高中物理电磁学知识高考前必看总结
高考物理电磁学必考知识点

高考物理电磁学必考知识点随着科技的发展和社会的进步,电磁学在我们的日常生活中扮演了极为重要的角色。
在高考中,电磁学也是一门重要的考试科目。
本文将为大家介绍高考物理电磁学的必考知识点。
一、电荷和电场电荷是物质的基本性质之一,有正电荷和负电荷之分。
而电荷之间的相互作用表现为电场。
电场是指周围空间中存在电荷的物体所受到的力的结果。
电场强度E定义为单位正电荷所受到的力的大小。
电场强度的方向与力的方向一致。
点电荷的电场强度为:E=k×(Q/r²)其中,k为电场强度系数,Q为电荷量,r为距离。
二、电势和电势差电势是测量电场力作用的大小的物理量。
电势差是指从一点移动到一个点所做的功与电荷量的比值。
电势差∆V可以按照下面的公式计算:∆V=W/Q其中,W为做功,Q为电量。
三、电流和电阻在电路中,电流是指单位时间内通过导体横截面的电荷量。
电流的单位是安培(A)。
I=Q/t其中,I为电流,Q为电荷量,t为时间。
电阻是指电阻器等导体对电流的阻碍程度。
电阻的单位是欧姆(Ω)。
四、欧姆定律欧姆定律是描述电流、电压和电阻之间关系的定律。
欧姆定律的公式为:U=IR其中,U为电压,I为电流,R为电阻。
五、电磁感应电磁感应是指通过磁场改变导体中的电流的现象。
根据电磁感应定律,当磁通量Φ发生变化时,导体内会产生感应电动势E。
∆E/∆t=-dΦ/dt六、法拉第电磁感应定律根据法拉第电磁感应定律,感应电动势的大小等于变化磁通量Φ对时间的导数。
E=-dΦ/dt七、电磁波电磁波是一种由电场和磁场相互作用而产生的波动现象。
根据电磁波的频率,可以将其分为不同的波段,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线。
八、光的折射和反射光在不同介质中传播时会发生折射和反射。
根据斯涅尔定律,入射角、折射角和折射率之间有一定的关系。
n₁sinθ₁=n₂sinθ₂其中,n₁和n₂分别是两个介质的折射率,θ₁和θ₂分别是入射角和折射角。
高三电磁学知识点总结

高三电磁学知识点总结电磁学是物理学中重要的分支之一,研究电荷和电流之间相互作用的规律,涉及到电场、磁场以及它们之间的相互转换和相互作用。
本文将对高三电磁学的一些重要知识点进行总结和梳理,以帮助学生更好地理解和掌握这一领域的知识。
一、电场与电势1. 电场:电场是描述电荷相互作用的物理量,它可以通过电场线和电场力线来观察和表示。
电场强度表示单位正电荷在某一点所受到的力。
2. 电势:电势是由电荷所产生的电场所引起的静电势能,在数值上等于单位正电荷在该点所具有的电势能。
电势差表示电势之间的差异,可以用来描述电场中电荷移动的方向和大小。
二、库仑定律和高斯定律1. 库仑定律:库仑定律描述了两个点电荷之间的作用力,表达式为F=k*q1*q2/r^2,其中F为电荷之间的作用力,q1和q2为两个电荷的大小,r为两个电荷之间的距离,k为库仑常数。
2. 高斯定律:高斯定律描述了电场穿过一个闭合曲面的总电通量等于包围在曲面内的电荷总量的1/ε0倍,其中ε0为真空介电常数。
三、电容器和电容1. 电容器:电容器是储存电荷的装置,通常由两个带电的导体板和介质组成。
常见的电容器有平行板电容器、球形电容器等。
2. 电容:电容是衡量一个电容器储存电荷的能力,用C表示,其大小与电容器的几何形状和介质特性有关。
电容的公式为C=Q/V,其中Q为电容器中的电荷量,V为电容器的电压。
四、电流和电阻1. 电流:电流是电荷在单位时间内通过横截面的数量。
电流的大小和方向可以通过欧姆定律来计算,表达式为I=V/R,其中I为电流强度,V为电压,R为电阻。
2. 电阻:电阻是电流流过导体时产生的电阻力,用符号R表示,单位是欧姆。
电阻的大小和材料的导电性质、长度、横截面积有关。
五、电磁感应和法拉第电磁感应定律1. 电磁感应:电磁感应是指磁场和电荷相对运动时所产生的感应电动势。
当磁场和导体之间有相对运动或者磁场发生变化时,导体内就会产生感应电流。
2. 法拉第电磁感应定律:法拉第电磁感应定律描述了感应电动势的大小与磁通量变化率的关系,表达式为ε=-dΦ/dt,其中ε为感应电动势,Φ为磁通量,t为时间。
高中物理复习电磁学知识高考前必看总结

高中物理电磁学公式、规律汇总稳恒电流 1、电流:(电荷的定向移动形成电流) 定义式: I =Qt微观式: I = nesv ,(n 为单位体积内的电荷数,v 为自由电荷定向移动的速率。
) (说明:将正电荷定向移动的方向规定为电流方向。
在电源外部,电流从正极流向负极;在电源内部,电流从负极流向正极。
)2、电阻:定义式:R UI=(电阻R 的大小与U 和I 无关) 决定式:R = ρSL(电阻率ρ只与材料性质和温度有关,与横截面积和长度无关) 电阻串联、并联的等效电阻:串联:R =R 1+R 2+R 3 +……+R n并联:121111nR R R R =++L 4、欧姆定律:(1)部分电路欧姆定律(只适用于纯电阻电路):I UR=(2)闭合电路欧姆定律:I =ER r+ ①路端电压: U = E -I r = IR ②有关电源的问题: 总功率: P 总= EI输出功率: P 总= EI -I 2r = I R 2(当R =r 时,P 出取最大值,为24E r)损耗功率: P I r r =2电源效率: η=P P 出总=U E= RR+r5、电功和电功率:电功:W =UIt 电功率:P =UI 电热:Q=I Rt 2热功率:P 热=2I R对于纯电阻电路: W= Q UIt=2I Rt U =IR对于非纯电阻电路: W >Q UIt >I Rt 2 U >IR (欧姆定律不成立) 电场1、电场的力的性质:电场强度:(定义式) E =qF(q 为试探电荷,场强的大小与q 无关) 点电荷电场的场强: E =2r kQ(Q 为场源电荷) 匀强电场的场强:E = dU(d 为沿场强方向的距离) 2、电场的能的性质:电势差: U =qW(或 W = U q ) U AB = φA −φB电场力做功与电势能变化的关系:W = − ∆E P(说明:建议应用以上公式进行计算时,只代入绝对值,方向或者正负单独判断。
高中物理复习电磁学部分

高中物理复习电磁学部分电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分之一。
本文将对电磁学的相关知识进行复习和总结,帮助学生们更好地理解和掌握这一内容。
一、电磁学基础知识1. 电荷和电场在电磁学中,电荷是基本粒子,可以带正电荷或负电荷。
同性电荷相斥,异性电荷相吸。
电场是电荷周围产生的一个物理场,描述了电荷之间相互作用的规律。
2. 静电场和静电力静电场是指电荷静止时产生的电场。
静电力是指电荷之间由于电场作用而产生的力。
根据库仑定律,两个电荷之间的电力与电荷的大小和距离的平方成正比。
3. 电场线电场线是描述电场分布形态的一种图示方法。
电场线的特点是从正电荷出发,指向负电荷,密集区域代表电场强,稀疏区域代表电场弱。
电场线不会相交,且垂直于导体表面。
二、电磁感应和法拉第电磁感应定律1. 磁感线和磁感应强度磁感线是描述磁场分布形态的一种图示方法。
磁感应强度是磁场对单位面积垂直于磁力线方向的力的大小。
2. 法拉第电磁感应定律法拉第电磁感应定律是指导体中的磁感应强度变化会诱导出感应电动势的规律。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度变化速率成正比。
3. 感应电流和楞次定律根据楞次定律,感应电流的方向总是阻碍引起它产生的因素,如磁感应强度的变化。
感应电流具有闭合电路的特点。
三、电磁波和麦克斯韦方程组1. 电磁波的特点电磁波是由电场和磁场交替变化产生的一种波动现象。
电磁波可以传播在真空中和介质中,具有波长、频率和速度等特性。
2. 麦克斯韦方程组麦克斯韦方程组是描述电场和磁场相互作用的基本定律。
包括麦克斯韦第一和第二个定律、高斯定律和法拉第定律。
3. 电磁波的分类根据频率的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
四、电磁学的应用1. 电磁感应的应用电磁感应在发电机、变压器等电器设备中有广泛应用。
电磁感应还可以用于磁悬浮列车、无线充电等领域。
2. 电磁波的应用电磁波在通信、雷达、医学影像等方面有重要应用。
高考物理电磁学章节知识点总结

高考物理电磁学章节知识点总结电磁学是高中物理课程中的重要一部分,也是高考中的一项必考内容。
下面对电磁学章节的重点知识进行总结,以帮助同学们更好地复习和应对高考。
一、电场1.电场的概念:电场是电荷在空间中产生的一种物理场。
它是一个力场,描述了电荷对其他带电粒子的作用。
2.库仑定律:库仑定律表明带电物体之间的相互作用力与它们的电荷量成正比,与它们之间的距离成反比。
3.电场强度:电场强度是每单位正电荷所受到的力。
在电场中,一个电荷受到的电场力等于电场强度与电荷量的乘积。
4.电场线:电场线是表示电场强度方向的曲线。
通常,电场线从正电荷指向负电荷,密集的电场线表示电场强度大,稀疏的电场线表示电场强度小。
5.高考重点:电场的叠加原理、电势能和电势差、电偶极子及其力、电场中导体的静电平衡。
二、磁场1.磁场的概念:磁场是由磁体或电流产生的一种物理场。
它可以使在其中运动的带电粒子受到磁力的作用。
2.洛伦兹力:洛伦兹力是带电粒子在磁场中受到的力。
洛伦兹力的大小与电荷量、磁感应强度和带电粒子的速度有关。
3.磁感应强度:磁感应强度是描述磁场强弱的物理量。
在磁场中,一个电荷做匀速运动时所受到的磁场力等于磁感应强度与带电粒子速度的乘积。
4.右手定则:右手定则是用来确定带电粒子在磁场中所受到的力的方向的规则。
5.高考重点:安培定律、环电流、匀强磁场中带电粒子的运动。
三、电磁感应1.电磁感应的现象:当磁感线与一个电路的导线相交时,会在导线中感应出电动势,产生感应电流。
2.法拉第电磁感应定律:法拉第电磁感应定律表明,感应电动势的大小与导线与磁感应强度的夹角以及导线的长度有关。
3.楞次定律:楞次定律表明,感应电流的方向总是使产生它的磁通量发生变化的原因。
4.高考重点:磁通量的概念、感应电动势和感应电流、互感和自感。
四、交变电流1.交变电流的特点:交变电流的方向和大小随时间发生变化。
2.交变电流的表达:交变电流可以用正弦函数描述,具有周期性和周期。
(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
高三物理电磁学必背知识点

高三物理电磁学必背知识点导言电磁学是物理学中的重要分支,涉及电场、磁场、电磁波等内容。
对于高三学生来说,掌握好电磁学的必背知识点,不仅可以在考试中取得好成绩,更能够对未来的学习和工作产生持久的影响。
本文将针对高三物理电磁学的必背知识点进行详细的介绍和论述。
一、库仑定律库仑定律是电磁学的基础,描述了两个点电荷之间的电场力。
根据库仑定律,两个点电荷之间的力与它们之间的距离成反比,与它们的电荷量的乘积成正比。
数学表示为F = k * q1 * q2 / r^2,其中F为两个电荷之间的力,q1和q2为两个电荷的电量,r为两个电荷之间的距离,k为库仑常量。
二、电场电场是电荷周围所产生的力场。
对于一个正电荷,它的电场是由它自身产生的;而对于一个负电荷,它的电场是指向它自身的。
电场可以通过电场线来表示,电场线是沿着电场方向的曲线。
电场强度的大小与电荷的性质和电荷间的距离有关。
三、静电势能静电势能是指物体由于电荷所具有的能量。
当两个电荷之间存在电势差时,它们之间会产生电场力,因此它们之间的势能也会有所改变。
静电势能可以通过公式U = k * q1 * q2 / r来计算,其中U为静电势能,q1和q2为两个电荷的电量,r为两个电荷之间的距离,k为库仑常量。
四、电流与电阻电流是指单位时间内通过某一点的电荷量。
电流可以通过公式I = Q / t来计算,其中I为电流,Q为通过某一点的电荷量,t为所需的时间。
电阻是指电流通过导体时所遇到的阻碍。
电阻的大小与导体的材料、长度和横截面积有关,可以通过公式R = ρ * l / A来计算,其中R为电阻,ρ为导体的电阻率,l为导体的长度,A为导体的横截面积。
五、欧姆定律欧姆定律描述了电流、电压和电阻之间的关系。
根据欧姆定律,电流等于电压除以电阻,即I = V / R。
欧姆定律适用于大部分电路中,可以用来计算电阻中的电流和电压。
六、电功和功率电功是指电流在电路中所做的功。
电功可以通过公式W = V * I * t来计算,其中W为电功,V为电压,I为电流,t为所需的时间。
电磁学物理高考知识点归纳

电磁学物理高考知识点归纳电磁学是物理学中的一门重要学科,也是高考物理考试的重点内容之一。
掌握好电磁学的基础知识,对于解答试题、提高分数至关重要。
本文将对电磁学物理高考知识点进行归纳,以帮助读者更好地复习和应对考试。
一、电场与电势电场是描述电荷周围空间的物理量,它表示单位正电荷所受到的电力。
电场强度的计算公式为E=KQ/R^2,其中E为电场强度,K为库仑常数,Q为电荷量,R为距离。
电势是描述电场中各点电荷状态的物理量,它是单位正电荷所具有的电势能。
电势的计算公式为V=KQ/R,其中V为电势,K为库仑常数,Q为电荷量,R为距离。
二、电场与导体在导体中,电荷能够自由移动,并且在静电平衡状态下,电荷分布在导体表面。
在导体表面,电场强度垂直于表面,并且电场强度最大。
导体中的任意一点的电势相等,且内部电场强度为零。
导体表面的电势与电场强度之间存在关系,即电场强度的方向指向电势降的方向。
三、电容与电容器电容是表示电荷与电势之间关系的物理量,它是电荷量和电势之比。
电容的计算公式为C=Q/V,其中C为电容,Q为电荷量,V为电势。
电容器是一种能够储存电荷的装置,它的基本构成包括两块导体板和之间的介质。
根据导体板之间的介质不同,可以将电容器分为电容分布均匀的平行板电容器和电容分布不均匀的非平行板电容器。
四、电流与电路电流是描述电荷在导体中移动的物理量,它表示单位时间内通过导体横截面的电荷量。
电流的计算公式为I=Q/t,其中I为电流,Q为电荷量,t为时间。
电路是电流在导线中流动的路径,根据导线的连接方式,电路可以分为串联电路和并联电路。
串联电路中,电流只有一条路径可以流通;而并联电路中,电流可以分流通过多条路径。
五、电阻与电阻器电阻是描述导体对电流流动阻碍程度的物理量,它是电压和电流之比。
电阻的计算公式为R=U/I,其中R为电阻,U为电压,I为电流。
电阻器是一种能够产生电阻的元件,它通常由金属丝制成,丝的长度和截面积决定了电阻的大小。
物理高考电磁学要点

物理高考电磁学要点电磁学作为物理学的重要分支,是高考物理考试的重要内容之一。
本文将为大家总结电磁学的关键要点,以帮助大家更好地复习和应对物理高考。
一、静电场1. 静电场基本概念静电场是由静止的电荷所产生的电场。
静电场强度表示电场对单位正电荷的作用力。
电场强度的方向与电场线相切,并指向电场中正荷所受到的力的方向。
2. 静电场的高斯定理静电场的高斯定理描述了电荷所产生的电场对电场线通过的闭合曲线所围成的面积的积分。
高斯定理的公式为Φ = ε₀Q(其中Φ为电场线通过的闭合曲线所围成的面积,ε₀为真空中的介电常数,Q为电荷)。
3. 静电场的电势电势是描述电场的物理量,表示单位正电荷在电场中具有的能量。
电势的公式为V = kq/r(其中V为电势,k为库仑常数,q为电荷,r为距离)。
二、恒定磁场1. 恒定磁场基本概念恒定磁场是不随时间变化的磁场。
磁感应强度B表示磁场的强弱和方向,单位为特斯拉(T)。
2. 洛伦兹力洛伦兹力是运动带电粒子在磁场中所受的力。
洛伦兹力的公式为F= qvBsinθ(其中F为力,q为电荷,v为速度,B为磁感应强度,θ为磁感应强度与速度之间的夹角)。
3. 磁感应强度的计算磁感应强度的计算公式为B = μ₀I/2πr(其中B为磁感应强度,μ₀为真空中的磁导率,I为电流,r为电流元到观察点的距离)。
三、电磁感应与电磁波1. 法拉第电磁感应定律法拉第电磁感应定律描述了变化磁场中的电流感应现象。
根据该定律,导线中感应电动势的大小与导线所围成的磁通量的变化率成正比。
2. 感应电动势的计算感应电动势的计算公式为ε = -dΦ/dt(其中ε为感应电动势,dΦ/dt为磁通量的变化率)。
3. 电磁波的概念与特性电磁波是由变化的电场和磁场相互作用而产生的波动现象。
电磁波具有电场、磁场垂直于传播方向且振幅相等的特性。
四、电磁感应与电路1. 动生电动势动生电动势是由于导体相对于磁场运动而产生的电动势。
动生电动势的大小与导体长度、磁感应强度、运动速度以及导体与磁场夹角有关。
高考物理电磁知识点

高考物理电磁知识点电磁现象是物理学中的重要内容,也是高考物理考试中不可忽视的部分。
本文将为大家介绍高考物理中的一些重要电磁知识点。
一、电磁感应电磁感应是指通过磁场对电流产生作用力,或通过电流对磁场产生作用力的现象。
电磁感应的实验中,常使用电磁铁和螺线管。
1. 法拉第电磁感应定律:当导体相对于磁场运动或磁场相对于导体变化时,导体中就会感应出电动势。
2. 感应电流的方向:根据楞次定律,感应电流的方向总是使得其磁场与导体感应磁场相互作用而阻碍运动。
3. 感应电流的大小:感应电流的大小与磁场的变化率成正比,在导体闭合回路中的电流大小与回路面积、磁场强度和运动速度有关。
二、电磁波电磁波是由电场和磁场相互作用而产生的一种波动现象,是高考物理中的重要内容。
1. 电磁波的基本特性:电磁波是以光速传播的横波,具有电场和磁场的振动。
2. 电磁波的分类:电磁波按照波长从小到大的顺序可分为射线、紫外线、可见光、红外线、微波和无线电波等。
3. 电磁波的传播与吸收:电磁波能够在真空中传播,其能量主要来自于振荡的电场和磁场。
不同物质对电磁波有各自的吸收特性。
三、电磁场电磁场是指由电荷和电流所产生的电场和磁场的空间分布。
了解电磁场对高考物理的学习和应用有着重要的意义。
1. 电场的基本性质:电场是由电荷产生的,具有方向和大小。
电场的强度用电场强度来描述,可以通过库仑定律计算。
2. 磁场的基本性质:磁场是由电流产生的,具有方向和大小。
磁场的强度用磁感应强度来描述,可以通过安培环路定律计算。
3. 电磁场的相互作用:电场和磁场之间通过洛伦兹力相互作用,影响着物体的运动轨迹和能量转化。
四、电磁感应与电磁场的应用电磁感应和电磁场在现实生活中有着广泛的应用,也是高考物理考试的重点。
1. 电磁感应的应用:感应电流的产生为发电机和变压器等电器的工作原理提供了基础。
同时,感应电磁力还被应用于电动机和电磁铁等装置中。
2. 电磁场的应用:电磁场的应用涉及到电磁波的传播和电磁辐射的效应。
高三物理电磁学知识点

高三物理电磁学知识点电磁学是物理学的重要分支,研究电荷的运动和相互作用。
在高三物理学习中,电磁学是必须掌握的一部分内容。
下面将详细介绍高三物理电磁学的主要知识点。
一、电场和电势1. 电场:电场是指电荷在周围空间中产生的一种力场。
电场的强度用电场强度表示,符号为 E。
电场中某一点的电场强度大小等于该点单位正电荷所受到的电场力的大小。
2. 电势:电势是指单位正电荷从无穷远处移到某一点所做的功。
电势的单位是伏特(V)。
电势差等于两点间的电势之差。
3. 库仑定律:库仑定律是描述两个点电荷间电场强度和电荷之间距离的关系。
库仑定律公式为 F = k * |q1 * q2| / r^2,其中 F 为电荷相互作用力,k 为库仑常量,q1 和 q2 分别为两个电荷的大小,r 为电荷之间的距离。
二、磁场和磁感线1. 磁场:磁场是物质中存在的一种特殊力场,由磁荷或电流产生。
磁感应强度 B 是磁场的物理量,表示磁力对单位试验磁荷的作用。
2. 磁感线:磁感线是表示磁场线的一种方式。
磁感线是从北极指向南极,并形成闭合曲线。
3. 磁通量:磁通量是磁感线穿过某个面积的数量。
磁通量的单位是韦伯(Wb)。
三、电磁感应1. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电流的现象。
它的数学表达式为ε = -dφ/dt,其中ε 是感应电动势,dφ/dt 是磁通量关于时间的变化率。
2. 楞次定律:楞次定律规定感应电流的方向。
根据楞次定律,感应电流的方向总是阻碍产生它的磁场变化。
四、电磁振荡和电磁波1. 电磁振荡:电磁振荡是指电磁场的能量以波动形式传播的过程。
经典的电磁振荡就是电磁波。
2. 电磁波:电磁波是以电磁场作为媒介,传播电磁能量的波动现象。
根据波长的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同波长的区域。
五、电磁场中的能量传播和辐射1. Poynting矢量:Poynting矢量描述了电磁场的能量传播方向和能量传播速率。
高考物理电磁学的知识总结

高考物理电磁学的知识总结高中物理中的电磁学部分是重点也是难点,在高考中占有较大的比重。
下面我们就来对这部分知识进行一个全面的总结。
一、电场1、库仑定律真空中两个静止的点电荷之间的作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$。
2、电场强度用来描述电场强弱和方向的物理量。
定义为放入电场中某点的电荷所受的电场力$F$跟它的电荷量$q$的比值,即$E =\frac{F}{q}$。
其单位是牛/库(N/C)。
3、电场线为了形象地描述电场而引入的假想曲线。
电场线从正电荷或无穷远出发,终止于负电荷或无穷远。
电场线的疏密表示电场的强弱,电场线上某点的切线方向表示该点的电场方向。
4、电势和电势能电势是描述电场能的性质的物理量,定义为电荷在电场中某点的电势能与电荷量的比值,即$\varphi =\frac{E_p}{q}$。
电势能是电荷在电场中具有的势能,与电荷的电荷量和所在位置的电势有关,即$E_p = q\varphi$。
5、匀强电场电场强度大小和方向都相同的电场。
在匀强电场中,电场强度与电势差的关系为$E =\frac{U}{d}$,其中$d$为沿电场方向两点间的距离。
二、电容1、电容器两个彼此绝缘又相距很近的导体就组成一个电容器。
电容器的作用是储存电荷。
2、电容电容器所带电荷量$Q$与电容器两极板间的电势差$U$的比值,叫做电容器的电容,即$C =\frac{Q}{U}$。
电容的单位是法拉(F)。
3、平行板电容器的电容平行板电容器的电容与极板的正对面积$S$成正比,与极板间的距离$d$成反比,与极板间介质的介电常数$\varepsilon$成正比,即$C=\frac{\varepsilon S}{4\pi kd}$。
高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全一、电场。
1. 电荷与库仑定律。
- 电荷:自然界存在两种电荷,正电荷和负电荷。
电荷的多少叫电荷量,单位是库仑(C)。
- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
表达式为F = k(q_1q_2)/(r^2),其中k = 9.0×10^9N· m^2/C^2。
2. 电场强度。
- 定义:放入电场中某点的电荷所受的电场力F与它的电荷量q的比值,叫该点的电场强度,E=(F)/(q)。
单位是N/C或V/m。
- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷电荷量)。
- 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。
3. 电场线。
- 电场线是为了形象地描述电场而引入的假想曲线。
电场线从正电荷或无穷远出发,终止于负电荷或无穷远;电场线越密的地方电场强度越大。
4. 电势与电势差。
- 电势:电荷在电场中某一点的电势能与它的电荷量的比值,φ=(E_p)/(q)。
单位是伏特(V)。
- 电势差:电场中两点间电势的差值,U_AB=φ_A - φ_B,也等于把单位正电荷从A点移到B点电场力所做的功,U_AB=frac{W_AB}{q}。
5. 等势面。
- 电场中电势相等的点构成的面叫等势面。
等势面与电场线垂直;电场线总是从电势高的等势面指向电势低的等势面。
6. 电容器与电容。
- 电容器:两个彼此绝缘又相距很近的导体可组成一个电容器。
- 电容:电容器所带电荷量Q与电容器两极板间电势差U的比值,C=(Q)/(U),单位是法拉(F),1F = 1C/V。
平行板电容器的电容C=(varepsilon S)/(4πkd)(varepsilon为介电常数,S为极板正对面积,d为极板间距)。
二、电路。
1. 电流。
- 定义:电荷的定向移动形成电流,I=(Q)/(t),单位是安培(A)。
高中物理电磁学知识点总结

高中物理电磁学知识点总结一、静电场1. 电荷与库仑定律- 基本电荷(元电荷)的概念- 电荷守恒定律- 库仑定律:两个点电荷之间的相互作用力2. 电场- 电场强度的定义和计算- 电场线的性质- 电场的叠加原理3. 电势能与电势- 电势能和电势的定义- 电势差的计算- 等势面的概念4. 电容与电容器- 电容的定义和计算- 平行板电容器的电容公式- 电容器的串联和并联5. 静电场中的导体- 导体的静电平衡状态- 电荷在导体表面的分布- 尖端放电现象二、直流电路1. 电流与电压- 电流的定义和单位- 电压的概念和测量- 欧姆定律2. 串联和并联电路- 串联电路的电流和电压规律 - 并联电路的电流和电压规律3. 电阻- 电阻的定义和单位- 电阻的计算- 电阻的串联和并联4. 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 基尔霍夫定律的应用5. 电源与电动势- 电源的概念- 电动势的定义和计算- 电池组的电动势和电压三、磁场1. 磁场的基本概念- 磁极和磁力线- 磁通量和磁通量密度2. 磁场的产生- 电流产生磁场的原理- 磁矩的概念3. 磁场对电流的作用- 安培力的计算- 洛伦兹力公式4. 电磁感应- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算5. 电磁铁与变压器- 电磁铁的工作原理- 变压器的基本原理- 变压器的效率和功率传输四、交流电路1. 交流电的基本概念- 交流电的周期和频率- 瞬时值、最大值和有效值2. 交流电路中的电阻、电容和电感 - 交流电路中的电阻特性- 电容和电感对交流电的影响 - 阻抗的概念3. 交流电路的分析- 串联和并联交流电路的分析 - 相量法的应用- 功率因数的计算4. 谐振电路- 串联谐振和并联谐振的条件- 谐振频率的计算- 谐振电路的应用五、电磁波1. 电磁波的产生- 振荡电路产生电磁波的原理- 电磁波的传播特性2. 电磁波的性质- 电磁波的速度和波长- 电磁谱的概念3. 电磁波的应用- 无线电通信- 微波技术- 光波和光通信以上是高中物理电磁学的主要知识点总结。
高考物理冲刺:知识点总结电磁学

高考物理冲刺:知识点总结电磁学一、电磁感应1。
电磁感应现象:应用磁场发生电流的现象叫做电磁感应,发生的电流叫做感应电流。
(1)发生感应电流的条件:穿过闭合电路的磁通量发作变化,即0。
(2)发生感应电动势的条件:无论回路能否闭合,只需穿过线圈平面的磁通量发作变化,线路中就有感应电动势。
发生感应电动势的那局部导体相当于电源。
(2)电磁感应现象的实质是发生感应电动势,假设回路闭合,那么有感应电流,回路不闭合,那么只要感应电动势而无感应电流。
2。
磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。
假设面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。
任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
3。
楞次定律(1)楞次定律:感应电流的磁场,总是阻碍惹起感应电流的磁通量的变化。
楞次定律适用于普通状况的感应电流方向的判定,而右手定那么只适用于导线切割磁感线运动的状况,此种状况用右手定那么判定比用楞次定律判定简便。
(2)对楞次定律的了解①谁阻碍谁感应电流的磁通量阻碍发生感应电流的磁通量。
②阻碍什么阻碍的是穿过回路的磁通量的变化,而不是磁通量自身。
③如何阻碍原磁通量添加时,感应电流的磁场方向与原磁场方向相反;当原磁通量增加时,感应电流的磁场方向与原磁场方向相反,即增反减同。
④阻碍的结果阻碍并不是阻止,结果是添加的还添加,增加的还增加。
(3)楞次定律的另一种表述:感应电流总是阻碍发生它的那个缘由,表现方式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
4。
法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
表达式 E=n/t当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsin。
高中物理电磁知识点归纳总结

高中物理电磁知识点归纳总结电磁学是物理学中的重要分支,研究电荷与电流间相互作用的原理及其应用。
在高中物理学习中,电磁学是一个关键的知识点,包括电磁感应、电磁波、电路等内容。
本文将对高中物理电磁知识进行归纳总结,帮助同学们更好地理解和掌握相关概念和原理。
一、电磁感应1.法拉第电磁感应定律法拉第电磁感应定律指出,磁通量的变化将在导体中诱导出电动势,并产生电流。
数学表示为:ε = -dΦ/dt,即电动势等于磁通量的变化率的相反数。
2.楞次定律楞次定律规定,感应电流的方向总是使建立起它的磁场的磁力线构成的磁通量变小。
这个定律可以帮助我们确定感应电流的方向。
3.电磁感应的应用电磁感应在实际中有广泛的应用,如发电机、变压器、感应加热等。
通过利用电磁感应的原理,可以将机械能转化为电能或者将电能转化为机械能。
二、电磁波1.电磁波的概念电磁波是一种由电场和磁场交替产生的波动现象,它在真空中以光速传播。
电磁波具有波长、频率和振幅等特征。
2.电磁波谱电磁波谱是按波长或频率对电磁波进行分类和排列的图谱。
包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
3.电磁波的特性电磁波具有传播性、反射性和折射性等特性。
它们可以在空气、真空、介质中传播,并会根据不同介质的折射率发生折射现象。
三、电路1.电阻和电导电阻是导体中阻碍电流通过的因素,单位是欧姆(Ω)。
而电导是导体中电流通过的能力,单位是西门子(S)。
2.欧姆定律欧姆定律描述了电流、电压和电阻之间的关系。
数学表示为:I = V/R,即电流等于电压除以电阻。
3.串联和并联电路在电路中,电阻可以串联或并联连接。
串联电路中电流相同而电压不同,而并联电路中电压相同而电流不同。
4.电功率电功率表示单位时间内电能的转化速率。
数学表示为:P = VI,即功率等于电压与电流的乘积。
四、电磁场1.电场电场是由电荷产生的力场,描述电荷在电场中受力的情况。
电场的强度由电场线表示,电荷会沿着电场线的方向运动。
2024年高考物理冲刺知识点总结(2篇)

2024年高考物理冲刺知识点总结一、电磁感应和电磁场1. 电场和静电场- 电场:电荷周围产生的力场,具有电场强度和电势。
- 静电场:电荷分布不随时间变化的电场。
- 静电场的性质:线电荷的电场强度、电势与距离的关系;点电荷产生的电场强度、电势与距离的关系;电场强度的叠加原理;电势的叠加原理。
2. 磁场和静磁场- 磁场:磁体周围产生的力场。
- 静磁场:磁荷分布不随时间变化的磁场。
- 静磁场的性质:磁场的表示方法;磁力线的性质和表示方法;磁场强度和磁势能的计算。
3. 磁场对带电粒子的作用力- 洛伦兹力:带电粒子在磁场中受到的力。
- 洛伦兹力的性质:洛伦兹力的大小和方向;洛伦兹力对电流的作用;洛伦兹力对带电粒子的轨迹的影响。
4. 电磁感应- 安培环路定理:磁感应强度沿闭合回路的环路积分等于通过该环路的总电流。
- 法拉第电磁感应定律:磁通量的变化率等于感应电动势。
- 磁感应强度和磁通量的关系。
5. 电磁感应现象- 电磁感应现象的体验和实例:电动机、发电机、变压器等。
- 定向运动:感生电动势驱动电流在闭合回路中定向流动。
- 电磁感应规律:法拉第定律和楞次定律。
6. 电磁感应的应用- 电磁感应的应用:电磁铁、感应电流和感应电磁场、感应加热、感应炉、电磁泵、感应电磁炮等。
- 电动感应传感器的原理:感性耳塞、感应照相机、感应灯、感应开关等。
7. 电磁场的能量- 电场能量和磁场能量的计算方法。
- 能量的传递和守恒。
二、电路和磁路1. 电路中电流和电压的定义- 电流:单位时间内通过导体横截面的电荷量。
- 电压:单位电荷在电路中增加或减少的电势能。
2. 欧姆定律和维尔定律- 欧姆定律:电流和电压之间的关系。
- 维尔定律:串联电阻和并联电阻的计算。
3. 电功和功率- 电功:电流做的功。
- 功率:单位时间内消耗的能量。
4. 电路图和电路分析- 电路图:用电路符号表示电路元件和连接关系的图形。
- 串联电路和并联电路的计算。
5. 交流电路和交变电流- 交流电路:电流和电压随时间变化的电路。
高三物理电磁学知识点归纳

高三物理电磁学知识点归纳电磁学是物理学的一个重要分支,研究电学和磁学之间的相互关系。
在高三物理学习中,电磁学是一个关键的知识点。
下面是对高三物理电磁学知识点的归纳总结。
1. 静电场静电场是指宏观空间中带电粒子对周围空间产生的电场分布。
静电场的特点是电场中的电荷保持不动,电势能转化为电场能量。
静电场的性质包括库仑定律、电势差和电势能的计算等。
2. 电场中的运动电荷在电场中,带电粒子会受到电场力的作用而产生运动。
电场力的大小与电荷量、电场强度和电荷类型有关。
带电粒子在电场中的运动可以分为匀速直线运动、匀强磁场中的圆周运动等。
3. 磁场与磁力磁场是指物体周围存在的磁力线。
磁场的特性包括磁感应强度、磁场力线和磁通量等。
磁场中存在的磁力是由带电粒子的运动产生的。
带电粒子在磁场中会受到洛伦兹力的作用,产生力的大小与电荷量、磁感应强度、速度和磁场方向有关。
4. 电磁感应电磁感应是指磁场或电场的变化引起电场或磁场的变化。
电磁感应的重要性体现在发电机和变压器等电磁设备中。
电磁感应的基本原理包括法拉第电磁感应定律、楞次定律和互感等。
电磁感应的应用还包括电磁铁、感应加热、电动机等。
5. 电磁波电磁波是一种由电场和磁场相互作用而产生的能量传播现象。
电磁波的特点是能够在真空中传播,速度等于光速。
电磁波的分类有射线、无线电波、微波、紫外线、可见光和X射线等。
电磁波的传播遵循麦克斯韦方程组和光的折射、反射等定律。
6. 光的性质光是一种特殊的电磁波,具有粒子性和波动性。
光的性质包括光的传播直线传播、光的反射、折射、干涉和衍射等。
光的颜色与频率和波长有关,可见光的颜色分为红、橙、黄、绿、青、蓝、紫七种。
7. 光的光学仪器光的光学仪器是利用光的性质制作的各种物理实验装置。
常见的光学仪器包括光栅、棱镜、透镜、望远镜和显微镜等。
这些仪器利用光的干涉、衍射、折射等原理进行物理、化学等实验。
以上是高三物理电磁学知识点的归纳总结。
通过对这些知识点的学习和理解,我们可以更好地理解电磁学的原理和应用,为今后的学习和研究打下坚实的基础。
高考电磁学常考知识点

高考电磁学常考知识点电磁学是物理学中的重要分支,主要研究电荷和电流所产生的电场和磁场,以及它们之间的相互作用。
在高考中,电磁学是一个重要的考点,考生需要掌握一定的电磁学知识来解答相关题目。
本文将介绍一些常考的电磁学知识点。
一、库伦定律库伦定律描述了电荷之间的相互作用力,它是电磁学的基本定律之一。
根据库伦定律,两个电荷之间的作用力正比于它们之间的距离的平方,反比于它们的电荷量的乘积。
具体表达式为:F=k*(q1*q2)/r²其中,F表示作用力,k是库伦常量,q1和q2分别表示两个电荷的电荷量,r表示它们之间的距离。
二、电场强度电场是由电荷产生的,它在空间中有一定的分布。
电场强度描述了电场的强弱,定义为单位正电荷所受的力。
电场强度是一个矢量量,方向与力的方向相同。
根据库伦定律,电场强度与电荷量成正比,与距离的平方成反比。
表达式为:E= k*q/r²其中,E表示电场强度,k是库伦常量,q表示电荷量,r表示距离。
三、电势差电势差体现了电场对电荷的作用。
单位正电荷从某点A移动到另一点B所做的功,与沿路径所受的电场力的大小和方向有关。
电势之差表示单位正电荷从A点移动到B点所获得的能量变化。
电势差的计算公式为:ΔV=Vb-Va=-∫E·dl其中,ΔV表示电势差,Va和Vb分别表示A点和B点的电势,E 表示电场强度,l表示路径。
四、安培环路定理安培环路定理描述了电流产生的磁场与电流所围成的环路的关系。
它表明,沿着一条闭合路径的磁场强度之和等于该路径所包围的电流的代数和的乘以一个常数μ0,即:∮B·dl=μ0*I其中,∮B·dl表示沿闭合路径的磁场强度之和,μ0是磁导率,I表示电流。
五、法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化引起的感应电动势。
根据该定律,当一个线圈中的磁通量发生变化时,将在线圈中产生感应电动势。
感应电动势的大小与磁通量变化率成正比。
法拉第电磁感应定律可以表示为:ε=-dΦ/dt其中,ε表示感应电动势,dΦ/dt表示磁通量的变化率。
(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电磁学公式、规律汇总稳恒电流 1、电流:(电荷的定向移动形成电流) 定义式: I = Q t微观式: I = ,(n 为单位体积内的电荷数,v 为自由电荷定向移动的速率。
)(说明:将正电荷定向移动的方向规定为电流方向。
在电源外部,电流从正极流向负极;在电源内部,电流从负极流向正极。
) 2、电阻:定义式:R UI =(电阻R 的大小与U 和I 无关)决定式:R = ρSL (电阻率ρ只与材料性质和温度有关,与横截面积和长度无关)电阻串联、并联的等效电阻: 串联:123 +……并联:121111nR R R R =++L4、欧姆定律:(1)部分电路欧姆定律(只适用于纯电阻电路):I U R=(2)闭合电路欧姆定律:I =E R r+①路端电压: U = E -I ②有关电源的问题: 总功率: P 总=输出功率: P 总= -2 = I R 2(当时,P 出取最大值,为24E r)损耗功率: P I r r =2电源效率: η=P P 出总=UE=5、电功和电功率:电功: 电功率:电热:I Rt 2 热功率:P 热=2I R 对于纯电阻电路: Q 2I Rt U =IR 对于非纯电阻电路: W Q I Rt 2 U IR (欧姆定律不成立) 电场1、电场的力的性质:电场强度:(定义式) E =qF(q 为试探电荷,场强的大小与q无关)kQ(Q为场源电荷)点电荷电场的场强:E =2rU(d 为沿场强方向的距离)匀强电场的场强:E =d2、电场的能的性质:W(或W = U q)电势差:U =q= φA−φB电场力做功与电势能变化的关系:W = −(说明:建议应用以上公式进行计算时,只代入绝对值,方向或者正负单独判断。
)3、静电平衡(1) 处于静电平衡状态的导体,内部的场强处处为零。
(2) 处于静电平衡状态的导体是一个等势体,其表面为一个等势面。
(3) 处于静电平衡状态的导体,表面上任何一点的场强方向都跟该点的表面垂直。
(4) 处于静电平衡状态的导体,电荷只能分布在导体的外表面上。
4、电容定义式:C == (Q 是指每个极板所带电荷量的绝对值。
)决定式:C =注意:①平行板电容器充电后保持两极板与电源相连,U 不变,②平行板电容器充电后两极板与电源断开, Q 不变5、带电粒子在电场中的运动: ① 加速: q212− 0 ②偏转:(类平抛) t =y 21t 2a ta = mEq θ=y xv v磁场1、磁场对通电导线的作用(安培力):F =(要求 B⊥I,力的方向由左手定则判定;若B∥I,则力的大小为零)2、磁场对运动电荷的作用(洛仑兹力):(要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B∥v,则力的大小为零) 3、带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动。
即: = Rv m2可得: r = qBmv ,qBmπ2 (确定圆心和半径是关键)4、带电粒子在复合场中运动 ①回旋加速器A 上交变电压的周期为带电粒子在磁场中作匀速圆周运动的周期:qBT mπ2=粒子获得的最大速度与回旋加速器的直径有关,直径越大,粒子的最大速度就越大。
2mv Rm qBRv m=②质谱仪(同位素荷质比和质量的测定)加速电场:122 mvqU=磁场:22mvd RBq==③速度选择器(正交的匀强磁场和匀强电场组成速度选择器)洛伦兹力和电场力平衡:,BEv=说明:a.这个结论与离子带何种电荷、电荷多少都无关。
b.若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大。
若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小。
④磁流体发电机:++++---v两极电势差达到最大值的条件f = F , 即v E B d B==ε/,则磁流体发电机的电动势ε=B d v 。
⑤霍尔效应当静电力与洛仑兹力达到平衡时,导体板两侧会形成稳定的电压qvB L U qH=2I = 整理后,得:nqdIB U H=令 nqk 1=,因为n 为材料单位体积的带电粒子个数,q 为单个带电粒子的电荷量,它们均为常数,所以有:dIB kU H = 电磁感应1、感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律。
2、感应电动势的大小:① E = (要求L 垂直于B 、v ,否则要分解到垂直的方向上 ) ②E = tnΛΛΦ(①式常用于计算瞬时值,②式常用于计算平均值) 交变电流1、交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,感应电动势瞬时值:e = ωt ,= ω2、正弦式交流电的四个值:(1)峰值:ωS ∥,出现在时刻,与线圈的形状及转轴所在的位置无关。
(2)瞬时值:从中性面(⊥)开始计时:ωt从垂直中性面()开始计时,ωt (t ω:指转过的角度)(3)平均值:利用t∆∆Φn E =-感求解,是求解“通过导体横截面电量”的基础。
(4)“有效值”的理解:峰值和有效值之间的“电。
相同时间内“热效应相等”是求解有效值的根本原则。
电压表、电流表的测量值指“有效值”,凡未作特殊说明时,一般均指“有效值”。
(注意:平均值用来求“通过导体横截面电量”,而有效值用来求“电热”。
)3、电感和电容对交流的影响:(1)电感:通直流,阻交流;通低频,阻高频 (2)电容:通交流,隔直流;通高频,阻低频 (3)电阻:交、直流都能通过,且都有阻碍 4、变压器原理(理想变压器): (1)功率:P 1 = P 2 (2)电压:1122U n U n =(3)电流:如果只有一个副线圈 : 1221I n I n = 若有多个副线圈:n 1I 1= n 2I 2 + n 3I 3电磁场和电磁波1、电磁振荡(回路)的周期:T = 2πLC2、麦克斯韦的电磁场理论(1)变化的磁场(电场)能够在周围空间产生电场(磁场);(2)均匀变化的磁场(电场)能够在周围空间产生稳定的电场(磁场);(3)振荡的磁场(电场)能够在周围空间产生同频率的振荡电场(磁场);可以证明:振荡电场产生同频率的振荡磁场;振荡磁场产生同频率的振荡电场。
3、电磁波:变化的电场和磁场从产生的区域由近及远地向周围空间传播开去,就形成了电磁波。
(1)电磁波是横波。
在电磁波传播方向上的任一点,场强E和磁感应强度B均与传播方向垂直且随时间变化,因此电磁波是横波。
(2)电磁波的传播不需要介质,在真空中也能传播。
在真空中的波速为3.0×108。
(3)波速和波长、频率的关系:c=λf注意:麦克斯韦预言了电磁波的存在以及在真空中波速等于光速c,后由赫兹用实验证实了电磁波的存在。
a、b、c、d是匀强电场中的四个点,它们正好是一个矩形的四个顶点。
电场线与矩形所在的平面平行。
已知a点的电势是20V,b点的电势是24V,d点的电势是4V,如图。
由此可知,c点的电势为()A、4VB、8VC、12VD、24V全国卷Ⅰ如图所示,’L’为一折线,它所形成的两个角∠’和∠’L‘均为450。
折答案【解析】发现电流的磁效应的科学家是丹麦的奥斯特.而法拉第是发现了电磁感应现象(广东卷理科基础)5.导体的电阻是导体本身的一种性质,对于同种材料的导体,下列表述正确的是A.横截面积一定,电阻与导体的长度成正比B .长度一定,电阻与导体的横截面积成正比C .电压一定,电阻与通过导体的电流成正比D .电流一定,电阻与导体两端的电压成反比答案【解析】对于同中材料的物体,电阻率是个定值,根据电阻定律s l R ρ=可知A 正确(广东卷理科基础)12.关于同一电场的电场线,下列表述正确的是A .电场线是客观存在的B .电场线越密,电场强度越小C .沿着电场线方向,电势越来越低D .电荷在沿电场线方向移动时,电势能减小答案【解析】电场是客观存在的,而电场线是假想的错.电场线越密的地方电场越大B 错.沿着电场线的方向电势逐渐降低C 对.负电荷沿着电场线方向移动时电场力做负功电势能增加D 错 (广东卷理科基础)13.带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用。
下列表述正确的是A .洛伦兹力对带电粒子做功B .洛伦兹力不改变带电粒子的动能C .洛伦兹力的大小与速度无关D .洛伦兹力不改变带电粒子的速度方向答案【解析】根据洛伦兹力的特点, 洛伦兹力对带电粒子不做功错对.根据qvB F =,可知大小与速度有关. 洛伦兹力的效果就是改变物体的运动方向,不改变速度的大小.(广东卷理科基础)15.搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F 时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则A .2B .a 1<a 2<2C .a 2=2a 1D .a 2>2答案【解析】当为F 时有m f F a -=1,当为2F 时有mf a m f f F m f F a +=+-=-=122222,可知122a a >对. (广东卷理科基础)16.如图6,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹。
M 和N 是轨迹上的两点,其中M 点在轨迹的最右点。
不计重力,下列表述正确的是A.粒子在M点的速率最大B.粒子所受电场力沿电场方向C.粒子在电场中的加速度不变D.粒子在电场中的电势能始终在增加答案【解析】根据做曲线运动物体的受力特点合力指向轨迹的凹一侧,再结合电场力的特点可知粒子带负电,即受到的电场力方向与电场线方向相反错.从N到M电场力做负功,减速.电势能在增加.当达到M点后电场力做正功加速电势能在减小则在M 点的速度最小A错错.在整个过程中只受电场力根据牛顿第二定律加速度不变.2.图9是质谱仪的工作原理示意图。
带电粒子被加速电场加速后,进入速度选择器。
速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。
平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。
平板S下方有强度为B0的匀强磁场。
下列表述正确的是A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向外C.能通过的狭缝P的带电粒子的速率等于D .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小【答案】。
【解析】由加速电场可见粒子所受电场力向下,即粒子带正电,在速度选择器中,电场力水平向右,洛伦兹力水平向左,如图所示,因此速度选择器中磁场方向垂直纸面向外B 正确;经过速度选择器时满足qvB qE =,可知能通过的狭缝P 的带电粒子的速率等于,带电粒子进入磁场做匀速圆周运动则有qB mv R =,可见当v 相同时,qm R ∝,所以可以用来区分同位素,且R 越大,比荷就越大,D 错误。