武汉理工考研材料课件-第四章 表面结构与性质
武汉理工大学考研材料科学基础重点 第5章-表面结构与性质
第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。
2)界面:相邻两个结晶空间的交界面称为“界面”。
3)相界面:相邻相之间的交界面称为相界面。
有三类: S/S;S/V; S/L。
产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。
所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。
这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。
1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。
这是一种理论上的结构完整的二维点阵平面。
它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。
这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。
2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。
这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。
根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。
(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。
为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。
武理833大纲
武理833大纲
以下是武汉理工大学材料科学与工程833材料科学基础考研的大纲,主要分为以下几个部分:
1. 第一章:原子结构与元素周期表
原子的电子构型和周期表
原子能级和光谱
化学键和分子结构
2. 第二章:分子结构和分子光谱
分子能级和光谱
分子振动和转动光谱
电子光谱和X射线光谱
3. 第三章:晶体结构和晶体物理学基础
晶体结构和晶格振动
热力学基础和相图
晶体生长和缺陷
4. 第四章:固体表面和界面
表面能和表面张力
表面吸附和表面改性
界面现象和界面反应
5. 第五章:材料力学性能
应力和应变行为
材料的弹性、塑性和脆性
断裂和疲劳行为
6. 第六章:材料物理性能
电学性能(导电、介电、热电等)
磁学性能(磁导、磁畴、磁致伸缩等)
光学性能(折射、反射、吸收等)
7. 第七章:材料化学性能
氧化、腐蚀和防护
化学反应动力学和催化作用
电化学和电池性能
8. 第八章:材料制备与合成
熔炼、铸造、轧制等传统制备方法
化学气相沉积、物理气相沉积等薄膜制备技术
溶胶-凝胶法、水热法等特种制备技术
9. 第九章:材料科学中的计算机模拟与计算方法
材料科学中的计算机模拟方法(蒙特卡罗、分子动力学等)材料性能的计算机预测与优化设计
10. 第十章:材料科学前沿进展与展望
新材料、新工艺和新应用的发展趋势
材料科学的未来挑战和机遇。
武汉理工大学考研材料科学基础重点 第5章-表面结构与性质
第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。
2)界面:相邻两个结晶空间的交界面称为“界面”。
3)相界面:相邻相之间的交界面称为相界面。
有三类: S/S;S/V; S/L。
产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。
所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。
这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。
1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。
这是一种理论上的结构完整的二维点阵平面。
它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。
这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。
2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。
这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。
根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。
(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。
为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。
武汉理工大学材料科学基础PPT
第三节 固相反应动力学
一. 一般动力学关系
整个过程的速度将由其中速度最慢的一环控制。现 以金属氧化反应M +1/2O 2→ MO为例(图5)说明之。
O2
M MO
C0
C
δ
图5
由化学动力学和菲克第一定律,其反应速度V和扩散速度V分 别为:
dQ P V= = Kc dt
dQ D V= =D dt
dc dx
积分并考虑到初始条件:t = 0,G = 0,得 :
G
dG (1 G ) 2 / 3 K 0dt 0 0
t
F0(G) = 1-(1-G) 2/3 = K0t 球形或立方体颗粒: F0(G) = 1-(1-G) 1/3 = K0t 园柱形颗粒: F0(G) = 1-(1-G) 1/2 = K01t 平板状颗粒: F0(G) = G= K02t
图1 ZnO-Fe2O3混合物加热过程中性质的变化
1.对色剂的吸附性 2.对2CO+O22CO2反应的催化活性 3.物系的吸湿性 4.对2N2O2N2+O2反应的催化活性 5.x-射线图谱上ZnFe2O4的强度
(1)隐蔽期:约低于300℃。 (2)第一活化期:约在300~400℃之间。 (3)第一脱活期:约在400~500℃之间。 (4)二次活化期:约在500~620℃之间。 (5)二次脱活期或晶体形成期:约在620~750℃ 之间。 (6)反应产物晶格校正期:约>750℃。
固相反应
第一节 引言 第二节 固相反应机理 第三节 固相反应动力学 第四节 影响固相反应的因素
第一节 引言
一 固相反应分类 a. 从反应物的组成变化方面分类 b. 从固体中成分的传输距离来分类 c. 按反应性质分类 d.按参加反应的物质的状态可分为 e.按反应机理可分为 f.按生成物的位置分成
材料科学基础-武汉理工出版(部分习题答案)[1]
材料科学基础-武汉理工出版(部分习题答案)[1]第一章结晶学基础第二章晶体结构与晶体中的缺陷1名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。
晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.答:配位数:晶体结构中与一个离子直接相邻的异号离子数。
配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。
同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。
多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。
位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。
重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。
晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。
配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1MgO晶体中不同晶面的氧离子排布示意图2面排列密度的定义为:在平面上球体所占的面积分数。
(a)画出MgO(NaCl型)晶体(111)、(110)和(100)晶面上的原子排布图;(b)计算这三个晶面的面排列密度。
解:MgO晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。
(a)(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。
(b)在面心立方紧密堆积的单位晶胞中,a022r(111)面:面排列密度=2r2/4r23/2/2/230.907(110)面:面排列密度=2r2/4r22r/420.555(100)面:面排列密度=2r2+22/22r/40.7853、已知Mg半径为0.072nm,O半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
武汉理工大学材料科学基础PPT.
AHale Waihona Puke C图1-5 等径球体在平面上的最紧密堆积
等径球质点堆积
面心立方最紧密堆积和六方最紧密堆积
球体在空间的堆积是按照 ABAB……的层序来堆积。
这样的堆积中可以取出一个六方晶胞,称为六方最紧密堆
积(A3型)。 另一种堆积方式是按照 ABCABC…… 的堆积方式。 这样的堆积中可以取出一个面心立方晶胞,称为面心立方 最紧密堆积。面心立方堆积中, ABCABC…… 重复层面
面心立方最紧密堆积
1 6 1 2 3 4 6 5 4
2
3
5
A
1
6 5 4 2 3
B C
面心立方最紧密堆积
A C B A C B A
ABCABC……, 即每三层重复一次
面心立方最紧密堆积
1 6 5
2 3 4
面心立方最紧密堆积
面心立方晶胞 ——面心立方最紧密堆积
C
B A
密排面
六方最紧密堆积
1 2
一种是八面体空隙,由 6个球体构成,球心连线形成一个
正八面体。
显然,由同种球组成的四面体空隙小于八面体空隙。 四面体空隙 八面体空隙
最紧密堆积的空隙:
最紧密堆积中空隙的分布情况:
等径球质点堆积
每个球体周围有多少个四面体空隙? 1个球的周围有 每个球体周围有多少个八面体空隙? 8个四面体空隙
1个球的周围有 6个八面体空隙
质点堆积方式:
根据质点的大小不同,球体最紧密堆积方式分为等径
球和不等径球两种情况。
最密堆积方 式 等径球的堆积
面心立方最紧密堆积 六方最紧密堆积
最紧密堆积中的空隙 不等径球的堆积 先堆大球,小球填积中的空隙
等径球质点堆积
生物材料的表面与界面材料表界面ppt课件
3.3 生物相容性的研究意义
生物相容性是生物材料极其重要的性能,是区 别于其他材料的标志,是生物医用材料能否安 全使用的关键性能。
控制和改善生物材料的表面性质,是促进材料 表面与生物体间的有利相互作用、抑制不利相 互作用的关键途径。
如何提高材料的生物相容性
?
生物材料的表面工程是一种非常重要的方法!
国内从事生物材料表界面研究的课题组
生物材料的表面改性与功能化;
蛋白质、细胞与材料表面的相互作用;
苏州大学陈红教授课题组
➢Combining surface topography wi生 polymer chemistry: exploring new interfacial biological phenomena. Polym. Chem., 2013, DOI: 10.1039/C3PY00739A ➢Aptamer-Modified Micro/Nanostructured Surfaces: Efficient Capture of Ramos Cells in Serum Environment. ACS Appl. Mater. Interfaces, 2013, 5, 3816.
第一部分:生物材料表界面学科的诞生
1. 生物材料的概念(Biomaterials):
与生物体相接触的、或移入生物体内起某种取代、 修复活组织,增进或恢复其功能的特殊材料。
2. 生物材料的发展阶段
➢最初:一些临床应用的生物材料并不专门针对医用设计 (实现基本临床功能,也带来了不良的生物反应)
➢20世纪60-70年代:第一代生物材料(惰性生物材料) (物理性能适宜、对宿主反应较小;寿命延长5-25年)
其他领域的表面工 程技术和材料引入 生物材料领域或基 于体内物质的初步 模仿
武汉理工 材料科学基础 课后答案 _第四章
第四章答案4-1略。
4-2试简述硅酸盐熔体聚合物结构形成的过程和结构特点。
解:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。
可分为三个阶段:初期:石英的分化,架状[SiO4]断裂,在熔体中形成了各种聚合程度的聚合物。
中期:缩聚并伴随变形一般链状聚合物易发生围绕Si-O轴转动同时弯曲,层状聚合物使层本身发生褶皱、翘曲、架状聚合物热缺陷增多,同时Si-O-Si键角发生变化。
[SiO4]Na4+[Si2O7]Na6——[Si3O10]Na8+Na2O(短键)3[Si3O10]Na8——[Si6O18]Na12+2Na2O(六节环)后期:在一定时间和温度范围内,聚合和解聚达到平衡。
缩聚释放的Na2O又能进一步侵蚀石英骨架而使其分化出低聚物,如此循环,直到体系达到分化-缩聚平衡为止。
4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。
它们的结构有什么不同?解:利用X射线检测。
晶体SiO2——质点在三维空间做有规律的排列,各向异性。
SiO2熔体——内部结构为架状,近程有序,远程无序。
SiO2玻璃——各向同性。
硅胶——疏松多孔。
4-4影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。
解:(1)影响熔体粘度的主要因素:温度和熔体的组成。
碱性氧化物含量增加,剧烈降低粘度。
随温度降低,熔体粘度按指数关系递增。
(2)通常碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)能降低熔体粘度。
这些正离子由于电荷少、半径大、和O2-的作用力较小,提供了系统中的“自由氧”而使O/Si比值增加,导致原来硅氧负离子团解聚成较简单的结构单位,因而使活化能减低、粘度变小。
4-5熔体粘度在727℃时是107Pa·s,在1156℃时是103Pa·s,在什么温度下它是106Pa·s?解:根据727℃时,η=107Pa·s,由公式得:(1)1156℃时,η=103Pa·s,由公式得:(2)联立(1),(2)式解得∴A=-6.32,B=13324当η=106Pa·s 时,解得t=808.5℃。
武汉理工-材料物理学课件
05
材料物理学的挑战与未来 发展
新材料的研发
总结词
新材料的研发是材料物理学领域的重要挑战之一,需 要不断探索新的材料体系和结构,以满足不断发展的 科技需求。
详细描述
随着科技的不断发展,对新型材料的需求日益增加,如 高温超导材料、纳米材料、生物材料等。这些新材料在 能源、环保、医疗等领域具有广泛的应用前景,因此需 要不断加强新材料的研发工作。
总结词
穆斯堡尔谱技术是一种研究材料中核自旋磁矩的实验 技术,用于研究材料的磁学性质和微观结构。
详细描述
穆斯堡尔谱技术利用核自旋磁矩的共振吸收和辐射特 性,测量核自旋磁矩的能级和跃迁频率,从而分析材 料的磁学性质和微观结构。该技术广泛应用于磁学、 物理学、化学等领域,对于研究磁性材料和磁学现象 具有重要意义。
利用高分子材料和纳米材料等实现污染治理,如水处理和 土壤修复等。
04
材料物理学的实验技术
X射线衍射技术
总结词
X射线衍射技术是材料物理学中常用的实验技术之一,用于研究材料的晶体结构和相组 成。
详细描述
X射线衍射技术利用X射线在晶体中的衍射现象,通过测量衍射角度和强度,分析晶体 结构,确定材料的晶格常数、晶面间距等参数。该技术广泛应用于材料科学、物理学、
要应用之一。
燃料电池
02
通过材料电化学反应将化学能转化为电能,具有高效、环保的
优点。
核能利用
03
核能材料能够实现高效、清洁的能源生产,如核聚变和核裂变
。
电子科技领域
集成电路
利用半导体材料制造集成电路,实现电子设备的微型化和高效化 。
显示技术
利用光电材料和液晶材料等实现显示技术,如LED显示器和液晶 显示器。
武汉理工大学材料科学基础(第2版)课后习题和答案
武汉理工大学材料科学基础(第2版)课后习题和答案第一章绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为2.7g/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?第二章晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z 轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第四章
第四章答案4-1略。
4-2试简述硅酸盐熔体聚合物结构形成的过程和结构特点。
解:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。
可分为三个阶段:初期:石英的分化,架状[SiO4]断裂,在熔体中形成了各种聚合程度的聚合物。
中期:缩聚并伴随变形一般链状聚合物易发生围绕Si-O轴转动同时弯曲,层状聚合物使层本身发生褶皱、翘曲、架状聚合物热缺陷增多,同时Si-O-Si键角发生变化。
[SiO4]Na4+[Si2O7]Na6——[Si3O10]Na8+Na2O(短键)3[Si3O10]Na8——[Si6O18]Na12+2Na2O(六节环)后期:在一定时间和温度范围内,聚合和解聚达到平衡。
缩聚释放的Na2O又能进一步侵蚀石英骨架而使其分化出低聚物,如此循环,直到体系达到分化-缩聚平衡为止。
4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。
它们的结构有什么不同?解:利用X射线检测。
晶体SiO2——质点在三维空间做有规律的排列,各向异性。
SiO2熔体——内部结构为架状,近程有序,远程无序。
SiO2玻璃——各向同性。
硅胶——疏松多孔。
4-4影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。
解:(1)影响熔体粘度的主要因素:温度和熔体的组成。
碱性氧化物含量增加,剧烈降低粘度。
随温度降低,熔体粘度按指数关系递增。
(2)通常碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)能降低熔体粘度。
这些正离子由于电荷少、半径大、和O2-的作用力较小,提供了系统中的“自由氧”而使O/Si比值增加,导致原来硅氧负离子团解聚成较简单的结构单位,因而使活化能减低、粘度变小。
4-5熔体粘度在727℃时是107Pa·s,在1156℃时是103Pa·s,在什么温度下它是106Pa·s?解:根据727℃时,η=107Pa·s,由公式得:(1)1156℃时,η=103Pa·s,由公式得:(2)联立(1),(2)式解得∴A=-6.32,B=13324当η=106Pa·s时,解得t=808.5℃。
表面结构PPT课件
随着新型表面结构和纳米材料的不断涌现,表面结构在能源 、环境、生物医学等领域的应用前景将更加广阔。未来研究 将更加注重表面结构的调控和优化,以实现更加高效、稳定 和环保的纳米科技应用。
CHAPTER 06
表面结构的模拟与计算
表面结构的分子动力学模拟
分子动力学模拟是一种基于物理的模拟 方法,用于研究表面结构的动态行为和
这些变化会影响表面的物理、化学和 生物学性质,进而影响材料的性能和 应用。
演化过程包括表面形貌的变化、表面 成分的改变、表面粗糙度的增加等。
影响表面结构演化的因素
影响表面结构演化的因素包括环 境因素和人为因素。
环境因素包括温度、湿度、光照 、氧气等,这些因素会影响表面
结构的化学和生物学性质。
人为因素包括加工方法、涂层技 术、表面处理等,这些因素会影
表面结构在材料制备中的作用
控制晶体取向和晶体结构
通过表面结构调控晶体生长过程,实现特定晶体取向和晶体结构 的制备。
优化薄膜制备
通过调整表面结构,提高薄膜的均匀性、致密性和附着力,降低缺 陷和应力。
促进纳米材料合成
利用表面结构调控纳米材料的形貌、尺寸和分布,实现高性能纳米 材料的制备。
表面结构在材料改性中的应用
蒙特卡洛模拟的计算效率较高,适用于研究大规模表面结构和复杂表面 的性质。
THANKS FOR WATCHING
感谢您的观看
CHAPTER 05
表面结构在纳米科技中的应 用
ቤተ መጻሕፍቲ ባይዱ
表面结构在纳米材料制备中的应用
总结词
表面结构在纳米材料制备中具有重要作用,可以影响材料的物理和化学性质。
详细描述
表面结构决定了纳米材料的形貌、晶体结构和化学稳定性,从而影响其光学、 电学、磁学和催化性能。通过控制表面结构,可以制备出具有特定性能的纳米 材料,如半导体材料、金属氧化物、碳纳米管等。
武汉理工大学材料科学基础全下PPT教案
会计学
1
一、微晶学说
实验依据 折射率-温度曲线 钠硅双组分玻璃的X射线散射强度曲
线 红外反射光谱
Δn×105
520℃-590 ℃
200 100
-100
100 200 300 400 500 T(℃)
-200
图3-18 硅酸盐玻璃折射率随温度变化曲线
Δn×107
ΣKm4πr2ρ(r) Si-O O-O Si-Si O-O Si-Si
10 8 6 4 2
01234567 r(A)
图3-23 石英玻璃的径向分布函数
第一个极大值表示出Si一O距离0.162nm,这与结 晶硅酸盐中发现的SiO2平均(0.160nm)非常符合。按 第一个极大值曲线下的面积计算得配位数为4.3,接近 硅原子配位数4。因此,X射线分析的结果直接指出, 在石英玻璃中的每一个硅原子,平均约为四个氧原子 以大0.162nm的距离所围绕。从瓦伦数据得出,玻璃结 构有序部分距离在1.0~1.2nm附近即接近晶胞大小。
4、固体的表面自由能和表面张力 与液体相比:
1)固体的表面自由能中包含了弹性能。表面
张力在数值上不等于表面自由能;
2)固体的表面张力是各向异性的。 3)实际固体的表面绝大多数处于非平衡状态,
决定固体表面形态的主要是形成固体表面时 的条件以及它所经历的历史。 4)固体的表面自由能和表面张力的测定非常 困难。
网络学说:
优点:强调了玻璃中离子与多面体相互间排列的均匀
缺性陷、:连近续年性来及,无随序着性实等验方技面术结的构进特展征,。积这累可了以愈说来明愈玻 多璃的关各于向玻同璃性内、部内不部均性匀质的资均料匀,性例与如随首成先分在改硼变硅时酸玻 盐璃玻性璃质中变发化现的分连相续与性不等均基匀本现特象性,。以如后玻又璃在的光各学向玻同璃性 和可氟以化看物着与是磷由酸于盐形玻成璃网中络均的发多现面有体分(相如现硅象氧。四用面电体子) 显的微取镜向观不察规玻则璃性时导发致现的在。肉而眼玻看璃来之似所乎以是没均有匀固一定致的的熔 玻点璃是,由实于际多上面都体是的由取许向多不从同,0.结01构~中0.的1μ键m角的大各小不不相一同, 的因微此观加区热域时构弱成键的先。断裂然后强键才断裂,结构被连续
武汉理工-材料物理学课件(8)
三者关系:
4.2.1拉伸试验
K=E/2(1-2ν) ; μ=E/2(1+ν) ; E=9Kμ/(3K+μ)
E:弹性模量或杨氏(Yong)模量。 μ:刚性应变或切变模量。 K:体积弹性模量。
塑性形变
4.2.1拉伸试验
当材料的形变在应力去除之后仍不能完全恢 复时,说明材料发生了塑性形变。材料开始 发生塑性形变时所对应的应力称为屈服强度, 用σs 来表示。
4.2.5断裂韧性
材料抵抗裂纹扩展的能力与许多因素有关:
(1) 裂纹尺寸a越大,许可应力σ越低。 (2) 材料发生塑性变形的能力非常重要。 (3) 厚试样的断裂韧性比薄试样的要小。 (4) 增加负载速率,像冲击试验那样,往往 会减小材料的断裂韧性。 (5) 与冲击试验相同,降低温度会减小材料 的断裂韧性。 (6) 减小晶粒尺寸一般可以改善断裂韧性。
对于那些没有塑性变形的脆性材料,也无法 利用冷加工的方法来进一步强化材料。
4.2力学实验与材料性能
•选择材料的一个基本原则 力学性能
首先必须分析材料使用的环境,以便判断什 么是材料应该具有的最重要的性能。
•研究材料的力学性能,可以了解这些缺陷的 本质。
4.2力学实验与材料性能
表征材料力学性能的最常用的参数是拉伸试验所 得到的屈服强度和断裂强度。弯曲试验常用来表 示脆性材料的拉伸性能。硬度试验也可在一定程 度上表示材料的拉伸强度。但是,即使材料工作 的应力低于断裂强度或屈服强度,也并不意味着 材料的使用就一定安全。如果材料所受的负载是 动态而不是静态的,就要用冲击韧性来表示它的 抗断裂性能。
4.9材料的韧性、脆性与料在机械加工、制造过程中可能会出现切口。 这些切口会引起应力集中,降低材料的冲击韧 性。通过比较有切口和无切口的试样的冲击试 验结果,可以得到材料的切口敏感性。如果材 料具有切口敏感性,那意味着这一材料的有切 口试样的吸收能远远低于无切口试样。
第四章材料科学基础武汉理工大学陆佩文
第四章材料科学基础武汉理工大学陆佩文第四章表面与界面内容提要:本章讨论1、固体表面张力场与表面能。
离子晶体在表面力场作用下,离子的极化与重排过程。
2、多相体系中的界面化学:如弯曲表面效应、润湿与粘附,表面的改性。
3、多晶材料中的晶界分类,多晶体的组织,晶界应力与电荷。
4、粘土胶粒带电与水化等一系列由表面效应而引起的胶体化学性质如泥浆的流动性、稳定性、泥团的触变性和可塑性等。
重点:润湿与粘附,粘土与水系统的胶体化学难点:晶体表面结构与多晶体组织§4-1固体的表面一、固体表面特征1、固体表面的不均一性(1)由于晶格缺陷、空位或位错而造成表面的不均一性。
(2)由于外来物质污染、吸附外来原子占据表面位置引起固体表面的不均一性。
2、固体表面力场固体表面力:固体表面质点排列的周期性重复中断,使处于表面边界上质点力场对称性破坏,表现出剩余的键力,即固体表面力。
(1)范德华力:分子引力,定向作用力(静电力:发生在极性分子之间诱导作用力发生在极性分子与非极性分子之间分散作用力(色散力),发生在非极性分子之间(2)长程力按作用原理不同,长程力两类:一类依靠粒子间的电场传播,如色散力,可简单加和。
另一类通过一个分子到另一个分子逐个传播而达长距离的,如诱导力。
二、晶体表面结构1、离子晶体的表面2、晶体表面的几何结构3、固体的表面能固体的表面能是用晶体中一个原子(离子)移到晶体表面时,自由焓的变化来计算的。
(即每增加单位表面积时,体系自由能的增量)§4-2界面行为一、弯曲表面效应1、弯曲表面的附加压力(1)定义:弯曲表面两边的压力差成为弯曲表面的附加压力。
符号:?P(2)产生原因:由于表面张力的作用。
(3)?P 与曲率半径R 的关系r P γ2=? (球形曲面))11(21r r P +=?γ (非球形曲面)式中γ——表面张力;21r r 、——曲面主曲率半径。
由上式可见,附加压力P ?与曲率半径成反比。
武汉理工大学考研习题及答案--材料科学基础科目
习题 31.试述石英晶体、石英熔体、Na2O•2SiO2熔体结构和性质上的区别。
2.某熔体粘度在727℃时是108泊,1156℃时是104泊,要获得粘度为107泊的熔体,要加热到什么温度?3.在Na2O—SiO2系统及RO—SiO2系统中随着SiO2含量的增加,熔体的粘度将升高而表面张力则降低,说明原因。
4.说明在一定温度下同组成的玻璃比晶体具有较高的内能及晶体具有一定的熔点而玻璃体没有固定熔点的原因。
5.某窗玻璃含14Na2O-14CaO-72SiO2(重量百分数),求非桥氧百分数。
6.网络外体(如Na2O)加到SiO2熔体中,使氧硅比增加,当O/Si≈2.5~3时,即达到形成玻璃的极限,O/Si>3时,则不能形成玻璃,为什么?7.按照在形成氧化物玻璃中的作用,把下列氧化物分为网络变体,中间体和网络形成体:SiO2,Na2O,B2O3,CaO,Al2O3,P2O5,K2O,BaO。
8.以B203为例解释具有混合键氧化物容易形成玻璃的原因。
9.试述微晶学说与无规则网络学说的主要观点,并比较两种学说在解释玻璃结构上的共同点和分歧。
10.什么是硼反常现象? 为什么会产生这些现象?11.已知石英玻璃的密度为2.3g/cm3,假定玻璃中原子尺寸与晶体SiO2相同,试计算该玻璃的原于堆积系数是多少?12.根据教材的T—T—T曲线,计算A、B、C三种物质的临界冷却速度,哪一种物质易形成玻璃?哪一种难形成玻璃?41 .什么叫表面张力和表面能? 在固态下和液态下这两者有何差别?2 .一般说来,同一种物质,其固体的表面能要比液体的表面能大,试说明原因。
3 .什么叫吸附、粘附? 当用焊锡来焊接铜丝时,用锉刀除去表面层,可使焊接更加牢固,请解释这种现象。
4 .方镁石的表面能为1000尔格/cm2,如果密度为3.68克/cm3,求将其粉碎为1u颗粒时,每克需能量多少卡?5 .试说明晶界能总小于两个相邻晶粒的表面能之和的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
次置换PbI2中的Pb++和I-离子时,相应的表面能和硬度迅速增加。极化性能大,
2、粉体表面结构
粉体在制备过程中,由于反复地破碎,不断形成新的 表面。表面层离子的极化变形和重排使表面晶格畸变,有 序性降低。因此,随着粒子的微细化,比表面增大,表面 结构的有序程度受到愈来愈强烈的扰乱并不断向颗粒深部 扩展,最后使份体表面结构趋于无定形化。
4.1 固体的表面及其结构 4.2 润湿与粘附 4.3 粘土-水系统性质*
4.1 固体的表面及其结构
4.1.1 固体的表面 4.1.2 固体的表面结构
4.1.1固体的表面
1.理想表面 2.清洁表面 (1)台阶表面 (2面自由能和表面张力 5. 表面偏析 6. 表面力场
为什么固体的表面张力在数值上不等于 表面自由能? 固体中质点间相互作用力相对液体来说要强 很多,那么彼此间的相对运动要困难得多,在保 持固体表面原子总数不变的条件下,通过弹性形 变可使表面积增加,即固体的表面自由能中包含 了弹性能,因此,表面张力在数值上已不在等于 表面自由能。
5、表面偏析 不论表面进行多么严格的清洁处理,总 有一些杂质由体内偏析到表面上来,从而 使固体表面组成与体内不同,称为表面偏 析。
图4.1.1
理想表面结构示意图
2、清洁表面
清洁表面是指不存在任何吸附、催化反应、 杂质扩散等物理化学效应的表面。这种清洁 表面的化学组成与体内相同,但周期结构可 以不同于体内。根据表面原子的排列,清洁 表面又可分为台阶表面、弛豫表面、重构表 面等。
(1)台阶表面 (图4.1.2 ) 台阶表面不是一个平面,它是由有规则的或不 规则的台阶的表面所组成
液体总是通过形成球形表面来降低系统的总能量;固体质 点不能自由移动,是如何降低系统的表面能的? 清洁表面:通过表面质点的极化、变形、重排来降低系统 的表面能,结果导致了晶体表面附近晶格畸变,使表面结 构与晶体内部有所不同。
若是一般的固体表面,除了上述方式外,还通过吸附、表面偏析 来降低表面能。
威尔(Weyl)等人基于结晶化学原理,研究了晶 体表面结构,认为晶体质点间的相互作用,键强 是影响表面结构的重要因素,提出了晶体的表面 双电层模型,如图4.1.6、4.1.7所示。
4.1.2 固体的表面结构
1、晶体表面结构(单晶) 2、粉体表面结构 3、玻璃表面结构 4、固体表面的几何结构
1、晶体表面结构
表面力的存在使固体表面处于较高能量状态。但系统总会通 过各种途径来降低这部分过剩的能量,这就导致表面质点的极化、 变形、重排并引起原来晶格的畸变。对于不同结构的物质,其表 面力的大小和影响不同,因而表面结构状态也会不同。
R=
式中, R为断裂强度,C为微裂纹长度, E为弹性模量,α是表面 自由能。
表面粗糙度会引起表面力场变化,进而影响其表面性质。 从色散力的本质可见,位于凹谷深处的质点,其色散力 最大,凹谷面上和平面上次之,位于峰顶处则最小;反之, 对于静电力,则位于孤立峰顶处应最大,而凹谷深处最小。 由于固体表面的不平坦结构,使表面力场变得不均匀, 其活性和其它表面性质也随之发生变化。其次,粗糙度还直 接影响到固体比表面积、内、外表面积比值以及与之相关的 属性,如强度、密度、润湿、孔隙率和孔隙结构、透气性和 浸透性等。此外,粗糙度还关系到两种材料间的封接和结合 界面间的吻合和结合强度。
石英密度值随粒度的变化: 当〉0.5mm时,密度为2.65,与块体石英一致; 〈0.5mm时,粒径减小,密度迅速减少,逐渐接近无定形石英的 密度2.2203。
粉体表面层是微晶结构的实验验证: 对粉体进行更精确的X射线和电子衍射研究发现,其X 射线谱线不仅强度减弱而且宽度明显变宽。因此认为粉体 表面并非无定形态,而是覆盖了一层尺寸极小的微晶体, 即表面是呈微晶化状态。由于微晶体的晶格是严重畸变的, 晶格常数不同于正常值而且十分分散,这才使其X射线谱 线明显变宽。 对鳞石英粉体表面的易溶层进行的X射线测定表明, 它并不是无定形质;从润湿热测定中也发现其表面层存在 有硅醇基团。
玻璃中的极化离子会对表面结构和性质产生影响。 对于含有较高极化性能的离子如Pb2+、Sn2+、Sb3+、 Cd2+等的玻璃,其表面结构和性质会明显受到这些离子在 表面的排列取向状况的影响。这种作用本质上也是极化问 题。 例如铅玻璃,由于铅原子最外层有4个价电子 (6S26P2),当形成Pb2+时,因最外层尚有两个电子,对 接近于它的O2-产生斥力,致使Pb2+的作用电场不对称, Pb2+以2Pb2+ →Pb4+ + Pb0方式被极化变形。
1、理想表面
没有杂质的单晶,作为零级近似可将清洁表面理 想为一个理想表面。这是一种理论上的结构完整的二 维点阵平面。 忽略了晶体内部周期性势场在晶体表面中断的影 响,忽略了表面原子的热运动、热扩散和热缺陷等, 忽略了外界对表面的物理化学作用等。 这种理想表面作为半无限的晶体,体内的原子的 位置及其结构的周期性,与原来无限的晶体完全一样。 (图4.1.1 理想表面结构示意图 )
(3)重构表面(图4.1.5 ) 重构是指表面原子层在水平方向上的周期 性不同于体内,但垂直方向的层间距则与体 内相同。 a
s
a
图4.1.5 重构表面示意图
d0
d0
3、吸附表面 吸附表面有时也称界面。它是在清洁 表面上有来自体内扩散到表面的杂质和来 自表面周围空间吸附在表面上的质点所构 成的表面。 根据原子在基底上的吸附位置,一般 可分为四种吸附情况,即顶吸附、桥吸附、 填充吸附和中心吸附等。
(2)分子引力,也称范德华(van der Walls)力,一般是 指固体表面与被吸附质点(例如气体分子)之间相互作 用力。主要来源于三种不同效应: 1)定向作用。主要发生在极性分子(离子)之间。 2)诱导作用。主要发生在极性分子与非极性分子之 间。 3)分散作用。主要发生在非极性分子之间。 对不同物质,上述三种作用并非均等的。例如对于非极 性分子,定向作用和诱导作用很小,可以忽略,主要是 分散作用。
基于X射线、热分析和其它物理化学方法对粉体表 面结构所作的研究测定,提出两种不同的模型。 一种认为粉体表面层是无定形结构; 另一种认为粉体表面层是粒度极小的微晶结构。
粉体表面层是无定形结构 的实验验证 石英的相变吸热峰面积随SiO2粒度的变化: 粒度/微米 粒度减少到5-10 约1.3 HF处理上述石英 粉末,重复上述实验 相变吸热峰面积 明显减小 继续减小 增加 相对大颗粒石英的相转变量 发生相转变的石英量显著减少 仅50%石英发生相转变 100%石英发生相转变
实验依据:真空中分解MgCO3后得到的MgO颗粒互相排斥。 可以预期,对于其它由半径大的负离子与半径小的正离子组成的化合物,特 别是金属氧化物如Al2O3、SiO2等也会有相应效应。而产生这种变化的程度主 要取决于离子极化性能。 例子:PbI2表面能最小(130尔格/厘米2),PbF2次之(900尔格/厘米2), CaF2最大(2500尔格/厘米2)。为什么? 这正因为Pb++与I-都具有大的极化性能所致。当用极化性能较小的Ca2+和F-依 表面能小,相应的表面双电层厚度将变大。
这两种观点是不是截然对立的?
3、玻璃表面结构 表面张力的存在,使玻璃表面组成与内部显著不同 在熔体转变为玻璃体的过程中,为了保持最小表面 能,各成分将按其对表面自由能的贡献能力自发地转移 和扩散。 在玻璃成型和退火过程中,碱、氟等易挥发组分自 表面挥发损失。 因此,即使是新鲜的玻璃表面,其化学成分、结构 也会不同于内部。这种差异可以从表面折射率、化学稳 定性、结晶倾向以及强度等性质的观测结果得到证实。
6、表面力场 固体表面上的吸引作用,是固体的表面力 场和被吸引质点的力场相互作用所产生的, 这种相互作用力称为固体表面力。 依性质不同,表面力可分为: 1)化学力 2)分子引力
(1)化学力:本质上是静电力。 当固体吸附剂利用表面质点的不饱和价键将吸附物吸附 到表面之后,吸附剂可能把它的电子完全给予吸附物,使吸 附物变成负离子(如吸附于大多数金属表面上的氧气);或, 吸附物把其电子完全给予吸附剂,而变成吸附在固体表面上 的正离子(如吸附在钨上的钠蒸气)。 多数情况下吸附是介于上述二者之间,即在固体吸附剂 和吸附物之间共有电子,并且经常是不对称的。 对于离子晶体,表面主要取决于晶格能和极化作用。
在常温时,表面极化离子的电矩通常是朝内部 取向以降低其表面能。因此常温下铅玻璃具有特别 低的吸湿性。但随温度升高,热运动破坏了表面极 化离子的定向排列,故铅玻璃呈现正的表面张力温 度系数。 不同极化性能的离子进入玻璃表面层后,对表 面结构和性质会产生不同的影响。
4、固体表面的几何结构 实验观测表明,固体实际表面是不规则 而粗糙的,存在着无数台阶、裂缝和凹凸不 平的峰谷。这些不同的几何状态同样会对表 面性质产生影响,其中最重要的是表面粗糙 度和微裂纹。
第四章 固体的表面与界面
生活中的表面现象 表面现象产生的原因 固体的界面可一般可分为表面、界面和相界面: 1)表面:表面是指固体与真空的界面。 2)界面:相邻两个结晶空间的交界面称为“界面”。 3)相界面:相邻相之间的交界面称为相界面。 相界面有三类: 固相与固相的相界面(S/S); 固相与气相之间的相界面(S/V); 固相与液相之间的相界面(S/L)。 本章主要从物理化学的角度对有关固体界面及其一些问题作简要介绍。
4、固体的表面自由能和表面张力 与液体相比: 1)固体的表面自由能中包含了弹性能。表面张 力在数值上不等于表面自由能; 2)固体的表面张力是各向异性的。 3)实际固体的表面绝大多数处于非平衡状态, 决定固体表面形态的主要是形成固体表面时的 条件以及它所经历的历史。 4)固体的表面自由能和表面张力的测定非常困 难。
[110] [112] [111]