价(元/件)之间的函数关系式;件)之间的函数关系式;(2若该店暂不考虑偿还债务,当天的销售价为48元时/件时,当天正好收支平衡(收入=支出), 求该店员工的人数;求该店员工的人数;26、猜想与证明:、猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的关系,并证明你的结论.的关系,并证明你的结论. 拓展与延伸:拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF,其它条件不变,则DM25题图题图和ME 的关系为_______;的关系为_______;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.)中的结论仍然成立.2015~2016学年度下期期末测试题八年级数学答案一、选择题:1.A 2. B3. A 4. D 5. C 6. D 7. C 8. B 9. C 10. D 11. C 12. A 二、填空题:A BCDEFG M26题图①题图① AB CDEFGM26题图②题图②13. 2 14. 3 15. x <4 16. 2 17.(-1,2) 18. ①③①③三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须写出必要的演算过程. 19. 解:原式=23﹣1+1﹣3=3. (7)20.解:(1)∵△ABC 中,∠C=90°,BC=3,AB=5,∴AC=22BC AB -=2235-=4;………………………………4分(2) ∵CD ⊥AB ,AB=5,由(1)知AC=4,∴AB•CD=AC•BC ,即CD=AB BC AC ×=534´=512.……………………………7分 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理过程.21.解:原式=)1()1)(1()1()1(22-×-+-++x x x x x=2x+2+x ﹣1 =3x+1,………………………………8分 当x=313-时,原式=3. ………………………………10分 22. 解:(1)∵甲的平均成绩是:x 甲=3738693++=84(分),乙的平均成绩为:x x 乙==3798195++=85(分),∴ x 乙>x 甲,∴ 乙将被录用;………………………………3分 (2)根据题意得:)根据题意得:x 甲=253273586393++´+´+´=85.5(分),x 乙=253279581393++´+´+´=84.8(分);∴ x 甲>x 乙,∴ 甲将被录用;………………………………6分(3)甲一定被录用,而乙不一定能被录用,理由如下:)甲一定被录用,而乙不一定能被录用,理由如下:由直方图知成绩最高一组分数段85≤x <90中有7人,公司招聘8人,又因为x 甲=85.5分,显然甲在该组,所以甲一定能被录用;组,所以甲一定能被录用;在80≤x <85这一组内有10人,仅有1人能被录用,而x 乙=84.8分,在这一段内不一定是最高分,所以乙不一定能被录用;以乙不一定能被录用;由直方图知,应聘人数共有50人,录用人数为8人,人,20题图所以本次招聘人才的录用率为508=16%.………………………………10分23.解:(1)设直线AB 的解析式为b kx y +=.直线AB 过点A(1,0)、B(0,-2),∴ îíì-==+20b b k 解得îíì-==22b k \直线AB 的解析式为22-=x y .…………………5分(2)设点C 的坐标为(x ,y ).12222BOCSx =\= △,··,解得x=2.∴ y=2×2-2=2 ∴ 点C 的坐标是(2,2) ………………………………10分 24. 证明:(1)∵四边形ABCD 是平行四边形是平行四边形 ∴AD ∥BC ,AD =BC ,∵M 、N 分别是AD 、BC 的中点的中点 ∴MD =NC ,MD ∥NC ,∴四边形MNCD 是平行四边形是平行四边形 ………………………………5分(2)∵N 是BC 的中点,BC =2CD ∴CD =NC∵∠C =60°60°, , ∴△DCN 是等边三角形,是等边三角形, ∴ND =NC , ∠DNC =∠NDC =60° ∴ND =NB =CN∴∠DBC =∠BDN =30°∴∠BDC =∠BDN +∠NDC =90°∴CD CD DC CD BC BD 3)2(2222=-=-=∵四边形MNCD 是平行四边形是平行四边形 ∴MN =CD∴BD =3MN ………………………………10分五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须写出必要的演算过程或推理过程. 25. 解:(1)当40≤x <58时,设函数关系式为y =k x +b .把x =40,y =60和x =58,y =24分别代入得分别代入得 îíì=+=+24586040b x b x 解得îíì=-=1402b k .即y =-2x +140.………………………………4分 当58x ≤x ≤71时,设函数关系式为y =mx +n .把x =58,y =24和x =71,y =11分别代入得分别代入得 îíì=+=+11712458n m n m 解得解得 îíì=-=821n m .即y =-x +82. ………………………………8分 (2)设该店员工为a 人.人. 把x =48分别代入y =-2x +140得 y =-2×=-2×48+140=4448+140=44. 由题意由题意 (48-40)×44=82a +106. 解得解得 a =3.即该店员工为3人.………………………………12分 26、解:猜想与证明、解:猜想与证明猜想DM 与ME 的关系是:DM =ME .………………………………2分 证明:如图1,延长EM 交AD 于点H . ∵四边形ABCD 、四边形ECGF 都是矩形,都是矩形, ∴AD ∥BG ,EF ∥BG ,∠HDE =90°.∴AD ∥EF .∴∠AHM =∠FEM .又∵AM =FM ,∠AMH =∠FME , ∴△AMH ≌△FME . ∴HM =EM .又∵∠HDE =90°,∴DM =EM .………………………………6分拓展与延伸拓展与延伸(1)DM 和ME 的关系为:DM =ME ,DM ⊥ME .………………………………8分 (2)证明:如图2,连结AC .∵四边形ABCD 、四边形ECGF 都是正方形,都是正方形, ∴∠DCA =∠DCE =45°, ∴点E 在AC .∴∠AEF =∠FEC =90°. 又∵M 是AF 的中点,的中点, ∴ME =21AF. ∵∠ADC =90°,M 是AF 的中点,的中点, ∴DM =21AF .∴DM =EM . ∵ME =21AF =FM ,DM =21AF =FM, ∴∠DFM =21(180º180º--∠DMF ),∠MFE =21(180º180º--∠FME ), ∴∠DFM +∠MFE =21(180º180º--∠DMF )+21(180º180º--∠FME ) =180°-21(∠DMF-∠FME ) A BCDE FG M图1 HABCDEFG M 图2 =180°-21∠DME .∵∠DFM +∠MFE =180°-∠CFE =180°-45°=135°, ∴180°-21∠DME =135°. ∴∠DME =90°. ∴DM ⊥ME . ………………………………12分。
2015年八年级下学期数学期末测试卷
2015年人教版八年级下学期数学期末测试卷一、选择题(每题3分,共36分)1:要使式子有意义,则x 的取值范围是 ( )A.x>0B.x ≥-2C.x ≥2D.x ≤2 2下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A 1.5,2,3a b c ===B 7,24,25a b c ===C 6,8,10a b c ===D 3,4,5a b c ===3已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的取值范围为 ( )A .4<a<16B .14<a<26C .12<a<20D .以上答案都不正确 4,在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是 ( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是 ( ) 4 A.2400元、2400元 B.2400元、2300元 C.2200元、2200元 D. 2200元2300元6. 0)y kx b k =+≠(的图象如图所示,当0y >时,x 的取值范围是( ) A.0x < B.0x > C.2x < D.2x >7.若△ABC 中AB=13,AC=15,高AD=12,则BC 的长是 ( )A. 14B. 4C. 4或14D. 以上都不对8甲、乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么 ( ).A .甲的波动比乙的波动大B .乙的波动比甲的波动大C .甲、乙的波动大小一样D .甲、乙的波动大小无法确定9 ( ).A B 12 C 5.0 D 3010早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y (单位:米)与小刚打完电话后的步行时间t (单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是( )A .1 个B .2 个C . 3个 D . 4个11正比例函数y=kx(k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是 ( )12若顺次连接四边形各边中点所得四边形是矩形,则原四边形一定是 ( )A 对角线互相垂直的四边形B 菱形C 矩形D 正方形二、填空题: (每题3分,共30分)13计算(48 + 416)÷27=________14 一次函数y=(2m-1)x+7的图象过A (-1,y 1), B(-2,y 2 ),且y 1﹤y 2则m 的取 值范围是________15若75-的小数部分是b,则b5+的小数部分是a,7+= ;ab516 a,b,c是△ABC的三边长,满足关系式+|a-b|=0,则△ABC的形状为.17一组数据:3, a, 4 , 6 ,7,它们的平均数是5,那么这组数据的方差是18某三角形的三条中位线分别是3 4 5则此三角形的面积是周长是.19,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.20已知x=2-1 ,则x2+2x-9=21如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为.22钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.三解答题 23计算: (共12分)(1)9+7-5+2.(3分)(2)(2-1)(+1)-(1-2)2.(3分)(3)化简求值)111(1222+-+÷+-x x x x x 其中x=2+1(6分) 24(6分)国家规定“中小学生每天在校体育活动时间不低于1小时”,为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是: A 组:t <0.5h ;B 组:0.5h ≤t ≤1h ;C 组:1h ≤t <1.5t ;D 组:t ≥1.5h 请根据上述信息解答下列问题:(1)C 组的人数是_______;(2)本次调查数据的中位数落在_______组内;(3)若该辖区约有24000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少25(6分)已知,矩形ABCD 中,AB=4cm ,BC=8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O 。
16页2015-2016学年人教版八年级下期末考试数学试题及答案
班级 姓名 座号 成绩……………………………装…………………………订……………………………线………………………………2015-2016学年度(下)八年级期末质量检测数 学(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置. 一、精心选一选:本大题共8小题,每小题4分,共32分. 1、下列计算正确的是( ) A.= B=C3=D3=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是( ) A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7B .7,6.5C .5.5,7D .6.5,75、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是 ( ) (A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<06、如图,把直线L 沿x 轴正方向向右平移2个单位得到 直线L ′,则直线L /的解析式为( ) A.12+=x y B. 42-=x y C. 22y x =- D. 22+-=x y7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) (A )4 cm (B )5 cm (C )6 cm (D )10 cmA第7题BCDEDBACEF8、如图,ABC ∆和DCE ∆都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( ) (AB)C)D)二、细心填一填:本大题共8小题,每小题4分,共32分. 9的结果是 . 10、实数p 在数轴上的位置如图所示,化简_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下学期期末模拟试题(5)
一、选择题
1.要比较两位同学在五次数学侧验中谁的成绩比较稳定,应选用的统计量是()
A.平均数
B.中位数
C.众数
D.方差
2.为了了解某校九年级270名学生的身高情况,从中抽取50名学生的身高,对这个问题的正确判断是()
A.总体是270
B.样本是50名学生
C.个体是每个学生
D.样本容量为50 3.下列关于总体说法正确的是()
A.要考察的对象叫做总体
B.要研究的对象叫做总体
C.要考察对象的全体叫做总体
D.要研究的对象的数量叫做总体
4.为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()
A.全区所有参加中考的学生
B.被抽查的1000名学生
C.全区所有参加中考的学生的数学成绩
D.被抽查的1000名学生的数学成绩
5.在样本方差的计算公式s2=
1
10
[(x1-20)2+(x2-20)2+…+(x n-20)2]中,数字10与20分别表示样
本的()
A.容量,方差
B.平均数,容量
C.容量,平均数
D.标准差,平均数6.下列说法错误的是()
A.数据5、4、4、6的中位数是4、5
B.数据4、5、5、6、6的众数是5、6
C.一组数据的标准差是这组数据方差的算术平方根
D.在对n个数据进行处理的频率统计表中,各频数的和为1
7.1.一个容量为80的样本最大值为11,最小值为50,取组距为10,可以分成()
A.10组
B.9组
C.8组
D.7组
8.依据某校九年级一班在体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在21.5~24.5这一分数段的频数和频率分别是()
A.4,0.1
B.10,0.1
C.10,0.2
D.20,0.2
9.在某次体育活动中,统计甲、乙两班每分钟跳绳的成绩(单位:次)情况如下表:
下面有3个结论:①甲班学生的平均成绩高于乙班学生的平均成绩;②甲班学生成
绩的波动比乙班学生成绩的波动大;③甲班学生成绩优秀的人数不会多于乙班学生成绩优
秀的人(•跳绳次数≥150次为优秀).则正确的结论是()
A.①
B.②
C.③
D.②和③
101,0,3,5,x,那么x等于()
A.-2或5.5
B.2或-5.5
C.4或11
D.-4或-11
二、填空题
1.为了了解某电视台《第一时间》节目的收视率,宜采用的调查方式是___.
2.某市今年“五一”节黄金周七天里,每天的最高气温如下:29℃,31℃,32℃,30℃,31℃,29℃,30℃,则这七天最高气温的极差是___.
3.若1,2,3,x的平均数为5,且1,2,3,x,y的平均数为6,那么y的值是___,样本1,2,
3,x ,y 的方差是___.
4.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别为6,8,12,4,第五组的频频率为0.10,则第六组的频率是___.
5.已知一个样本:1,3,5x ,2,它的平均数是3,则这个样本的标准差是___.
6.在对100个数据进行整理的频率分布表中,各组的频数之和等于___,频率之和等于___. 7.为了了解小学生的素质教育情况,某市在全市各小学共抽取了200•名五年级学生进行素质教育调查,并将所得数据整理后,画出频率分布直方图,已知从左到右前四个小组的频率为0.04,0.12,0.16,0.4,则第五组的频率为___.
8.如果样本x 1,x 2,x 3,…,x n 的平均数为_
x ,方差是m ,那么样本3x 1+,x32+2,3x 3+2,…,3x n +2的平均数为________,方差是_______. 三、解答题
1.某地区为了增强市民的法制观念,抽调了一部分市民进行了一次知识竞赛,竞赛成绩(得分取整
数)
(1)抽取了多少人参加竞赛? (2)60.5~70.5这一分数段的频数、频率分别是多少?
(3)这次竞赛成绩的中位数落在哪个分数段内?
(4)根据统计图,请你提出一个问题,并回答你所提出的问题。
(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问A 同学在本次考试中,数学与英语哪个学科考得更好. 3.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):注:30~40为时速大于等于30千米而小于40千米,其它类同.
(1)请你把表中的数据填写完整; (2)如图2,补全频数分布直方图;
(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
5.某校要从小王和小李两名同学中挑选一个参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:根据上表解 答下列问题: (1)完成下表:
姓名 极差(分) 平均成绩(分) 中位数(分) 众数(分) 方差 小王 40 80 75 75 190 小李
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王,小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.
1 2 3 4 5 小王 60 75 100 90 75 小李 70 90 80 80 80 图2。