(完整版)高中物理电磁学知识点
(完整版)高中物理电磁学总复习

高三物理总复习电磁学复习内容:高二物理(第十三章 电场、第十四章 恒定电流、第十五章 磁场、第十六章 电磁感应、第十七章 变交电流、第十八章 电磁场与电磁波)复习范围:第十三章~第十八章电磁学§.1 第十三章 电场1. (1)电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移给另一个物体或者从物体的一部分转移到另一部分。
(2)应用起电的三种方式:摩擦起电(前提是两种不同的物质发生摩擦)、感应起电(把电荷移近不带电的导体(不接触导体),使导体带电)、接触带电.注意:①电荷量e 称为元电荷电荷量C 1060.119-⨯=e ;②电子的电荷量e 和电子的质量m 的比叫做电子的比荷C/kg 1076.111⨯=em e。
③两个完全相同的带电金属小球接触时................电荷量分配规律:原带异种电荷的先中和后平分;原带同种电荷的总电荷量平分.2. 库仑定律。
⑴适用对象:点电荷。
注意:①带电球壳可等效点电荷。
当带电球壳均匀带电时,我们可等效在球心处有一个点电荷;球壳不均匀带电荷时,则等效点电荷就靠近电荷多的一侧。
②库仑力也是电场力,它只是电场力的一种。
⑵公式:221r Q Q k F ⋅=(k 为静电力常量等于229/c m N 109.9⋅⨯).3.(1)电场:只要有电荷存在,电荷周围就存在电场(电场是描述自身的物理量...........),电场的基本性质是它对放入其中的电荷有力的作用,这种力叫做电场力. (2)ⅰ。
电场强度(描述自身的物理量........): E = F / q 这个公式适用于一切电场,电场强度E 是矢量,物理学中规定电场中某点的场强方向跟正电荷在该点的电场力的方向相同,即正电荷受的电场力方向,即E 的方向为负电荷受的电场力的方向的反向。
此外F = Eq 与221r Q Q k F ⋅=不同就在于前者适用任何电场,后者只适用于点电荷.注意:①对检验电荷(可正可负)的要求:一是电荷量应当充分小;二是体积也要小。
高中物理电磁学知识点梳理

高中物理电磁学知识点梳理高中物理的电磁学是电学和磁学的综合学科,主要研究电荷间的相互作用以及电磁场的产生和作用。
下面是电磁学的主要知识点梳理。
1.静电学静电学是电磁学的基础,主要研究静止的电荷及其之间的相互作用。
知识点包括:-电荷的性质:电量、电荷守恒定律、电荷的量子化-受力特性:库仑定律、电场强度、电场线、电势能、电场中静电能量的计算-电场的应用:电场与导体的静电平衡、电容器、电场中的运动粒子2.恒定磁场恒定磁场研究磁场中的电流及其受力情况。
知识点包括:-磁场的性质:磁场强度、磁感应强度、磁感线、磁场力-洛伦兹力:洛伦兹力定律、磁场对带电粒子的运动轨迹的影响-磁场的应用:电流的感应磁场、磁场中的运动粒子、电流在磁场中的感应力、直导线在磁场中的力、电动机、电磁铁等3.电磁感应电磁感应研究磁场对电流的产生和电流对磁场的影响。
知识点包括:-法拉第电磁感应定律:感生电动势的大小和方向、感生电动势的计算-楞次定律:电磁感应中的能量守恒、自感系数的计算-互感:互感系数、互感电动势的计算-变压器:构造、工作原理、换电压比4.交流电交流电研究电流的周期性变化和交变电场的特性。
知识点包括:-交变电流的特点:周期、频率、角频率、有效值-阻抗和电感:交流电路中的电阻、电感、电容、有功功率、无功功率和视在功率的计算-交流电路的分析:串、并联电路的电流、电压、功率的计算-高压输电:三相交流电输电线路的设计5.真空电子学与半导体器件真空电子学研究真空中的电子流动和真空管的原理。
知识点包括:-电子的发现和性质:阴极射线、电子的电量和质量-阴极射线管:电子的聚焦、加速和偏转、荧光屏和示波器等半导体器件研究半导体材料中的电流传导和电子器件的工作原理。
知识点包括:-半导体的性质:导电性、P-N结、半导体中的载流子、P-N结的正向和反向特性-二极管:P-N结的整流作用、二极管的工作原理、应用-晶体管:P-N-P和N-P-N型晶体管的工作原理、放大和开关应用以上是高中物理电磁学的主要知识点梳理,学好这些知识点,能够基本掌握电磁学的基本原理和应用。
高中物理电磁学知识点

高中物理电磁学知识点导言:物理学是自然科学的一个重要分支,涵盖了广泛的知识领域,其中电磁学是其中的一个重要部分。
在高中物理学习中,学生们领会和掌握电磁学的基本概念对于理解电磁学原理和应用非常重要。
本文将介绍高中物理电磁学知识点的大致范围,包括电磁场、电磁感应和电磁波等方面的基础知识。
一、电磁场1. 电荷和电场:电荷的电场以及电场的概念和特征。
2. 静电场和电势:静电场的产生和性质,电势的概念,电势差和电场强度之间的关系。
3. 磁场和磁感应:磁场的特征与表示方法,磁感应的概念和特征。
二、电磁感应和法拉第电磁感应定律1. 电磁感应现象:磁场中导体中的感应电动势。
2. 法拉第电磁感应定律:导体中感应电动势的大小和方向。
3. 感生电动势和自感现象:感生电动势的产生和特征,自感的概念和影响。
三、电磁感应的应用1. 电磁感应的实际应用:发电机、电动机等的基本原理与结构。
2. 互感现象和变压器:互感的概念、互感系数和变压器的基本原理。
3. 皮肤效应和涡流:电磁感应中的皮肤效应和涡流现象及其应用。
四、电磁波1. 电磁波的概念和特征:电磁波的传播特点和电磁谱的大致范围。
2. 光的电磁波理论:光的本质和电磁波的传播速度。
3. 光的反射和折射:光的反射定律、折射定律和光的全反射。
4. 光的色散和光的衍射:光的色散现象和衍射现象。
五、电磁学的实验技术1. 麦克斯韦环路定理的实验验证:使用简单电路和导体线圈验证麦克斯韦环路定理。
2. 安培环路定理的实验验证:使用安培计等仪器验证安培环路定理。
3. 恒定磁场的实验制备:使用恒定电流和线圈制备恒定磁场。
结论:高中物理电磁学的知识点主要包括电磁场、电磁感应和电磁波等方面的基础概念、定律和应用。
通过学习这些知识点,学生们能够深入理解电磁学的原理和应用,为进一步的学习和研究打下坚实的基础。
希望本文对高中物理学习中的电磁学知识点的整理和归纳有所帮助。
高中电磁学知识点总结

高中电磁学知识点总结高中电磁学知识点总结电磁学包括静电场、稳恒电流、磁场、电磁感应、交流电、电磁振荡和电磁波,我们看看下面的高中电磁学知识点总结吧!高中电磁学知识点总结一、重要概念和规律(一)重要概念1.两种电荷、电量(q)自然界只存在两种电荷。
用丝绸摩擦过的玻璃棒上带的电荷叫做正电荷,用毛皮摩擦过的硬橡胶棒上带的电荷叫做负电荷。
注意:两种物质摩擦后所带的电荷种类是相对的。
电荷的多少叫电量。
在SI制中,电量的单位是C(库)。
2.元电荷、点电荷、检验电荷元电荷是指一个电子所带的电量e=1.6×10-19C。
点电荷是指不考虑形状和大小的带电体。
检验电荷是指电量很小的点电荷,当它放入电场后不会影响该电场的性质。
3.电场、电场强度(E)、电场力(F)电场是物质的一种特殊形态,它存在于电荷的周围空间,电荷间的相互作用通过电场发生。
电场的基本特性是它对放入其中的电荷有电场力的作用。
电场强度是反映电场的力的性质的物理量。
描述电场强度有几种方法。
其一,用公式法定量描述;定义式为E=F/q,适用于任何电场。
真空中的点电荷的场强为E=kq/r2。
匀强电场的场强为E=U/d。
要注意理解:①场强是电场的一种特性,与检验电荷存在与否无关。
②E是矢量。
它的方向即电场的方向,规定场强的方向是正电荷在该点受力的方向。
③注意区别三个公式的物理意义和适用范围。
④几个电场叠加计算合场强时,要按平行四边形法则求其矢量和。
其二,用电场线形象描述:电场线的密(疏)程度表示场强的强(弱)。
电场线上某点的切线方向表示该点的场强方向。
匀强电场中的电场线是方向相同、距离相等的互相平行的直线。
要注意:a.电场线是使电场形象化而假想的线.b.电场线起始于正电行而终止于负电荷。
c.电场中任何两条电场线都不相交。
电场力是电荷间通过电场相互作用的力。
正(负)电荷受力方向与E的方向相同(反)。
4.电势能(B)、电势(U)、电势差(UAB)电势能是电荷在电场中具有的势能。
高中物理电磁学知识点总结

高中物理电磁学知识点总结一、电场1、库仑定律真空中两个静止点电荷之间的相互作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。
公式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$ 。
2、电场强度用来描述电场强弱和方向的物理量。
定义式为$E =\frac{F}{q}$,单位是$N/C$。
点电荷形成的电场强度公式为$E =k\frac{Q}{r^2}$。
3、电场线为了形象地描述电场而引入的假想曲线。
电场线从正电荷出发,终止于负电荷或无穷远;电场线的疏密表示电场强度的大小,电场线上某点的切线方向表示该点的电场强度方向。
4、电势能电荷在电场中具有的势能。
电场力做正功,电势能减小;电场力做负功,电势能增加。
5、电势描述电场能的性质的物理量。
某点的电势等于单位正电荷在该点具有的电势能。
定义式为$\varphi =\frac{E_p}{q}$,单位是伏特(V)。
6、等势面电场中电势相等的点构成的面。
等势面与电场线垂直。
7、匀强电场电场强度大小和方向都相同的电场。
其电场线是平行且等间距的直线。
二、电路1、电流电荷的定向移动形成电流。
定义式为$I =\frac{Q}{t}$,单位是安培(A)。
2、电阻导体对电流的阻碍作用。
定义式为$R =\frac{U}{I}$,单位是欧姆(Ω)。
电阻定律为$R =\rho\frac{l}{S}$,其中$\rho$是电阻率,$l$是导体长度,$S$是导体横截面积。
3、欧姆定律导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。
公式为$I =\frac{U}{R}$。
4、电功电流做功的过程就是电能转化为其他形式能的过程。
公式为$W =UIt$ 。
5、电功率单位时间内电流所做的功。
公式为$P = UI$ 。
6、焦耳定律电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。
高中电磁学知识点总结

高中电磁学知识点总结一、库仑定律库仑定律是电磁学的基础之一,描述了两个带电粒子之间的电力相互作用。
它可以用数学公式表示为:F = k*q1*q2/r^2,其中F表示电荷之间的库仑力,k为库仑常数,q1和q2分别为两个带电粒子的电荷量,r为它们之间的距离。
根据库仑定律,同种电荷相互作用会产生排斥力,异种电荷相互作用会产生吸引力。
这个定律对于理解静电力和静电场的建立具有重要意义。
二、电场和电势电场是描述电荷周围空间中发生的相互作用的场。
它可以通过电场线来表示,电场线的方向表示电场的方向,线的密度表示电场的强弱。
电荷周围的空间可以被看作是填满了电场,其他带电粒子在其中就会受到电场力的作用。
而电势是描述电场中的一点带电粒子所具有的能量,它可以用电势能的形式来表示。
电势能U和电荷q之间的关系可以表示为U=qV,其中V为电势。
在电场中,电荷在电势能较高的地方会向电势较低的地方移动,这就产生了电场力。
电场力完成了电磁学的整个过程,从静电学开始,通过电场力的描述和作用完成了电磁学的闭环。
三、高斯定律高斯定律是电场分析中的一种常用方法,它可以用来计算闭合曲面内的电荷量或者电场强度。
高斯定律可以用数学公式表示为:Φ = E*A*cosθ = q/ε0,其中Φ为闭合曲面内的电场通量,E为电场强度,A为曲面面积,θ为E与A的夹角,q为闭合曲面内的电荷量,ε0为真空介电常数。
高斯定律在计算电场分布和电荷分布时具有重要作用。
四、电势差和电势能电势差是描述带电粒子在电场中移动时所具有的能量变化,它可以用电势能的变化来表示。
电势差ΔV的计算公式为ΔV = -Ed,其中E为电场强度,d为移动的距离。
电势能U和电势之间的关系可表示为U = qV,其中U为电势能,q为带电粒子的电荷,V为电势。
随着带电粒子在电场中的运动,它的电势能会相应地发生变化,从而产生电势差,这对于理解电场中电荷的运动具有重要意义。
五、电容电容是描述导体或器件在给定电势差下所具有的储存电荷能力。
高中物理电磁学知识点整理

高中物理电磁学知识点整理电磁学是物理学的一个重要分支,研究电荷在空间中的运动和相互作用。
在高中物理课程中,电磁学是一个重点内容,学生需要掌握许多基本的电磁学知识点。
下面将对高中物理电磁学知识点进行整理和归纳。
一、电荷和电场1. 电荷的性质:正电荷和负电荷、它们之间的相互作用。
2. 元电荷:电荷的最小单位,一个质子和一个电子的电荷量。
3. 超导体:电荷自由运动的材料,内部电场强度为零。
4. 电场概念:在空间中某点的场强与电荷之间的相互作用力。
二、电场中的电荷运动1. 静电平衡:电场中的电荷受力平衡的状态。
2. 静电场中的电荷分布:在电场中,电荷会向场强方向移动。
3. 电场力与电场强度:电场力的大小与电荷的大小和电场强度有关。
4. 电场线:用以表示电场强度方向的曲线。
5. 等势面:垂直于电场线的曲面,上面点的电势相同。
三、电场与电势1. 电势差与电势能:电荷在电场中移动时所具有的能量。
2. 电势差与电场强度之间的关系:沿电场线方向,电势降低的速率等于场强。
3. 等电势面上电场强度的性质:等电势面上电场强度与电场力垂直。
4. 电势差的计算:电势差等于电场力沿路径做功的量。
四、电流和电阻1. 电流的概念:单位时间内电荷通过导体横截面的数量。
2. 电流的方向:正电荷流动的方向。
3. 电阻的影响:电阻导致电流受阻,产生热量。
4. 电流的大小与方向:电流大小与导体中电荷的数量成正比,方向由正极到负极。
五、电路中的基本元件1. 电动势:电源供电的原动力。
2. 内阻和外阻:电源内部电阻和外部电路电阻的区别。
3. 电阻、电容和电感的特性:不同元件导致电路特性的差异。
4. 阻抗的计算:交流电路中的阻抗由电阻、电容和电感共同组成。
综上所述,高中物理电磁学知识点包括电荷和电场、电场中的电荷运动、电场与电势、电流和电阻以及电路中的基本元件等内容,通过理解这些知识点,学生能够更好地掌握电磁学的基本理论,为今后的学习和研究打下坚实的基础。
教资_高中物理知识点整理_电磁学

教资_高中物理知识点整理_电磁学
高中物理电磁学知识点整理:
1.电荷与静电:电荷的性质、电荷守恒定律、库仑定律、电场的概念
和性质、电场强度、电场线、静电场中的电势、电势差与电势能、电势差
与电场强度的关系和计算、电容器、电容量、等效电容。
2.电流与电阻:电流的定义和计算、电阻的概念和性质、导体的电阻、欧姆定律、电阻的串、并联关系和计算、理想导体、非理想导体、杂质的
影响、电源与电动势、电功和功率。
3.磁场与磁感应:磁场的定义和性质、磁场的表示、磁场线、磁感应
强度、磁感应强度的单位和计算、安培定律和磁场的叠加、磁能、磁通量
与磁感应强度的关系。
4.电磁感应:伦萨定律、自感、相互感应、电磁感应定律、法拉第电
磁感应定律、电磁感应中的能量转化和损耗。
5.电磁波:电磁波的概念和基本特性、电磁波的传播和性质、电磁波
的频率、波长、速度和光速、电磁波的反射、折射、衍射和干涉。
6.光电效应和光的粒子性质:光电效应的发现和实验、光电效应的解释、光电效应的应用、光的粒子性质和泊松分布。
7.波的性质:波的特性和类型、波的传播和速度、波长、频率和振动
周期的关系、波的衍射、干涉和多普勒效应。
8.光的干涉和衍射:光的干涉的条件和相干性、双缝干涉和杨氏实验、两平面波干涉、光的衍射和衍射图案、单缝衍射、衍射光栅。
9.光的折射和色散:折射定律、折射率、绝对折射率和相对折射率、光的全反射、光纤的原理和应用、色散现象及其原因。
10.光的偏振:自然光和偏振光、偏振光的产生和特性、偏振光的消光定律和马吕斯定律、偏振光的旋光现象。
高中物理电磁学知识点总结

高中物理电磁学知识点总结电磁学是物理学中的重要分支,研究电和磁之间的相互关系和规律。
下面将对高中物理电磁学的知识点进行总结,帮助大家理解和掌握相关概念和原理。
一、电场与电势能1. 电荷:基本电荷、电荷守恒定律。
2. 高斯定律:用于计算闭合曲面内的电场强度。
3. 电场强度:表示单位正电荷所受到的力。
4. 电势能:由静电场中的电荷所具有的能量。
二、电场中的理想导体和电势1. 理想导体:电场内部为零,仅存在导体表面。
2. Faraday 笼和屏蔽作用:理想导体外的保护。
3. 等势面与电势差:沿等势面电势不变。
三、电流和电路1. 电流:单位时间内通过导体横截面的电荷量。
2. 电阻和电阻率:电流与电压的关系。
3. 欧姆定律:电流与电压成正比。
4. 瞬态电流:电路中的开关导致电流变化。
5. 串联和并联电路:电阻的连接方式影响电流和电压。
四、磁场与磁场力1. 磁感应强度:表示单位正电荷运动所受到的磁场力。
2. 磁场线和磁感线:描述磁场的线条和方向。
3. 磁通量和磁感应强度:磁场穿过一个平面的总磁力线数。
4. 洛伦兹力:带电粒子在磁场中受到的力。
五、电磁感应和法拉第电磁感应定律1. 感应电动势:磁感线剪切导体产生的感应电动势。
2. 法拉第电磁感应定律:感应电动势正比于磁场变化率。
3. 感应电流:磁场变化导致电流的产生。
六、电磁感应和自感1. 自感和互感:电流的变化导致自感和互感现象。
2. 自感系数和互感系数:衡量自感和互感强度的物理量。
3. 变压器原理:基于互感现象的电气设备。
七、电磁波和电磁谱1. 电磁波的特性:由变化的电场和磁场组成的波动。
2. 电磁波的传播:在空气和真空中以光速传播。
3. 电磁谱:根据频率和波长将电磁波划分为不同范围。
八、电磁感应和交流电1. 交流电和直流电:电流方向变化导致的不同电流类型。
2. 交流电的频率和相位:描述交流电波的特性。
3. 交流电的电压和电流关系:交流电中的电压和电流之间的关系。
高三物理电磁学知识点

高三物理电磁学知识点电磁学是物理学的重要分支,研究电荷的运动和相互作用。
在高三物理学习中,电磁学是必须掌握的一部分内容。
下面将详细介绍高三物理电磁学的主要知识点。
一、电场和电势1. 电场:电场是指电荷在周围空间中产生的一种力场。
电场的强度用电场强度表示,符号为 E。
电场中某一点的电场强度大小等于该点单位正电荷所受到的电场力的大小。
2. 电势:电势是指单位正电荷从无穷远处移到某一点所做的功。
电势的单位是伏特(V)。
电势差等于两点间的电势之差。
3. 库仑定律:库仑定律是描述两个点电荷间电场强度和电荷之间距离的关系。
库仑定律公式为 F = k * |q1 * q2| / r^2,其中 F 为电荷相互作用力,k 为库仑常量,q1 和 q2 分别为两个电荷的大小,r 为电荷之间的距离。
二、磁场和磁感线1. 磁场:磁场是物质中存在的一种特殊力场,由磁荷或电流产生。
磁感应强度 B 是磁场的物理量,表示磁力对单位试验磁荷的作用。
2. 磁感线:磁感线是表示磁场线的一种方式。
磁感线是从北极指向南极,并形成闭合曲线。
3. 磁通量:磁通量是磁感线穿过某个面积的数量。
磁通量的单位是韦伯(Wb)。
三、电磁感应1. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电流的现象。
它的数学表达式为ε = -dφ/dt,其中ε 是感应电动势,dφ/dt 是磁通量关于时间的变化率。
2. 楞次定律:楞次定律规定感应电流的方向。
根据楞次定律,感应电流的方向总是阻碍产生它的磁场变化。
四、电磁振荡和电磁波1. 电磁振荡:电磁振荡是指电磁场的能量以波动形式传播的过程。
经典的电磁振荡就是电磁波。
2. 电磁波:电磁波是以电磁场作为媒介,传播电磁能量的波动现象。
根据波长的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同波长的区域。
五、电磁场中的能量传播和辐射1. Poynting矢量:Poynting矢量描述了电磁场的能量传播方向和能量传播速率。
高中物理电磁感应知识点汇总

电磁感应磁生电第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.1磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.2磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.3磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流;2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化;理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场Φ原方向及ΔΦ情况确定感应磁场B 感方向判断感应电流I 感方向.重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场; 2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值,即ΔΦ=|Φ2-Φ1|.例面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中磁场区域足够大,磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ=.解析设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsin θ减小到零,再由零增大到负向BScos θ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BScos θ+sin θ答案-BScos θ+sin θ点拨磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量. 二、感应电流方向的判定:方法一:右手定则部分导体切割磁感线;方法二:楞次定律例某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是D →→bB.先a →→b,后b →→a C.先b →→aD.先b →→a,后a →→b第二部分法拉第电磁感应定律一、感应电动势:在电磁感应现象中产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,感应电动势的方向就是电源内部电流的方向,由电源的负极指向电源的正极; 二、感应电动势的大小1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:nt∆ΦE =∆图9-1-3图9-1-1公式理解:①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时,t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算. ④由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤n 表示线圈的匝数,可以看成n 个单匝线圈串联而成; 2.导体切割磁感线产生的感应电动势公式:θsin Blv E =,对公式的理解如下:①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直实际应用中一般只涉及此种情况.②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+=,所以ω221Bl v Bl E==-3.反电动势:反电动势对电路中的电流起削弱作用.三、几个总结:重点难点解析一、公式nt∆ΦE =∆和sin Lv θE =B 的比较=n t∆∆Φ求的是回路中Δt 时间内的平均电动势.=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.1E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量.2122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.3E=nBS ωsin ωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt 3.公式nt∆ΦE =∆和E=BL v sin θ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方 便.二、Ф、ΔФ、ΔФ/Δt 三者的比较例一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成300角,若磁感应强度在内由增加到,则始末通过线圈的磁通量分别为Wb 和Wb;在此过程中穿过线圈的磁通量的变化量为Wb;磁通量的平均变化率为Wb/s;线圈中的感应电动势的大小为V.解析始、末的磁通量分别为:Φ1=B 1Ssin θ=×20×10-4×1/2Wb=10-4Wb Φ2=B 2Ssin θ=×20X10-4×1/2Wb=5×10-4Wb 磁通量变化量ΔΦ=Φ2-Φ1=4×10-4Wb磁通量变化率05.01044-=∆∆Φx t Wb/s=8×10-3Wb/s感应电动势大小nt∆ΦE =∆=200×8×10-3V=点拨Φ、ΔΦ、ΔΦ/Δt 均与线圈匝数无关,彼此之间也无直接联系;感应电动势Ε的大小取决于ΔΦ/Δt 和线圈匝数n,与Φ和ΔΦ无必然联系. 三、直导体在匀强磁场中转动产生的感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为:(1)以中点为轴时Ε=02以端点为轴时122L ωE =B 平均速度取中点位置线速度v =ωL/23以任意点为轴时122()122L L ωE =B -与两段的代数和不同第三部分互感和自感涡流一、互感与互感电动势1.互感现象:一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.2.互感电动势:在互感现象中产生的电动势叫做互感电动势. 二、自感现象1.自感现象:由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象.2.自感电动势1.定义:在自感现象中产生的电动势,叫做自感电动势. 2.作用:总是阻碍导体中原电流的变化.3.自感电动势的方向:自感电动势总是阻碍导体中原电流的变化.即当电流增大时,自感电动势阻碍电流增大;当电流减小时,自感电动势阻碍电流减小.4.自感电动势的大小:Lt∆I E =∆,自感电动势的大小与电流的变化率成正比,其中L 为自感系数.3.自感系数:自感系数也叫自感或电感.自感系数L 由线圈本身的特性决定.L 的大小与线圈的长度、线圈的横截面积等因素有关,线圈越长,单位长度的匝数越多,横截面积越大,自感系数L 越大.另外,若线圈中有铁芯,自感系数L 会大很多.4.自感现象与互感现象的区别和联系区别:1互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部; 2通过互感可以把能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放. 联系:二者都是电磁感应现象.通电自感和断电自感的比较例如图9-3-6所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其 直流电阻忽略不计.当电键K 闭合时,下列说法正确的是 比B 先亮,然后A 熄灭比A 先亮,然后B 逐渐变暗,A 逐渐变亮 、B 一齐亮,然后A 熄灭、B 一齐亮.然后A 逐渐变亮.B 的亮度不变 正解电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源,这样对整个回路图9-3-6图9-3-7而言相当于两个电源共同作用在同一个回路中.两个电源各自独立产生电流,实际上等于两个电流的叠加.根据上述原理可在电路中标出两个电源各自独立产生的电流的方向.图9-3-7a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图.由图可知在A灯处原电流与感应电流反向,故A灯不能立刻亮起来.在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流,故B灯比正常发光亮因正常发光时电流就是原电流.随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A灯变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光,应选B.三、三、涡流1.涡流:当线圈的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的漩涡,把它叫做涡电流,简称涡流.特点:整块金属的电阻很小,涡流往往很大.四.电磁阻尼与电磁驱动1电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动.注意:电磁阻尼与电磁驱动也是一种特殊的电磁感应现象,原理上都可以用楞次定律解释.五、电磁感应中的能量问题1.电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能量.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.解决这类问题的一般步骤:1用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向2画出等效电路,求出回路中电阻消耗电功率的表达式3分析导体机械能的变化,用动能定理或能量守恒关系,得到机械功率的改变所满足的方程。
高中电磁学知识点框架总结

高中电磁学知识点框架总结一、静电场1. 静电学基础(1)电荷的基本性质:电荷的两种性质、它们之间的相互作用(2)库仑定律:电荷间的相互作用力与它们之间的距离和大小的关系(3)电场的定义和性质:电场的概念、性质和特点2. 电场(1)电场强度:电场中单位正电荷所受的力(2)电场力:电场中电荷受到的力(3)电场线和电势:电场线的概念和性质、电势的概念和基本性质(4)电场与运动:电场中的电荷运动规律3. 高斯定理(1)高斯定理的基本原理和应用(2)高斯定理在不同形状电场的应用二、电流和电阻1. 电荷的流动(1)电流的基本概念和特点(2)电流的方向和大小2. 电阻和电阻率(1)电阻和电导率的概念和特点(2)电阻和电导率的相互关系和计算3. 欧姆定律(1)欧姆定律的基本原理和适用条件(2)欧姆定律的应用和实际意义三、磁场1. 磁场的特性(1)磁场的基本性质和特点(2)磁感线的性质和规律2. 磁场力(1)磁场中带电粒子所受的洛伦兹力(2)磁场中磁性物质所受的力3. 磁场与电流(1)安培环路定理(2)安培力和安培力矩四、电磁感应1. 法拉第电磁感应定律(1)法拉第电磁感应定律的基本原理(2)法拉第电磁感应定律的应用和实际意义2. 感生电动势和感生电流(1)感生电动势和感生电流的概念和特点(2)感生电动势和感生电流的计算和实际应用3. 自感和互感(1)自感和互感的概念和基本特点(2)自感和互感的计算和应用五、交流电路1. 交流电的基本概念(1)交流电的产生和特点(2)交流电的频率、周期和有效值2. 交流电的参数和分析(1)交流电的参数包括相位差、电压、电流和功率(2)交流电的分析和功率计算3. 交流电路的基本元件(1)电感、电容和电阻的特点和相互关系(2)交流电路中的串联、并联和串并联电路的分析和计算六、电磁波1. 电磁波的产生和传播(1)电磁波的产生和基本特点(2)电磁波的传播和传播特点2. 电磁波的特性和应用(1)电磁波的波长、频率和波速(2)电磁波的应用和实际意义以上是高中电磁学的知识点框架总结,希望对学习者有所帮助。
高中物理电磁学知识点梳理

高中物理知识点梳理电磁学部分:1、基本概念:电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速2、基本规律:电量平分原理(电荷守恒)库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)电场力做功的特点及与电势能变化的关系电容的定义式及平行板电容器的决定式部分电路欧姆定律(适用条件)电阻定律串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)焦耳定律、电功(电功率)三个表达式的适用范围闭合电路欧姆定律基本电路的动态分析(串反并同)电场线(磁感线)的特点等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率)电动机的三个功率(输入功率、损耗功率、输出功率)电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)安培定则、左手定则、楞次定律(三条表述)、右手定则电磁感应想象的判定条件感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线通电自感现象和断电自感现象正弦交流电的产生原理电阻、感抗、容抗对交变电流的作用变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)3、常见仪器:示波器、示波管、电流计、电流表(磁电式电流表的工作原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。
高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全一、电场。
1. 电荷与库仑定律。
- 电荷:自然界存在两种电荷,正电荷和负电荷。
电荷的多少叫电荷量,单位是库仑(C)。
- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
表达式为F = k(q_1q_2)/(r^2),其中k = 9.0×10^9N· m^2/C^2。
2. 电场强度。
- 定义:放入电场中某点的电荷所受的电场力F与它的电荷量q的比值,叫该点的电场强度,E=(F)/(q)。
单位是N/C或V/m。
- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷电荷量)。
- 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。
3. 电场线。
- 电场线是为了形象地描述电场而引入的假想曲线。
电场线从正电荷或无穷远出发,终止于负电荷或无穷远;电场线越密的地方电场强度越大。
4. 电势与电势差。
- 电势:电荷在电场中某一点的电势能与它的电荷量的比值,φ=(E_p)/(q)。
单位是伏特(V)。
- 电势差:电场中两点间电势的差值,U_AB=φ_A - φ_B,也等于把单位正电荷从A点移到B点电场力所做的功,U_AB=frac{W_AB}{q}。
5. 等势面。
- 电场中电势相等的点构成的面叫等势面。
等势面与电场线垂直;电场线总是从电势高的等势面指向电势低的等势面。
6. 电容器与电容。
- 电容器:两个彼此绝缘又相距很近的导体可组成一个电容器。
- 电容:电容器所带电荷量Q与电容器两极板间电势差U的比值,C=(Q)/(U),单位是法拉(F),1F = 1C/V。
平行板电容器的电容C=(varepsilon S)/(4πkd)(varepsilon为介电常数,S为极板正对面积,d为极板间距)。
二、电路。
1. 电流。
- 定义:电荷的定向移动形成电流,I=(Q)/(t),单位是安培(A)。
高中物理电磁学知识点总结

高中物理电磁学知识点总结一、静电场1. 电荷与库仑定律- 基本电荷(元电荷)的概念- 电荷守恒定律- 库仑定律:两个点电荷之间的相互作用力2. 电场- 电场强度的定义和计算- 电场线的性质- 电场的叠加原理3. 电势能与电势- 电势能和电势的定义- 电势差的计算- 等势面的概念4. 电容与电容器- 电容的定义和计算- 平行板电容器的电容公式- 电容器的串联和并联5. 静电场中的导体- 导体的静电平衡状态- 电荷在导体表面的分布- 尖端放电现象二、直流电路1. 电流与电压- 电流的定义和单位- 电压的概念和测量- 欧姆定律2. 串联和并联电路- 串联电路的电流和电压规律 - 并联电路的电流和电压规律3. 电阻- 电阻的定义和单位- 电阻的计算- 电阻的串联和并联4. 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 基尔霍夫定律的应用5. 电源与电动势- 电源的概念- 电动势的定义和计算- 电池组的电动势和电压三、磁场1. 磁场的基本概念- 磁极和磁力线- 磁通量和磁通量密度2. 磁场的产生- 电流产生磁场的原理- 磁矩的概念3. 磁场对电流的作用- 安培力的计算- 洛伦兹力公式4. 电磁感应- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算5. 电磁铁与变压器- 电磁铁的工作原理- 变压器的基本原理- 变压器的效率和功率传输四、交流电路1. 交流电的基本概念- 交流电的周期和频率- 瞬时值、最大值和有效值2. 交流电路中的电阻、电容和电感 - 交流电路中的电阻特性- 电容和电感对交流电的影响 - 阻抗的概念3. 交流电路的分析- 串联和并联交流电路的分析 - 相量法的应用- 功率因数的计算4. 谐振电路- 串联谐振和并联谐振的条件- 谐振频率的计算- 谐振电路的应用五、电磁波1. 电磁波的产生- 振荡电路产生电磁波的原理- 电磁波的传播特性2. 电磁波的性质- 电磁波的速度和波长- 电磁谱的概念3. 电磁波的应用- 无线电通信- 微波技术- 光波和光通信以上是高中物理电磁学的主要知识点总结。
高中物理电磁学(超完整)

例 9: 如图所示,一匀强电场中的正方形上四点的电势 Ua=15V,Ub=3V,Uc=-3V,则Ud=____V.该正方形的中心处的电势 为______V.
例 10: 如图所示,匀强电场中的三角形各顶点的电势 Ua=7v,Ub=-5V,Uc=1V,请画出该电场的电场线方向和等势面。
8
三、电场力做功与电势能
电势能:ε=Qφ ΔεAB=qUAB 电场力的功 W=qUAB=ΔεAB 做功与路径无关
带电粒子在电场中运动 平衡 直线加速 偏转
电场中的导体 静电感应 静电平衡 电容器 电容:C=Q/U
单元切块:
按照考纲的要求,本章内容可以分成三部分,即:电场的力的性质;电场的能的性质;带电粒子在电场中的运动。 其中重点是对电场基本性质的理解、熟练运用电场的基本概念和基本规律分析解决实际问题。难点是带电粒子在电 场中的运动。
2. 电势差
电荷在电场中由一点A 移到另一点B 时,电场力做的功与电荷电量的比值叫做这两点的电势差即U AB
WAB q
.
3. 电势
电场中某点的电势是指这点与电势零点之间的电势差,它在数值上等于单位正电荷由该点移至零电势点时电场力所
做的功.令B 0 , A U AB A B . 4. 电势能
电荷在电场中所具有的势能叫电势能,它是相对的,与参考位置(势能零点)的选择有关.
电荷量之间的函数关系,下列说法正确的是(
)
A. 这电场是匀强电场 B. a、b、c、d四点的电场强度大小关系是Ed>Eb>Ea>Ec
C. 这四点的电场强度大小关系是Eb>Ea>Ec>Ed
D. 无法比较场强大小
例 5: 画出下列电场线: ① 等量同种电荷之间的垂直平分面上
② 等量异种电荷之间的垂直平分面上
高中物理电磁学知识要点

高中物理电磁学知识要点电磁学是物理学中一个重要的分支,主要研究电荷和电磁场之间的相互作用。
在高中物理学习中,电磁学也是一个重点内容。
本文将介绍高中物理电磁学的知识要点,并以整洁美观的方式,分小节论述。
一、电荷与电场1. 电荷的基本性质- 电荷分为正电荷和负电荷,同性相斥,异性相吸。
- 电荷守恒定律:孤立系统的总电荷保持不变。
2. 电场的概念与性质- 电场是由电荷产生的力场,用于描述电荷对周围空间的影响。
- 电场线表示电场的方向,指向正电荷的电场线由内向外,指向负电荷的电场线由外向内。
- 电场强度的定义与计算公式,E = F / q(F为电荷受力,q为电荷量)。
二、电场中的运动电荷1. 电荷在电场中受力- 电荷在电场中受力的大小与电场强度和电荷量的乘积成正比,表示为F = qE。
- 电荷在电场中受力的方向与电荷的性质(正负)以及电场方向相关。
2. 电势能与电势差- 电势能的定义与计算公式,Ep = qV(Ep为电势能,q为电荷量,V为电势差)。
- 电势差表示单位正电荷从A点移动到B点所获得的电势能变化量,计算公式为ΔV = Vb - Va。
三、电流与电阻1. 电流的概念与电流强度- 电流表示单位时间内通过导体横截面的电荷量,计算公式为I =ΔQ / Δt(I为电流强度,ΔQ为通过导体的电荷量,Δt为时间)。
- 电流强度的单位为安培(A)。
2. 欧姆定律与电阻- 欧姆定律的描述,U = IR(U为电压,I为电流强度,R为电阻)。
- 电阻的概念与计算公式,R = ρl / A(R为电阻,ρ为电阻率,l为导体长度,A为导体横截面积)。
四、电路中的基本元件1. 电阻与电阻的串并联- 串联电阻的总电阻计算公式,R = R1 + R2 + ... + Rn。
- 并联电阻的总电阻计算公式,1/R = 1/R1 + 1/R2 + ... + 1/Rn。
2. 电流的分流与合流- 串联电流的相等性,总电流等于各支路电流之和,I = I1 + I2 + ... + In。
高中物理电磁知识点归纳总结

高中物理电磁知识点归纳总结电磁学是物理学中的重要分支,研究电荷与电流间相互作用的原理及其应用。
在高中物理学习中,电磁学是一个关键的知识点,包括电磁感应、电磁波、电路等内容。
本文将对高中物理电磁知识进行归纳总结,帮助同学们更好地理解和掌握相关概念和原理。
一、电磁感应1.法拉第电磁感应定律法拉第电磁感应定律指出,磁通量的变化将在导体中诱导出电动势,并产生电流。
数学表示为:ε = -dΦ/dt,即电动势等于磁通量的变化率的相反数。
2.楞次定律楞次定律规定,感应电流的方向总是使建立起它的磁场的磁力线构成的磁通量变小。
这个定律可以帮助我们确定感应电流的方向。
3.电磁感应的应用电磁感应在实际中有广泛的应用,如发电机、变压器、感应加热等。
通过利用电磁感应的原理,可以将机械能转化为电能或者将电能转化为机械能。
二、电磁波1.电磁波的概念电磁波是一种由电场和磁场交替产生的波动现象,它在真空中以光速传播。
电磁波具有波长、频率和振幅等特征。
2.电磁波谱电磁波谱是按波长或频率对电磁波进行分类和排列的图谱。
包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
3.电磁波的特性电磁波具有传播性、反射性和折射性等特性。
它们可以在空气、真空、介质中传播,并会根据不同介质的折射率发生折射现象。
三、电路1.电阻和电导电阻是导体中阻碍电流通过的因素,单位是欧姆(Ω)。
而电导是导体中电流通过的能力,单位是西门子(S)。
2.欧姆定律欧姆定律描述了电流、电压和电阻之间的关系。
数学表示为:I = V/R,即电流等于电压除以电阻。
3.串联和并联电路在电路中,电阻可以串联或并联连接。
串联电路中电流相同而电压不同,而并联电路中电压相同而电流不同。
4.电功率电功率表示单位时间内电能的转化速率。
数学表示为:P = VI,即功率等于电压与电流的乘积。
四、电磁场1.电场电场是由电荷产生的力场,描述电荷在电场中受力的情况。
电场的强度由电场线表示,电荷会沿着电场线的方向运动。
高中物理电磁学知识点总结

高中物理电磁学知识点总结1. 电荷与电场•电荷的基本性质:电荷是物质微观粒子的一个性质,分为正电荷和负电荷。
同种电荷相互排斥,异种电荷相互吸引。
•库仑定律:描述了电荷之间的相互作用力,其大小与电荷的多少和距离的平方成反比,与两电荷间的相对位置有关。
•电场:由电荷产生的一种物理场。
通过引入电场概念,可以用来描述电荷之间的相互作用力。
电场强度的定义为单位正电荷所受到的力。
•电场力与电势能:电场力做功将电势能转化为动能或其他能量形式。
•高斯定律:描述了电场的产生和分布。
通过高斯定律可以计算出由电荷分布产生的电场。
2. 电场感应和电磁感应•电场感应:当电荷或电流改变时,其周围会产生变化的电场。
这个变化的电场对其他电荷也产生作用,即电场感应。
电感应是一种间接的电场作用方式。
•长导线的电磁感应:当导体中存在变化的磁场,导体内部会产生感应电动势。
根据此原理可以实现电能的传递和变换。
•法拉第电磁感应定律:当磁场的变化通过一个线圈时,线圈中就会产生感应电动势。
感应电动势的大小与磁场变化的快慢成正比。
•楞次定律:描述了磁场和电场相互作用的规律,其中的一个关键概念是法拉第电磁感应定律中的负号。
根据楞次定律可以判断感应电流的方向。
3. 直流电路和交流电路•电阻、电流和电压关系:欧姆定律描述了电阻、电流和电压之间的关系,即电流大小与电压的比例成正比,与电阻的大小成反比。
•电阻、电流和电压的能量转换:电流通过电阻时,会产生热量,这是电能转化为热能的过程。
•串联和并联电路:在串联电路中,电流只有一条路径可以流通,而在并联电路中,电流可以有多条路径。
根据欧姆定律,可以计算出串联和并联电路的电阻、电流和电压。
•交流电:交流电的方向和大小随着时间的变化而变化。
交流电可以方便地进行电能的传输和变换,可以通过变压器来改变电压大小。
4. 电磁波和光的性质•电磁波的波动性质:电磁波是由变化的电场和磁场相互作用而产生的。
电磁波具有波动性质,包括波长、频率、波速等特征。
(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、电磁学
(一)电场 1、库仑力:2
2
1r q q k
F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量
电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: q
F
E =
单位: N / C 点电荷电场场强 r
Q k E = 匀强电场场强 d
U E =
3、电势,电势能:
q
E
A 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压 q
W
U =
U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22
1mv qU =
7、粒子通过偏转电场的偏转量:
2
02
2022212121V L md qU V L m qE at y =
== 粒子通过偏转电场的偏转角 20
mdv qUL
v v tg x
y =
=
θ 8、电容器的电容:
c Q U
=
电容器的带电量: Q=cU 平行板电容器的电容: kd
S c πε4= 电压不变 电量不变
(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)
2、电阻定律:
电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3
电压分配
2
12
1R R U U =,U R R R U 2
11
1
+=
功率分配 2
12
1R R P P =,P R R R P 2
11
1+=
4、并联电路总电阻: 3
2
1
1111R R R R
++= (并联的总电阻比任何一个分电阻小)
两个电阻并联 2
121R R R R R +=
并联电路电流分配 122
1
I R I R =,I 1=
I R R R 2
12
+ 并联电路功率分配 1
22
1R R P P =,P R R R P 2
12
1+=
5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR
(2)闭合电路欧姆定律:I =
r
R E
+ Ir U E += E r 路端电压:U = E -I r= IR
输出功率:
= IE -I r =
(R = r 输出功率最大) R
电源热功率:
电源效率:
=E
U
= R R+r 6、电功和电功率: 电功:W=IUt
焦耳定律(电热)Q=
电功率 P=IU
纯电阻电路:W=IUt=
P=IU
非纯电阻电路:W=IUt >
P=IU >
S
l R ρ=
(三)磁场
1、磁场的强弱用磁感应强度B 来表示: Il
F
B =
(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
(1)直线电流的磁场
(2)通电螺线管、环形电流的磁场 3、磁场力
(1)安培力:磁场对电流的作用力。
公式:F= BIL (B ⊥I )(B//I 是,F=0) 方向:左手定则
(2)洛仑兹力:磁场对运动电荷的作用力。
公式:f = qvB (B ⊥v) 方向:左手定则
粒子在磁场中圆运动基本关系式 R
mv qvB 2= 解题关键画图,找圆心画半径
粒子在磁场中圆运动半径和周期 qB mv
R =
, qB
m T π2= t=πθ2T
4、磁通量
=BS 有效(垂直于磁场方向的投影是有效面积) 或
=BS sin α (α是B 与S 的夹角) ∆
=
2-1=
∆BS= B ∆S (磁通量是标量,但有正负)
(四)电磁感应
1.直导线切割磁力线产生的电动势 BLv E =(三者相互垂直)求瞬时或平均
(经常和I =
r
R E
+ , F 安= BIL 相结合运用) 2.法拉第电磁感应定律 t n
E ∆∆Φ==S t B n ∆∆=B t
S
n ∆∆=t n ∆Φ-Φ12 求平均 3.直杆平动垂直切割磁场时的安培力 r R v
L B F +=22 (安培力做的功转化为电能)
4.转杆电动势公式 ω22
1BL E =
5.感生电量(通过导线横截面的电量) 匝
1R Q ∆Φ
=
*6.自感电动势 t
I L E ∆∆=自
(五)交流电
1.中性面 (线圈平面与磁场方向垂直) Φm =BS , e=0 I=0 2.电动势最大值 ωεNBS m ==N Φm ω,0=Φt
3.正弦交流电流的瞬时值 i=I m sin
(中性面开始计时)
4.正弦交流电有效值 最大值等于有效值的2倍 5.理想变压器 出入P P =
2
1
21n n U U =
1221n n I I = (一组副线圈时) *6.感抗 fL X L π2= 电感特点: *7.容抗 fC
X C π21
= 电容特点: (六)电磁场和电磁波 *1、LC 振荡电路
(1)在LC 振荡电路中,当电容器放电完毕瞬间,电路中的电流为最大, 线圈两端电
压为零。
在LC 回路中,当振荡电流为零时,则电容器开始放电, 电容器的
电量将减少, 电容器中的电场能达到最大, 磁场能为零。
(2)周期和频率 LC T π2= LC
f π21=
2、麦克斯韦电磁理论:
(1)变化的磁场在周围空间产生电场。
(2)变化的电场在周围空间产生磁场。
推论:①均匀变化的磁场在周围空间产生稳定的电场。
②周期性变化(振荡)的磁场在周围空间产生同频率的周期性变化(振荡)的电场;周期性变化(振荡)的电场周围也产生同频率周期性变化(振荡)的磁场。
3、电磁场:变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一体,叫电
磁场。
4、电磁波:电磁场由发生区域向远处传播就形成电磁波。
5、电磁波的特点
⒈以光速传播(麦克斯韦理论预言,赫兹实验验证);
⒉具有能量;
⒊可以离开电荷而独立存在;
⒋不需要介质传播;
⒌能产生反射、折射、干涉、衍射等现象。
6、电磁波的周期、频率和波速:
V= f = (频率在这里有时候用ν来表示)波速:在真空中,C=3×108 m/s。