Electronic Structures of [RuII(cyclam)(Et2dtc)]+, and [Ru(cyclam)(tdt)]2 X-ray Absorption Study
Recent Advances in Piezoelectric Materials
Recent Advances in PiezoelectricMaterials随着科技的不断进步,越来越多的机械装置应用了压电材料。
这些材料是由许多晶体颗粒组成的,每个颗粒都能够产生电荷,当这些晶体受到了压力或扭曲时,它们也能产生电荷。
压电材料是一种多用途的材料,可用于一系列不同的装置中,如声波传感器、计算机打印头、电子过滤器、医学成像设备和许多其他应用中。
最近,压电材料在技术和应用迅速发展,一些新的材料出现了,并且取得了一些重大进展。
下面将介绍这些最新研究成果。
1. 氧化铈铌钛(CNT)压电材料氧化铈铌钛压电材料是一种新型的材料,由氧化铈,氧化铌和氧化钛三种物质混合而成。
这种材料有很高的压电效应和介电常数,它可以在高温环境下工作,因此,被广泛应用于高温传感器和电容器。
氧化铈铌钛掺杂技术是目前开发出的一种新型的CNT材料,该技术能够为CNT材料引入不同含量的其他物质,以改变C-T相变的温度和压电效应。
通过这种方法,CNT材料的压电性能和热稳定性能都得到了显著提高。
2. 钙钛矿压电材料钙钛矿是已知的一种良好的压电材料,它在电子器件、传感器和机械装置中得到了广泛应用。
最近,一些研究人员已经成功地开发出了一些新型的钙钛矿压电材料,这些材料在压电性能、机械性能和储能性能方面都明显优于传统的压电材料。
在这些新型的钙钛矿压电材料中,一些稀土和过渡金属元素已经被引入,以改善材料的压电性能和机械性能。
同时,一些先进的制备技术如溶胶-凝胶和高温烧结技术已经用于改善这些材料的储能性能。
3. 石墨烯压电材料石墨烯是一种前途光明的材料,因其独特的电学、光学和机械性质而广受关注。
最近,石墨烯压电材料已经开始收到科学家们的关注,这种材料具有优异的压电性能,可以在纳米级上展现出非常高的灵敏度和响应速度。
石墨烯压电材料的研究表明,压电效应是由石墨烯层之间的相互作用引起的。
这种材料在传感器、电声变换器、静电发电等方面具有广泛的应用前景。
含溴化铈的聚合物电解质在锂氧电池中的应用
功 能 高 分 子 学 报Vol. 35 No. 5 484Journal of Functional Polymers2022 年 10 月文章编号: 1008-9357(2022)05-0484-09DOI: 10.14133/ki.1008-9357.20211104001含溴化铈的聚合物电解质在锂氧电池中的应用佘宇坤, 项程程, 王小玉, 李 磊(上海交通大学化学化工学院, 上海 200240)摘 要: 采用溶液浇注法制备了含有溴化铈(CeBr3)的聚偏二氟乙烯-六氟丙烯(PVDF-HFP)基聚合物电解质,使其在锂氧(Li-O2)电池中的稳定性得到提升。
用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、傅里叶红外光谱(FT-IR)对Li-O2电池循环后的极片和电解质进行形貌和成分分析;用电化学工作站和电池测试系统对Li-O2电池进行电化学性能测试;研究了CeBr3对聚合物电解质稳定性的增强作用。
以放电终压下降至2 V为标准,当电流密度为500 mA/g、比容量为1 000 mA·h/g时,传统PVDF-HFP基聚合物电解质的Li-O2电池可循环47圈,而PVDF-HFP-CeBr3基聚合物电解质的Li-O2电池可循环长达112圈。
关键词: 锂氧电池;循环寿命;聚合物电解质;溴化铈中图分类号: O69 文献标志码: AApplication of Polymer Electrolytes Incorporating Cerium Bromide inLithium-Oxygen BatteriesSHE Yukun, XIANG Chengcheng, WANG Xiaoyu, LI Lei(School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)Abstract: Li-O2 batteries have ultra-high theoretical energy density and they are promising to replace commercial Li-ion batteries in the future. Compared with liquid electrolytes, polymer electrolytes have the advantages of non-flammability and higher electrochemical and thermal stability. Polymer electrolytes containing cerium bromide (CeBr3) additives were prepared, which greatly improved the reliability and stability of Li-O2 batteries. Poly(vinylidene fluoride-co-hexafluopropylene) (PVDF-HFP) based polymer electrolyte containing CeBr3 was prepared by solution casting method to improve its stability in Li-O2 battery. The morphology and composition of the electrode and electrolyte after cycling of Li-O2 battery were characterized by Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The electrochemical performance of lithium-oxygen battery was tested by electrochemical workstation and battery test system to study the enhancement effect of CeBr3 on the stability of polymer electrolyte. The experimental results demonstrate the bifunctional effect of CeBr3 in PVDF-HFP electrolyte by trapping superoxide radicals and reducing the charging overpotential. The ionic conductivity of the electrolyte at 25 ℃ is 5.87×10−4 S/cm. At a current density of 500 mA/g and specific capacity of 1 000 mA·h/g, the Li-O2 battery with traditional PVDF-HFP收稿日期: 2021-11-04基金项目: 国家自然科学基金(22179082);上海市自然科学基金(21ZR1430300)作者简介: 佘宇坤(1997—),男,湖南邵阳人,硕士生,主要研究方向为聚合物电解质。
化学镀法制备NiCoP
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 8 期化学镀法制备NiCoP/rGO/NF 高效电解水析氢催化剂张亚娟1,2,徐惠1,胡贝1,史星伟2(1 兰州理工大学石油化工学院,甘肃 兰州 730000;2 中国科学院过程工程研究所,离子液体清洁过程北京市重点实验室,北京 100190)摘要:电解水制氢是一项制取绿色氢能的重要技术,而开发具有低成本、高活性的催化剂作为电极材料是当前的研究重点。
本文以负载石墨烯的泡沫镍(rGO/NF )为基底,应用化学镀法制备了NiCoP/rGO/NF 新型析氢(HER )电解水催化剂。
比较NiCoP/NF 和引入石墨烯后的NiCoP/rGO/NF 的电催化性能。
三电极体系的测试结果表明,在1mol/L KOH 电解液中,在电流密度为10mA/cm 2时,NiCoP/rGO/NF 电极具有最优的过电位98mV 。
塔菲尔斜率(Tafel )、循环伏安(CV )和电化学阻抗(EIS )分析表明,NiCoP/rGO/NF 电极优异的HER 性能是快速反应动力学、高效电化学活性比表面积(ECSA )和小反应电阻(R ct )综合作用的结果。
结构测试表明:NiCoP 均匀沉积于rGO 和泡沫镍表面,并且rGO 形成的三维网络结构增加了催化剂比表面积,暴露出丰富的活性边缘,催化剂中Ni —P/Co —P 键的形成是HER 性能提升的关键。
关键词:电化学;制氢;催化剂;化学镀;过渡金属磷化物;三维石墨烯中图分类号:TQ15 文献标志码:A 文章编号:1000-6613(2023)08-4275-08Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating forefficient hydrogen evolution reactionZHANG Yajuan 1,2,XU Hui 1,HU Bei 1,SHI Xingwei 2(1 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730000, Gansu, China;2Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy ofSciences, Beijing 100190, China)Abstract: Electrochemical water splitting is an important green hydrogen technology. The development of efficient and cost-effective electrocatalyst is the focus of current research. A novel hydrogen evolution reaction (HER) electrocatalyst NiCoP/rGO/NF was constructed by electroless plating on nickel foam substrate that was loaded with three-dimensional reduced graphene oxide (rGO). The electrocatalysis performance of NiCoP/NF and that with the introduction of rGO (NiCoP/rGO/NF) was compared. The test results of the three-electrode system showed that, in 1mol/L KOH electrolyte and under the current density of 10mA/cm 2, the NiCoP/rGO/NF electrode gave the highest overpotential of 98mV. The remarkable performance of NiCoP/rGO/NF electrode in HER might be the comprehensive result of fast reaction kinetics, large electrochemical active specific surface area (ECSA) and small reaction resistance (R ct ) as indicated by the Tafel, cyclic voltammetry (CV) and impedance (EIS) analysis. The structure characterization研究开发DOI :10.16085/j.issn.1000-6613.2022-1846收稿日期:2022-10-08;修改稿日期:2022-12-13。
下肢外骨骼康复机器人人机交互力自适应导纳控制
第53卷第6期 西安交通大学学报Vol. 53 N o. 6 2019 年 6 月JO U RN A LO FXI,ANJIAOTONGUNIVERSITY Jun.2019 DOI:10. 7652/xjtuxb201906002下肢外骨骼康复机器人人机交互力自适应导纳控制屠尧12,朱爱斌12,宋纪元12,申志涛13,张小栋12,曹广忠@(1.西安交通大学陕西省智能机器人重点实验室,710049,西安'2.西安交通大学机器人与智能系统研究所,710049,西安'3.西安交通大学现代设计及转子轴承系统教育部重点实验室,710049,西安'4深圳大学深圳电磁控制重点实验室,518060,广东深圳)摘要:对于下肢具有残余肌力的下肢瘫痪病人,基于标准步态轨迹被动训练的康复方案无法满足锻炼肌肉的康复训练需求,为此提出了一种人机交互力自适应控制的下肢外骨骼康复机器人控制策略,并设计了可实现康复训练的控制方法。
该方法以健康人体行走步态为下肢外骨骼康复机器人的位置控制参考,以穿戴者的自身腿部用力作为力控制约束,根据穿戴者自身腿部力量大小,智能控制和调整步态曲线,以更加适应穿戴者的康复训练需求。
仿真试验结果表明,相对于完全被动的康复训练模式,自适应力控制模式能够有效地调整康复过程中人机交互力,可以适应多种不同的康复训练需求,从而大大提高受损患肢运动功能恢复的康复治疗进程,具有实际的应用价值。
关键词"康复机器人;导纳控制;自适应滑模控制;下肢外骨骼中图分类号:T H117. 1文献标志码:A文章编号:0253-987X(2019)06-0009-08Adaptive Admittance Control of Man-Robot Interaction Force forLower Limb Exoskeleton Rehabilitation RobotT U Y a o1'2,Z H U A i b i n1'2,S O N G Jiyuan1'2,S H E N Zhitao1'3,Z H A N G Xiaodong1,2,C A O Guangzhong4(1. Shaanxi Key Laboratory of Intelligent R obots,Xi?an Jiaotong U niversity,Xi?an 710049,China;2. Institute ofRobotics h Intelligent System s,Xi’an Jiaotong U niversity,Xi’an 710049,China; 3. Key Laboratory of Education M inistry for M odern Design and Rotor-Bearing System,Xi?an Jiaotong U niversity,Xi?an 710049,C hina;4. Shenzhen Key Laboratory of Electrom agnetic C ontrol,Shenzhen U niversity,Shenzhen, Guangdong 518060,China)Abstract:The rehabilitation scheme based on passive training of standard gait cannot satisfy therehabilitative training requirements of lower limb paralysis patients with residual musclestrength.A strategy o f lower limb exoskeleton rehabilitation robot with human-ro force adaptive control i s hence proposed,and a rehabilitative training method i s designed.Thismethod takes the walking gait of healthy h u m a n body as a reference for the position control of theexoskeleton rehabilitation robot of lower limbs,and takes the wearer)o w n l control constraint to intelligently control and adjust the gait curve according to thewearer)o w nleg strength,so as to better meet the wearer?s rehabilitation training needs.Simulatio show that the adaptive force control mode can effectively adjust the human-robot interaction force收稿日期:2018-10-30。
电子信息类专业英语(西电第二版)Unit 4 Microel
Unit 4 Microelectronics
Integrated circuits are small, light, rugged, and reliable. They require less power and lower voltages than equivalent macroscopic circuits; consequently they operate at lower temperatures, and individual components may be close together without exceeding the operating temperature limit. Relatively little stray capacitance and short time delays are produced because of the short interconnections between the individual components in IC. Maintenance is simplified because if a component of the IC fails the complete IC is usually replaced. Mass production techniques of plane technology have reduced the cost of many IC so that they are almost as inexpensive as a single transistor. Eventually most conventional circuits will be replaced by IC.
[2] The reduction in power dissipation is particularly important where a complex circuit is to be concentrated into a small space. The problem of extracting the heat generated in the circuit may then be a difficult one.
电子科技英语试题及答案
电子科技英语试题及答案一、选择题(每题2分,共20分)1. Which of the following is not a feature of electronic components?A. High precisionB. High reliabilityC. Low power consumptionD. Large size答案:D2. What is the basic unit of digital information?A. BitB. ByteC. KilobitD. Megabyte答案:A3. In electronics, what does the term "analog" refer to?A. Continuous signalsB. Discrete signalsC. Digital signalsD. Binary signals答案:A4. Which of the following is not a type of semiconductormaterial?A. SiliconB. GermaniumC. PlasticD. Gallium arsenide答案:C5. What is the function of a transistor in an electronic circuit?A. To amplify signalsB. To store dataC. To convert light into electricityD. To filter signals答案:A6. What is the primary function of a capacitor in an electronic circuit?A. To block DC and allow ACB. To block AC and allow DCC. To store electrical energyD. To convert voltage into current答案:C7. What does the abbreviation "LED" stand for in electronics?A. Light Emitting DiodeB. Large Emitting DiodeC. Limited Emitting DiodeD. Low Emitting Diode答案:A8. What is the purpose of a resistor in an electronic circuit?A. To control voltageB. To control currentC. To store energyD. To amplify signals答案:B9. Which of the following is a type of passive component in electronics?A. TransistorB. DiodeC. RelayD. All of the above答案:D10. What is the term used to describe the flow of electric charge?A. VoltageB. CurrentC. ResistanceD. Capacitance答案:B二、填空题(每题2分,共20分)1. The smallest unit of electric charge is called an ________.答案:electron2. A ________ is a type of electronic component that can store energy in an electric field.答案:capacitor3. The process of converting sound into electrical signals is known as ________.答案:modulation4. In digital electronics, a ________ is a single digit number, either 0 or 1.答案:bit5. A ________ is a semiconductor device that can amplify or switch electronic signals and electrical power.答案:transistor6. The unit of electrical resistance is the ________.答案:ohm7. An ________ is a semiconductor device that allows current to flow primarily in one direction.答案:diode8. The ________ is a passive component that opposes the flow of alternating current.答案:inductor9. A ________ is a type of display device that uses liquid crystals to produce images.答案:LCD10. The ________ is a type of electronic component that can store data.答案:memory三、简答题(每题10分,共20分)1. Explain the difference between an analog and a digital signal.答案:Analog signals are continuous and can represent a wide range of values, while digital signals are discrete and can only represent specific values, typically as a series of ones and zeros.2. Describe the role of a microprocessor in a computer system. 答案:A microprocessor is the central processing unit of a computer system, responsible for executing instructions, performing calculations, and controlling other system components to perform various tasks.四、翻译题(每题15分,共30分)1. Translate the following sentence into English: “在电子设备中,晶体管通常用作放大器或开关。
基于HS-SPME-GC-MS与电子鼻分析芹菜贮藏期间挥发性物质的变化
芦佳琪,吴玉珍,张瑞,等. 基于HS-SPME-GC-MS 与电子鼻分析芹菜贮藏期间挥发性物质的变化[J]. 食品工业科技,2024,45(5):212−222. doi: 10.13386/j.issn1002-0306.2023040101LU Jiaqi, WU Yuzhen, ZHANG Rui, et al. Change of the Volatile Compounds from Celery Leaves during Storage Based on HS-SPME-GC-MS and E-nose[J]. Science and Technology of Food Industry, 2024, 45(5): 212−222. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023040101· 分析检测 ·基于HS-SPME-GC-MS 与电子鼻分析芹菜贮藏期间挥发性物质的变化芦佳琪1,吴玉珍1,张 瑞1,韩晶晶1,熊爱生2,郁志芳1, *(1.南京农业大学食品科技学院,江苏南京 210095;2.南京农业大学园艺学院,江苏南京 210095)摘 要:采用顶空固相微萃取技术结合气相色谱-质谱联用(headspace solid phase microextraction-gas chromato-graphy-mass spectrometry ,HS-SPME-GC-MS )和电子鼻技术分析了20.0 ℃贮藏期间芹菜叶片挥发性物质的组成和含量的变化。
结果显示,采用HS-SPME-GC-MS 技术从芹菜中共检测到108种挥发性物质,单萜类(43.2%~52.92%)和苯酞类(19.93%~28.97%)为主要组分,其中D-柠檬烯含量丰富(6600.64~48566.12 μg/kg )。
电活性聚合物及其医疗应用electroactive polymer for medical application
Smart Structures and Materials 2003: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, Vijay K. Varadan, Laszlo B. Kish, Editors, Proceedings of SPIE Vol. 5055 (2003) © 2003 SPIE · 0277-786X/03/$15.00
Invited Paper源自ELECTROACTIVE POLYMER-BASED MEMS FOR AEROSPACE AND MEDICAL APPLICATIONS
Tian-Bing Xua, Ji Sub and Qiming Zhangc a National Institute of Aerospace, 144 Research Drive, Hampton, VA 23666 b NASA/Langley Research Center, Hampton, VA 23681 c Materials Research Institute and Electrical Engineering Department, The Pennsylvania State University, University Park, PA 16802
ABSTRACT
Electroactive polymers (EAP) demonstrate advantages over some traditional electroactive materials such as electroceramics and magneostrictive materials for electromechanical device applications due to their high strain, light weight, flexibility, and low cost. Electroactive polymer-based microelectromechanical systems (EAP-MEMS) are increasingly demanded in many aerospace and medical applications. This paper will briefly review recent progress in the developments and applications of EAP- MEMS. In the past few years, several new configurations of micromachined actuators/transducers have been developed using electroactive polymers. The performance of these micromachined EAP-based devices has been evaluated for both fluid and air conditions. The performance of EAP-MEMS has also been theoretically modeled based on material properties and device configurations. In general, the results obtained from modeling agree with the experimental measurements. Critical process issues, including patterned micro-scale electrodes, molded micro/nano electroactive polymer structures, polymer to electrode adhesion and the development of conductive polymers for electrodes will be discussed. The challenges to develop complete polymer MEMS will also be addressed. Keywords: Electroactive polymer (EAP), microelectromechanical system (MEMS), devices, performance.
Al2O3
第15卷第2期2024年4月有色金属科学与工程Nonferrous Metals Science and EngineeringVol.15,No.2Apr. 2024Al 2O 3/LiAlO 2协同提升LiNi 0.92Co 0.04Mn 0.04O 2正极材料循环稳定性的研究牛小伟*1,2, 李妍泽2(1.河南省轨道交通智能安全工程技术研究中心, 郑州 450018; 2.郑州铁路职业技术学院, 郑州 450052)摘要:锂离子电池 (LIBs ) 是最普遍的储能设备之一,高镍LiNi 0.92Co 0.04Mn 0.04O 2正极因其放电比容量高而备受关注,然而,在长循环的过程中,由于正极表面的活性物质发生了化学和结构变化,LIBs 的能量存储能力会随着循环的进行而减弱。
理解和缓解这些退化机制是减少容量衰退的关键,从而提高锂离子电池的循环寿命。
包覆是常见的改性手段,可改善高镍LiNi 0.92Co 0.04Mn 0.04O 2正极界面稳定性并降低表面降解的程度。
但是,常规包覆方法形成的包覆层的厚度和均匀性难以调控,为了改进此问题,本研究建立了一种Al 2O 3/LiAlO 2薄膜,对LiNi 0.92Co 0.04Mn 0.04O 2具有协同改性效应,可形成厚度均匀的双包覆层,增强正极材料的循环性能和结构稳定性。
研究结果表明,Al 2O 3/LiAlO 2双包覆层可以有效抑制不可逆相变,提高材料的结构稳定性。
改性的材料展现出优异的循环稳定性,在2.75~4.40 V 电压范围内循环200圈,放电比容量为141.2 mAh/g ,容量保持率高达76.1%。
本研究为商业化正极材料界面的改性提供了新的思路。
关键词:锂离子电池;均匀性;Al 2O 3/LiAlO 2双包覆层;容量保持率中图分类号:TG132;TM912 文献标志码:AStudy on improving the cycling stability of LiNi 0.92Co 0.04Mn 0.04O 2 cathodematerial by synergistic Al 2O 3/LiAlO 2NIU Xiaowei *1, 2, LI Yanze 2(1. Henan Intelligent Safety Engineering Research Center for Rail Transit , Zhengzhou 450018, China ;2. Zhengzhou Railway Vocational Technical College , Zhengzhou 450052, China )Abstract: Lithium-ion batteries (LIBs) are one of the most common energy storage devices, and the high nickel LiNi 0.92Co 0.04Mn 0.04O 2 positive electrode has attracted much attention due to its high specific discharge capacity. However, the energy storage capacity of LIBs will be weakened with the cycle due to the chemical and structural changes of active substances on the surface of the positive electrode during the long cycle. Understanding and mitigating these degradation mechanisms is key to reducing capacity degradation and improving the cycle life of lithium-ion batteries. Coating is a common modification method, which can improve the stability of high nickel LiNi 0.92Co 0.04Mn 0.04O 2 positive electrode interface and reduce the surface degradation degree. However, the thickness and uniformity of the coating layer formed by conventional coating methods are difficult to regulate. In order to improve this problem, the co-modification effect of the Al 2O 3/LiAlO 2 thin film on LiNi 0.92Co 0.04Mn 0.04O 2 was reported收稿日期:2023-01-12;修回日期:2023-04-24基金项目:国家自然科学基金青年基金资助项目(62003313)通信作者:牛小伟(1988— ),讲师,主要从事轨道车辆新能源材料的开发与研究。
利用硅纳米线做大面积可弯曲电子产品
利用硅纳米线做大面积可弯曲电子产品
英国的研究人员展示了一种干式接触印刷系统,能将多个硅纳米线移植于软性的大型基板上,从而开发出能够有效控制其电子特性的高性能超薄电子层。
这为大规模使用软性和可弯曲的电子产品开启了新机会,包括物联网(IoT)和智能城市等应用。
英国格拉斯哥大学(University of Glasgow)教授Ravinder Dahiya在接受《EE Times》采访时指出,“单晶硅是一种硬脆的材料,一旦将它弯曲,就会裂开。
因此,我们开发了一种新的客制、闭路接触式印刷系统,能够印刷多个100纳米(nm)硅纳米线接脚,在软性基板上形成电子层。
这种电子材料能直接接触基板,因此是干式印刷而非湿式印刷。
我们可以实现高产量的一致纳米线,在较大面积上产生均匀的响应。
”
这项研究由Ravinder Dahiya主导的可弯曲电子与感测技术(Bendable Electronics and Sensing Technologies;BEST)研究小组进行,最新成果就发表在《微系统和纳米工程》(Microsystems and Nanoengineering)期刊。
这一团队已经开发出许多创新技术,包括太阳能发电的软性“电子皮肤”,可用于打造义肢,以及可伸缩的健康传感器,用于监测用户汗水的pH值。
将硅纳米线用于大面积电子产品的一大挑战在于实现均匀的组件响应。
较。
IE5能效等级三相异步电动机的研制
IE5能效等级三相异步电动机的研制黄 坚",顾卫东",杨 旭#,冯俊锋#(1.国家中小型电机及系统工程技术研究中心,上海 200063;2.云南铜业压铸科技有限公司,云南 昆明 650000)摘 要:IE5为国际电工委员会(IEC )于2016年发布的目前全球最高的电动机能效等级。
针对IE5能效等级目标开展了三相异步电动机研制。
在设计方面,主要考虑采用优质的冷轧硅钢片,尝试不同风扇结构型 式和不等匝绕组型式,并针对小功率电机考虑采用铸铜工艺方案, 了电机。
在工艺方面,主要考虑提高加工 ,减小、 片毛刺等,进一步 电机的空载 。
样机测试结果表明,效率、功率因、起动电流、起动、最 、等标到设计要求, 了 IE5能效等级三相异步电动机研制目标。
关键词:三相异步电动机;能效等级;IE5中图分类号:TM 34312 文献标志码:3 文章编号:1673-6540(2021)01-0073-05doi : 10. 12177/emca. 2020. 169Development of IE5 Energy Ticiency Three-Phase Asynchronous MotorHUANG Jian 1, GU Weidong 1, YANG Xu 2, FENG Junfeng 2(1. National Engineering Research Center for Smal l & Medium Electria Machine and Systems ,Shanghai 200063,China ;2. Yunnan Coppec Die-Casting Technolory Co., Ltd.,Kunming 650000,China )Abstract : IE5,published by International Electrotechnical Commission ( IEC) in 2016,ia currentle the highest energy efficienca of motoe in the world. The development of IE5 energy efficienca three-phase asynchronous motoe iscarried out. Foe the motoe design ,we consider to use high-quality ccld rolled silicon steel sheet , try dUferent fanstructural styles and windings with unequal turns ,and use cast coppec rotoc in lowpowec motors , so as t lowec themotoc loss. F os the process technology ,measures to improve the machining accuracy and reducc burrs during statoi and rotor punching are applied ,so that the no-load loss of the motoe can be further reduced. Prototype test results show that the indices including eSiciency ,powee factoe , starting current , starting torque , maximum torque andtemperature rise aH meet the design requirements. The goal of IE5 energy efficienca i achieved.Key words : three-phase asynchronous motor ; energy efficiency ; IE50引言国际电工委员会(IEC )于2008年10月发布 了 IEC 60034-30“、三相笼型电动机的能效分级”标准,统一了全球的电机效率标准。
delocalized electron
delocalized electronDelocalized ElectronIntroductionDelocalized electron is an electron which is not bound to a specific atom, atom ion or molecule. It is instead believed to be spread out over a range of atoms, ions or molecules. It has become a important concept in physical chemistry, quantum chemistry and organic chemistry, to characterize molecular orbitals and resonant structures.Origin of Delocalized ElectronGenerally, delocalized electrons are assumed to have originated from nuclear wavefunctions. These wavefunctions, Bands, lead to a wave-like movement of electrons through the lattice.HistoryThe concept of delocalized electrons was introduced by the German-born physicist, Pauling in the early 20th century. He performed molecular orbitals (MO) theory on hydrogen bonds and found that their wavefunctions had odd, wave-like oscillations. This wave oscillation implies that the electron is delocalized, as it moves through the lattice particle. Since then, the delocalization of electrons occurs in different molecules.PropertiesDelocalized electrons have unique properties such as:1. Electron delocalization gives rise to strong bonding and unusual reactivity when electrons move rapidly in the system.2. Electron delocalization promotes overlap between the out-of-phase wave functions of different molecules, or between the wave functions of different orbitals of the same molecule.3. Delocalized electrons have high kinetic energy, allowing them to interact with atoms and molecules in the system.4. Delocalized electrons generally leads to lower energy and stability of the system Current ResearchCurrent research in delocalized electrons has been focused on finding the fundamental physical and chemical properties of these electrons. Their ability to interact with the surrounding system and the kind of chemical bonds they can form are the major research topics. Also, researchers are investigating effective potentials that can be used to control delocalized electrons. These potentials can enhance the stability of molecular resonance structures as well as improve the reactivity and electronic conduction of molecules.ConclusionIn conclusion, delocalized electrons are an important part of physical, quantum chemistry and organic chemistry. The knowledge about these electrons has been rapidly expanded by Pauling's MO theory, and further research have enriched our understanding about their physical and chemical properties. Delocalized electrons are expected to play an important role in nanomaterials and catalysis, especially in artificial photosynthesis.。
ESR_spectroscopy
图案背景 纯色背景 下载 打印 ?视图 标记 ?批注 搜全站 ? 1 / 1 批注本地保存成功,开通会员云端永久保存 去开通 画笔设置 ? ? ? 线条颜色 字体设置 微软雅黑 微软雅黑 宋体 黑体 楷体 arial 文字大小 透明度 线条粗细 162041zh 上传于:2014-09-11 粉丝量:3 该文档贡献者很忙,什么也没留下。 下载此文档 直接下载 相关 目录 笔记 书签 暂无目录 点击鼠标右键菜单,创建目录 新建 编辑 删除 暂无笔记 选择文本,点击鼠标右键菜单,添加笔记 暂无书签 在左侧文档中,点击鼠标右键,添加书签 esr_spectroscopy 下载积分: 2000 内容提示: esr-1experiment #2b: electron spin resonance spectroscopy i. introduction electron spin resonance (esr)1 has developed over the past several decades as a technique to provide information on the electronic structure of organic, inorganic, biological, solid state, and surface molecular species. these include organic free radicals,2 biradicals, triplet excited states, and most transition metal and rare earth species. biological applications, in addition to studies of these organic and inorganic specie... 文档格式:pdf | 页数:13 | 浏览次数:1 | 上传日期:2014-09-11 01:56:13 | 文档星级: ? ? ? esr-1experiment #2b: electron spin resonance spectroscopy i. introduction electron spin resonance (esr)1 has developed over the past several decade
Au(111)电极上分子相互作用扫描隧道显微镜研究的开题报告
Au(111)电极上分子相互作用扫描隧道显微镜研究的开题报告1. 研究背景在物质科学领域中,扫描隧道显微镜(STM)是一个非常重要的工具。
它可以使用非接触的方法观察材料表面的原子和分子。
在表面科学和纳米技术中,STM被广泛用于研究表面结构、电子性质和化学反应等。
其中,分子在金属表面的相互作用是一个热门研究领域。
在这方面,Au (111)电极是经常被研究的表面之一。
Au(111)电极表面具有高度有序的晶体结构,远离金表面的电子态呈现某些原子和分子的有序和定向聚集,可以为分子吸附提供良好的表面可控性。
2. 研究目的本研究旨在利用STM技术研究Au(111)电极上分子的相互作用,分析分子在金属表面上的吸附状态、分子间作用、分子间相互作用等物理化学性质,进一步探索金属表面上分子吸附的性质,为其在纳米技术应用方面的研究提供重要理论基础。
3. 研究方法使用STM显微镜观察Au(111)电极表面上的分子相互作用。
制备Au(111)电极样品,通过真空蒸镀法制备,控制表面波纹高度在1至2原子高度之间。
制备和表征分子样品,选择不同的分子,比如CO、N2、NO等,并通过拉曼光谱和质谱法对其进行表征。
对于吸附在Au(111)电极表面上的分子,使用STM技术进行表征,通过在不同的温度、压力、电势条件下进行观察,来研究分子的吸附状态、定向和排列方式等。
4. 研究内容(1)Au(111)电极表面上不同分子的吸附状态及其对表面形貌的影响;(2)Au(111)电极表面分子间作用的研究,分析分子之间的相互作用及其影响因素如分子大小、结构、电荷等;(3)研究分子在电场和电势影响下的吸附状态和定向;(4)比较不同分子吸附状态的异同,分析分子表面吸附性质与分子结构和性质的关系。
5. 研究意义本研究可以提供深入了解Au(111)电极表面上分子的吸附性质,有助于更好地理解分子在纳米尺度上的行为。
同时,对于分子与金属表面相互作用的研究,也有助于对分子表面科学及其在纳米技术中的应用有更全面的认识。
(2014)Xianhua Hou, Xiaoli Zou et al. RSC ADV.
PAPER Surfactant CTAB-assisted synthesis of Li1.13[Ni0.233Mn0.534Co0.233]0.87O2 with festoon-like hierarchical architectures as cathode materials for Li-ion batteries with outstandinguction
The introduction of non-aqueous rechargeable lithium-ion batteries in the 1990s for electric vehicles (EV), plug-in hybrid vehicles (PHEVs) and power portable electronic devices bring about a revolution in battery technology and a remarkable transformation from the relatively low-voltage, low-capacity and water-based systems such as nickel–cadmium1,2 and nickel– metal hydride batteries3,4 because of their relatively high energy density and design exibility. The electrochemical performances of the Li-ion batteries mainly depend on the cathode materials, the anode materials and the electrolyte. While the anode materials have the characteristics of the specic capacity much higher than the cathode material, such as siliconbased,5–7 tin-based,8,9 lithium transition metal oxides10,11 and metal-oxides.12–14 So it has become very important to improve the capability of cathode material, and further to improve the capacity of lithium ion secondary batteries.
碳点-水凝胶 电催化 铀酰离子-概述说明以及解释
碳点-水凝胶电催化铀酰离子-概述说明以及解释1.引言1.1 概述概述部分的内容可以如下所示:在当前环境保护和能源开发的背景下,研究人员越来越关注使用新材料和技术来解决能源和环境问题。
碳点-水凝胶和电催化技术作为近年来新兴的研究领域备受瞩目。
碳点-水凝胶是一种由碳点和水凝胶相结合形成的新型材料,其独特的结构和性质使其在催化、能源转化和环境治理等领域展现出巨大的潜力。
碳点作为一种纳米级碳材料,具有较大的比表面积和优异的光电性能,可用于催化反应和能源转化。
而水凝胶则是一种含水网络结构材料,具有良好的柔韧性和高度吸水性,可用于吸附和固定其他物质。
通过将碳点与水凝胶相结合,人们可以制备出具有双重功能的新型材料,既保留了碳点的优点,又增加了水凝胶的特性,为各种应用提供了更多可能性。
另一方面,电催化技术是利用电化学方法来催化化学反应的一种方法。
通过引入电流使反应发生,并在电极表面引入催化剂,可以实现高效的催化反应。
与传统的热催化相比,电催化技术具有能耗低、反应选择性高和环境友好等优势。
因此,电催化技术在减少能源消耗和污染物排放方面具有重要的应用潜力。
铀酰离子是一种在核能领域具有重要意义的离子物种。
研究铀酰离子的电催化性质对于核能的开发和利用具有重要意义。
近年来,研究人员发现碳点-水凝胶在铀酰离子电催化中展示出优异的性能表现,这使其成为相关领域的研究热点。
本文将对碳点-水凝胶、电催化技术和铀酰离子的研究进行综述和分析,以期深入了解这些领域的最新进展和应用前景。
通过对相关文献和实验结果的综合分析,本文旨在为读者提供一个全面的概述,以便更好地理解碳点-水凝胶、电催化和铀酰离子研究的重要性和应用前景。
文章结构是指整篇文章按照一定的组织方式和逻辑结构来安排的,以便读者能够更好地理解和掌握文章的主题和内容。
本文按照以下结构展开:1. 引言1.1 概述在本节中,将简要介绍碳点-水凝胶和铀酰离子等关键概念,并说明它们在电催化中的重要性。
多通道碳阴极活化过一硫酸盐降解水中有机物的性能
大连理工大学硕士学位论文摘要活化的过硫酸盐氧化,作为一种新兴的高级氧化技术,是一种矿化难降解有毒污染物的有效方法。
在众多的活化方法中,过硫酸盐通过接受电子完成的电化学活化,具有容易操控和环境友好的特点,被认为是一种有前景的活化技术。
但在电化学活化的过程中,由于静电斥力阻碍了过硫酸盐阴离子和阴极之间的接触,导致过硫酸盐低的分解率和随后低的自由基的产生量,从而使污染物的降解效果变差。
针对此问题,本文使用天然木材衍生的碳化木(CW)制备了具有多通道的流通式阴极(FTC),通过将过一硫酸盐(PMS)阴离子限制在阴极的微通道中,能够显著地强化其与阴极的碰撞与接触,提高电化学活化的效率并增强对污染物的降解。
主要的研究成果如下:(1)通过天然松木的一步碳化制备并组装了具有丰富的介孔,良好的导电性,较高的机械强度,大量有序的微通道以及对PMS有良好的电催化活性的FTC。
以苯酚为目标污染物,探究了不同的反应条件(PMS浓度、电流密度和停留时间)对FTC电活化PMS降解苯酚性能的影响。
结果表明,在苯酚进水浓度为20 mg/L, 进水TOC=18 mg/L,进水PMS浓度为6.51 mM,背景Na2SO4为0.05 M,电流密度为2.75 mA/cm2,进水pH 2.87,停留时间10 min以及常温的条件下,通过FTC电活化PMS,PMS的分解率达到了71.9%。
苯酚和TOC的去除率分别达到了97.9%和39.6%。
EPR实验结果表明,在FTC电活化PMS的过程中,产生了大量的·OH和SO4•-。
同时,自由基淬灭实验也表明,·OH和SO4•-均参与了对苯酚的降解,且·OH对降解的贡献更大。
此外,五次循环实验的结果证明了本研究组装的FTC具有很好的稳定性。
(2)通过封闭CW的微通道,获得了流过式阴极(FBC)。
在相同的优化条件下,详细对比了在FTC中和FBC上的PMS的分解、自由基的产量以及电活化PMS降解三种酚类有机物(苯酚、双酚A和4-氯苯酚)的性能。
ELECTRODE STRUCTURE FOR MEASURING ELECTRICAL RESP
专利内容由知识产权出版社提供
专利名称:ELECTRODE STRUCTURE FOR MEASURING ELECTRICAL RESPONSES FROM THE HUMAN BODY
发明人:HANNULA, Henri,AHO, Matti,OLLIKAINEN, Marko
申请号:FI2004 000687 申请日:2004 1116 公开号:WO05பைடு நூலகம்04 8837P 1 公开日:20050602
摘要:The invention relates to an electrode structure (10) for attachment to a more extensive measuring structure (11), in order to measure electrical responses from the human body. The electrode structure (10) includes a conductive electrode (1). According to the invention, the electrode (1) is shaped to be thin in the thickness direction of the electrode structure (10), and the electrode structure (10) is equipped with a hole (6) and the electrode (1) is located at the edge of the hole (6), in such a way that its longitudinal axis is essentially parallel to the plane of the measurement subject.
基于铝合金铝化合物的锂金属负极的研究进展
DOI: 10.19289/j.1004-227x.2021.02.005基于铝合金/铝化合物的锂金属负极的研究进展陈滨,高文煊,黄凌锋,韩东梅*(中山大学化学工程与技术学院,广东 珠海 519082)摘要:介绍了近年来基于铝合金/铝化合物的锂金属负极的研究进展,总结了使用铝合金或铝化合物对锂金属负极进行修饰或作为负极材料的典型工作,展望了基于铝合金/铝化合物的锂金属负极的研究方向。
关键词:锂离子电池;锂金属负极;铝合金;铝化合物;综述中图分类号:TM924.11; TM911 文献标志码:A 文章编号:1004 – 227X (2021) 02 – 0109 – 06Research progress of lithium metal anodes based on aluminum alloys and aluminum compoundsCHEN Bin, GAO Wenxuan, HUANG Lingfeng, HAN Dongmei *( S chool of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China)Abstract: The progress in the research of aluminum alloys/com pounds-based lithium metal anodes in recent years was introduced. The typical work for lithium metal anodes using aluminum alloys/compounds or modified by them was summarized. The research directions of aluminum alloys/com pounds-based lithium metal anodes were prospected. Keywords: lithium-ion battery; lithium metal anode; aluminum alloy; aluminum compound; review随着科技的飞速发展,各类电子产品及电动汽车得以推广应用。
aie,_淬灭,金属-配体电荷转移过程_,_mlct
aie, 淬灭,金属-配体电荷转移过程, mlct1. 引言1.1 概述AIE (聚集诱导发光)是一种具有独特荧光性质的现象,其在分子溶液中表现出弱荧光或无荧光的特点,但当分子聚集形成凝胶体系或固态材料时,会显示出明亮的固体发光。
这种与传统发光的差异性使得AIE材料在荧光探针、生物成像、有机电激发发光器件等领域展示了巨大的应用潜力。
1.2 文章结构本文将首先介绍AIE的概念和原理,包括聚集诱导发光现象和其背后的物理和化学基础。
接着,我们将探讨AIE材料在不同应用领域中的具体应用情况,如生物成像和有机电激发发光器件。
然后,我们将重点关注AIE与金属-配体电荷转移过程之间的关系,并分析淬灭(猝灭)对金属-配体电荷转移过程的影响。
最后,我们将介绍金属-配体电荷转移现象及其特征和机理,并讨论MLCT在光催化和光电器件中的应用。
文章将以结论总结研究结果,并展望未来对该领域的进一步研究方向。
1.3 目的本文旨在全面系统地介绍AIE、淬灭和金属-配体电荷转移过程的基本概念和原理,探讨它们之间的关系以及在材料科学和光学应用中的重要性。
通过对现有研究的归纳总结,旨在为相关领域发展提供新的思路和启示,并为未来更深入的研究提供指导。
2. AIE (聚集诱导发光)2.1 AIE的概念和原理AIE(Aggregation-Induced Emission)即聚集诱导发光,指的是某些分子在单体状态下不会发光,但当它们聚集形成超分子结构时,却能够发出强烈的固体体现。
与常规荧光材料相比,AIE材料具有以下特点:在高浓度下仍然保持较高的量子产率;在溶胶态或固胶态表现出明显的荧光增强效应;具有优异的抗淬灭性能。
AIE效应的原理主要涉及扭曲作用和非辐射转移。
一般来说,荧光基团周围存在空间位阻或刚性结构,因而限制了其内部旋转,在溶液中处于非辐射跃迁受限状态。
但当这些分子接近并形成聚集体时,扭曲效应消失,内部旋转受到限制,并且激发态能级降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/IC Published on Web 09/21/2009r 2009American Chemical Society9754Inorg.Chem.2009,48,9754–9766DOI:10.1021/ic9011845Electronic Structures of [Ru II (cyclam )(Et 2dtc )]+,[Ru (cyclam )(tdt )]+,and[Ru (cyclam )(tdt )]2+:An X-ray Absorption Spectroscopic and Computational Study (tdt =toluene-3,4-dithiolate;Et 2dtc =N ,N -diethyldithiocarbamate (1-))Carsten Milsmann,†Eckhard Bill,†Thomas Weyherm ::uller,†Serena DeBeer George,‡and Karl Wieghardt*,††Max-Planck-Institut f ::ur Bioanorganische Chemie,Stiftstrasse 34-36,D-45470M ::ulheim an der Ruhr,Germany,and ‡Department of Chemistry and Chemical Biology,Baker Laboratory,Cornell University,Ithaca,New York 14853Received June 19,2009The reaction of [Ru III (cyclam )Cl 2]Cl with 2equiv of sodium N ,N -diethyldithiocarbamate in methanol afforded [Ru II (cyclam )(Et 2dtc )](BPh 4)(1(BPh 4)).The same reaction with only 1equiv of toluene-3,4-dithiol and a base yielded [Ru (cyclam )(tdt )](PF 6)(2(PF 6))which was oxidized by 1equiv of ferrocenium hexafluorophosphate generating [Ru (cyclam )(tdt )](PF 6)2(2ox (PF 6)2).The crystal structures of 1and 2have been determined by X-ray crystallography at 100K.The electronic structures of diamagnetic 1(BPh 4),paramagnetic 2(PF 6)(S =1/2),and diamagnetic 2ox (PF 6)2have been studied by magnetochemistry,spectroelectrochemistry,electron paramagnetic resonance spectroscopy,and 1H NMR spectroscopy.X-ray absorption spectroscopy on Ru K-and L-edges as well as S K-edges has been employed.Finally,the molecular and electronic structures of all three species have been calculated by using density functional theory (B3LYP ).It is shown that 2ox comprises an electronic structure which is best described by three resonance structures {[Ru II (cyclam )(tdt 0)]2+T [Ru III (cyclam )(tdt •)]2+T [Ru IV (cyclam )(tdt 2-)]2+}with a closed-shell singlet ground state.This is in stark contrast to the isoelectronic iron species,namely,[Fe III (cyclam )(tdt •)]2+which is a singlet diradical with a low-spin ferric ion coupled intramolecularly antiferromagnetically to a ligand πradical monoanion (tdt •)-.IntroductionIn two recent articles we have shown that S ,S 0-coordinated benzene-1,2-dithiolate(1-)πradical monoanions,(bdt •)-,bound to a low-spin cobalt(III)ion,1a chromium(III)ion,1or a low-spin iron(III)ion 2in complexes A ,B ,and C ,respectively,represent a well-defined open-shell oxidation level of this ligand.In the corresponding monocations A 0,B 0,C 0this ligand is present in its reduced,closed-shell benzene-1,2-dithiolate(2-)form,(bdt)2-(Formula 1).1,2It was shown that these πradical ligands in A ,B ,and C display spectroscopic properties very similar to thosereported for corresponding complexes containing a benzosemiquinonate(1-)πradical 3,4or a catecholate(2-)ligand in analogous monocations [M(N 4)(cat)]1+(M=Co III ,Cr III ).4,5This behavior is in part enforced by using the redox-stable LM III moiety where L is a neutral,saturated tetra-dentate amine (e.g.,tris(2-aminoethyl)amine (tren)and 1,4,8,11-tetraazacyclotetradecane (cyclam))and M III repre-sents a low-spin Co III ion,a Cr III ion,or a low-spin Fe III ion.In contrast to this apparently straightforward description of the electronic structures,it has recently been shown by a number of groups that this is not the case for complexes of ruthenium.The discussion centers around the relative importance of the resonance structures shown in Scheme 1of a given [Ru(L)]1þ/2þmoiety (where L represents a dioxolene,dithiolene,diimine-,aminophenolate-,or aminothiophenolate-type ligand).For the monocationic Ru-dioxolene unit,a delocalized ground state with contributions from both [Ru III (L)2-]+and [Ru II (L •)-]+forms has been proposed independently by Lever et al.6and Tanaka et al.,7while for the corresponding*To whom correspondence should be addressed.E-mail:wieghardt@mpi-muelheim.mpg.de.(1)Milsmann,C.;Bothe,E.;Bill,E.;Weyherm ::uller,T.;Wieghardt,K.Inorg.Chem.2009,48,6211.(2)Milsmann,C.;Patra,G.K.;Bill,E.;Weyherm ::uller,T.;DeBeer George,S.;Wieghardt,K.Inorg.Chem.2009,48,7430.(3)Wicklund,P.A.;Beckmann,L.S.;Brown,D.G.Inorg.Chem.1976,15,1996.(4)(a)Wheeler,D.E.;McCusker,J.K.Inorg.Chem.1998,37,2296.(b)Rodriguez,J.H.;Wheeler,D.E.;McCusker,J.K.J.Am.Chem.Soc.1998,120,12051.(5)Wicklund,P.A.;Brown,D.G.Inorg.Chem.1976,15,396.(6)da Silva,R.S.;Gorelsky,S.I.;Dodsworth,E.S.;Tfouni,E.;Lever,A.B.P.J.Chem.Soc.,Dalton Trans.2000,4078.(7)Wada,T.;Yamanaka,M.;Fujihara,T.;Miyazato,Y.;Tanaka,K.Inorg.Chem.2006,45,8887.ArticleInorganic Chemistry,Vol.48,No.20,20099755aminophenolate and aminothiophenolate complexes with two acetylacetonate,(acac),as spectator ligands,a [Ru III (L)2-]+formulation was suggested by Kaim and Lahiri.8However,for an aminophenolate complex contain-ing two bipyridine,(bpy),ligands instead of acac,Kaim et al.proposed a [Ru II (L •)]+ground state with minor contribu-tions of Ru to the singly occupied molecular orbital (SOMO)based on electron paramagnetic resonance (EPR)spectros-copy.9On the basis of structural parameters and density functional theory (DFT)calculations,Kaim et al.8and Lahiri et al.10suggested a [Ru III (L •)]2+description for the one-electron oxidized moiety in [Ru(acac)2(aminophenolate)],in which the ligand radical is antiferromagnetically coupled to the metal center.This ground state formulation has been extended to the corresponding 1,2-benzoquinone diimine type compounds by Lahiri et al.,again supported by struc-tural parameters and theoretical results.10The same electro-nic structure was suggested by us based on results for other transition metal complexes containing 1,2-benzoquinone diimine derived radical ligands.11In contrast,Lever et al.prefer a [Ru II (L)0]2+description with significant π-back bonding.12Finally,a detailed theoretical investigation by Kaupp et al.suggested that the monocationic Ru-ligand moiety is better described as a superposition of the resonance structures [Ru II (L •)-]+and [Ru III (L)2-]+for any o -quinonoidligand.13This implies that the “true”spectroscopic oxidation state in these compounds is intermediate between the integer descriptions.Accordingly,the dicationic unit was described by the superposition of the [Ru II (L)0]2+and the [Ru III (L •)-]2+resonance structures.13Thus,the strong delocalization of the valence electrons between the metal and the ligand could be a consequence of highly covalent interactions.This agrees well with calculations of nucleus-independent chemical shifts(NICS)14reported recently by Zaric et al.,15which showed that Ru-1,2-benzoquinone diimines exhibit metalloaromati-city.16Here we report on the electronic structure of complexes 1,2,and 2ox shown in Scheme 2.These complexes have been studied by X-ray crystallography,magnetic susceptibility measurements,spectroelectrochemistry,EPR,and X-ray absorption spectroscopy (S K-edge,Ru K-and L-edge).We have computationally corroborated these experimental results by DFT,including TD-DFT simulations of X-ray absorption and optical absorption spectra.Experimental SectionPreparation of Complexes.The starting material cis -[Ru III -(cyclam)Cl 2]Cl has been prepared as described in the litera-ture.17The ligands are commercially available.[Ru II (cyclam )(Et 2dtc )](BPh 4)(1(BPh 4)).A solution of Na-(Et 2dtc)(110mg,0.49mmol)in degassed methanol (10mL)was slowly added under strictly anaerobic conditions to a solution of cis -[Ru(cyclam)Cl 2]Cl (100mg,0.24mmol)in de-gassed methanol/water (2:1,25mL).After stirring for 1h,a solution of NaBPh 4(103mg,0.3mmol)in degassed methanol (2mL)was added.A microcrystalline,yellow solid precipitated immediately,which was filtered in air quickly,washed subse-quently with methanol/water (3:1)and diethyl ether,and dried under vacuum.The product is air-stable for a few minutes in theScheme 1.Electronic Ground State Descriptions for an o -Quinoid Type Ligand Coordinated to Ru in OctahedralGeometryScheme 2.Ligands andComplexes(8)Patra,S.;Sarkar,B.;Mobin,S.M.;Kaim,W.;Lahiri,G.K.Inorg.Chem.2003,42,6469.(9)Ye,S.;Sarkar,B.;Duboc,C.;Fiedler,J.;Kaim,W.Inorg.Chem.2005,44,2843.(10)Maji,S.;Patra,S.;Chakraborty,S.;Janardanan,D.;Mobin,S.M.;Sunoj,R.B.;Lahiri,G.K.Eur.J.Inorg.Chem.2007,314.(11)Bill,E.;Bothe,E.;Chaudhuri,P.;Chlopek,K.;Herebian,D.;Kokatam,S.;Ray,K.;Weyherm ::uller,T.;Neese, F.;Wieghardt,K.Chem.;Eur.J.2005,11,204.(12)(a)Rusanova,J.;Rusanov,E.;Gorelsky,S.I.;Christendat,D.;Popescu,R.;Farah,A.A.;Beaulac,R.;Reber,C.;Lever,A.B.P.Inorg.Chem.2006,45,6246.(b)Kalinina,D.;Dares,C.;Kaluarachchi,H.;Potvin,P.G.;Lever,A.B.P.Inorg.Chem.2008,47,10110.(13)Remenyi,C.;Kaupp,M.J.Am.Chem.Soc.2005,127,11399–11413.(14)von Rague Schleyer,P.;Maerker,C.;Dransfeld,A.;Jiao,H.;van Eikema Hommes,N.J.R.J.Am.Chem.Soc.1996,118,6317.(15)Milcic,M.K.;Ostojic,B.D.;Zaric,S.D.Inorg.Chem.2007,46,7109.(16)Masui,H.Coord.Chem.Rev.2001,219-221,957.(17)Sakai,K.;Yamada,Y.;Tsubomura,T.Inorg.Chem.1996,35,3163–3172.9756Inorganic Chemistry,Vol.48,No.20,2009Milsmann et al. solid state,but should be stored under an inert atmosphere.Yield:137mg(73%).Single crystals suitable for X-ray crystal-lography were grown from concentrated solutions of1(BPh4)inCH2Cl2;Anal.Calcd for C39H54BN5RuS2:C60.92,H7.08,N9.11;Found:C61.15,H7.12,N9.10.[Ru(cyclam)(tdt)](PF6)(2(PF6)).Under an Ar blanketingatmosphere a solution of H2tdt(96mg,0.62mmol)and potas-sium tert-butylate(150mg,1.34mmol)in degassed methanol(10mL)was added dropwise at0°C to a solution of cis-[Ru-(cyclam)Cl2]Cl(250mg,0.62mmol)in degassed methanol/water(2:1,50mL).After stirring at0°C for15min,KPF6(130mg,0.7mmol)was added,and the dark blue mixture waskept under argon at room temperature overnight with stirring.Upon evaporation of the solvent under a stream of argon darkred crystals were obtained.Yield:254mg(68%);ESI MS(pos.ions,CH2Cl2):m/z:456cis-[(cyclam)Ru(tdt)]+;Anal.Calcd forC17H30F6N4PRuS2:C34.00,H5.03,N9.33;Found:C34.10,H4.97,N9.35.[Ru(cyclam)(tdt)](PF6)2(2ox(PF6)2).Solid ferrocenium hexa-fluorophosphate(55mg,0.17mmol)was added to a solution of2(100mg,0.17mmol)in dichloromethane(20mL)under anargon blanketing atmosphere.After stirring for1h at roomtemperature,hexane(20mL)was added.The dark pink pre-cipitate was filtered,washed with pentane and dried undervacuum.Yield:104mg(84%);Anal.Calcd forC17H30F12N4P2RuS63H2O:C26.74,H4.22,N7.34;Found:C26.65,H4.20,N6.90.X-ray Crystallographic Data Collection and Refinement of the Structures.An orange single crystal of1(BPh4)30.16CH2Cl2and a dark blue crystal of2(PF6)were coated with perfluoropo-lyether,picked up with nylon loops and mounted in the nitrogen cold stream of a Bruker-Nonius KappaCCD diffractometer equipped with a Mo-target rotating-anode X-ray source.Gra-phite monochromated Mo K R radiation(λ=0.71073A)was used throughout.Final cell constants were obtained from least-squares fits of several thousand strong reflections.Intensities of redundant reflection were used to correct for absorption using the program SADABS.18The structures were readily solved by Patterson methods and subsequent difference Fourier techni-ques.The Siemens ShelXTL software package19was used for solution and artwork of the structures,and ShelXL9720was used for the refinement.All non-hydrogen atoms were aniso-tropically refined,and hydrogen atoms were placed at calcu-lated positions and refined as riding atoms with isotropic displacement parameters.Crystallographic data of the com-pounds are summarized in Table1.The macrocyclic ligand and the dithiocarbamate ligand in compound1(BPh4)30.16CH2Cl2were found to be disordered, where the macrocycle is twisted by about90°.A split atom model of the complex cation was refined yielding occupation ratios of almost84:16.The SAME instruction of ShelXL97was used to restrain the geometry of the split parts and equal anisotropic displacement parameters were refined for corre-sponding split atoms.Severe disorder was also found for the PF6-anion in2(PF6). Three split positions were refined with restrained bond distances and equal anisotropic displacement parameters for correspond-ing atoms,using the SAME and EADP instructions of ShelXL97.Physical Measurements.Elemental analyses were measured at the Mikroanalytisches Labor H.Kolbe,in M::ulheim an der Ruhr,Germany.Cyclic voltammograms and square wave voltammograms in the range of-25to25°C were recorded by using an EG&G Potentiostat/Galvanostat273A.A three electrode cell was employed with a glassy-carbon working electrode,a glassy-carbon auxiliary electrode,and a Ag/AgNO3 reference electrode(0.01M AgNO3in CH3CN).Ferrocene was added as an internal standard after completion of the measure-ments and potentials are referenced versus the Fc+/Fc couple. Controlled potential coulometric measurements were per-formed in a setup,which allows recording of absorption spectra in situ during electrolysis,by employing the same potentiostat, but using a Pt-grid as a working electrode.A Pt-brush was used as counter electrode and separated from the working electrode compartment by a Vycor frit.An Ag/AgNO3(0.01M AgNO3in CH3CN)reference electrode was employed again.UV-vis spectra were measured on a Hewlett-Packard8452A diode array spectrophotometer(200-1100nm)or a Perkin-Elmer UV-vis Lambda19spectrophotometer(250-2000nm).Temperature-dependent magnetic susceptibilities were measured by using a SQUID magnetometer(MPMS Quantum Design)at1.0T (4-300K).Underlying diamagnetism was corrected by using tabulated Pascal’s constants.The susceptibility data were simu-lated using the program julX(by Eckhard Bill).X-band EPR derivative spectra were recorded on a Bruker ELEXSYS E500 spectrometer equipped with the Bruker standard cavity (ER4102ST)and a helium flow cryostat(Oxford Instruments ESR910).Microwave frequencies were calibrated with a Hew-lett-Packard frequency counter(HP5352B),and the field con-trol was calibrated with a Bruker NMR field probe(ER035M). The spectra were simulated with the program GFIT(by Eckhard Bill)for the calculation of powder spectra with effec-tive g values and anisotropic line widths(Gaussian line shapes were used).X-ray Absorption Spectroscopy Measurements and Data Ana-lysis.All data were measured at the Stanford Synchrotron Radiation Laboratory under ring conditions of3.0GeV and 60-100mA.Ru K-edge XAS data were measured on a focused beamline9-3.A Si(220)monochromator was utilized for energy selection.All samples were prepared as solids in boron nitride,pressed into a pellet,and sealed between38μm Kapton tape windows in a1mm aluminum spacer.The samples were maintained at10K during data collection using an Oxford Instruments CF1208continuous flow liquid helium cryostat. Data were measured in transmission mode.Internal energy calibrations were performed by simultaneous measurement of Table1.Crystallographic Data for1(BPh4)30.16CH2Cl2,and2(PF6)1(BPh4)30.16CH2Cl22(PF6)chem.formula C39.16H54.32BCl0.32N5RuS2C17H30F6N4PRuS2crystal size,mm30.04Â0.03Â0.010.06Â0.04Â0.02 fw781.94600.61space group P21/n,No.14Cc,No.9a,A17.669(3)9.0606(5)b,A12.777(2)21.3736(12)c,A17.816(3)12.2031(5)β,deg109.305(3)98.033(4)V,A3795.9(11)2340.0(2)Z44T,K100(2)100(2)F calcd,g cm-3 1.368 1.705refl.collected/2Θmax107818/62.2830284/62.00 unique refl./I>2σ(I)12168/97737438/6520no.of params/restr.575/75326/66λ,A/μ(K R),cm-10.71073/5.800.71073/9.77 absolute structure param.-0.01(2)R1a/goodness of fit b0.04961.1670.0356/1.048wR2c(I>2σ(I))0.11830.0695residual density,e A-3+1.17/-0.94+0.78/-0.60a Observation criterion:I>2σ(I).R1=P||F o|-|F c||/P|F o|.b GoF= [P[w(F o2-F c2)2]/(n-p)]1/2.c w R2=[Pw(F o2-F c2)2/Pw(F o2)2]1/2 where w=1/σ2(F o2)+(aP)2+bP,P=(F o2+2F c2)/3.(18)SADABS,2006/1;Bruker AXS Inc.:Madison,WI,2007.(19)ShelXTL6.14;Bruker AXS Inc.:Madison,WI,2003.(20)Sheldrick,G.M.ShelXL97;University of G::ottingen:G::ottingen, Germany,1997.ArticleInorganic Chemistry,Vol.48,No.20,20099757the appropriate metal reference foil placed between a second and third ionization chamber.The first inflection point of a Ru metal foil was assigned to 22118.0eV.Data represent two to three scan averages and were processed by fitting a second order poly-nomial to the pre-edge region and subtracting this background from the entire spectrum.A three-region cubic spline was used to model the smooth background above the edge.The data were normalized by subtracting the spline and normalizing the post-edge 1.0.Ru L-and S K-edge data were measured using the 54-pole wiggler beamline 6-2in high magnetic field mode of 10kG with a Ni-coated harmonic rejection mirror and a fully tuned Si(111)double crystal monochromator.All data were measured at room temperature as fluorescence spectra.Samples were finely ground and dispersed on Mylar tape.To check for reproducibility,2-3scans were measured for each sample.The Ru L-edge energy was calibrated from Cl K-edge spectra of D 2d -[CuCl 4]2-run at intervals between sample scans.The maximum of the first pre-edge feature in the spectrum was fixed at 2820.20eV.S K-edges were similarly calibrated using Na 2S 2O 3as a reference,and assigning the maximum of the first pre-edge feature to 2472.02eV.A step size of 0.08eV was used over the edge region.Data were averaged,and a smooth back-ground was removed from all spectra by fitting a polynomial to the pre-edge region and subtracting this polynomial from the entire spectrum.Normalization of the data was accomplished by fitting a flattened polynomial or straight line to the post-edge region and normalizing the post-edge to 1.0.Fits to the S K-edge spectra were performed using EDG_Fit.21Calculations.All DFT calculations were performed with the ORCA 22program package.The geometry optimizations of the complexes and single-point calculations on the optimized geo-metries were carried out using the B3LYP 23functional.This hybrid functional often gives better results for transition metal compounds than pure gradient-corrected functionals,especially with regard to metal -ligand covalency.24The all-electron Gaussian basis sets were those developed by the Ahlrichs group.25,26Triple-ζquality basis sets TZV(P)with one set of polarization functions on the metals and on the atoms directly coordinated to the metal center were used.25For the carbon and hydrogen atoms,slightly smaller polarized split-valence SV(P)basis sets were used,that were of double-ζquality in the valence region and contained a polarizing set of d-functions on the non-hydrogen atoms.26Auxiliary basis sets used to expand the electron density in the resolution-of-the-identity (RI)approach were chosen,27where applicable,to match the orbital basis.The self-consistent field (SCF)calculations were tightly converged (1Â10-8E h in energy,1Â10-7E h in the density change,and 1Â10-7in maximum element of the DIIS error vector).The geometry optimizations for all complexes were carried out in redundant internal coordinates without imposing symmetry constraints.In all cases the geometries were considered con-verged after the energy change was less than 5Â10-6E h ,thegradient norm and maximum gradient element were smallerthan 1Â10-4E h Bohr -1and 3Â10-4E h Bohr -1,respectively,and the root-mean square and maximum displacements of all atoms were smaller than 2Â10-3Bohr and 4Â10-3Bohr,respectively.Throughout this paper we describe our computa-tional results by using the broken-symmetry (BS)approach by Ginsberg 28and Noodleman.29Because several broken symme-try solutions to the spin-unrestricted Kohn -Sham equations may be obtained,the general notation BS(m,n )30has been adopted,where m (n )denotes the number of spin-up (spin-down)electrons at the two interacting fragments.Canonical and corresponding orbitals,31as well as spin density plots were generated with the program Molekel.32TD-DFT calculations were performed to predict the transitions in the pre-edge region of the S K-edge XAS spectra.33The symmetry equivalent sulfur 1s orbitals obtained from the ground state calculations were localized using the Pipek -Mezey criteria,34and TD-DFT cal-culations at the B3LYP level were performed,allowing only for excitations from the localized sulfur 1s orbitals.The basis sets were chosen to match the basis sets used for the single point ground state calculations.The obtained transition energies were corrected by a constant empirical shift of 56.3eV to match the experimental spectra.TD-DFT calculations of the electronic absorption spectra were performed at the B3LYP level of theory.The conductor-like screening model (COSMO)35was applied to model the solvent effects of CH 2Cl 2.Results and Discussion(a ).Synthesis and Characterization of plexes discussed and ligands used in the syntheses are summarized in Scheme 2.[Ru II (cyclam)(Et 2dtc)]+,1,was obtained by slow addition of 2equiv of NaEt 2dtc in methanol to a solution of cis -[Ru III (cyclam)Cl 2]Cl in methanol/water under strictly anaerobic conditions.In this reaction,Et 2dtc -is not only a ligand,but also a reducing agent,which results in the formation of a Ru II species and tetraethylthiuramdisulfide.Upon addition of NaBPh 4in methanol to the reaction mixture,1(BPh 4)precipitated immediately as a bright yellow,air-sensitive solid (yield 73%).Single crystals suitable for X-ray crystallography were obtained by slow evaporation of concentrated solutions of 1(BPh 4)in CH 2Cl 2/hexane yielding 1(BPh 4)30.16CH 2Cl 2.The complex [Ru(cyclam)(tdt)]+,2,was isolated after the slow addition of H 2(tdt)in methanol to cis -[Ru III -(cyclam)Cl 2]Cl in methanol/water in the presence of 2equiv of KO t Bu under anaerobic conditions ((tdt)2-represents toluene-3,4-dithiolate(2-)).An immediate col-or change from yellow to dark blue indicated the forma-tion of 2.Dark red crystals of 2(PF 6)suitable for X-ray crystallography were isolated after addition of KPF 6in water (yield 68%).The one-electron oxidized complex [Ru(cyclam)(tdt)]2+,2ox ,was synthesized from 2by using 1equiv of fer-rocenium hexafluorophosphate as oxidant.The reaction(21)George,G.N.EXAFSPAK &EDG_FIT ;Stanford Synchrotron Radiation Laboratory,Stanford Linear Accelerator Center,Stanford University:Stanford,CA,2000.(22)Neese,F.Orca -an ab initio,DFT and Semiempirical ElectronicStructure Package ,Version 2.6,Revision 35;Institut f ::ur Physikalische undTheoretische Chemie,Universit ::at Bonn:Bonn,Germany,March 2008.(23)(a)Becke,A.D.J.Chem.Phys.1993,98,5648–5652.(b)Becke,A.D.J.Chem.Phys.1986,84,4524.(c)Lee,C.T.;Yang,W.T.;Parr,R.G.Phys.Rev.B 1988,37,785.(24)Neese,F.;Solomon,E.I.In Magnetism:From Molecules to Materials ;Miller,J.S.,Drillon,M.,Eds.;Wiley:New York,2002;V ol.4,p 345.(25)Sch ::afer,A.;Huber,C.;Ahlrichs,R.J.Chem.Phys.1994,100,5829.(26)Sch ::afer,A.;Horn,H.;Ahlrichs,R.J.Chem.Phys.1992,97,2571.(27)(a)Eichkorn,K.;Weigend,F.;Treutler,O.;Ahlrichs,R.Theor.Chem.Acc.1997,97,119–124.(b)Eichkorn,K.;Treutler,O.;€Ohm,H.;H ::aser,M.;Ahlrichs,R.Chem.Phys.Lett.1995,240,283.(c)Eichkorn,K.;Treutler,O.;€Ohm,H.;H ::aser,M.;Ahlrichs,R.Chem.Phys.Lett.1995,242,652.(28)Ginsberg,A.P.J.Am.Chem.Soc.1980,102,111.(29)Noodleman,L.;Peng,C.Y.;Case,D.A.;Mouesca,J.M.Coord.Chem.Rev.1995,144,199.(30)Kirchner,B.;Wennmohs,F.;Ye,S.;Neese,F.Curr.Opin.Chem.Biol.2007,11,134.(31)Neese,F.J.Phys.Chem.Solids 2004,65,781–785.(32)Molekel ;Advanced Interactive 3D-Graphics for Molecular Sciences,available under http:\\www.cscs.ch/molkel/.(33)DeBeer George,S.;Petrenko,T.;Neese,F.Inorg.Chim.Acta 2008,361,965.(34)Pipek,J.;Mezey,P.G.J.Chem.Phys.1989,90,4916.(35)Klamt,A.;Schurmann,G.J.Chem.Soc.,Perkin Trans.1993,2,793.9758Inorganic Chemistry,Vol.48,No.20,2009Milsmann et al.proceeded quickly in CH2Cl2under an inert atmosphere with an immediate color change from dark blue to pink. Upon addition of hexane,the product2ox(PF6)2precipi-tated as a dark pink powder(yield84%).(b).Crystal Structures.Single-crystal X-ray diffrac-tion studies of1(BPh4)30.16CH2Cl2and2(PF6)were performed at100(2)K(Table1).Structural representa-tions of the two octahedral cations,1and2,are shown in Figure1.Important bond lengths and angles are given in Table2.In the monocation1,the central ruthenium ion pos-sesses a formal oxidation state of+II and a monoanionic, closed-shell dithiocarbamate ligand.The Ru-N bond lengths in1range from2.101(7)-2.136(6)A,which is in good agreement with known Ru II amine complexes.17,36,37 The Ru-S bond distances are long at2.400(3)A and 2.384(3)A.The structural parameters of the dithiocarba-mate ligand are in agreement with the parameters for the uncoordinated ligand38indicating that the ligand is in-deed coordinated in its closed-shell monoanionic dithiocarbamato(1-)form.For complex2,the total charge of+1of the cation formally implies the presence of a Ru III ion and a dia-nionic,closed-shell dithiolate(2-)ligand.However,the C-S bond lengths are observed at1.748(3)A.This value lies between the expected values for a closed-shell dianionic (1.77-1.76A)and a monoanionic radical(1.72-1.73A) dithiolene ligand.39,40On the other hand,the quinoidal distortion of the aromatic ring is not as pronounced as expected for a pure ligand radical.Thus,a clear identifi-cation of the oxidation state based on the structural parameters of the ligand is not possible.The Ru-N distances in the range of2.133(3)-2.174(3)A are rather long for Ru III and therefore may support a Ru II formula-tion for the central metal ion.37It is well established that the determination of the oxidation state of the central metal ion in Ru complexes based on bond distances alone is often ambiguous,since the differences in bond lengths between low-spin Ru II and low-spin Ru III are quite small.37(c).Magnetochemistry and EPR -plex1is diamagnetic with an S=0ground state.This is in agreement with a low-spin Ru II(d6)configuration. Figure S1shows the temperature-dependence of the effective magnetic moment,μeff,of2(PF6)in the tempera-ture range from4to300K in an applied field of1.0T. Above80K,the compound shows an almost tempera-ture-independentμeff of1.73μB,which corresponds ex-actly to the expectation value for an S=1/2ground state. The data were readily simulated by including tempera-ture-independent paramagnetism,χTIP,of36.2Â10-6 emu,a g av value of2.024,and a Weiss constant,θ,of -4.3K.The small value forθindicates only weak intermolecular antiferromagnetic coupling.The X-band EPR spectrum of2in CH2Cl2is shown in Figure S2.The spectrum exhibits significant hyperfine interactions with the N-H protons belonging to the cyclam ligand.This was proven by an H/D-exchange experiment.For this experiment,the EPR spectrum was initially recorded in frozen MeOH/toluene solution (toluene was added to improve the quality of the glass). In contrast to the spectrum in CH2Cl2,the resulting spectrum in MeOH shows no resolved hyperfine lines,Figure1.ORTEP representation of1(BPh4)30.16CH2Cl2at the40% probability(top),and2(PF6)(bottom)shown at the40%probability level.Table2.Selected Bond Distances(A)and Folding Angles j(deg)in1and212Ru(1)-N(1) 2.104(5)Ru(1)-N(1) 2.133(3) Ru(1)-N(5) 2.107(5)Ru(1)-N(5) 2.163(3) Ru(1)-N(12) 2.091(5)Ru(1)-N(12) 2.174(3) Ru(1)-N(8) 2.118(4)Ru(1)-N(8) 2.117(3) Ru(1)-S(21) 2.3876(18)Ru(1)-S(28) 2.3049(8) Ru(1)-S(23) 2.3973(17)Ru(1)-S(21) 2.2913(8) S(21)-C(22) 1.717(5)S(28)-C(27) 1.747(3) S(23)-C(22) 1.724(5)S(21)-C(22) 1.748(3) C(22)-N(24) 1.341(6)C(27)-C(26) 1.408(4)C(26)-C(25) 1.380(5)C(25)-C(24) 1.389(6)C(24)-C(23) 1.390(5)C(23)-C(22) 1.412(5)C(22)-C(27) 1.392(5)j 6.83(36)(a)Chan,H.-L.;Liu,H.-Q.;Tzeng,B.-C.;You,Y.-A.;Peng,S.-M.;Yang,M.;Che,C.-M.Inorg.Chem.2002,41,3161.(b)Chen,Y.-J.;Xie,P.; Heeg,M.J.;Endicott,J.F.Inorg.Chem.2006,45,6282.(37)Tfouni,E.;Ferreira,K.Q.;Doro,F.G.;da Silva,R.S.;da Rocha, Z.N.Coord.Chem.Rev.2005,249,405–418.(38)Mereiter,K.;Preisinger,A.Inorg.Chim.Acta1985,98,71.(39)Ray,K.;Weyherm::uller,T.;Goossens, A.;Menno,W.J. C.; Wieghardt,K.Inorg.Chem.2003,42,4082–4087.(40)Ray,K.;Weyherm::uller,T.;Neese,F.;Wieghardt,K.Inorg.Chem. 2005,44,5345–5360.。