鞍山市实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鞍山市实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()
A.4x+2y=5 B.4x﹣2y=5 C.x+2y=5 D.x﹣2y=5
2.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()
A.i≥7?B.i>15?C.i≥15?D.i>31?
3.若a<b<0,则下列不等式不成立是()
A.>B.>C.|a|>|b| D.a2>b2
4.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为()
A.B.C.D.
5.设函数y=的定义域为M,集合N={y|y=x2,x∈R},则M∩N=()
A.∅B.N C.[1,+∞)D.M
6.与函数y=x有相同的图象的函数是()
A.B.C.D.
7.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()
A.90种B.180种C.270种D.540种
8.若动点A,B分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则AB的中点M到原点的距离的最小值为()
A.3B.2C.3D.4
9. 将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中
的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )
A .
B .
C .2
D .3
10.若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <0
1110y -+=的倾斜角为( )
A .150
B .120
C .60
D .30
12.设复数1i z =-(i 是虚数单位),则复数
22
z z
+=( ) A.1i - B.1i + C. 2i + D. 2i -
【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.
二、填空题
13.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.
14.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
15.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 16.在
中,角


所对应的边分别为、、,若
,则
_________
17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()
210{ 21(0)
x
x
x e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 18.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12
n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.
三、解答题
19.已知二次函数f (x )=x 2+bx+c ,其中常数b ,c ∈R .
(Ⅰ)若任意的x ∈[﹣1,1],f (x )≥0,f (2+x )≤0,试求实数c 的取值范围;
(Ⅱ)若对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4,试求实数b 的取值范围.
20.一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.
21.已知函数f (x )=sinx ﹣2sin 2
(1)求f (x )的最小正周期;
(2)求f (x )在区间[0,]上的最小值.
22.(本小题满分12分)
已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;
(2)若与夹角为锐角,求的取值范围.
23.(本小题满分12分)已知1
()2ln ()f x x a x a R x
=--∈. (Ⅰ)当3a =时,求()f x 的单调区间;
(Ⅱ)设()()2ln g x f x x a x =-+,且()g x 有两个极值点,其中1[0,1]x ∈,求12()()g x g x -的最小值. 【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.
24.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.
鞍山市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】解:线段AB的中点为,k AB==﹣,
∴垂直平分线的斜率k==2,
∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,
故选B.
【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.
2.【答案】C
【解析】解:模拟执行程序框图,可得
S=2,i=0
不满足条件,S=5,i=1
不满足条件,S=8,i=3
不满足条件,S=11,i=7
不满足条件,S=14,i=15
由题意,此时退出循环,输出S的值即为14,
结合选项可知判断框内应填的条件是:i≥15?
故选:C.
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.
3.【答案】A
【解析】解:∵a<b<0,
∴﹣a>﹣b>0,
∴|a|>|b|,a2>b2,即,
可知:B,C,D都正确,
因此A不正确.
故选:A.
【点评】本题考查了不等式的基本性质,属于基础题.
4.【答案】D
【解析】解:设|PF1|=t,
∵|PF1|=|PQ|,∠F1PQ=60°,
∴|PQ|=t,|F1Q|=t,
由△F1PQ为等边三角形,得|F1P|=|F1Q|,
由对称性可知,PQ垂直于x轴,
F2为PQ的中点,|PF2|=,
∴|F1F2|=,即2c=,
由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,
∴椭圆的离心率为:e===.
故选D.
5.【答案】B
【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};
∵集合N中的函数y=x2≥0,
∴集合N={y|y≥0},
则M∩N={y|y≥0}=N.
故选B
6.【答案】D
【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误
B:与y=x的对应法则不一样,故B错误
C:=x,(x≠0)与y=x的定义域R不同,故C错误
D:,与y=x是同一个函数,则函数的图象相同,故D正确
故选D
【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题7.【答案】D
【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.
故选D.
8.【答案】A
【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,
∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值
∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,
∴两直线的距离为=,
∴AB的中点M到原点的距离的最小值为+=3,
故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
9.【答案】B
【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,
当1、2同行或同列时,这个数表的“特征值”为;
当1、3同行或同列时,这个数表的特征值分别为或;
当1、4同行或同列时,这个数表的“特征值”为或,
故这些可能的“特征值”的最大值为.
故选:B.
【点评】题考查类比推理和归纳推理,属基础题.
10.【答案】B
【解析】解:∵函数y=a x
﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,
∴根据图象的性质可得:a >1,a 0
﹣b ﹣1<0,
即a >1,b >0, 故选:B
11.【答案】C 【解析】
10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 12.【答案】A 【



二、填空题
13.【答案】 4
【解析】解:由PA ⊥平面ABC ,则△PAC ,△PAB 是直角三角形,又由已知△ABC 是直角三角形,∠ACB=90°所以BC ⊥AC ,从而易得BC ⊥平面PAC ,所以BC ⊥PC ,所以△PCB 也是直角三角形,
所以图中共有四个直角三角形,即:△PAC ,△PAB ,△ABC ,△PCB .
故答案为:4
【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.
14.【答案】B 【



15.【答案】
【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①
又a2,a3,a4-2成等差数列.
∴2a3=a2+a4-2,
即8k2=2k2+8k2-2.②
由①②联立得k1=-1,k2=1,
∴a n=2n-1.
答案:2n-1
16.【答案】
【解析】
因为,所以,
所以,所以
答案:
17.【答案】
11 [133
e e
⎧⎫+⋃+
⎨⎬
⎩⎭
,)
【解析】当x<0时,由f(x)﹣1=0得x2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
110x x
e
+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:
y=
1x
x
e +≥1(x ≥0), y ′=1x
x e
-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
x=1时,函数取得最大值:1
1e
+,
当1<a ﹣211e <+时,即a ∈(3,3+1
e )时,y=
f (f (x )﹣a )﹣1有4个零点,
当a ﹣2=1+1e 时,即a=3+1
e 时则y=
f (f (x )﹣a )﹣1有三个零点,
当a >3+1
e 时,y=
f (f (x )﹣a )﹣1有1个零点
当a=1+1
e 时,则y=
f (f (x )﹣a )﹣1有三个零点,
当11{ 21
a e a >+-≤时,即a ∈(1+1e
,3)时,y=f (f (x )﹣a )﹣1有三个零点.
综上a ∈1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,),函数有3个零点. 故答案为:11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,).
点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 18.【答案】31λ-<<
【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
111
12222n
S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|142
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<.
三、解答题
19.【答案】
【解析】解:(Ⅰ)因为x ∈[﹣1,1],则2+x ∈[1,3], 由已知,有对任意的x ∈[﹣1,1],f (x )≥0恒成立, 任意的x ∈[1,3],f (x )≤0恒成立,
故f (1)=0,即1为函数函数f (x )的一个零点.
由韦达定理,可得函数f (x )的另一个零点, 又由任意的x ∈[1,3],f (x )≤0恒成立,
∴[1,3]⊆[1,c], 即c ≥3
(Ⅱ)函数f (x )=x 2
+bx+c 对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4恒成立,
即f (x )max ﹣f (x )min ≤4,
记f (x )max ﹣f (x )min =M ,则M ≤4.
当||>1,即|b|>2时,M=|f (1)﹣f (﹣1)|=|2b|>4,与M ≤4矛盾;
当||≤1,即|b|≤2时,M=max{f (1),f (﹣1)}﹣f ()=
﹣f (
)=(1+
)2
≤4,
解得:|b|≤2, 即﹣2≤b ≤2,
综上,b 的取值范围为﹣2≤b ≤2.
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.
20.【答案】
【解析】解:如图,设所截等腰三角形的底边边长为xcm,
在Rt△EOF中,,
∴,

依题意函数的定义域为{x|0<x<10}
【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.
21.【答案】
【解析】解:(1)∵f(x)=sinx﹣2sin2
=sinx﹣2×
=sinx+cosx﹣
=2sin(x+)﹣
∴f(x)的最小正周期T==2π;
(2)∵x∈[0,],
∴x+∈[,π],
∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],
∴可解得f(x)在区间[0,]上的最小值为:﹣.
【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.

22.【答案】(1)2或2)(1,0)(0,3)
【解析】
试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围. 试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.
(2)与夹角为锐角,0a b ∙>,2
230x x -++>,13x -<<,
又因为0x =时,//a b , 所以的取值范围是(1,0)
(0,3)-.
考点:向量平行的坐标运算,向量的模与数量积.
【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是
0a b a b
⋅>且,a b 不同
向,同样两向量夹角为钝角的充要条件是0a b a b
⋅<且,a b 不反向.
23.【答案】
【解析】(Ⅰ))(x f 的定义域),0(+∞,
当3a =时,1()23ln f x x x x =--,2'
22
13231()2x x f x x x x -+=+-=
令'()0f x >得,102
x <<或1x >;令'
()0f x <得,112x <<,
故()f x 的递增区间是1
(0,)2和(1,)+∞;
()f x 的递减区间是1
(,1)2

(Ⅱ)由已知得x a x
x x g ln 1
)(+-=,定义域为),0(+∞,
2
221
11)(x
ax x x a x x g ++=++=',令0)(='x g 得012=++ax x ,其两根为21,x x , 且21212
40010a x x a x x ⎧->⎪
+=->⎨⎪⋅=>⎩,
24.【答案】
【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);
h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);
∴f(x)﹣g(x)为奇函数;
(2)由f(x)﹣g(x)<0得,f(x)<g(x);
即lg(2016+x)<lg(2016﹣x);
∴;
解得﹣2016<x<0;
∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).
【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.。

相关文档
最新文档