高中物理电磁学知识点梳理2
高中物理电磁学知识点梳理

高中物理电磁学知识点梳理高中物理的电磁学是电学和磁学的综合学科,主要研究电荷间的相互作用以及电磁场的产生和作用。
下面是电磁学的主要知识点梳理。
1.静电学静电学是电磁学的基础,主要研究静止的电荷及其之间的相互作用。
知识点包括:-电荷的性质:电量、电荷守恒定律、电荷的量子化-受力特性:库仑定律、电场强度、电场线、电势能、电场中静电能量的计算-电场的应用:电场与导体的静电平衡、电容器、电场中的运动粒子2.恒定磁场恒定磁场研究磁场中的电流及其受力情况。
知识点包括:-磁场的性质:磁场强度、磁感应强度、磁感线、磁场力-洛伦兹力:洛伦兹力定律、磁场对带电粒子的运动轨迹的影响-磁场的应用:电流的感应磁场、磁场中的运动粒子、电流在磁场中的感应力、直导线在磁场中的力、电动机、电磁铁等3.电磁感应电磁感应研究磁场对电流的产生和电流对磁场的影响。
知识点包括:-法拉第电磁感应定律:感生电动势的大小和方向、感生电动势的计算-楞次定律:电磁感应中的能量守恒、自感系数的计算-互感:互感系数、互感电动势的计算-变压器:构造、工作原理、换电压比4.交流电交流电研究电流的周期性变化和交变电场的特性。
知识点包括:-交变电流的特点:周期、频率、角频率、有效值-阻抗和电感:交流电路中的电阻、电感、电容、有功功率、无功功率和视在功率的计算-交流电路的分析:串、并联电路的电流、电压、功率的计算-高压输电:三相交流电输电线路的设计5.真空电子学与半导体器件真空电子学研究真空中的电子流动和真空管的原理。
知识点包括:-电子的发现和性质:阴极射线、电子的电量和质量-阴极射线管:电子的聚焦、加速和偏转、荧光屏和示波器等半导体器件研究半导体材料中的电流传导和电子器件的工作原理。
知识点包括:-半导体的性质:导电性、P-N结、半导体中的载流子、P-N结的正向和反向特性-二极管:P-N结的整流作用、二极管的工作原理、应用-晶体管:P-N-P和N-P-N型晶体管的工作原理、放大和开关应用以上是高中物理电磁学的主要知识点梳理,学好这些知识点,能够基本掌握电磁学的基本原理和应用。
高中物理电磁学知识点

高中物理电磁学知识点导言:物理学是自然科学的一个重要分支,涵盖了广泛的知识领域,其中电磁学是其中的一个重要部分。
在高中物理学习中,学生们领会和掌握电磁学的基本概念对于理解电磁学原理和应用非常重要。
本文将介绍高中物理电磁学知识点的大致范围,包括电磁场、电磁感应和电磁波等方面的基础知识。
一、电磁场1. 电荷和电场:电荷的电场以及电场的概念和特征。
2. 静电场和电势:静电场的产生和性质,电势的概念,电势差和电场强度之间的关系。
3. 磁场和磁感应:磁场的特征与表示方法,磁感应的概念和特征。
二、电磁感应和法拉第电磁感应定律1. 电磁感应现象:磁场中导体中的感应电动势。
2. 法拉第电磁感应定律:导体中感应电动势的大小和方向。
3. 感生电动势和自感现象:感生电动势的产生和特征,自感的概念和影响。
三、电磁感应的应用1. 电磁感应的实际应用:发电机、电动机等的基本原理与结构。
2. 互感现象和变压器:互感的概念、互感系数和变压器的基本原理。
3. 皮肤效应和涡流:电磁感应中的皮肤效应和涡流现象及其应用。
四、电磁波1. 电磁波的概念和特征:电磁波的传播特点和电磁谱的大致范围。
2. 光的电磁波理论:光的本质和电磁波的传播速度。
3. 光的反射和折射:光的反射定律、折射定律和光的全反射。
4. 光的色散和光的衍射:光的色散现象和衍射现象。
五、电磁学的实验技术1. 麦克斯韦环路定理的实验验证:使用简单电路和导体线圈验证麦克斯韦环路定理。
2. 安培环路定理的实验验证:使用安培计等仪器验证安培环路定理。
3. 恒定磁场的实验制备:使用恒定电流和线圈制备恒定磁场。
结论:高中物理电磁学的知识点主要包括电磁场、电磁感应和电磁波等方面的基础概念、定律和应用。
通过学习这些知识点,学生们能够深入理解电磁学的原理和应用,为进一步的学习和研究打下坚实的基础。
希望本文对高中物理学习中的电磁学知识点的整理和归纳有所帮助。
高中物理电磁学重点总结

高中物理电磁学重点总结电磁学是物理学中的重要分支,研究电荷与电流所产生的相互作用及其所导致的现象和规律。
下面将对高中物理电磁学的重点内容进行总结。
一、电荷与电场1. 电荷的性质与相互作用电荷是物质的基本属性,分为正电荷和负电荷。
同性相斥,异性相吸。
电荷之间的相互作用力遵循库仑定律,与电荷之间的距离平方成反比。
2. 电场的概念与性质电荷周围存在着电场,电场是电荷在空间产生的一种物理场。
电场强度的定义为单位正电荷所受到的电场力。
电场强度与电荷量的比例成正比。
3. 电场中的电势与电势能电场力是保守力,因此可以定义电势。
电势是单位正电荷在电场中所具有的电势能。
电场强度与电势的关系为E = -dV/dr。
二、电路与电流1. 电路元件与电路符号电路元件包括电源、导线、电阻器、电容器和电感器等。
它们在电路符号中分别用不同的图形来表示。
2. 欧姆定律与电功率欧姆定律描述了电阻器中电流与电压的关系。
电功率是电流通过电阻器时产生的功。
功率与电流和电压的乘积成正比。
3. 串联与并联电路在电路中,电阻器与电源可以串联或并联。
串联电路中总电阻等于各个电阻器的和,而并联电路中总电阻的倒数等于各个电阻器倒数的和。
三、电磁感应与电磁波1. 楞次定律与电磁感应现象电磁感应现象指的是导体中的电流产生感应电动势。
楞次定律描述了感应电动势的方向,即感应电流的方向与变化磁场的方向相反。
2. 法拉第电磁感应定律与自感现象法拉第电磁感应定律描述了感应电动势与变化磁通量之间的关系。
自感现象指的是电流通过导线产生的磁场对自身电流产生感应电动势。
3. 电磁波的特性与传播电磁波是一种由变化的电场和磁场相互作用产生的波动现象。
电磁波具有电场和磁场垂直于传播方向,并且能够在真空中传播的特性。
总结:高中物理电磁学的重点内容包括电荷与电场、电路与电流、电磁感应与电磁波等方面。
学习电磁学需要理解电场与电势的概念,掌握欧姆定律与串并联电路的计算方法,熟悉楞次定律与法拉第电磁感应定律的应用,以及电磁波的特性与传播规律。
高中物理电磁学知识点

高中物理电磁学知识点电磁学是高中物理的重要组成部分,它不仅在物理学中具有关键地位,也在日常生活和现代科技中有着广泛的应用。
接下来,咱们就一起来详细梳理一下高中物理电磁学的主要知识点。
一、电场1、库仑定律真空中两个静止的点电荷之间的作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。
其表达式为:F = kq₁q₂/r²,其中 k 为静电力常量。
2、电场强度电场强度是描述电场强弱和方向的物理量。
定义为放入电场中某点的电荷所受的电场力 F 跟它的电荷量 q 的比值,即 E = F/q。
电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
3、电场线电场线是为了形象地描述电场而引入的假想曲线。
电场线的疏密表示电场强度的强弱,电场线上某点的切线方向表示该点的电场强度方向。
4、电势与电势差电势是描述电场能的性质的物理量,定义为电荷在电场中某点的电势能与电荷量的比值,即φ = Ep/q。
电势差是指电场中两点间电势的差值,也叫电压,表达式为 UAB =φA φB 。
5、匀强电场电场强度大小和方向都相同的电场叫匀强电场。
在匀强电场中,电场线是平行且等间距的直线。
二、电容1、电容的定义电容器所带电荷量 Q 与电容器两极板间的电势差 U 的比值,叫做电容器的电容,即 C = Q/U 。
电容是表示电容器容纳电荷本领的物理量。
2、平行板电容器的电容平行板电容器的电容与两极板的正对面积成正比,与两极板间的距离成反比,还与电介质的介电常数有关。
其表达式为 C =εS/4πkd 。
三、电流1、电流的形成电荷的定向移动形成电流。
形成电流的条件是:有自由移动的电荷,导体两端存在电压。
2、电流的定义通过导体横截面的电荷量 q 跟通过这些电荷量所用时间 t 的比值,叫做电流,即 I = q/t 。
电流是标量,但有方向,规定正电荷定向移动的方向为电流的方向。
3、欧姆定律导体中的电流 I 跟导体两端的电压 U 成正比,跟导体的电阻 R 成反比,即 I = U/R 。
高二物理电磁学知识点总结大全

高二物理电磁学知识点总结大全电磁学是物理学中重要的分支之一,它研究电荷和磁荷之间相互作用的规律,涉及到许多重要的概念和定律。
下面是对高二物理电磁学知识点的总结,希望能够对同学们的学习有所帮助。
一、静电场1. 电荷和电场电荷:原子中的负电子和正电子之间存在着相互作用力,当电子和质子数目相等时,物质是电中性的,否则就带有电荷。
电荷有正负之分,同性相斥,异性相吸。
电场:电荷周围存在着电场,电场是指电荷感受到的力的作用范围。
2. 电场强度电场强度E是指单位正电荷所受到的电场力F与正电荷之间的比率,用公式E=F/q表示,单位是N/C。
3. 受力与受力分析带电粒子在电场中受到电场力的影响,当电荷体系中存在多个电荷时,合力等于各个电荷的叠加。
二、恒定磁场1. 磁场与磁感线磁场:指物体周围存在的磁力作用范围。
磁场包括磁场强度B 和磁感应强度。
磁感线:是描述磁场的一种图示方法,磁感线的方向是磁力线的方向,磁感线的密度表示磁场的强弱。
2. 洛伦兹力当一个带电粒子以速度v进入磁场时,将受到垂直于速度和磁感应强度方向的洛伦兹力F。
洛伦兹力公式为F=qvBsinθ,其中q是电荷量,v是粒子速度,B是磁感应强度,θ是v和B夹角。
3. 荷质比的测定荷质比是指带电粒子的电荷量和质量之比,可以通过在磁场中测定带电粒子的运动轨迹来进行测定。
三、电磁感应和电动势1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的定律,它表明当一个导体中的磁通量发生变化时,该导体两端会产生感应电动势。
法拉第电磁感应定律的数学表示为ε=-dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。
2. 楞次定律和自感现象楞次定律:当电路中的电流发生变化时,由于电路的自感作用,电路中会产生感应电动势,其方向与变化前的电流方向相反。
自感现象:由于导线本身存在自感作用,当电流发生变化时,导线两端会产生感应电动势,导致电路中电流的改变。
3. 电磁感应定律的应用电磁感应定律的应用包括发电机、变压器等重要的实际应用,它们都是基于电磁感应现象的原理。
物理电磁学高二知识点

物理电磁学高二知识点电磁学是物理学的一个重要分支,主要研究电荷及电流所产生的电场和磁场以及它们之间的相互作用。
在高中物理的学习过程中,我们需要掌握一些基本的电磁学知识,下面将对这些知识点进行详细介绍。
一、电荷和电场1. 电荷的基本性质:电荷的基本单位是电子电荷,正电荷和负电荷相互吸引,同种电荷相互排斥。
2. 电场的概念:电荷周围存在电场,电场是空间中某一点受到电荷作用所受力的特性描述。
二、库仑定律和电场强度1. 库仑定律:两个点电荷间的电场力与电荷间的距离成反比。
2. 电场强度:单位正电荷在电场中所受到的力的大小称为电场强度。
a. 电场强度的计算公式:E = F / q,其中E表示电场强度,F 表示电场力,q表示电荷。
b. 电场强度的方向:由正电荷指向负电荷方向。
三、电势差和电势能1. 电势差:在电场中,如果电荷沿着电场线从位置A移到位置B,电势差等于电场力对电荷做的功除以电荷的大小。
2. 电势能:电荷在电场中具有的能量,电势能可以表示为电荷与电场之间相互作用的结果。
四、电容和电容量1. 电容的概念:导体上存储电荷的能力称为电容。
2. 电容器的组成:电容器由两个导体板和介质组成。
3. 电容量:电容器所能存储的电荷量称为电容量。
a. 电容量的计算公式:C = Q / V,其中C表示电容量,Q表示电荷量,V表示电压。
五、电流和电阻1. 电流的概念:单位时间内通过导体横截面的电荷量称为电流。
2. 电流的计算公式:I = ΔQ / Δt,其中I表示电流,ΔQ表示通过导体横截面的电荷量,Δt表示时间。
3. 电阻的概念:导体对电流流动的阻碍程度称为电阻。
4. 电阻和电导的关系:电阻和电导成反比。
六、欧姆定律1. 欧姆定律的表达式:U = IR,其中U表示电压,I表示电流,R表示电阻。
2. 欧姆定律的应用:可以通过欧姆定律计算电压、电流或电阻中的任意两个量。
七、磁场和磁感应强度1. 磁场的概念:磁场是由磁体所产生的力的特性描述,是空间中某一点受到磁力作用所受力的特性描述。
高中电磁学知识点总结

高中电磁学知识点总结一、库仑定律库仑定律是电磁学的基础之一,描述了两个带电粒子之间的电力相互作用。
它可以用数学公式表示为:F = k*q1*q2/r^2,其中F表示电荷之间的库仑力,k为库仑常数,q1和q2分别为两个带电粒子的电荷量,r为它们之间的距离。
根据库仑定律,同种电荷相互作用会产生排斥力,异种电荷相互作用会产生吸引力。
这个定律对于理解静电力和静电场的建立具有重要意义。
二、电场和电势电场是描述电荷周围空间中发生的相互作用的场。
它可以通过电场线来表示,电场线的方向表示电场的方向,线的密度表示电场的强弱。
电荷周围的空间可以被看作是填满了电场,其他带电粒子在其中就会受到电场力的作用。
而电势是描述电场中的一点带电粒子所具有的能量,它可以用电势能的形式来表示。
电势能U和电荷q之间的关系可以表示为U=qV,其中V为电势。
在电场中,电荷在电势能较高的地方会向电势较低的地方移动,这就产生了电场力。
电场力完成了电磁学的整个过程,从静电学开始,通过电场力的描述和作用完成了电磁学的闭环。
三、高斯定律高斯定律是电场分析中的一种常用方法,它可以用来计算闭合曲面内的电荷量或者电场强度。
高斯定律可以用数学公式表示为:Φ = E*A*cosθ = q/ε0,其中Φ为闭合曲面内的电场通量,E为电场强度,A为曲面面积,θ为E与A的夹角,q为闭合曲面内的电荷量,ε0为真空介电常数。
高斯定律在计算电场分布和电荷分布时具有重要作用。
四、电势差和电势能电势差是描述带电粒子在电场中移动时所具有的能量变化,它可以用电势能的变化来表示。
电势差ΔV的计算公式为ΔV = -Ed,其中E为电场强度,d为移动的距离。
电势能U和电势之间的关系可表示为U = qV,其中U为电势能,q为带电粒子的电荷,V为电势。
随着带电粒子在电场中的运动,它的电势能会相应地发生变化,从而产生电势差,这对于理解电场中电荷的运动具有重要意义。
五、电容电容是描述导体或器件在给定电势差下所具有的储存电荷能力。
高中电磁学知识点整理

高中电磁学知识点整理
以下是高中电磁学的一些主要知识点整理:
1. 静电学:
- 静电力:库仑定律、电场强度、电场线、电势差、电势能等概念。
- 高斯定理:电场的通量和闭合曲面之间的关系。
- 电场做功和电势差:电势能的变化、电场力对电荷做功。
2. 电流和电路:
- 电流:电流的定义、电流密度、欧姆定律、电阻和电阻率。
- 串联和并联电路:电流的分配、电压的分配、总电阻的计算。
- 电功和功率:电功的定义、功率的定义、功率与电流的关系。
3. 磁场与电磁感应:
- 磁场的概念:磁场的来源、磁力线、磁场强度、磁感应强度。
- 洛伦兹力:磁场中带电粒子受到的力。
- 电磁感应:法拉第电磁感应定律、感应电动势、楞次定律、自感和互感现象。
4. 电磁波:
- 电磁波的产生:霍兹霍尔茨线圈、振荡电路。
- 电磁波的性质:电磁波的传播特性、波长、频率、速度。
- 光的本质:电磁波理论、光的频谱。
5. 麦克斯韦方程组:
- 麦克斯韦方程组的基本形式:电场和磁场的相互作用、电磁波的产生和传播。
- 麦克斯韦方程组的应用:电磁波传播特性、电磁波的干涉和衍
射。
这些知识点涵盖了高中电磁学的基本内容,包括静电学、电流和电路、磁场与电磁感应、电磁波以及麦克斯韦方程组等重要概念和原理。
深入理解这些知识点可以帮助学生掌握电磁学的基本原理和应用。
高中物理电磁学知识点整理

高中物理电磁学知识点整理电磁学是物理学的一个重要分支,研究电荷在空间中的运动和相互作用。
在高中物理课程中,电磁学是一个重点内容,学生需要掌握许多基本的电磁学知识点。
下面将对高中物理电磁学知识点进行整理和归纳。
一、电荷和电场1. 电荷的性质:正电荷和负电荷、它们之间的相互作用。
2. 元电荷:电荷的最小单位,一个质子和一个电子的电荷量。
3. 超导体:电荷自由运动的材料,内部电场强度为零。
4. 电场概念:在空间中某点的场强与电荷之间的相互作用力。
二、电场中的电荷运动1. 静电平衡:电场中的电荷受力平衡的状态。
2. 静电场中的电荷分布:在电场中,电荷会向场强方向移动。
3. 电场力与电场强度:电场力的大小与电荷的大小和电场强度有关。
4. 电场线:用以表示电场强度方向的曲线。
5. 等势面:垂直于电场线的曲面,上面点的电势相同。
三、电场与电势1. 电势差与电势能:电荷在电场中移动时所具有的能量。
2. 电势差与电场强度之间的关系:沿电场线方向,电势降低的速率等于场强。
3. 等电势面上电场强度的性质:等电势面上电场强度与电场力垂直。
4. 电势差的计算:电势差等于电场力沿路径做功的量。
四、电流和电阻1. 电流的概念:单位时间内电荷通过导体横截面的数量。
2. 电流的方向:正电荷流动的方向。
3. 电阻的影响:电阻导致电流受阻,产生热量。
4. 电流的大小与方向:电流大小与导体中电荷的数量成正比,方向由正极到负极。
五、电路中的基本元件1. 电动势:电源供电的原动力。
2. 内阻和外阻:电源内部电阻和外部电路电阻的区别。
3. 电阻、电容和电感的特性:不同元件导致电路特性的差异。
4. 阻抗的计算:交流电路中的阻抗由电阻、电容和电感共同组成。
综上所述,高中物理电磁学知识点包括电荷和电场、电场中的电荷运动、电场与电势、电流和电阻以及电路中的基本元件等内容,通过理解这些知识点,学生能够更好地掌握电磁学的基本理论,为今后的学习和研究打下坚实的基础。
高中物理电磁学知识点总结

高中物理电磁学知识点总结电磁学是物理学中的重要分支,研究电和磁之间的相互关系和规律。
下面将对高中物理电磁学的知识点进行总结,帮助大家理解和掌握相关概念和原理。
一、电场与电势能1. 电荷:基本电荷、电荷守恒定律。
2. 高斯定律:用于计算闭合曲面内的电场强度。
3. 电场强度:表示单位正电荷所受到的力。
4. 电势能:由静电场中的电荷所具有的能量。
二、电场中的理想导体和电势1. 理想导体:电场内部为零,仅存在导体表面。
2. Faraday 笼和屏蔽作用:理想导体外的保护。
3. 等势面与电势差:沿等势面电势不变。
三、电流和电路1. 电流:单位时间内通过导体横截面的电荷量。
2. 电阻和电阻率:电流与电压的关系。
3. 欧姆定律:电流与电压成正比。
4. 瞬态电流:电路中的开关导致电流变化。
5. 串联和并联电路:电阻的连接方式影响电流和电压。
四、磁场与磁场力1. 磁感应强度:表示单位正电荷运动所受到的磁场力。
2. 磁场线和磁感线:描述磁场的线条和方向。
3. 磁通量和磁感应强度:磁场穿过一个平面的总磁力线数。
4. 洛伦兹力:带电粒子在磁场中受到的力。
五、电磁感应和法拉第电磁感应定律1. 感应电动势:磁感线剪切导体产生的感应电动势。
2. 法拉第电磁感应定律:感应电动势正比于磁场变化率。
3. 感应电流:磁场变化导致电流的产生。
六、电磁感应和自感1. 自感和互感:电流的变化导致自感和互感现象。
2. 自感系数和互感系数:衡量自感和互感强度的物理量。
3. 变压器原理:基于互感现象的电气设备。
七、电磁波和电磁谱1. 电磁波的特性:由变化的电场和磁场组成的波动。
2. 电磁波的传播:在空气和真空中以光速传播。
3. 电磁谱:根据频率和波长将电磁波划分为不同范围。
八、电磁感应和交流电1. 交流电和直流电:电流方向变化导致的不同电流类型。
2. 交流电的频率和相位:描述交流电波的特性。
3. 交流电的电压和电流关系:交流电中的电压和电流之间的关系。
高三物理电磁学知识点

高三物理电磁学知识点电磁学是物理学的重要分支,研究电荷的运动和相互作用。
在高三物理学习中,电磁学是必须掌握的一部分内容。
下面将详细介绍高三物理电磁学的主要知识点。
一、电场和电势1. 电场:电场是指电荷在周围空间中产生的一种力场。
电场的强度用电场强度表示,符号为 E。
电场中某一点的电场强度大小等于该点单位正电荷所受到的电场力的大小。
2. 电势:电势是指单位正电荷从无穷远处移到某一点所做的功。
电势的单位是伏特(V)。
电势差等于两点间的电势之差。
3. 库仑定律:库仑定律是描述两个点电荷间电场强度和电荷之间距离的关系。
库仑定律公式为 F = k * |q1 * q2| / r^2,其中 F 为电荷相互作用力,k 为库仑常量,q1 和 q2 分别为两个电荷的大小,r 为电荷之间的距离。
二、磁场和磁感线1. 磁场:磁场是物质中存在的一种特殊力场,由磁荷或电流产生。
磁感应强度 B 是磁场的物理量,表示磁力对单位试验磁荷的作用。
2. 磁感线:磁感线是表示磁场线的一种方式。
磁感线是从北极指向南极,并形成闭合曲线。
3. 磁通量:磁通量是磁感线穿过某个面积的数量。
磁通量的单位是韦伯(Wb)。
三、电磁感应1. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电流的现象。
它的数学表达式为ε = -dφ/dt,其中ε 是感应电动势,dφ/dt 是磁通量关于时间的变化率。
2. 楞次定律:楞次定律规定感应电流的方向。
根据楞次定律,感应电流的方向总是阻碍产生它的磁场变化。
四、电磁振荡和电磁波1. 电磁振荡:电磁振荡是指电磁场的能量以波动形式传播的过程。
经典的电磁振荡就是电磁波。
2. 电磁波:电磁波是以电磁场作为媒介,传播电磁能量的波动现象。
根据波长的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同波长的区域。
五、电磁场中的能量传播和辐射1. Poynting矢量:Poynting矢量描述了电磁场的能量传播方向和能量传播速率。
高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全一、电场。
1. 电荷与库仑定律。
- 电荷:自然界存在两种电荷,正电荷和负电荷。
电荷的多少叫电荷量,单位是库仑(C)。
- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
表达式为F = k(q_1q_2)/(r^2),其中k = 9.0×10^9N· m^2/C^2。
2. 电场强度。
- 定义:放入电场中某点的电荷所受的电场力F与它的电荷量q的比值,叫该点的电场强度,E=(F)/(q)。
单位是N/C或V/m。
- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷电荷量)。
- 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。
3. 电场线。
- 电场线是为了形象地描述电场而引入的假想曲线。
电场线从正电荷或无穷远出发,终止于负电荷或无穷远;电场线越密的地方电场强度越大。
4. 电势与电势差。
- 电势:电荷在电场中某一点的电势能与它的电荷量的比值,φ=(E_p)/(q)。
单位是伏特(V)。
- 电势差:电场中两点间电势的差值,U_AB=φ_A - φ_B,也等于把单位正电荷从A点移到B点电场力所做的功,U_AB=frac{W_AB}{q}。
5. 等势面。
- 电场中电势相等的点构成的面叫等势面。
等势面与电场线垂直;电场线总是从电势高的等势面指向电势低的等势面。
6. 电容器与电容。
- 电容器:两个彼此绝缘又相距很近的导体可组成一个电容器。
- 电容:电容器所带电荷量Q与电容器两极板间电势差U的比值,C=(Q)/(U),单位是法拉(F),1F = 1C/V。
平行板电容器的电容C=(varepsilon S)/(4πkd)(varepsilon为介电常数,S为极板正对面积,d为极板间距)。
二、电路。
1. 电流。
- 定义:电荷的定向移动形成电流,I=(Q)/(t),单位是安培(A)。
高中物理电磁学知识点归纳

高中物理电磁学知识点归纳电磁学作为高中物理课程的重要内容之一,涉及到许多基础知识和理论。
在学习电磁学的过程中,了解并掌握相关知识点对于理解更深层次的原理和应用至关重要。
下面将对高中物理电磁学的一些重要知识点进行归纳总结。
1. 电荷与电场电荷是电磁学的基本概念之一,分为正电荷和负电荷。
同种电荷相互排斥,异种电荷相互吸引。
在空间中,带电体会产生电场,电场是描述电荷间作用力的物理量。
电场强度的定义为单位正电荷所受到的力。
电场中的力满足叠加原理,即多个电荷叠加形成的电场等于单个电荷产生的电场的矢量和。
2. 高中物理电磁学知识点归纳:电流与磁场电流是电荷在导体中的移动形成的,电流产生磁场。
磁场可以通过环路积分来描述,即安培环路定理。
磁感应强度B描述磁场强度,单位为特斯拉。
电流在磁场中受到洛伦兹力的作用,洛伦兹力的大小由qvBsinθ决定。
穿过导体环路的磁通量变化会引起感应电动势,根据法拉第电磁感应定律可以计算感应电动势的大小。
3. 磁场的产生和改变磁场可以由通电导线产生,安培环路定理可以用来计算产生的磁场强度。
磁场的改变会引起感应电流产生,根据楞次定律可以判断感应电流的方向。
磁场中的磁通量不随时间变化的区域内感应电动势为零。
磁场线是无源的,环路周围不存在单磁北极或南极。
4. 电磁感应与自感通过改变磁通量可以产生感应电动势,对于变压器和发电机的工作原理至关重要。
自感是指导线中的电流改变时所产生的自感应电动势。
自感的存在会导致电路中电流变化受到抑制,体现为电感的感性作用。
电感的单位为亨利,可以通过NΦ/I来计算。
5. 麦克斯韦方程组电磁学的理论基础是麦克斯韦方程组,包括高斯定理、高斯环路定理、法拉第电磁感应定律和安培环路定理。
通过麦克斯韦方程组可以描述电磁场的变化规律,揭示电磁波的传播特性。
电磁波是由电场和磁场正交振动形成的,是自由空间中的一种横波。
总的来说,高中物理电磁学作为物理学中的重要分支,涉及到许多基础概念和理论。
高中物理电磁学知识点总结

高中物理电磁学知识点总结一、静电场1. 电荷与库仑定律- 基本电荷(元电荷)的概念- 电荷守恒定律- 库仑定律:两个点电荷之间的相互作用力2. 电场- 电场强度的定义和计算- 电场线的性质- 电场的叠加原理3. 电势能与电势- 电势能和电势的定义- 电势差的计算- 等势面的概念4. 电容与电容器- 电容的定义和计算- 平行板电容器的电容公式- 电容器的串联和并联5. 静电场中的导体- 导体的静电平衡状态- 电荷在导体表面的分布- 尖端放电现象二、直流电路1. 电流与电压- 电流的定义和单位- 电压的概念和测量- 欧姆定律2. 串联和并联电路- 串联电路的电流和电压规律 - 并联电路的电流和电压规律3. 电阻- 电阻的定义和单位- 电阻的计算- 电阻的串联和并联4. 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 基尔霍夫定律的应用5. 电源与电动势- 电源的概念- 电动势的定义和计算- 电池组的电动势和电压三、磁场1. 磁场的基本概念- 磁极和磁力线- 磁通量和磁通量密度2. 磁场的产生- 电流产生磁场的原理- 磁矩的概念3. 磁场对电流的作用- 安培力的计算- 洛伦兹力公式4. 电磁感应- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算5. 电磁铁与变压器- 电磁铁的工作原理- 变压器的基本原理- 变压器的效率和功率传输四、交流电路1. 交流电的基本概念- 交流电的周期和频率- 瞬时值、最大值和有效值2. 交流电路中的电阻、电容和电感 - 交流电路中的电阻特性- 电容和电感对交流电的影响 - 阻抗的概念3. 交流电路的分析- 串联和并联交流电路的分析 - 相量法的应用- 功率因数的计算4. 谐振电路- 串联谐振和并联谐振的条件- 谐振频率的计算- 谐振电路的应用五、电磁波1. 电磁波的产生- 振荡电路产生电磁波的原理- 电磁波的传播特性2. 电磁波的性质- 电磁波的速度和波长- 电磁谱的概念3. 电磁波的应用- 无线电通信- 微波技术- 光波和光通信以上是高中物理电磁学的主要知识点总结。
高中物理电磁学知识要点

高中物理电磁学知识要点电磁学是物理学中一个重要的分支,主要研究电荷和电磁场之间的相互作用。
在高中物理学习中,电磁学也是一个重点内容。
本文将介绍高中物理电磁学的知识要点,并以整洁美观的方式,分小节论述。
一、电荷与电场1. 电荷的基本性质- 电荷分为正电荷和负电荷,同性相斥,异性相吸。
- 电荷守恒定律:孤立系统的总电荷保持不变。
2. 电场的概念与性质- 电场是由电荷产生的力场,用于描述电荷对周围空间的影响。
- 电场线表示电场的方向,指向正电荷的电场线由内向外,指向负电荷的电场线由外向内。
- 电场强度的定义与计算公式,E = F / q(F为电荷受力,q为电荷量)。
二、电场中的运动电荷1. 电荷在电场中受力- 电荷在电场中受力的大小与电场强度和电荷量的乘积成正比,表示为F = qE。
- 电荷在电场中受力的方向与电荷的性质(正负)以及电场方向相关。
2. 电势能与电势差- 电势能的定义与计算公式,Ep = qV(Ep为电势能,q为电荷量,V为电势差)。
- 电势差表示单位正电荷从A点移动到B点所获得的电势能变化量,计算公式为ΔV = Vb - Va。
三、电流与电阻1. 电流的概念与电流强度- 电流表示单位时间内通过导体横截面的电荷量,计算公式为I =ΔQ / Δt(I为电流强度,ΔQ为通过导体的电荷量,Δt为时间)。
- 电流强度的单位为安培(A)。
2. 欧姆定律与电阻- 欧姆定律的描述,U = IR(U为电压,I为电流强度,R为电阻)。
- 电阻的概念与计算公式,R = ρl / A(R为电阻,ρ为电阻率,l为导体长度,A为导体横截面积)。
四、电路中的基本元件1. 电阻与电阻的串并联- 串联电阻的总电阻计算公式,R = R1 + R2 + ... + Rn。
- 并联电阻的总电阻计算公式,1/R = 1/R1 + 1/R2 + ... + 1/Rn。
2. 电流的分流与合流- 串联电流的相等性,总电流等于各支路电流之和,I = I1 + I2 + ... + In。
高中物理电磁知识点归纳总结

高中物理电磁知识点归纳总结电磁学是物理学中的重要分支,研究电荷与电流间相互作用的原理及其应用。
在高中物理学习中,电磁学是一个关键的知识点,包括电磁感应、电磁波、电路等内容。
本文将对高中物理电磁知识进行归纳总结,帮助同学们更好地理解和掌握相关概念和原理。
一、电磁感应1.法拉第电磁感应定律法拉第电磁感应定律指出,磁通量的变化将在导体中诱导出电动势,并产生电流。
数学表示为:ε = -dΦ/dt,即电动势等于磁通量的变化率的相反数。
2.楞次定律楞次定律规定,感应电流的方向总是使建立起它的磁场的磁力线构成的磁通量变小。
这个定律可以帮助我们确定感应电流的方向。
3.电磁感应的应用电磁感应在实际中有广泛的应用,如发电机、变压器、感应加热等。
通过利用电磁感应的原理,可以将机械能转化为电能或者将电能转化为机械能。
二、电磁波1.电磁波的概念电磁波是一种由电场和磁场交替产生的波动现象,它在真空中以光速传播。
电磁波具有波长、频率和振幅等特征。
2.电磁波谱电磁波谱是按波长或频率对电磁波进行分类和排列的图谱。
包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
3.电磁波的特性电磁波具有传播性、反射性和折射性等特性。
它们可以在空气、真空、介质中传播,并会根据不同介质的折射率发生折射现象。
三、电路1.电阻和电导电阻是导体中阻碍电流通过的因素,单位是欧姆(Ω)。
而电导是导体中电流通过的能力,单位是西门子(S)。
2.欧姆定律欧姆定律描述了电流、电压和电阻之间的关系。
数学表示为:I = V/R,即电流等于电压除以电阻。
3.串联和并联电路在电路中,电阻可以串联或并联连接。
串联电路中电流相同而电压不同,而并联电路中电压相同而电流不同。
4.电功率电功率表示单位时间内电能的转化速率。
数学表示为:P = VI,即功率等于电压与电流的乘积。
四、电磁场1.电场电场是由电荷产生的力场,描述电荷在电场中受力的情况。
电场的强度由电场线表示,电荷会沿着电场线的方向运动。
高二电磁学物理知识点总结

高二电磁学物理知识点总结一、电磁场电磁场是指电荷或电流产生的电场和磁场以及它们相互作用的一种物理场。
电磁场的性质主要包括以下几个方面:1. 电场:电场是指物体周围由电荷引起的力场。
在一个电场中,一个测试电荷会受到电场力的作用,力的大小和方向取决于测试电荷的大小和电场中的电荷分布。
电场的强度可以用电场线代表,电场线的密集程度表示电场的强弱,电场线的方向表示电场力的方向。
2. 磁场:磁场是指物体周围由磁性物质或者电流产生的磁力场。
磁场是一种无源场,它的性质是由磁性物质或者电流的分布所确定的。
在一个磁场中,物体会受到磁场力的作用,力的大小和方向取决于物体的磁性和磁场的分布。
3. 电磁感应:电磁感应是指磁场和电场之间的相互作用导致的现象。
当磁场和电场发生相互作用时,会产生感应电流或感应电势,这是电磁感应的一种表现形式。
电磁感应是电磁学中的重要现象,在许多实际应用中都有重要的作用。
4. 麦克斯韦方程组:麦克斯韦方程组是电磁学的基本方程,它描述了电场和磁场的状况,包括了电荷和电流的分布、电场和磁场的产生和变化规律。
麦克斯韦方程组被认为是电磁学的重要成果,它对电磁学的发展产生了深远的影响。
二、电磁感应电磁感应是指磁场和电场之间相互作用的现象,它是电磁学中的重要内容之一。
在高二的电磁学中,学生需要了解电磁感应的相关知识,包括以下几个方面:1. 法拉第电磁感应定律:法拉第电磁感应定律是电磁学中的重要定律,它描述了磁场和电路之间的相互作用。
根据法拉第电磁感应定律,当磁场的磁通量发生变化时,会在电路中诱导出感应电流。
这个定律为电磁感应现象提供了定量的描述,也为电磁感应的应用提供了理论依据。
2. 楞次定律:楞次定律描述了电场和磁场之间的相互作用导致的现象。
根据楞次定律,当电路中有感应电流时,该电流会产生磁场,这个磁场会对原来的磁场产生反作用。
楞次定律是电磁学中的重要定律,它揭示了电磁感应的本质,也对电磁感应的应用有着重要的意义。
高三物理电磁学知识点归纳

高三物理电磁学知识点归纳电磁学是物理学的一个重要分支,研究电学和磁学之间的相互关系。
在高三物理学习中,电磁学是一个关键的知识点。
下面是对高三物理电磁学知识点的归纳总结。
1. 静电场静电场是指宏观空间中带电粒子对周围空间产生的电场分布。
静电场的特点是电场中的电荷保持不动,电势能转化为电场能量。
静电场的性质包括库仑定律、电势差和电势能的计算等。
2. 电场中的运动电荷在电场中,带电粒子会受到电场力的作用而产生运动。
电场力的大小与电荷量、电场强度和电荷类型有关。
带电粒子在电场中的运动可以分为匀速直线运动、匀强磁场中的圆周运动等。
3. 磁场与磁力磁场是指物体周围存在的磁力线。
磁场的特性包括磁感应强度、磁场力线和磁通量等。
磁场中存在的磁力是由带电粒子的运动产生的。
带电粒子在磁场中会受到洛伦兹力的作用,产生力的大小与电荷量、磁感应强度、速度和磁场方向有关。
4. 电磁感应电磁感应是指磁场或电场的变化引起电场或磁场的变化。
电磁感应的重要性体现在发电机和变压器等电磁设备中。
电磁感应的基本原理包括法拉第电磁感应定律、楞次定律和互感等。
电磁感应的应用还包括电磁铁、感应加热、电动机等。
5. 电磁波电磁波是一种由电场和磁场相互作用而产生的能量传播现象。
电磁波的特点是能够在真空中传播,速度等于光速。
电磁波的分类有射线、无线电波、微波、紫外线、可见光和X射线等。
电磁波的传播遵循麦克斯韦方程组和光的折射、反射等定律。
6. 光的性质光是一种特殊的电磁波,具有粒子性和波动性。
光的性质包括光的传播直线传播、光的反射、折射、干涉和衍射等。
光的颜色与频率和波长有关,可见光的颜色分为红、橙、黄、绿、青、蓝、紫七种。
7. 光的光学仪器光的光学仪器是利用光的性质制作的各种物理实验装置。
常见的光学仪器包括光栅、棱镜、透镜、望远镜和显微镜等。
这些仪器利用光的干涉、衍射、折射等原理进行物理、化学等实验。
以上是高三物理电磁学知识点的归纳总结。
通过对这些知识点的学习和理解,我们可以更好地理解电磁学的原理和应用,为今后的学习和研究打下坚实的基础。
物理高中知识点总结选修二

物理高中知识点总结选修二第一章电磁场的基本概念电磁场是指电荷和电流所产生的力场,包括静电场和磁场。
电荷和电流是电磁场的源,它们的存在和运动产生了电场和磁场。
在电磁场中,电场和磁场相互作用,形成了电磁现象。
在电磁场中,电荷和电流受到电场力和磁场力的作用,发生运动。
电荷是物质中的基本粒子,带电粒子产生的物质称作电子,未带电的物质称作中子,而电子与质子所带的电量大小相等,而符号相反,所以质子带正电。
电荷受力为Coulomb力。
单位电量为库仑量。
磁场由磁极造成,包括北极和南极,并且又孤立的磁单极,因此产生磁场的磁力线是环绕磁体的,磁极间的相互作用遵循磁力的叠加原理,磁力的大小遵守库仑定律,则单位磁通量为韦伯。
电磁场存在于空间中,可以通过电荷和电流的产生,可以通过环路定理与Gauss定理应用到电磁中,即可知道磁场的产生,电场的环路可知变化的磁通量,以及电场的闭合曲面则可知外加电荷数目。
第二章电磁感应现象与电磁感应定律电磁感应定律是反映电磁感应现象的定律。
当一磁束的率于闭合导体回路中变化时,产生感应电动势,即法拉第电磁感应定律。
法拉第电磁感应定律可以推导出电磁感应定律。
电磁感应定律的实验研究和理论分析共同揭示了磁场和电场之间的相互转化关系,以及能量的转化问题。
当闭合回路在磁场中有运动时,由于磁通量的变化,就会在回路中产生感应电动势。
电磁感应定律包括法拉第电磁感应定律和楞兹定律。
电磁感应定律的应用有很多,可以用于发电机的工作原理,是电磁学重要的应用之一。
第三章电磁感应现象的应用电磁感应现象的应用有很多,如变压器、感应电炉、感应电动机、电磁波等。
其中变压器是一种基于电磁感应现象而工作的重要设备。
变压器通过变换线圈的匝数和电流强度,实现了电压的升降,广泛应用于电力传输系统中。
感应电炉则是利用感应电动势的原理实现加热材料,广泛应用于冶金、机械制造、化工等各个行业。
感应电动机则是一种利用电磁感应现象工作的电动机,是现代工业中不可或缺的设备。
(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理知识点梳理
电磁学部分:
1、基本概念:
电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速
2、基本规律:
电量平分原理(电荷守恒)
库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)
电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)
电场力做功的特点及与电势能变化的关系
电容的定义式及平行板电容器的决定式
部分电路欧姆定律(适用条件)
电阻定律
串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)
焦耳定律、电功(电功率)三个表达式的适用范围
闭合电路欧姆定律
基本电路的动态分析(串反并同)
电场线(磁感线)的特点
等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点
常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)
电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率)
电动机的三个功率(输入功率、损耗功率、输出功率)
电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截
距的物理意义)
安培定则、左手定则、楞次定律(三条表述)、右手定则
电磁感应想象的判定条件
感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线
通电自感现象和断电自感现象
正弦交流电的产生原理
电阻、感抗、容抗对交变电流的作用
变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)3、常见仪器:
示波器、示波管、电流计、电流表(磁电式电流表的工作原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。
4、实验部分:
(1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;
(2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);
替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);
(3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);
(4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);
(5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);
(6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);
(7)用多用电表测电阻及黑箱问题;
(8)练习使用示波器;
(9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;
(10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)
5、常见题型:
电场中移动电荷时的功能关系;
一条直线上三个点电荷的平衡问题;
带电粒子在匀强电场中的加速和偏转(示波器问题);
全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);
电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);
通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);
通电导线在匀强磁场中的平衡问题;
带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何知识求解;在有界磁场中的运动时间);
闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;
两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);
带电粒子在复合场中的运动(正交、平行两种情况):
①.重力场、匀强电场的复合场;
②.重力场、匀强磁场的复合场;
③.匀强电场、匀强磁场的复合场;
④.三场合一;
复合场中的摆类问题(利用等效法处理:类单摆、类竖直面内圆周运动);
LC振荡电路的有关问题;。