【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考纲解读明方向
分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查
;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.
分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.
1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是
则当p在(0,1)内增大时,
A. D(ξ)减小
B. D(ξ)增大
C. D(ξ)先减小后增大
D. D(ξ)先增大后减小
【答案】D
【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.
点睛:
2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的
概率为0.15,则不用现金支付的概率为
A. 0.3
B. 0.4
C. 0.6
D. 0.7
【答案】B
【解析】分析:由公式计算可得
详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为
,所以,故选B.
点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。

3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为
A. B. C. D.
【答案】D
【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.
点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,
分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.
4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.
【答案】
【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.
详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率

点睛:古典概型中基本事件数的探求方法
(1)列举法.
(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题
目,常采用树状图法.
(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.
(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.
5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.
【答案】90
【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.
点睛:的平均数为.
6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.
【答案】分层抽样
【解析】分析:由题可知满足分层抽样特点
详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。

点睛:本题主要考查简单随机抽样,属于基础题。

7.【2018年天津卷文】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
【答案】(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人;(Ⅱ)(i)答案见解析;(ii).
【解析】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=.
点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.
8.【2018年文北京卷】电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
【答案】(Ⅰ)(Ⅱ)(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.
【解析】分析:(1)分别计算样本中电影总部数及第四类电影中获得好评的电影部数,代入公式可得概率;
(2)利用古典概型公式,计算没有获得好评的电影部数,代入公式可得概率;(3)根据每部电影获得好评的部数做出合理建议.
点睛:本题主要考查概率与统计知识,属于易得分题,应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.
9.【2018年新课标I卷文】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
使用了节水龙头50天的日用水量频数分布表
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
【答案】(1)直方图见解析.(2) 0.48.(3).
【解析】分析:(1)根据题中所给的使用了节水龙头50天的日用水量频数分布表,算出落在相应区间上的频率,借助于直方图中长方形的面积表示的就是落在相应区间上的频率,从而确定出对应矩形的高,从而得到直方图;(2)结合直方图,算出日用水量小于0.35的矩形的面积总和,即为所求的频率;(3)根据组中值乘以相应的频率作和求得50天日用水量的平均值,作差乘以365天得到一年能节约用水多少,从而求得结果.
详解:(1)
点睛:该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.
10.【2018年全国卷Ⅲ文】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过不超过
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:,.
【答案】(1)第二种生产方式的效率更高.理由见解析
(2)
超过不超过
(3)有
【解析】分析:(1)计算两种生产方式的平均时间即可。

(2)计算出中位数,再由茎叶图数据完成列联表。

(3)由公式计算出,再与6.635比较可得结果。

(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.
(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知.
列联表如下:
超过不超过(3)由于,所以有99%的把握认为两种生产方式的效率有差异.
点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活。

2017年高考全景展示
1.【2017课标1,文4】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A .
14
B .
π
8
C .
1
2
D .π 4
【答案】B 【解析】
【考点】几何概型
【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.
2.【2017天津,文3】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为
(A)4
5
(B)
3
5
(C)
2
5
(D)
1
5
【答案】C
【解析】
【考点】古典概型
【名师点睛】本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A包含的基本事件的个数和
试验中基本事件的总数代入公式
()
()
n A
P
n
=
Ω
.
3.【2017课标II,文11】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为
A.
1
10
B.
1
5
C.
3
10
D.
2
5
【答案】D
【解析】如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数
总计有25种情况,满足条件的有10种
所以所求概率为102 255
=
【考点】古典概型概率
【名师点睛】古典概型中基本事件数的探求方法
(1)列举法.
(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有 “有序”与“无序”区别的题目,常采用树状图法.
(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. 4.【2017课标1,文2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A .x 1,x 2,…,x n 的平均数
B .x 1,x 2,…,x n 的标准差
C .x 1,x 2,…,x n 的最大值
D .x 1,x 2,…,x n 的中位数
【答案】B 【解析】
试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 【考点】样本特征数
【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;
方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.
5.【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为 A. 3,5 B. 5,5 C. 3,7 D. 5,7
【答案】A 【解析】
试题分析:由题意,甲组数据为56,62,65,70x +,74,乙组数据为59,61,67,60y +,78.要使两组数据中位
数相等,有6560y =+,所以5y =,又平均数相同,则
566265(70)745961676578
55
x +++++++++=,解得3x =.故选A.
【考点】茎叶图、样本的数字特征
【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.
6.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( ) A .月接待游客逐月增加 B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月
D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A
【考点】折线图
【名师点睛】用样本估计总体时统计图表主要有频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1); 2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. 3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,
从中提炼有用的信息和数据.
7.【2017江苏,3】 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件. 【答案】18
【考点】分层抽样
【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .
8.【2017课标3,文18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率. 【答案】(1)53;(2)5
1
【解析】试题分析:(1)先确定需求量不超过300瓶天数为2163654++= ,再根据古典概型概率公式求概率(2)先分别求出最高气温不低于25(36天),最高气温位于区间[20,25)(36天),以及最高气温低于20(18天),对应的利润为900,300,100-,所以Y 大于零的概率为
362574
0.890
+++=
试题解析:(1)需求量不超过300瓶,即最高气温不高于C
25,从表中可知有54天,
∴所求概率为5
3
9054==
P . (2)Y 的可能值列表如下:
低于C 20:100445022506200-=⨯-⨯+⨯=y ;
)25,20[:300445021506300=⨯-⨯+⨯=y ;
不低于C 25:900)46(450=-⨯=y ∴Y 大于0的概率为
362574
0.890
+++=.
【考点】古典概型概率
【名师点睛】点睛:古典概型中基本事件数的探求方法 (1)列举法.
(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.
(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. 9.【2017山东,文】16(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.
(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率. 【答案】(Ⅰ)15;(Ⅱ)2
.9
【解析】
试题分析:利用列举法把试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式
P (A )=m
n
求出事件A 的概率.
(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:
{}{}{}{}{}{}{}{}111213212223313233,,{,},,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B 共9个,
包含1A 但不包括1B 的事件所包含的基本事件有{}{}1213,,,A B A B 共2个,
所以所求事件的概率为2
9
P =.
【考点】古典概型
【名师点睛】(1)对于事件A 的概率的计算,关键是要分清基本事件总数n 与事件A 包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式P (A )=m n
求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.
10.【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,16
1
()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.
(1)求(,)
i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进
行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅
的相关系数()()
n
i
i
x x y y r --=

0.09≈.
【答案】(1)18.0-≈r ,可以;(2)(ⅰ)需要;(ⅱ)均值与标准差估计值分别为10.02,0.09. 【解析】
试题分析:(1)依公式求r ;(2)(i )由9.97,
0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)
x s x s -+以外,因此需对当天的生产过程进行检查;(ii )剔除第13个数据,则均值的估计值为10.02,方差为0.09.
0.09≈. 【考点】相关系数,方差均值计算
【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.
11.【2017课标II ,文19】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 其频率分布直方图如下:
(1) 记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;
(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)
根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。

附: 2
2
()()()(
)()
n ad bc K a b c d a c b d -=
++++
【答案】(1)0.62.(2)有把握(3)新养殖法优于旧养殖法 【解析】
试题分析:(1)根据频率分布直方图中小长方形面积等于对应概率,计算A 的概率(2)将数据填入对应表格,代入卡方公式,计算215.705
K ≈,对照参考数据可判断有99%的把握,(3)先从均值比较大小,越大越好,再从数据分布情况看稳定性,越集中越好,综上可得新养殖法优于旧养殖法
(2)根据箱产量的频率分布直方图得列联表
K 2
=20066-343815.705
10010096104
⨯⨯⨯⨯⨯⨯(62)

由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.
(3)箱产量的频率分布直方图平均值(或中位数)在45kg 到50kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.
【考点】频率分布直方图
【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1; (2)频率分布直方图中均值等于组中值与对应概率乘积的和 (3)均值大小代表水平高低,方差大小代表稳定性
12.【2017北京,文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中
男生和女生人数的比例. 【答案】(Ⅰ)0.4;(Ⅱ)5人;(Ⅲ)3
2
. 【解析】
试题分析:(Ⅰ)根据频率分布直方图,表示分数大于等于70的概率,就求后两个矩形的面积;(Ⅱ)根
据公式频数等于100⨯频率求解;(Ⅲ)首先计算分数大于等于70分的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100-男生人数就是女生人数.
(Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=, 所以样本中分数不小于70的男生人数为1
60302

=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为60:403:2=. 所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2. 【考点】频率分布直方图的应用
【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观. 2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.
2016年高考全景展示
1. [2016高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平 均最低气温的雷达图.图中A 点表示十月的平均最高气温约为150
C ,B 点表示四月的平均最低气温约为50
C .下 面叙述不正确的是( )。

相关文档
最新文档