创新小制作——圆周角定理动态演示仪
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创新小制作——圆周角定理动态演示仪
谈文越
【摘要】以简单实用、直观清晰、动态演示为主旨,结合圆周角定理的学习体验,设计实物创新作品——圆周角定理动态演示仪,从选题缘由、材料选取与制作方法、
操作演示与探究学习、作品特色等几个方面,具体展现该制作在辅助圆周角定理学
习中的创新思维和实用价值.
【期刊名称】《中国教育技术装备》
【年(卷),期】2017(000)007
【总页数】2页(P45-46)
【关键词】数学;自制教学具;圆周角定理动态演示仪
【作者】谈文越
【作者单位】郑州市第一中学 450000
【正文语种】中文
【中图分类】G633.63
敏锐的直观发现能力、严谨的逻辑推理能力和大胆的想象能力是学习几何的三大要素,学习过程需要直观操作与逻辑推理的有机结合。
计算机技术的动画演示和实物作品的直观展示可激发触觉、视觉、听觉等不同层面的感知,调动创新思维的积极性和活跃力,有助于把抽象问题简明化、形象化、生动化[1],不仅避免了烦琐的
语言解释,而且减少了几何图形的复杂性和时空感,抽象几何的可接受度大大提高,达到事半功倍的效果。
“圆周角”是九年级数学上册“圆”这一章的重要内容,对圆周角定理的分情况证明是本章的一个难点,而突破难点的关键在于厘清圆周角与圆心角之间的三种位置关系[2]。
课堂上,教师借助于几何画板软件,动画演示了圆心在圆周角内、圆心
在圆周角的一条边上、圆心在圆周角外(见图1至图7)的不同位置关系,条理清晰、思路明确,但对学生而言,基本上不会操作几何画板,因此,制作一个能够直观展示、动态演示的教学具也是一种创新学习方式,尤其是对于计算机辅助教学不够普及的农村学校来说,这种实物装置更兼具实用性和可操作性[3]。
而且,一般
来讲,相对于“高大上”的多媒体技术,自制教学具尽管“土”,但更接地气。
构思设计和制作产品,本身即是一个理解理论知识、开启创新思维、提高动手能力的过程[4],对学习有着深刻的影响。
本作品选用的原材料是旧纸箱、1根旧鞋带、1枚图钉、一段铁丝和白乳胶,制作过程是:首先,用纸箱做一个圆形底盘,底盘之上做两层小圆和圆环,下层圆和圆环间距大,上层间距小,各层圆和圆环之间用白乳胶粘牢,构造出“凸”形浅槽;其次,把三小段铁丝弯成图钉形状,作为圆周上的点,可在圆槽内移动;最后,把图钉置于圆心处,利用旧鞋带剪出半径和弦,即形成了作品装置图,如图1所示。
特别说明,利用铁丝做成的图钉状点在纸箱构造的圆槽内移动时,阻力较大,移动不太方便,故对本作品改进时,在原来的浅槽内嵌入了一个圆形转芯,材料取自于餐桌下面废弃的塑料转盘,并用细铁丝穿过三个光滑的小纽扣,置于转芯内,这样新构造的点在圆盘内移动灵活,操作快捷,作品图如图2所示。
“圆周角”这一节内容多、知识点零乱,其中圆周角的概念是基础和起点。
因此,结合作品实物图,首先,可直观认识圆周角、圆心角的概念,理解同弧所对的圆周角和圆心角之位置关系,加深对教材中抽象图形的感性认识。
其次,当移动半径的一个端点时,可清晰地看到弧、弧所对的圆心角、弧所对的圆周角,其大小都在相应变化,动态呈现它们之间的对应关系,其大小变化的对比图
如图3所示;同时,当保持半径的两个端点不动,只移动圆周角的顶点时,可看到,圆周角的两条边长及其对应的弧大小发生变化,但圆周角和圆周角所对应的弧始终不变,其对比图如图4所示,即直接说明了“同弧所对的圆周角相等”。
再次,移动圆周角的顶点,可逐一呈现圆心在圆周角内(见图1~图4)、圆心在圆周角的一条边上(见图5)、圆心在圆周角外(见图6)三种情况,亦即圆周角与圆心角的三种位置关系。
第四,过圆周角顶点和圆心做一条射线,如图7所示,可直观探究圆周角定理及
其证明[5]。
最后,移动圆心角的端点,当两个端点和圆心共线时,即直观呈现直径(或半圆)所对的圆周角是直角,反之亦可说明,90°圆周角所对的弦即为直径,如图8所示。
本制作形象直观、操作方便、思路清晰,有助于学生深刻理解圆心角与圆周角的关系、圆周角之间的关系、以及圆周角与弦(直径)之间的关系等,可直接完成圆周角定理及其推论的证明,搭建了一个可参与体验、观察摸索的“活动”研究平台,极大地调动了学习过程中的探究意识、动手能力、创新能力和思维能力,让智力因素和非智力因素共同得以提升。
同时,作品材料简单、废物利用,便于推广普及,对于改善相对贫困地方中小学的学习条件,弥补数学仪器的不足,节约开支,极具实用意义。
但是需要说明的是,对教学具的使用,必须遵循实效性、实时性原则,并与课堂学习、作业练习有机结合,以真正发挥其辅学、辅教的高效率和高效能作用。
[1]高振玲.初中数学教具、学具的制作及应用[J].中国教育技术装备,2015(11):157-158.
[2]李平.学生讲数学:实现初中数学课堂高效的催化剂:“圆周角与圆心角的关系”教学实践与分析[J].亚太教育, 2015(15):49-50.
[3]孔妮娜.自制教具助力学生不断提高数学素养与能力[J].中国教育技术装
备,2014(5):123-124.
[4]孙露,蔡金香,翟德宏.一组简单多用的数学教具[J].教学与管理,2012(16):68-69.
[5]段咏梅,孙爱民.圆周角定理实验教学过程设计[J].甘肃科技纵横,2007(4):188.【相关文献】
[1]高振玲.初中数学教具、学具的制作及应用[J].中国教育技术装备,2015(11):157-158.
[2]李平.学生讲数学:实现初中数学课堂高效的催化剂:“圆周角与圆心角的关系”教学实践与分析[J].亚太教育, 2015(15):49-50.
[3]孔妮娜.自制教具助力学生不断提高数学素养与能力[J].中国教育技术装备,2014(5):123-124.
[4]孙露,蔡金香,翟德宏.一组简单多用的数学教具[J].教学与管理,2012(16):68-69.
[5]段咏梅,孙爱民.圆周角定理实验教学过程设计[J].甘肃科技纵横,2007(4):188.
中图分类号:G633.63。