转炉炼钢工艺
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转炉炼钢工艺
转炉炼钢工艺
转炉炼钢工艺
绪论
1、转炉炼钢法的分类转炉是以铁水为主要原料的现代炼钢方法。
该种炼钢炉由圆台型炉帽、圆柱型炉身和球缺型炉底组成。
炉身设有可绕之旋转的耳轴,以满足装料和出钢、倒渣操作,故而得名。
酸性空气底吹转炉——贝塞麦炉(英国1856 年)空气转炉{ 碱性空气底吹转炉——托马斯炉(德国1878 年)
碱性空气侧吹转炉(中国1952 年)转炉{ 氧气顶吹转炉——LD(奥地利195
2 年)
氧气转炉{ 氧气底吹转炉——OBM(德国
1967 年)
顶底复吹转炉(法国1975 年)2、氧
气顶吹转炉炼钢法简介
(1)诞生的背景及简称现代炼钢生产首先是一个氧化精炼过程,最初的贝氏炉和托马斯炉之所以采用空气吹炼正是利用其中的氧。
二次世界大战以后,工业制氧机在美国问世,使利用纯氧炼钢成为可能,但原来的底吹方式炉底及喷枪极易烧坏。
美国联合碳化物公司于1947 年在实验室进行氧气顶吹转炉的实验并获成功,命名为BOF 。
奥地利闻之即派有关专家前往参观学习,回来后于1949 年在 2 吨的转
炉上进行半工业性实验并获成功,1952 年、1953 年30 吨氧气顶吹转炉分别在Linz 和Don awitz 建成投产,故常简称LD 。
1967 年12 月德国与加拿大合作发明了氧气底吹转炉,使用双层套管喷嘴并通以气态碳氢化合物进行冷却。
1975 年法国研发了顶底复吹转炉,综合了LD 和OBM 的优点,77 年在世界年会上发表。
(2)氧气顶吹转炉的特点
1)优点氧气顶吹转炉一经问世就显示出了极大的优越性,世界各国竟相发展,目前成为最主要的炼钢法。
其优点主要表现在:
(1)熔炼速度快,生产率高(一炉钢只需20 分钟);(2)热效率高,冶炼中不需外来热源,且可配用10%~30% 的废钢;
(3)钢的品种多,质量好(高低碳钢都能炼,S、P、H、N、O 及夹杂含量低);
(4)便于开展综合利用和实现生产过程计算机控制。
2)缺点
当然,LD 尚存在一些问题,如吹损较高(10% ,)、所炼钢种仍受一定限制(冶炼含大量难熔元素和易氧化元素的高合金钢有一定的困难)等。
3 氧气转炉的发展趋势对于氧气顶吹转炉的推广和普及首推日本迅速,且引导了LD 的发展趋势:
(1)容量大型化(相对投资较小);
(2)配加炉外精炼以增加品种,提高质量(理论上可炼任何钢种);
(3)引入底吹技术,实施复合吹炼(减少喷溅,降低吹损);
(5)实现冶炼过程计算机控制。
1 转炉炼钢的原材料
引言转炉炼钢所用原材料可分为金属料和非金属料两大类。
原材料质量的好坏,不仅关系到吹炼操作
的难易,而且会影响钢的产量、质量和生产成
本。
1.1 金属料转炉炼钢的金属料主要是铁水、废钢和铁合金。
1.1.1 铁水
1 作用:转炉炼钢的主原料,一般占装入量的7 0%以上。
2 要求
铁水应符合一定要求,以简化和稳定操作并获得良好技术经济指标。
1)温度≥ 1250℃而且稳定铁水温度的高低,标志着其物理热的多少。
较高的铁水温度,不仅能保证转炉吹炼顺利进行,同时还能增加废钢的配加量,降低生产成本。
因此,希望铁水的温度尽量高些,一般应保证入炉时仍在1250 ℃~1300 ℃以上。
另外,还希望铁水温度相对稳定,以利于冶炼操作和生产调度。
2)成分合适而且波动小转炉炼钢的适应性较强,可将各种成分的铁水吹炼成钢。
但是,为了方便转炉操作及降低生产成本,铁水的成分应该合适而稳定。
(1)铁水的含磷量≤0.4%:磷会使钢产生“冷脆” 现象,是钢中的有害元素之一。
转炉单渣法冶炼时
的脱磷效果为85% ~95% ,普碳钢的含磷量通常要求≤0.04%,因此,国标规定铁水的含磷量小于0.4% 。
需要指出的是,高炉内不能去磷,如果铁水的含磷量超过0.4%, 或者吹炼低磷钢,则需采用双渣法冶
炼或对铁水进行预脱磷处理。
(2)铁水的含硫量≤0.07%:硫会使钢产生“热脆”现象,也是钢中的有害元素。
转炉的脱硫效果不理想,单渣法冶炼时的脱硫率仅为30% ~3 5%,而通常要求钢液的含硫量在0.05% 以下,因此国标规定铁水含硫量≤ 0.07%。
如果铁水含硫量超过0.07% 或吹炼低硫钢,则需采用双渣法冶炼或对铁水进行预脱硫处理。
(3)铁水的含硅量:铁水中的硅是转炉炼钢的主要发热元素之一,含硅量每增加0.1% ,废钢比可增加1.3% ~1.5% 。
对于大、中型转炉,铁水含硅量以0.5% ~0.8%为宜。
小型转炉的热损较大,铁水的含硅量可以高些。
若含硅量低于0.5%, 铁水的化学热不足,会导致废
钢比下降,小容量转炉甚至不能正常吹炼;反之,如果铁水含硅量高于0.8%, 不仅会增加造渣材料的消耗,而且使炉内的渣量偏大,过多的渣量容易引起喷溅,增加金属损失。
另外,铁水含硅量高时,初期
渣子的碱度低,对炉衬的侵蚀作用加剧;同时,初期渣中的二氧化硅含量高,这会使渣中的FeO 、MnO 含量相对降低,容易在石灰块表面生成一层熔点为213 0℃的2CaO?SiO2 外壳,阻碍石灰熔化,降低成渣速度,不利于早期的去磷。
应该指出的是,一些钢厂铁水的含硅量超过了1. 2%,个别的甚至达到了 1.5% ,对此应进行预脱硅处理,以减轻转炉的负担。
(4)铁水的含锰量:铁水中的锰是一种有益元素,主要体现在锰氧化后生成的氧化锰能促使石灰溶解,有利于提高炉龄和减轻氧枪粘钢。
我国大多数钢铁厂所用铁水的含锰量都不高,多为0.2% ~0.4% 。
提高铁水含锰量的方法主要是向高炉的原料中配加锰矿石,但这将会使炼铁生产的焦比升高和高炉的生产率下降。
对于铁水增锰的合理性还需要做详细的技术经济对比,因此,目前对铁水含锰量不提硬性要求。
(5)铁水的含碳量:碳也是转炉炼钢的主要发热元素,≥3.5%的含碳量即可满足冶炼要求,而通常铁水含碳4% 左右,故一般不做要求。
国内一些转炉炼钢厂对铁水成分的控制见表(6)1-1。
3)带渣量≤ 0.5% 高炉渣中含有大量的S、SiO2 ,
因此希望兑入转炉的铁水尽量少带渣,以减轻脱硫任务和减少渣量,通常要求带渣量不得超过0.5% 。
3 铁水的预处理定义:铁水在兑入转炉之前进行的脱硫、脱磷或脱硅操作叫做铁水预处理。
目的:减轻高炉、转炉的负担,提高生产率。
1)铁水炉外脱硫铁水脱硫的条件比钢水优越(铁水中碳、硅、磷等元素的含量高,硫的活度系数大,同时铁水中的氧含量低),脱硫效率比钢水脱硫高4~6 倍,经济上比转炉双渣法合算,因此铁水预脱硫技术已被国内外广泛采用。
基本思路:向铁水中加入脱硫剂使之化合入渣。
(1)脱硫剂及其特点:目前常用的铁水预脱硫剂主要有以下四种。
①电石粉(CaC2 )
脱硫反应:CaC2 (S)+[S]=CaS(S)+2[C] 特点:脱硫能力强,但脱硫过程中有少量CO 和C2H2 逸出,并带出电石粉,污染环境,因而必须安装除尘装置;价格较贵。
②石灰粉( CaO ) 脱硫反应:
2CaO(S)+[S]+1/2[Si]=CaS(S)+1/22 CaO?SiO2 (S) 特点:价格便宜,脱硫成本低,但单独使用时脱硫能力差,而且石灰表面会出现C2S ,阻碍脱硫反应继
续进行,降低脱硫速度和效率,为此,常配加适量的铝或苏打粉避免C2S 的生成:
CaO(S)+[S]+2/3[Al]=CaS(S)+1/3Al2O3 (S) 使脱硫速度和效率明显提高,如8图1-1。
③苏打粉( Na2CO3 ) 脱硫反应:Na2CO3
(l)+[S]+[Si]=Na2S(l)+Si O2(S)+{CO} 特点:脱硫能力很强,且产生的气体具有搅拌作用,脱硫速度快,但价格贵且污染严重,现已很少使用,有时与其它粉剂配成复合脱硫剂。
④金属镁脱硫反应:金属镁的沸点仅为1107 ℃,铁水温度下为气体,故脱硫反应为:
{Mg}+[S]=MgS(S)特点:金属镁直接加入铁水时,会发生爆发式气化反应,不仅导致镁的利用率大大降低,而且还会引起铁水喷溅而造成事故,因此不能单独使用,常与其它粉剂组成复合脱硫剂。
在相同的铁水条件下,各脱硫剂的能力强弱顺序为:Na2CO3 、CaC2 、Mg、CaO,见9 表1-3。
以上脱硫剂有的可单独使用,但多为几种配合使用,如电石粉+石灰粉、金属镁+电石粉、石灰粉+苏打粉、金属镁+石灰粉等,其脱硫能力有较大差别。
(2)脱硫的方法及效果:铁水预脱硫的基本工艺是向铁水中加入脱硫剂并使之混合而发生脱硫反应,目
前使用最广泛的是机械搅拌法和喷吹法。
①机械搅拌法混合方式:将脱硫剂加入铁水罐中,用耐火材料制成的搅拌器插入铁水搅拌,使之与脱硫剂充分混合。
特点:脱硫效果与搅拌器的转速及脱硫剂的种类有关,见(10)图1-3 、1-4。
此法有多种形式,具有代
表性的是日本的KR 法(电石粉为主),武钢二炼79 年引进,经消化改造使用以石灰粉为主的脱硫剂。
②喷吹法混合方式:它是以空气或惰性气体为载体,利用喷枪将粉状脱硫剂喷射到铁水中,使铁水与脱硫剂充分混合。
宝钢80 年代由日本引进的叫DTS 法,喷吹电石粉。
各种脱硫剂在喷射法中的应用效果见图1-6 。
实际生产中,各厂应根据要求达到的脱硫
程度、铁水的热损和铁损、脱硫设备费用、环境污染等问题,选用最适合的脱硫剂和脱硫方法。
2)铁水预脱硅
基本思路:向铁水中加入氧化性的脱硅剂,使之氧化成SiO2 进入炉渣。
(1)脱硅剂:常用的脱硅剂是以氧化铁皮和烧结矿粉为主,配加少量石灰和萤石以降低渣子的黏度。
各厂家所用配比也不完全一样:日本福山氧化铁皮70~100% ,石灰0~20%,萤石0~10% ;
日本水岛烧结矿粉75% ,石灰25% 。
脱硅剂用量约为15~30kg/t 。
(2)脱硅方法:常用的炉外脱硅方法有投入法和顶喷法两种。
投入法是在高炉出铁时,将脱硅剂投到铁水沟中,借助铁水流入铁水罐的冲击搅拌作用使之充分混合、反应。
这是最早的一种脱硅方法,效率较低,通常在50% 左右。
顶喷法是用0.2~0.3MPa 压力的空气通过喷枪从(铁沟或流入铁水灌的铁水流) 铁水液面以上一定高度将脱硅剂喷入,使之混合、反应。
由于该方式使铁水与脱硅剂两次混合,所以脱硅效率高达70 ~80% ,铁水含硅可达0.1~0.15% 以下。
3) 铁水预脱磷转炉炼钢的脱磷效率较高,双渣法冶
炼尤其如此,但会增加造渣材料消耗,并延长冶炼时间,生产成本增大。
近年来,铁水的炉外脱磷研究有了较大的发展,已用于工业生产。
基本思路:向铁水中加入脱磷剂使其中的磷氧化并固定在渣中。
(1)脱磷剂:目前广泛使用的是苏打系和石灰系两类。
苏打系脱磷剂:2[P]+5[O]+3Na2CO3(S)=(Na2
O?P2O5)+3{CO}
石灰系脱磷剂:2[P]+5[O]+4CaO(S)=(4 CaO?
P2O5),其中常配有一定的氧化铁皮或烧结矿粉和
萤石粉助熔剂。
(2)脱硅处理:由于磷与氧的亲和力小于硅与氧的亲和力,而且铁水中总含有一定的硅,因此,欲要脱磷需先进行脱硅处理。
使用苏打系脱磷时要求[Si] <0.1% ,使用石灰系处理时要求[Si] <0. 15%。
(3)铁水炉外脱磷方法及效果:目前,铁水脱磷方法主要喷吹法,它是以气体作载体将脱磷剂喷吹到铁水包中,使之充分混合,快速脱磷。
日本新日铁以氩气喷吹45kg/t ,时间20min ,脱磷率达90% 左右。
3)铁水同时脱硫和脱磷从上所述,苏打和石灰既是脱硫剂也是脱磷剂,因此铁水同时进行脱硫和脱磷不仅成本低而且生产率高。
目前,已在工业上应用的同脱工艺有以下两种。
(1)SARP 法:即日本住友的碱性精炼工艺,它是将铁水首先进行脱硅
处理,当[Si] <0.1%后扒出炉渣,然后喷吹19k g/t 苏打粉,脱硫率可达96%,脱磷率可达95% 。
该法的特点是,脱硫磷效率高,但处理成本高、耐火材料侵蚀严重,同时有气体(CO )污染。
(2)ORP 法:也是先进行脱硅处理,当[Si] <0. 15%后扒出炉渣,然后喷吹52kg/t 石灰基粉料,脱硫率可达80%,脱磷
率可达88% 。
该法的特点是,处理成本低,但渣量大而铁损多(TFe=20 ~30% )。
1.1.2 废钢
1 作用:废钢是转炉炼钢的另一种金属炉料,其作用是冷却熔池。
氧气顶吹转炉炼钢中,主原料铁水的物理热和化学热足以把熔池的温度从1250 ℃~1300 ℃加热到1600 ℃左右的炼钢温度,且有富余热量,废钢就是被用来消耗这些富余热量,以调控熔池的温度。
2 要求
(1)清洁、少锈,无混杂,不含有色金属;
(2)最大长度不得超过炉口直径的二分之一,最大截面积要小于炉口面积的五分之一。
3 废钢的加工和预热
1)废钢的加工转炉炼钢所用废钢多为外购废钢。
其来源广泛,大小悬殊,外形各异,且多有混杂,应针对所购废钢的特点进行相应的加工处理如切割、打包、火烧、挑拣、水洗等,以满足转炉炼钢对入炉废钢的基本要求。
2)废钢的预热目的:提高废钢比(见17 表1-8),降低生产成本。
方法及效果:利用铁水罐余热和燃料燃烧加热。
(首
钢)将废钢装入铁水罐中,置于煤气烘烤器下烘烤30 ~40min ,然后接铁水一并倒入转炉,废钢比提高10% 。
1.1.3 铁合金作用:脱氧剂、合金剂。
种类:主要是Fe-Si、Fe-Mn、Mn-Si 及Al,根据常炼钢种不同还可能有Fe-Cr 、Fe-W、Fe-M o 、Ni 等合金。
要求:成分准确、块度合适(5~40mm )、用前烘烤。
思考题
1 简述氧气转炉的发展趋势。
2 转炉炼钢对铁水有哪些要求?
3常用的脱硫剂有哪些?它们的脱硫能力如何?4铁水炉外预脱硫方法有哪些?影响机械搅拌法
脱硫效果的因素是什么?
5 简述SARP 法同时脱硫脱磷工艺过程。
6 炼钢用石灰应满足哪些要求?
2.2 底吹气体射流
2.2.1 底吹气体的行为
森一美等冶金学家,实验用氮气从底部吹入水或水银中,并用高速摄影机拍摄其流出情况,发现气体
通过浸没式喷嘴流出时在熔池中的行为有两种:(1)鼓泡流速较小时,气体在喷嘴出口鼓起而形成气泡并逐渐长大,当气泡长大一定程度(浮力大于粘滞力)后则脱离孔口上浮,这一现象称为鼓泡。
(2)形成射流流速较大时,气体在孔口上形成连续的气流射入液体中,这种现象称为浸没式射流。
实验发现,由流量计算的表观马赫数Ma/增加到1以上时,从喷嘴流出的气体由鼓泡转变成射流,即表观马赫数Ma/ 等于1 的速度为临界流速,如(32)图2-12 。
表观马赫数Ma/ 用2-9 式计算:
Ma/=υ /a=Q/aA
式中υ——气体出口速度,m/s ;a——室温的音速,m/s ; A ——喷嘴截面积,m2 ;Q——气体流量,m3/s 。
2.2.2 氧气射流与熔池间的相互作用氧射流与熔池间的作用包括物理作用和化学作用两个方面。
1 物理作用氧射流与熔池间的物理作用体现在以下三个方面:
1)氧气射流冲击熔池冲击结果:氧射流到达熔池表
面时其M 仍大于1,高速射流自上而下冲击熔池,将其中央冲出一个凹坑。
从凹坑的最低点到静止液面的距离叫冲击深度,又叫穿透深度,以h 冲表示;射流与熔池的接触时的截面积称冲击面积,常用A 表示。
影响因素:由式2-12 可知,h 冲∝ PO/H 枪;类似的有,A∝H 枪/PO(H 枪是吹氧时喷头距静止液面的距离叫枪位;P0 是喷头进口处的氧压)。
可见,改变P0 和H 均可以调整对冶炼过程有重要影响的工艺参数h 和A :(1)高枪位或低氧压吹炼时,h 小、 A 大,称软吹,反之,称硬吹;(2)生产中多采用恒氧压变枪位操作,即一炉钢吹炼过程中保持供氧压力不变,而通过变化枪位来调节h 和 A ,以满足炉内反应所需;
(3)随着炉容的增大,单孔喷头很难同时满足冶炼所需要的h 和 A ,故目前多用三孔以上的喷头。
2)氧气射流搅拌熔池产生过程:气流从坑底沿四壁向上流动时,二者之间的摩擦力使钢液也随之向上,到达液面时流向炉壁,导致该处钢液向下流动并补向熔池中心,形成环流,从而对熔池起到了搅拌作用。
影响因素:硬吹时,凹坑深,熔池内的钢液环流强,氧气射流的搅拌作用大;反之,软吹时氧气射流的搅
拌作用小。
如(36)图2-16、2-17 。
需要指出的是,理论计算表明,转炉内对熔池进行搅拌的主要是上浮中的CO 气泡,氧气射流的搅拌作用随炉容增大逐渐由40% 以上降至不足20%。
但是不能因此轻视氧气射流的搅拌作用,因为CO 气泡产生的数量依赖于氧气射流的搅
拌强度。
3)氧气射流与熔池相互破碎破碎原因:高速的氧气射流冲击熔池,加之碳氧反应生成的CO 气体的强烈搅拌作用,使得二者相互被破碎。
破碎结果:大部分熔池都形成了气泡、熔渣(2 mm )、金属(0.1mm)三相乳浊液(仅底层有少部分单相金属),各相之间的接触面积剧增(据估算,转炉内每吹入1m3 的氧气,所产生的金属-氧气的接触面积约37m2 ;每吨金属与熔渣的接触面积高达60 m2 ,且所有金属均有机会),极大地改善了炉内反应的动力学条件,使之得以快速进行。
这是转炉冶炼速度快的原因之一。
影响因素:硬吹时,相互间的作用力大,熔池乳化程度高(乳化范围大、液滴的也细小)。
但应注意:出钢前这种乳浊液应基本消失(被破坏),以减少金属损失。
2 化学作用氧射流与熔池间的化学作用表现在以下
两方面:1)射流将氧传给金属——氧化溶质元素(1)直接氧化:在射流的冲击区(也称一次反应区)及吸入流股的金属滴表面将发生直接氧化
反应:
1/2{O2} +[C] ={CO}
{O2} +[Si] =(SiO2)
1/2{O2} +[Mn] =(MnO)
1/2{O2} +Fe =(FeO )取样分析结果,氧化产物的85~90% 是FeO。
(2)间接氧化:被氧化了的钢液和液滴(带有大量的FeO )随钢液一起环流时,会使沿途的溶质元素氧化(这些地方称二次反应区):(FeO)=[FeO]
[FeO]+[C] ={CO} +Fe 2[FeO]+[Si] =(SiO2) +2Fe [FeO]+[Mn] =[MnO] +Fe 2)射流将氧传给炉渣——提高(FeO)促进化渣和间接氧化(1)直接传氧:射流与炉渣接触时以及在乳浊液中会发生如下反应将氧传给炉渣:1/2{O2}+2 (FeO )=(Fe2O3)
(Fe2O3)+Fe=3(FeO)
(2)间接传氧:环流中未消耗完的(FeO )因比
重小而上浮入渣。
综合上述两方面的作用,吹炼中枪位与炉内反应间的关系为:高枪位操作即软吹时,氧气射流与炉渣的接触面积大,直接传氧多,同时h 小,熔池内
的钢液环流较弱,(FeO )的上浮路程短,间接氧化消耗少而上浮入渣多即间接传氧也多,使渣中的( F eO)含量较高,有利于化渣——所谓的“提
枪化渣”;但软吹时,熔池搅拌差而溶质元素氧化较慢,氧气的利用率也相对较低。
反之,低枪位操作即硬吹时,氧气的利用率高,同时h 大,熔池内的钢
液环流强,(FeO )的上浮路程长,沿途的间接
氧化反应强,溶质元素氧化快——所谓的“降枪脱碳”;但硬吹时 A 小,氧气射流的直接传氧少,同
时因(FeO )消耗多而间接传氧也较少,渣中的(FeO )含量低,对化渣不利。
实际操作中,应根据吹炼的不同阶段的不同要求,合理地变化枪位,保证冶炼过程顺利进行。
2.2.3 底吹气体对熔池的作用
1 搅拌熔池实际生产中,从底部喷入熔池的气流一般为亚音速,除在喷嘴处可能存在一段连续流股外,喷入的气体将形成大小不一的气泡并自动上浮。
气泡群在上浮过程中,因压力减小而膨胀,并驱动、抽引金属液向上运动,而后沿四周炉壁向下,并补向中
心,从而对熔池尤其是其底部产生强烈的搅拌,如(39)图2-20 。
2 气泡对喷孔产生后座喷入熔池的气体形成气泡时,残余气袋在距喷孔直径二倍的地方受到液体的挤压而断裂,气相内回流压向喷孔端面,如(40 )图2-21 所示,这一现象称为气泡对喷孔的后座。
经测定,后座力高达0.01 ~0.024MPa ,尤其是氧化性气体后座会加速炉
衬和喷嘴的损坏。
研究表明,采用缝隙型和多金属管型的底吹供气元件能有
效消除后座现象。
思考题
1获得超音速射流应具备什么条件?射流的衰减有何规律?
2 氧气顶吹转炉中的氧射流有何特征?
3 解释名词:冲击深度冲击面积硬吹软吹
4 简述枪位与炉内反应的关系。
5 底吹气体是如何搅拌熔池的?
2.3 转炉内的基本反应及熔体成分变化本章主要阐述转炉吹炼过程中的硅锰氧化、脱碳、脱硫和脱磷等
基本反应及熔体成分的变化情况,为学习后面的工艺内容作好理论准备。
硅锰的氧化、脱碳、脱硫和脱磷是炼钢的基本反应,但在转炉炼钢中又有其特殊性。
2.3.1 硅、锰的氧化前已述及,炼钢中硅、锰的氧化以间接氧化方式为主,其反应式为:
[Si]+2(FeO)=(SiO2)+2Fe 放热
[Mn]+(FeO)=(MnO)+Fe 放热二者均是放热反应,因此它们都是在熔池温度相对较低的吹炼初期被大量
氧化;由于硅的氧化产物是酸性的SiO2 ,而锰的氧化产物是碱性的M nO,因此在目前的碱性操作中
硅氧化得很彻底,即使后期温度升高后也不会被还原,而锰则氧化得不彻底,而且冶炼后期熔池温度升高后还会发生还原反应,即吹炼结束时钢液中还有一定数量的锰存在,称“余锰”。
2.3.2 转炉炼钢中的脱碳转炉炼钢的主原料——铁水中含有4.%左右的碳,远高于钢种的要求,因此脱碳是转炉炼钢的
主要任务之一。
1 脱碳反应转炉中的脱碳反应以间接氧化为主:(FeO)+[C] ={CO}+Fe 。
这是一个吸热反应,因此,熔池温度升高至1500 ℃左右后脱碳反应方能激烈进行。
在氧气射流的作用区,还会发生碳的直接氧化:
1/2{O2}+[C]={CO} ,它是强放热反应,故而,碳是
转炉炼钢的主要热源之一。
复吹转炉底吹CO2 气体时,CO2 也会参与碳的氧
化:{ CO2}+[C]=2{CO} ,因此会强化炉内的脱碳反
应。
2 脱碳速度及影响因素转炉中脱碳速度如(49)图3-7 所示,呈三段台阶式变化。
1)第一阶段冶炼初期,熔池温度低,主要是硅锰的
氧化,脱碳速度很慢。
研究发现,当铁水中的硅当
量即[% Si]+0.25[%Mn] >1 时,脱碳速度趋于零,如
图3-8 所示。
随吹炼进行,硅锰含量下降,温度也渐
高,近1400 ℃时碳开始氧化,速度直线上升。
故称该阶段为硅锰控制阶段复吹转炉由于有底吹搅拌,脱碳反应开始较早,而且速度增加平稳。
2)第二阶段冶炼中期,是碳激烈氧化阶段,脱碳
速度主要受供氧强度的影响,即氧的传输是限制性
环节。
如(50)图3-9 所示,供氧强度越大,脱碳
速度也越
大(但过大易产生喷溅)。
复吹转炉由于FeO 控制
得较低,最大速度不及顶吹转炉,吹炼中不易喷溅但
全程的平均速度较之还要大些。
3)第三阶段当钢液含碳量降低到一定程度时,碳的
扩散成为限制性环节,脱碳速度取决于熔池搅拌情况。
转炉炼钢中,脱碳反应速度由氧的扩散控制转成由碳的扩散控制时的钢液含碳量称为临界含碳量。
顶吹转炉的临界含碳量为0.10% 左右,而复吹转炉由于有底吹搅拌其临界含碳量则为0.0 7%;而且,同为临
界含碳量以下时,复吹的脱碳速度也大些,如(49)图3-7 。
2.3.3 转炉冶炼中的脱磷和脱硫脱磷的反应式为:
2[P]+5(FeO)+4(CaO)=(4CaO?P2O5)+5Fe 放热
其基本条件是高碱度、高氧化铁和低温度。
而炉渣脱硫的反应式为:[FeS]+(CaO)=(CaS)+(FeO) 吸热它的基本条件是高碱度、高温度和低氧化铁。
两者在碱度的要求上是一致的,而对温度和氧化铁含量的需求却是矛盾的。
因此,吹炼中首要任务是快速形成并始终保持 3.0 左右的高碱度熔渣,同时,吹炼前期,抓住温度低的有利时机,高枪位操作快速成渣的同时提高炉渣的氧化性充分脱磷;冶炼中期,低枪位脱碳,控制适当低的氧化铁,强化脱硫过程。
2.3.4 吹炼过程中熔体成分的变化此处的熔体是指熔铁和熔渣, (42 )图3-1 为顶吹转炉吹炼过程中金
属成分、熔渣成分和温度的变化情况,图3-2 则为复吹转炉的变化情况。
一、金属成分的变化规律转。