2020-2021厦门九年级数学直角三角形的边角关系的专项培优易错试卷练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021厦门九年级数学直角三角形的边角关系的专项培优易错试卷练习题
一、直角三角形的边角关系
1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数
值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
【答案】6.4米
【解析】
解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.
∴DC=BC•cos30°=3
639
=⨯=米,
∵CF=1米,
∴DC=9+1=10米,
∴GE=10米,
∵∠AEG=45°,
∴AG=EG=10米,
在直角三角形BGF中,
BG=GF•tan20°=10×0.36=3.6米,
∴AB=AG-BG=10-3.6=6.4米,
答:树高约为6.4米
首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高
2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
【答案】(1)证明见解析(2)4(3)20
【解析】
试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;
(2)利用锐角三角函数,即勾股定理即可.
试题解析:(1)∵∠ABC=∠ACB,
∴AB=AC,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,
∵∠CAB=2∠BCP,
∴∠BCP=∠CAN,
∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,
∵点D在⊙O上,
∴直线CP是⊙O的切线;
(2)如图,作BF⊥AC
∵AB=AC,∠ANC=90°,
∴CN=CB=,
∵∠BCP=∠CAN,sin∠BCP=,
∴sin∠CAN=,
∴
∴AC=5,
∴AB=AC=5,
设AF=x,则CF=5﹣x,
在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,
在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,
∴25﹣x2=2O﹣(5﹣x)2,
∴x=3,
∴BF2=25﹣32=16,
∴BF=4,
即点B到AC的距离为4.
考点:切线的判定
3.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为;
(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.
【解析】
分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;
(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;
(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;
详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,
∴BD=AF ,BF=AD .
∵AC=BD ,CD=AE ,
∴AF=AC .
∵∠FAC=∠C=90°,
∴△FAE ≌△ACD ,
∴EF=AD=BF ,∠FEA=∠ADC .
∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EHD .
∵AD ∥BF ,
∴∠EFB=90°.
∵EF=BF ,
∴∠FBE=45°,
∴∠APE=45°.
(2)(1)中结论不成立,理由如下:
如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,
∴BD=AF ,BF=AD .
∵3BD ,3AE , ∴
3AC CD BD AE
==. ∵BD=AF , ∴
3AC CD AF AE
==. ∵∠FAC=∠C=90°,
∴△FAE ∽△ACD ,