高中物理电磁学经典例题
通用版高中物理电磁学静电场经典大题例题
(每日一练)通用版高中物理电磁学静电场经典大题例题单选题1、带负电的粒子在某电场中仅受电场力作用,能分别完成以下两种运动:①在电场线上运动,②在等势面上做匀速圆周运动。
该电场可能由A.一个带正电的点电荷形成B.一个带负电的点电荷形成C.两个分立的带等量负电的点电荷形成D.一带负电的点电荷与带正电的无限大平板形成答案:A解析:AB.负电荷在电场线上运动,说明电场线是直线;负电荷在等势面上做匀速圆周运动,说明等势线是圆形曲线,能满足以上两种情况的场源电荷可以是一个带正电的点电荷,不可能是带负电的点电荷,所以A正确、B错误;C.两个分立的带等量正电的点电荷可以满足以上条件,而两个分立的带等量负电的点电荷不能使负电荷完成题中运动,所以C错误;D.题中情况的等势线不能使负电荷做匀速圆周运动,D错误。
故选A。
2、两个质量相同的小球用不可伸长的细线连结,置于场强为E的匀强电场中,小球1和2均带正电,电量分别为和(>).将细线拉直并使之与电场方向平行,如图所示.若将两小球同时从静止状态释放,则释放后细线中的张力T为(不计重力及两小球间的库仑力)A.T=(-)EB.T=(-)EC.T=(+)ED.T=(+)E答案:A解析:,对将两个小球看做一个整体,整体在水平方向上只受到向右的电场力,故根据牛顿第二定律可得a=E(q1+q2)2m小球2分析,受到向右的电场力,绳子的拉力,由于q1>q2,球1受到向右的电场力大于球2向右的电场力,(q1−q2)E,故A正确;所以绳子的拉力向右,根据牛顿第二定律有T+Eq2=ma,联立解得T=12小提示:解决本题关键在于把牛顿第二定律和电场力知识结合起来,在研究对象上能学会整体法和隔离法的应用,分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用隔离法可以较简单的分析问题3、如图所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,粒子在M点和N点时加速度大小分别为a M、a N,速度大小分别为v M、v N,下列判断正确的是()A.a M<a N,v M<v N B.a M<a N,v M>v NC.a M>a N,v M<v N D.a M>a N,v M>v N答案:B解析:N点的电场线比M点的密,故N点的场强大于M点的场强,粒子在N点的加速度大于在M点的加速度,即a M<a N做曲线运动的粒子受到的合外力指向曲线的凹侧,粒子受到的电场力指向曲线的右下方,因为粒子带负电,场强方向沿左上方,粒子由M到N,电场力做负功,所以v M>v N故B正确;ACD错误。
高中物理电磁学综合题举例与分析
高中物理电磁学综合题举例与分析在高中物理学习中,电磁学是一个重要的章节,涉及电场、磁场、电磁感应等内容。
而在考试中,电磁学综合题往往是学生们头疼的难题。
本文将通过举例与分析,为大家介绍几类常见的高中物理电磁学综合题,并给出解题技巧和指导。
一、电场与电势能题目:在一个电场中,一个带电粒子从A点沿着一条直线运动到B点,电势能的变化是多少?分析:这是一个考察电场与电势能的变化关系的题目。
根据电势能的定义,电势能的变化等于电场力对粒子做功。
因此,我们需要计算电场力对粒子在A点到B点的位移上所做的功。
解答:首先,我们需要确定电场的方向和大小。
根据电场的定义,电场力的方向与电场的方向相同。
然后,我们需要计算电场力的大小。
根据库仑定律,电场力与电荷量和电场强度的乘积成正比。
因此,我们可以通过电场强度和带电粒子的电荷量来计算电场力的大小。
接下来,我们计算位移的大小。
由于题目中给出了粒子从A点到B点的直线运动,所以位移的大小等于两点之间的距离。
最后,我们将电场力的大小和位移的大小相乘,得到电场力对粒子做功的大小。
这个值就是电势能的变化。
二、磁场与电流题目:一根长直导线上有电流I,与之平行的磁场B的方向与电流方向相反。
求导线上的磁场强度与电流的关系。
分析:这是一个考察磁场与电流的关系的题目。
根据安培定律,磁场强度与电流的大小成正比,与两者之间的距离成反比。
解答:首先,我们需要确定磁场的方向和大小。
根据题目中的描述,磁场的方向与电流方向相反。
然后,我们需要计算磁场的大小。
根据安培定律,磁场强度与电流的大小成正比,与两者之间的距离成反比。
因此,我们可以通过电流和导线上某一点到导线的距离来计算磁场的大小。
三、电磁感应与电动势题目:一个导体环以速度v进入磁场B中,导体环的面积为A,与磁场的夹角为θ。
求导体环中感应电动势的大小。
分析:这是一个考察电磁感应与电动势的关系的题目。
根据法拉第电磁感应定律,感应电动势与磁场的大小、导体的速度和导体与磁场的夹角有关。
电磁学考试题库及答案高中
电磁学考试题库及答案高中电磁学是物理学中的一个重要分支,它研究的是电荷、电场、电流、磁场以及它们之间的相互作用。
以下是一份高中电磁学考试题库及答案,供同学们学习和练习。
一、选择题1. 电荷间的相互作用遵循以下哪条定律?A. 牛顿第一定律B. 牛顿第二定律C. 库仑定律D. 欧姆定律答案:C2. 以下哪个单位是用来测量电流的?A. 伏特(V)B. 安培(A)C. 欧姆(Ω)D. 法拉(F)答案:B3. 一个电路中,电阻为10Ω,通过它的电流为0.5A,根据欧姆定律,该电路两端的电压是多少伏特?A. 2VB. 5VC. 10VD. 20V答案:B4. 电磁波的传播速度在真空中是多少?A. 299,792,458 m/sB. 300,000 km/sC. 3×10^8 m/sD. 3×10^11 m/s答案:C5. 法拉第电磁感应定律表明什么?A. 电流的产生与磁场的变化有关B. 电流的产生与电场的变化有关C. 磁场的产生与电流的变化有关D. 电场的产生与磁场的变化有关答案:A二、填空题6. 电场强度的定义式是 \( E = \frac{F}{q} \),其中 \( E \) 表示电场强度,\( F \) 表示电荷所受的电场力,\( q \) 表示电荷量。
答案:电场强度7. 电流的国际单位是安培,用符号 \( A \) 表示。
答案:安培8. 一个闭合电路的总电阻为 \( R \),电源的电动势为 \( E \),电路中的电流 \( I \) 可以通过欧姆定律计算,即 \( I = \frac{E}{R} \)。
答案:欧姆定律9. 电磁波的三个主要特性包括:波长、频率和速度。
答案:波长、频率10. 法拉第电磁感应定律表明,当磁场变化时,会在导体中产生感应电动势。
答案:感应电动势三、简答题11. 简述电磁波的产生原理。
答案:电磁波是由变化的电场和磁场相互作用产生的,它们以波的形式向外传播,不需要介质,可以在真空中传播。
高中物理电磁学选择题举例与分析
高中物理电磁学选择题举例与分析电磁学是高中物理中的重要内容之一,也是学生们普遍感到困惑的部分。
在考试中,选择题是常见的形式,因此我们有必要针对一些典型的电磁学选择题进行举例与分析,帮助学生们更好地理解和掌握这一知识点。
一、电磁感应1. 题目:一根导线以速度v匀速穿过均匀磁场B,且与磁场方向垂直。
若导线两端电压为U,则导线的长度为?A. U/vBB. UB/vC. vB/UD. Uv/B解析:根据电磁感应定律,导线在磁场中运动时会感应出电动势。
根据题目中给出的导线两端电压U,我们可以利用电磁感应定律的公式:U = Blv,其中l为导线长度。
将公式改写为l = U/Bv,所以答案选A。
2. 题目:一个平行板电容器,两板间距离为d,板的面积为A。
当电容器中的电荷量Q发生变化时,电容器两板间的电压变化为ΔU。
若将电容器放入磁场中,磁感应强度为B,当电容器两板间的电流发生变化时,电容器两板间的电压变化为ΔU'。
则ΔU与ΔU'之间的关系是?A. ΔU = ΔU'B. ΔU > ΔU'C. ΔU < ΔU'D. 无法确定解析:根据法拉第电磁感应定律,当电容器中的电流发生变化时,会感应出电动势,从而引起电容器两板间的电压变化。
因此,ΔU'与ΔU之间存在一定的关系,但具体大小无法确定。
所以答案选D。
二、电磁波1. 题目:电磁波的传播速度与下列哪个物理量有关?A. 频率B. 波长C. 介质D. 振幅解析:根据电磁波的基本性质,电磁波的传播速度与其波长有关,而与频率、介质和振幅无关。
所以答案选B。
2. 题目:一束电磁波在真空中传播,其频率为f,波长为λ。
若将其传播介质换成折射率为n的介质,那么电磁波的频率和波长分别变为多少?A. f/n,λ/nB. nf,λ/nC. f/n,λnD. nf,λn解析:根据电磁波传播的基本原理,频率在介质中不发生变化,所以频率仍为f。
高考物理电磁学大题练习20题Word版含答案及解析
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
高中物理电磁学基础练习题及答案
高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
高考物理电磁学经典题36道
高三物理 电磁感应计算题集锦1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。
开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。
已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p,不计空气阻力及其它电阻。
求:(1)此时金属棒的速度多大?(2)这一过程中,R 所产生焦耳热Q R 多少?2.(17分)如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。
3、(16分)t =0时,磁场在xOy 平面内的分布如图所示。
其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反。
每个同向磁场区域的宽度均为l 0。
整个磁场以速度v 沿x 轴正方向匀速运动。
⑴若在磁场所在区间,xOy 平面内放置一由n 匝线圈串联而成的矩形导线框abcd ,线框的bc 边平行于x 轴.bc =l B 、ab =L ,总电阻为R ,线框始终保持静止。
通用版高中物理电磁学电磁感应经典大题例题
(每日一练)通用版高中物理电磁学电磁感应经典大题例题单选题1、法拉第通过精心设计的一系列试验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”与“磁学”联系起来。
在下面几个典型的实验设计思想中,所作的推论后来被实验否定的是()A.既然磁铁可使近旁的铁块带磁,静电荷可使近旁的导体表面感应出电荷,那么静止导线上的稳恒电流也可在近旁静止的线圈中感应出电流B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可在近旁的线圈中感应出电流答案:A解析:A.静止导线上的稳恒电流产生稳定的磁场,穿过静止线圈的磁通量没有变化,不能在静止的线圈中感应出电流。
符合题意,A正确;B.稳恒电流产生的磁场是稳定的,穿过在近旁运动的线圈的磁通量可能变化,可在近旁运动的线圈中感应出电流。
不符合题意,B错误;C.静止的磁铁周围的磁场是稳定的,在其近旁运动的导体中可切割磁感线产生感应出电动势。
不符合题意,C 错误;D.运动导线上的稳恒电流在空间产生的磁场是变化的,穿过近旁线圈中的磁通量在变化,可感应出电流。
不符合题意,故D错误。
故选A。
2、图甲为100匝面积为100cm2的圆形金属线圈处于匀强磁场中,磁场方向垂直线框平面,t= 0时刻磁场方向如图甲所示,磁场的磁感应强度B随时间t变化的规律如图乙所示,线框电阻为5Ω。
下列说法正确的是()A.0 ~ 2s内,线圈中感应电动势为0.04VB.第3s内,线框中感应电流为0.8AC.第5s内,线框中感应电流方向沿逆时针方向D.0 ~ 2s内和3s ~ 5s内,通过线框某横截面的电荷量之比为1:2答案:D解析:A.0 ~ 2s内,根据法拉第电磁感应定律有E=nΔΦΔt =nSΔBΔt,n= 100代入数据有E= 4VA错误;B.第3s内指的是2 ~ 3s,由题图可看出在该段时间内,线圈的磁通量不变,则在此段时间内线圈的感应电流为0,B错误;C.第5s内指的是4 ~ 5s,由题图可看出在该段时间内,磁场的方向垂直纸面向外且在增大,根据楞次定律可知,线框中感应电流方向沿顺时针方向,C错误;D.3 ~ 5s内,根据法拉第电磁感应定律有E′=nΔΦΔt =nSΔBΔt,n= 100代入数据有E′ = 8V由于电荷量q=It则有q=ER t=85C,q′ =E′Rt′ =165C则q:q′ = 1:2D正确。
高中物理电磁学练习题(含解析)
高中物理电磁学练习题学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。
许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。
转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。
高中物理电磁场经典高考例题
1.(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。
一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。
已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002m T qB π=。
设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T 0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小V 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。
试求t=T 0 到t=1.5T 0 这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。
2.如图所示,一只用绝缘材料制成的半径为R 的半球形碗倒扣在水平面上,其内壁上有一质量为m 的带正电小球,在竖直向上的电场力F =2mg 的作用下静止在距碗口R 54高处。
已知小球与碗之间的动摩擦因数为μ,则碗对小球的弹力与摩擦力的大小分别为-----------------3.(22分)如图所示,在xOy 平面的第一象限内,分布有沿x 轴负方向的场强E =34×104N/C 的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B 1=0.2 T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B 2的匀强磁场。
在x 轴上有一个垂直于y 轴的平板OM ,平板上开有一个小孔P ,P 处连接有一段长度d =lcm 内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O的粒子源S 可以向第四象限平面内各个方向发射a 粒子,假设发射的a 粒子速度大小v 均为2×105m /s ,打到平板和准直管管壁上的a 粒子均被吸收。
已知a 粒子带正电,比荷为5q m=×l07C /kg ,重力不计,求:(1)a 粒子在第四象限的磁场中运动时的轨道半径和粒子从S 到达P 孔的时间;(2) 除了通过准直管的a 粒子外,为使其余a 粒子都不能进入电场,平板OM 的长度至少是多长?(3) 经过准直管进入电场中运动的a 粒子,第一次到达y 轴的位置与O 点的距离;(4) 要使离开电场的a 粒子能回到粒子源S 处,磁感应强度B 2应为多大?4.(多选题)如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一重力不可忽略,中间带有小孔的正电小球套在细杆上。
高考物理专题电磁学12道精选题附答案
选择题:第一道电场中能的性质1.(2017·全国卷Ⅲ,21,6分)一匀强电场的方向平行于xOy平面,平面内a、b、c三点的位置如图5所示,三点的电势分别为10 V、17 V、26 V.下列说法正确的是()图5A.电场强度的大小为2.5 V/cmB.坐标原点处的电势为1 VC.电子在a点的电势能比在b点的低7 eVD.电子从b点运动到c点,电场力做功为9 eV2.(2017·全国卷Ⅰ,20,6分)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r的关系如图4所示.电场中四个点a、b、c和d的电场强度大小分别为E a、E b、E c和E d.点a到点电荷的距离r a与点a的电势φa已在图中用坐标(r a,φa)标出,其余类推.现将一带正电的试探电荷由a点依次经b、c点移动到d点,在相邻两点间移动的过程中,电场力所做的功分别为W ab、W bc和W cd.下列选项正确的是()图4A.E a∶E b=4∶1 B.E c∶E d=2∶1C.W ab∶W bc=3∶1 D.W bc∶W cd=1∶33.(多选)(2019·全国Ⅱ卷·20)静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则()A.运动过程中,粒子的速度大小可能先增大后减小B.在M、N两点间,粒子的轨迹一定与某条电场线重合C.粒子在M点的电势能不低于其在N点的电势能D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行参考答案与解析1.【解析】 如图所示,设a 、c 之间的d 点电势与b 点电势相同,则ad dc =10-1717-26=79,所以d 点的坐标为(3.5 cm,6 cm),过c 点作等势线bd 的垂线,电场强度的方向由高电势指向低电势.由几何关系可得,cf的长度为3.6 cm ,电场强度的大小E =U d =(26-17) V 3.6 cm=2.5 V/cm ,故选项A 正确;因为Oacb 是矩形,所以有U ac =U Ob ,可知坐标原点O 处的电势为1 V ,故选项B 正确;a 点电势比b 点电势低7 V ,电子带负电,所以电子在a 点的电势能比在b 点的高7 eV ,故选项C 错误;b 点电势比c 点电势低9 V ,电子从b 点运动到c 点,电场力做功为9 eV ,故选项D 正确.2.【解析】 由图可知,a 、b 、c 、d 到点电荷的距离分别为1 m 、2 m 、3 m 、6 m ,根据点电荷的场强公式E =k Q r 2可知,E a E b =r 2b r 2a =41,E c E d =r 2d r 2c =41,故A 正确,B 错误;电场力做功W =qU ,a 与b 、b 与c 、c 与d 之间的电势差分别为3 V 、1 V 、1 V ,所以W ab W bc =31,W bc W cd =11,故C 正确,D 错误.3.答案 AC解析 在两个同种点电荷的电场中,一带同种电荷的粒子在两电荷的连线上自M 点(非两点电荷连线的中点)由静止开始运动,粒子的速度先增大后减小,选项A 正确;带电粒子仅在电场力作用下运动,若运动到N 点的动能为零,则带电粒子在N 、M 两点的电势能相等;仅在电场力作用下运动,带电粒子的动能和电势能之和保持不变,可知若粒子运动到N 点时动能不为零,则粒子在N 点的电势能小于在M 点的电势能,即粒子在M 点的电势能不低于其在N 点的电势能,选项C 正确;若静电场的电场线不是直线,带电粒子仅在电场力作用下的运动轨迹不会与电场线重合,选项B 错误;若粒子运动轨迹为曲线,根据粒子做曲线运动的条件,可知粒子在N 点所受电场力的方向一定不与粒子轨迹在该点的切线平行,选项D 错误.第二道 带电粒子在匀强磁场中的运动:半径和周期公式1.(2019·全国Ⅲ卷·18)如图1,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )图1A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB2.(2017·全国卷Ⅱ,18,6分)如图4,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场,若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则v 2∶v 1 为( )图4A.3∶2B.2∶1C.3∶1 D .3∶ 2参考答案与解析1.答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力有q v B =m v 2R 、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.2.【解析】 当粒子在磁场中运动半个圆周时,打到圆形磁场边界的位置距P 点最远,则当粒子射入的速率为v 1,轨迹如图甲所示,设圆形磁场半径为R ,由几何知识可知,粒子运动的轨道半径为r 1=R cos 60°=12R ;若粒子射入的速率为v 2,轨迹如图乙所示,由几何知识可知,粒子运动的轨道半径为r 2=R cos 30°=32R ;根据轨道半径公式r =m v qB可知,v 2∶v 1=r 2∶r 1=3∶1,故选项C 正确.甲 乙第三道右手螺旋定则(磁场的叠加)和左手定则1.(2017·全国卷Ⅰ,19,6分)如图3,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反.下列说法正确的是()图3A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶ 3D.L1、L2和L3单位长度所受的磁场作用力大小之比为3∶3∶1参考答案与解析1.【解析】同向电流相互吸引,反向电流相互排斥.对L1受力分析,如图甲所示,可知L1所受磁场作用力的方向与L2、L3所在的平面平行,故A错误;对L3受力分析,如图乙所示,可知L3所受磁场作用力的方向与L1、L2所在的平面垂直,故B正确;设三根导线间两两之间的相互作用力的大小为F,则L1、L2受到的磁场作用力的合力大小均等于F,L3受到的磁场作用力的合力大小为3F,即L1、L2、L3单位长度所受的磁场作用力大小之比为1∶1∶3,故C正确,D错误.第四道带电粒子在复合场中的受力和运动1.(2017·全国卷Ⅰ,16,6分)如图1,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c电荷量相等,质量分别为m a、m b、m c,已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动.下列选项正确的是()图1A.m a>m b>m c B.m b>m a>m cC.m c>m a>m b D.m c>m b>m a参考答案与解析1.【解析】设三个微粒的电荷量均为q,a在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即m a g=qE①b在纸面内向右做匀速直线运动,三力平衡,则m b g=qE+q v B②c在纸面内向左做匀速直线运动,三力平衡,则m c g+q v B=qE③比较①②③式得:m b>m a>m c,选项B正确.第五道 法拉第电磁感应定律,电荷量Q=It1.(2018年全国1卷)如图1,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,QM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( )图1A.54B.32C.74 D .22.(交变电流有效值计算)(2018年全国3卷)一电阻接到方波交流电源上,在一个周期内产生的热量为Q 方;若该电阻接到正弦交流电源上,在一个周期内产生的热量为Q 正.该电阻上电压的峰值均为u 0,周期均为T ,如图1所示.则Q 方∶Q 正等于( )图1A .1∶ 2B.2∶1 C .1∶2 D .2∶1参考答案与解析1.答案 B解析 在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B ⎝⎛⎭⎫12πr 2-14πr 2Δt 1根据闭合电路欧姆定律,有I 1=E 1R且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2Rq 2=I 2Δt 2又q 1=q 2,即B ⎝⎛⎭⎫12πr 2-14πr 2R =(B ′-B )12πr 2R所以B ′B =32. 2.答案 D解析 由有效值概念知,一个周期内产生热量Q 方=u 20R ·T 2+u 20R ·T 2=u 20R T ,Q 正=U 2有效R T =(u 02)2RT =12·u 20RT ,故知,Q 方∶Q 正=2∶1.第六道法拉第电磁感应定律,右手定则,左手定则1.(2017·全国卷Ⅱ,20,6分)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图6(a)所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是()图6A.磁感应强度的大小为0.5 TB.导线框运动的速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N2.电磁感应定律和动量守恒(多选)(2019·全国Ⅲ卷·19)如图1,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()图1参考答案与解析1.【解析】 由Et 图象可知,导线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2m /s =0.5 m/s ,选项B 正确;由图象可知,E =0.01 V ,根据E =Bl v 得,B =E l v =0.010.1×0.5T =0.2 T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005A =2 A, 所受的安培力大小为F =BIl =0.2×2×0.1 N =0.04 N ,选项D 错误.2.答案 AC解析 棒ab 以初速度v 0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab 受到与v 0方向相反的安培力的作用而做变减速运动,棒cd 受到与v 0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv =v 1-v 2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab 和棒cd 的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.实验题部分第七道测电阻伏安特性1.(2017·全国卷Ⅰ,23,10分)某同学研究小灯泡的伏安特性,所使用的器材有:小灯泡L(额定电压3.8 V,额定电流0.32 A);电压表(量程3 V,内阻3 kΩ);电流表(量程0.5 A,内阻0.5 Ω);固定电阻R0(阻值1 000 Ω);滑动变阻器R(阻值0~9.0 Ω);电源E(电动势5 V,内阻不计);开关S;导线若干.(1)实验要求能够实现在0~3.8 V的范围内对小灯泡的电压进行测量,画出实验电路原理图.(2)实验测得该小灯泡伏安特性曲线如图7(a)所示.图7由实验曲线可知,随着电流的增加小灯泡的电阻______(填“增大”“不变”或“减小”),灯丝的电阻率________(填“增大”“不变”或“减小”).(3)用另一电源E0(电动势4 V,内阻1.00 Ω)和题给器材连接成图(b)所示的电路,调节滑动变阻器R的阻值,可以改变小灯泡的实际功率.闭合开关S,在R的变化范围内,小灯泡的最小功率为________ W,最大功率为________ W.(结果均保留两位小数)2.二极管的伏安曲线(2019·全国Ⅱ卷·23)某小组利用图1(a)所示的电路,研究硅二极管在恒定电流条件下的正向电压U与温度t的关系,图中V1和V2为理想电压表;R为滑动变阻器,R0为定值电阻(阻值100 Ω);S为开关,E为电源.实验中二极管置于控温炉内,控温炉内的温度t由温度计(图中未画出)测出.图(b)是该小组在恒定电流为50.0 μA时得到的某硅二极管U-t关系曲线.回答下列问题:图1(1)实验中,为保证流过二极管的电流为50.0 μA ,应调节滑动变阻器R ,使电压表V 1的示数为U 1=________ mV ;根据图(b)可知,当控温炉内的温度t 升高时,硅二极管正向电阻________(填“变大”或“变小”),电压表V 1示数________(填“增大”或“减小”),此时应将R 的滑片向________(填“A ”或“B ”)端移动,以使V 1示数仍为U 1.(2)由图(b)可以看出U 与t 成线性关系.硅二极管可以作为测温传感器,该硅二极管的测温灵敏度为|ΔU Δt|=________×10-3 V/℃(保留2位有效数字).参考答案与解析1.【解析】(1)电压表量程为3 V,要求能够实现在0~3.8 V的范围内对小灯泡的电压进行测量,需要给电压表串联一个定值电阻扩大量程,题目中要求小灯泡两端电压从零开始,故滑动变阻器用分压式接法,小灯泡的电阻R L=UI=3.80.32Ω=11.875 Ω,因R LR A<R VR L,故电流表用外接法,实验电路原理图如图所示.(2)由IU图象知,图象中的点与坐标原点连线的斜率在减小,表示灯泡的电阻随电流的增大而增大,根据电阻定律R=ρlS知,灯丝的电阻率增大.(3)当滑动变阻器的阻值最大为9.0 Ω时,电路中的电流最小,灯泡实际功率最小,由E=U +I(R+r)得U=-10I+4,作出图线①如图所示.由交点坐标可得U1=1.78 V,I1=221 mA,P1=U1I1≈0.39 W;当滑动变阻器电阻值R=0时,灯泡消耗的功率最大,由E=U+I(R+r)得,I=-U+4,作出图线②如图所示.由交点坐标可得,U2=3.70 V,I2=315 mA,最大的功率为P2=U2I2≈1.17 W.2.答案(1)5.00变小增大B(2)2.8解析(1)实验中硅二极管与定值电阻R0串联,由欧姆定律可知,定值电阻两端电压U1=IR0=50.0 μA×100 Ω=5.00 mV;由题图(b)可知,当控温炉内温度升高时,硅二极管两端电压减小,又题图(b)对应的电流恒为50.0μA,可知硅二极管的正向电阻变小,定值电阻R0两端电压增大,即电压表V1示数增大,应增大滑动变阻器接入电路的阻值以减小电路中的电流,从而使电压表V 1示数保持不变,故应将R 的滑片向B 端移动.(2)由题图(b)可知⎪⎪⎪⎪ΔU Δt =0.44-0.3080-30V/℃=2.8×10-3 V/℃.第八道电表改装及校准1.(2019·全国Ⅰ卷·23)某同学要将一量程为250 μA的微安表改装为量程为20 mA的电流表.该同学测得微安表内阻为1 200 Ω,经计算后将一阻值为R的电阻与微安表连接,进行改装.然后利用一标准毫安表,根据图1(a)所示电路对改装后的电表进行检测(虚线框内是改装后的电表).图1(1)根据图(a)和题给条件,将图(b)中的实物连线.(2)当标准毫安表的示数为16.0 mA时,微安表的指针位置如图2所示,由此可以推测出改装的电表量程不是预期值,而是________.(填正确答案标号)图2A.18 mA B.21 mAC.25 mA D.28 mA(3)产生上述问题的原因可能是________.(填正确答案标号)A.微安表内阻测量错误,实际内阻大于1 200 ΩB.微安表内阻测量错误,实际内阻小于1 200 ΩC.R值计算错误,接入的电阻偏小D.R值计算错误,接入的电阻偏大(4)要达到预期目的,无论测得的内阻值是否正确,都不必重新测量,只需要将阻值为R的电阻换为一个阻值为kR的电阻即可,其中k=________.2.(2019·全国Ⅲ卷·23)某同学欲将内阻为98.5 Ω、量程为100 μA的电流表改装成欧姆表并进行刻度和校准,要求改装后欧姆表的15 kΩ刻度正好对应电流表表盘的50 μA刻度.可选用的器材还有:定值电阻R0(阻值14 kΩ),滑动变阻器R1(最大阻值1 500 Ω),滑动变阻器R2(最大阻值500 Ω),电阻箱(0~99 999.9 Ω),干电池(E=1.5 V,r=1.5 Ω),红、黑表笔和导线若干.图1(1)欧姆表设计将图1中的实物连线组成欧姆表.欧姆表改装好后,滑动变阻器R接入电路的电阻应为________ Ω;滑动变阻器选________(填“R1”或“R2”).(2)刻度欧姆表表盘通过计算,对整个表盘进行电阻刻度,如图2所示.表盘上a、b处的电流刻度分别为25和75,则a、b处的电阻刻度分别为________、________.图2(3)校准红、黑表笔短接,调节滑动变阻器,使欧姆表指针指向________ kΩ处;将红、黑表笔与电阻箱连接,记录多组电阻箱接入电路的电阻值及欧姆表上对应的测量值,完成校准数据测量.若校准某刻度时,电阻箱旋钮位置如图3所示,则电阻箱接入的阻值为________ Ω.图3参考答案与解析1.答案 (1)连线如图所示(2)C (3)AC (4)9979解析 (1)量程为250 μA 的微安表改装成量程为20 mA 的电流表,量程扩大了80倍,需要将定值电阻与微安表并联,然后根据题图(a)的原理图连线.(2)当标准毫安表示数为16.0 mA 时,对应的微安表读数为160 μA ,说明量程扩大了100倍,因此所改装的电表量程是25 mA ,选项C 正确.(3)根据I g R g =(I -I g )R 得:I =I g R g R+I g 出现该情况可能是微安表内阻测量错误,实际电阻大于1 200 Ω,或者并联的电阻R 计算错误,接入的电阻偏小,选项A 、C 正确.(4)设微安表的满偏电压为U ,则对并联的电阻R 有U =(25-0.25)×10-3RU =(20-0.25)×10-3kR解得k =9979. 2.答案 (1)如图所示 900 R 1(2)45 5 (3)0 35 000.0解析 (1)由题知当两表笔间接入15 kΩ的电阻时,电流表示数为50 μA ,由闭合电路欧姆定律有I g 2=E R g +r +R x +R 0+R,代入数据解得R =900 Ω,所以滑动变阻器选择R 1.(2)欧姆表的内阻R g ′=R g +r +R 0+R =15 kΩ,当电流为25 μA 时,有I g 4=ER g ′+R x ′可得R x ′=45 kΩ;当电流为75 μA 时,有3I g 4=ER g ′+R x ″可得R x ″=5 kΩ.(3)红、黑表笔短接,调节滑动变阻器,使欧姆表指针指向0 kΩ处.题图中电阻箱读数为35 000.0 Ω.第九题多用表的使用1.(2017·全国卷Ⅲ,23,9分)图7(a)为某同学组装完成的简易多用电表的电路图.图中E是电池;R1、R2、R3、R4和R5是固定电阻,R6是可变电阻;表头的满偏电流为250 μA,内阻为480 Ω.虚线方框内为换挡开关,A端和B端分别与两表笔相连.该多用电表有5个挡位,5个挡位为:直流电压1 V挡和5 V挡,直流电流1 mA挡和2.5 mA 挡,欧姆×100 Ω挡.图7(1)图(a)中的A端与________(填“红”或“黑”)色表笔相连接.(2)关于R6的使用,下列说法正确的是________(填正确【答案】标号).A.在使用多用电表之前,调整R6使电表指针指在表盘左端电流“0”位置B.使用欧姆挡时,先将两表笔短接,调整R6使电表指针指在表盘右端电阻“0”位置C.使用电流挡时,调整R6使电表指针尽可能指在表盘右端电流最大位置(3)根据题给条件可得R1+R2=________Ω,R4=________Ω.(4)某次测量时该多用电表指针位置如图(b)所示.若此时B端是与“1”相连的,则多用电表读数为__________;若此时B端是与“3”相连的,则读数为________;若此时B端是与“5”相连的,则读数为____________.(结果均保留3位有效数字)参考答案与解析1.【解析】(1)当B端与“3”连接时,内部电源与外部电路形成闭合回路,电流从A端流出,故A端与黑色表笔相连接.(2)在使用多用电表之前,调整表头螺丝使电表指针指在表盘左端电流“0”位置,选项A错误;使用欧姆挡时,先将两表笔短接,调整R6使电表指针指在表盘右端电阻“0”位置,选项B正确;使用电流挡时,电阻R6不在闭合电路中,调节无效,选项C错误.(3)根据题给条件可知,当B端与“2”连接时,表头与R1、R2组成的串联电路并联,此时为量程1 mA的电流挡,由并联电路两支路电流与电阻成反比知,R gR1+R2=1-0.250.25=31,解得R1+R2=160 Ω.当B端与“4”连接时,表头与R1、R2组成的串联电路并联后再与R4串联,此时为量程1 V 的电压挡,表头与R1、R2组成的串联电路并联后再与R4串联,此时为量程1 V的电压挡,表头与R1、R2组成的串联电路并联总电阻为120 Ω,两端电压为0.12 V,由串联电路中电压与电阻成正比知:R4两端电压为0.88 V,则R4电阻为880 Ω.(4)若此时B端是与“1”连接的,多用电表作为直流电流表使用,量程为2.5 mA,读数为1.47 mA.若此时B端是与“3”连接的,多用电表作为欧姆表使用,读数为11×100 Ω=1.10 kΩ.若此时B端是与“5”连接的,多用电表作为直流电压表使用,量程为5 V,读数为2.94 V.计算题部分第十道带电粒子在变化磁场中的匀速圆周运动1.(2017·全国卷Ⅲ,24,12分)如图8,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0 区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)图8(1)粒子运动的时间;(2)粒子与O点间的距离.2.(2019·全国Ⅰ卷·24)如图1,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求图1(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x轴的时间.参考答案与解析1.【解析】 (1)在匀强磁场中,带电粒子做圆周运动.设在x ≥0区域,圆周半径为R 1;在x <0区域,圆周半径为R2.由洛伦兹力公式及牛顿运动定律得 qB 0v 0=m v 20R 1①qλB 0v 0=m v 20R 2②粒子速度方向转过180°时,所需时间t 1为 t 1=πR 1v 0③粒子再转过180°时,所需时间t 2为 t 2=πR 2v 0④联立①②③④式得,所求时间为 t =t 1+t 2=πm B 0q (1+1λ)⑤ (2)由几何关系及①②式得,所求距离为 d =2(R 1-R 2)=2m v 0B 0q (1-1λ)⑥2.答案 (1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33 解析 (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33⑦第十一道带电粒子在匀强电场的类平抛运动1.(2019·全国Ⅱ卷·24)如图1,两金属板P、Q水平放置,间距为d.两金属板正中间有一水平放置的金属网G,P、Q、G的尺寸相同.G接地,P、Q的电势均为φ(φ>0).质量为m,电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸面水平射入电场,重力忽略不计.图1(1)求粒子第一次穿过G时的动能,以及它从射入电场至此时在水平方向上的位移大小;(2)若粒子恰好从G的下方距离G也为h的位置离开电场,则金属板的长度最短应为多少?2.(2017·全国卷Ⅰ,25,20分)真空中存在电场强度大小为E1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变.持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点.重力加速度大小为g.(1)求油滴运动到B点时的速度大小;(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t1和v0应满足的条件.已知不存在电场时,油滴以初速度v0做竖直上抛运动的最大高度恰好等于B、A两点间距离的两倍.参考答案与解析1.答案 (1)12m v 02+2φd qh v 0mdhqφ(2)2v 0mdh qφ解析 (1)PG 、QG 间场强大小相等,均为E .粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有E =2φd ①F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有 qEh =E k -12m v 02③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移为l ,则有h =12at 2④l =v 0t ⑤联立①②③④⑤式解得 E k =12m v 02+2φd qh ⑥l =v 0mdhqφ⑦ (2)若粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短.由对称性知,此时金属板的长度为L =2l =2v 0mdhqφ⑧ 2.【解析】 (1)设该油滴带正电,油滴质量和电荷量分别为m 和q ,油滴速度方向向上为正.油滴在电场强度大小为E 1的匀强电场中做匀速直线运动,故匀强电场方向向上.在t =0时,电场强度突然从E 1增加至E 2时,油滴做竖直向上的匀加速运动,加速度方向向上,大小a 1满足qE 2-mg =ma 1① 油滴在t 1时刻的速度为 v 1=v 0+a 1t 1②电场强度在t 1时刻突然反向,油滴做匀变速直线运动,加速度方向向下,大小a 2满足 qE 2+mg =ma 2③油滴在t 2=2t 1时刻的速度为 v 2=v 1-a 2t 1④由①②③④式得 v 2=v 0-2gt 1⑤(2)由题意,在t =0时刻前有 qE 1=mg ⑥油滴从t =0到t 1时刻的位移为 x 1=v 0t 1+12a 1t 21⑦油滴在从t 1时刻到t 2=2t 1时刻的时间间隔内的位移为 x 2=v 1t 1-12a 2t 21⑧由题给条件有v 20=2g ×2h =4gh ⑨ 式中h 是B 、A 两点之间的距离. 若B 点在A 点之上,依题意有 x 1+x 2=h ⑩由①②③⑥⑦⑧⑨⑩式得 E 2=[2-2v 0gt 1+14(v 0gt 1)2]E 1⑪为使E 2>E 1,应有 2-2v 0gt 1+14(v 0gt 1)2>1⑫即当0<t 1<(1-32)v 0g⑬ 或t 1>(1+32)v 0g⑭ 才是可能的;条件⑬式和⑭式分别对应于v 2>0和v 2<0两种情形. 若B 在A 点之下,依题意有 x 2+x 1=-h ⑮由①②③⑥⑦⑧⑨⑮式得 E 2=[2-2v 0gt 1-14(v 0gt 1)2]E 1⑯为使E 2>E 1,应有 2-2v 0gt 1-14(v 0gt 1)2>1⑰即t 1>(52+1)v 0g⑱ 另一解为负,不符合题意,舍去.第十二道 带电粒子在组合场中的运动:电场中类平抛运动,磁场中的匀速圆周运动1.(2018年全国1卷)(20分)如图1,在y >0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y <0的区域存在方向垂直于xOy 平面向外的匀强磁场.一个氕核11H 和一个氘核21H 先后从y 轴上y =h 点以相同的动能射出,速度方向沿x 轴正方向.已知11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场.11H 的质量为m ,电荷量为q .不计重力.求:图1(1)11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;(3)21H 第一次离开磁场的位置到原点O 的距离.2.(轨迹的对称性)(2018年全国2卷)(20分)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图1所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行.一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出.不计重力.图1(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N 点的时间.。
高中物理电磁学磁场典型例题
(每日一练)高中物理电磁学磁场典型例题单选题1、关于磁感线的描述,下列哪些是正确的()A.磁感线从磁体的N极出发到磁体的S极终止B.自由转动的小磁针放在通电螺线管内部,其N极指向螺线管的南极C.磁感线上每一点的切线方向就是该点的磁场方向D.通电直导线的磁感线分布是以导线上任意点为圆心垂直于导线的多组等间距同心圆答案:C解析:A.磁感线在磁铁的外部,由N到S,在内部,由S到N,形成闭合曲线,故A错误;B.螺线管内部磁感线由S极指向N极,小磁针N极所指的方向即为磁场的方向,故小磁针放在通电螺线管内部,其N极指向螺线管的N极即北极,故B错误;C.磁感线的疏密表示磁场的强弱,磁感线切线的方向表示磁场的方向,故C正确;D.通电直导线的磁场距离通电直导线越远则磁场越弱,故以导线上任意点为圆心垂直于导线的多组同心圆越往外越稀疏,不是等间距,故D错误。
故选C。
2、如图所示,在MNQP中有一垂直纸面向里匀强磁场,质量和电荷量都相等的带电粒子a、b、c以不同的速率从O点沿垂直于PQ的方向射入磁场,图中实线是它们的轨迹。
已知O是PQ的中点,不计粒子重力,下列说法中正确的是()A.粒子a带负电,粒子b、c带正电B.粒子c在磁场中运动的时间最长C.粒子a在磁场中运动的周期最小D.射入磁场时粒子a的速率最小答案:B解析:A.根据左手定则可知α粒子带正电,b、c粒子带负电,故A错误;BC.根据Bvq=m4π2r T2T=2πr v可知T=2πm Bq即各粒子的周期一样,粒子c的轨迹对应的圆心角最大,所以粒子c在磁场中运动的时间最长,故B正确,C 错误;D.由洛伦兹力提供向心力Bvq=mv2 r可知v=Bqr m可知b的速率最大,c的速率最小,故D错误。
故选B。
3、如图所示,边长为L的正六边形abcd e f区域内存在垂直纸面向里的匀强磁场,磁感应强度大小为B,正六边形中心O处有一粒子源,可在纸面内向各个方向发射不同速率带正电的粒子,已知粒子质量均为m、电荷量均为q,不计粒子重力和粒子间的相互作用,下列说法正确的是()A.可能有粒子从ab边中点处垂直ab边射出B.从a点垂直af离开正六边形区域的粒子在磁场中的运动时间为πm6qBC.垂直cf向上发射的粒子要想离开正六边形区域,速率至少为(2√3−3)qBLmD.要想离开正六边形区域,粒子的速率至少为√3qBL2m答案:C解析:A.若粒子从ab边中点处垂直ab边射出,则圆心一定在在ab边上,设与ab边交点为g,则圆心在Og的中垂线上,而中垂线与ab边平行,不可能相交,故A错误;B.同理做aO垂线出射速度垂线交于f点,即f为圆心,则对于圆心角为60°,所以粒子在磁场中的运动时间为t=1 6 T且T=2πm qB解得t=πm 3qB故B错误;C.垂直cf向上发射的粒子刚好与能离开磁场时,轨迹与边af相切,则由几何关系得L=r+r sin60°由qvB=mv 2r得r=mv qB联立解得v=(2√3−3)qBLm故C正确;D.因为O点距六边形的最近距离为d=Lcos30°=√3 2L即此时对应刚好离开磁场的最小直径,所以最小半径为r=d 2又r=mv qB所以最小速度为v min=√3qBL 4m故D错误。
高考物理电磁学大题习题20题Word版含答案及解析
x
tan
,t2
x3m
,t2
vqB
过MO后粒子做类平抛运动,设运动的时间为t
3,则:3R
1
3
又:v
E3m
,t3
BqB
2
则速度最大的粒子自O进入磁场至重回水平线POQ所用的时间tt1t2t3
联立解得:t
或
qB
(3)由题知速度大小不同的粒子均要水平通过OM,其飞出磁场的位置均应在ON的连线上,故磁场范围的最小面积S是速度最大的粒子在磁场中的轨迹与ON所围成的面积。扇形
OON的面积S1R2
3
OO N的面积为:
又SSS
S
3
R2
4
联立解得
12
m2E2
q2B4
或(3)
3
m2E2
q2B4。
2.如图甲所示,两平行金属板接有如图乙所示随时间t变化的电压U,两板间电场可看作均匀的,且两金属板外无电场,两金属板长L=0.2m,两板间距离d=0.2m.在金属板右侧边界MN的区域有一足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度为B,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子速度v0
【答案】(1)。方向:斜向右上方或斜向右下方,与初速
度方向成45°夹角;(2)s,距离s与粒子在磁场中运行速度的大小无关,
s为定值。
【解析】
能射出电场,也可能只有部分粒子能射出电场,设偏转的电压为U0时,粒子刚好能经过极板的右边缘射出,则:
解得U0=100V
3.如图所示,在倾角θ=37°的光滑绝缘斜面内有两个质量分别为4m和m的正方形导线框a、
b电阻均为R,边长均为l;它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间
高中物理电磁学部分试题精选.
电磁学部分一、在下列各踢的四个选项中,1~60小题只有一个选项是符合题目要求的,61~70小题有两个或两个以上的选项是符合题目要求的。
1. 下列关于电磁波的叙述中正确的是( )A. 电磁波是变化的电磁场由发生区域向远处的传播B .电磁波在任何介质中的传播速度为3×108m/sC. 电磁波由真空进入介质传播时, 波长将变化D. 电磁波不能产生干涉、衍射现象2. 19世纪20年代, 以数学家赛贝克为代表的科学家己认识到温度差会引起电流. 安培考虑到地球自转造成了被太阳照射后正面与背面的温度差, 从而提出如下假设:地球磁场是绕地球的环形电流引起的. 该假设中电流的方向是 ( )A. 由西向东垂直磁子午线B. 由东向西垂直磁子午线C .由南向北沿磁子午线方向 D. 由赤道向两极沿磁子午线方向3. 如图所示,A 、B 是两个外形相同的正六面体, 其中A 由金属板焊接而成,B 由玻璃板粘合而成, 在A 、B 之间有一个由电容器C 、电感线圈L, 干电池E 和单刀双掷开关S 组成的电路.初始时将S 置于位置l, 当电路处于稳定状态后, 不考虑其它干扰 , 将有( )A. 保持开关S 在1位置不变 ,A 内没有电磁波传播, B 内有电磁波传播B. 保持开关S 在1位置不变 ,A 和 B 内都有电磁波传播C. 将开关 S 掷于2位置后 ,A 内没有电磁波传播 ,B 内有电磁波传播D. 无论开关 S 置于何处 ,A 内均没有电磁波传播 ,B 内总有电磁波传播4. 如图,一绝缘细杆的两端各固定着一个小球,两小球带有等量异号的电荷,处于匀强电场中,电场方向如图中箭头所示。
开始时,细杆与电场方向垂直,即在图中Ⅰ所示的位置;接着使细杆绕其中心转过90”,到达图中Ⅱ所示的位置;最后,使细杆移到图中Ⅲ所示的位置。
以W 1表示细杆由位置Ⅰ到位置Ⅱ过程中电场力对两小球所做的功,W 2表示细杆由位置Ⅱ到位置Ⅲ过程中电场力对两小球所做的功,则有 A .W 1=0,W 2≠0 B .W 1=0,W 2=0 C .W 1≠0,W 2=0 D .W 1≠0,W 2≠05. 宇航员在探测某星球时, 发现该星球均匀带电,且电性为负, 电量为Q, 表面无大气 .在一次实验中, 宇航员将一带电-q (q 《 Q)的粉尘置于离该星球表面h 高处, 该粉尘恰处于悬浮状态;宇航员又将此粉尘带到距该星球表面2h 处, 无初速释放, 则此带电粉尘将( )A. 背向星球球心方向飞向太空B. 仍处于悬浮状态C. 沿星球自转的线速度方向飞向太空D. 向星球球心方向下落6. 等量异种点电荷的连线和其中垂线如图所示, 现将一个带负电的检验电荷先从图中a 点沿直线移到b 点, 再从b 点沿直线移到C 点. 则检验电荷在此全过程中( )A. 所受电场力的方向将发生改变B .所受电场力的大小恒定C. 电势能一直减小D. 电势能先不变后减小7. 空间中有一个孤立的带负电的金属球, 电荷量为q, 球半径为R, 球外a 、b 两点距球心的距离分别为2R 和4R, 如图所示 , 已知在带电金属球的电场中这两点的电场强度分别为a E 、b E , 电势分别为a φ、b φ关于这个电场有以下判断① a E >b E ② a φ > b φ③ 若在a 点引入一个带正电、电荷量也是q 的点电荷, 则该点电荷受到的电场力应是 F=q a E , 其中a E 是没有引人点电荷时, 金属球在a 点所产生的场强④ 若把该正点电荷从a 点移到b 点 , 电势能一定增大下述四个选项中包含全部正确说法的是( )A. ①②③B. ①③C. ①③④D. ①④8.空间存在一匀强磁场B, 其方向垂直纸面向里,另有一个点电荷+Q 的电场, 如图所示 .一带电-q 的粒子以初速度v 0从某处垂直电场、磁场入射, 初位置到点电荷的距离为r, 则粒子在电、磁场中的运动轨迹不可能为( )A. 以点电荷十Q 为圆心 , 以r 为半径的在纸平面内的圆周B. 开始阶段在纸面内向右偏的曲线C. 开始阶段在纸面内向左偏的曲线D. 沿初速度v 0方向的直线9. 不带电的金属球A 的正上方有一点, 该处有带电液滴不断地自静止开始落下, 液滴到达A 球后将电荷全部传给A 球, 不计其它影响, 则下列叙述中正确的是( )A. 第一液滴做自由落体运动 , 以后的液滴做变加速运动, 都能到达A 球B. 当液滴下落到重力等于电场力位置时, 液滴速度为零C. 当液滴下落到重力等于电场力位置时, 开始做匀速运动D. 一定有液滴无法到达A 球10. 如图所示, 在竖直放置的光滑半圆弧绝缘细管的圆心O 处固定一点电荷, 将质量为m, 带电量为q 的小球从圆弧管的水平直径端点A 由静止释放, 小球沿细管滑到最低点B 时, 对管壁恰好无压力, 则固定于圆心处的点电荷在AB 弧中点处的电场强度的大小为( )A. E=mg/qB. E=2mg/qC. E=3mg/qD. E =4mg/q11. 内壁光滑, 水平放置的玻璃圆环内, 有一直径略小于环口直径的带正电的小球, 以速度V 0沿逆时针方向匀速转动, 如图所示, 若在此空间突然加上方向竖直向上、磁感应强 度B 随时间成正比增加的变化磁场, 设运动过程中小球带电量不变,则正确的是( )A. 小球对玻璃环的压力一定不断增大B. 小球受到的磁场力一定不断增大C. 小球先沿逆时针方向减速运动一段时间后沿顺时针方向加速运动D. 磁场力对小球先做负功后做正功12. A 、B 是电场中的一条直线形的电场线, 若将一个带正电的点电荷从A 点由静止释放, 它在沿电场线从A 向B 运动过程中的速度图象如图所示 .比较A 、B 两点的电势ϕ和场强E ,下列说法中正确的是( )A .A ϕ<B ϕ,B A E E < B.B A ϕϕ<,B A E E >C. B A ϕϕ>,B A E E >D.B A ϕϕ>, B A E E <13. 传感器是把非电学量(如温度、速度、压力等)的变化转换为电学量变化的一种元件. 在自动控刽中有着广泛的应用. 如图所示是种测量液面高度h 的电容式传感器的示意图,从电容C 大小的变化就能反映液面的升降情况 .关于两者关系的说法中正确的是( )A. C 增大表示h 减小B .C 减小表示h 增大C .C 减小表示h 较小D. C 的变化与h 变化无直接关系14. 示波器可以视为加速电场与偏转电场的组合,若已知前者的电压为U 1 , 后者电压为U 2、极板长为L 、板间距为d ,且电子被加速前的初速度可忽略, 则下面关于示波器的灵敏度(偏转电场中每单位偏转电压所引起的偏转量h/U 2称“灵敏度”)与加速电场、偏转电场的关系中正确的是( )A. L 越大,灵敏度越大B. d 越大, 灵敏度越大C .U 1越大,灵敏度越小 D. 灵敏度与U 2无关15.要使平行板电容器两极板间电势差加倍, 同时极板间的场强减半,下述的四种方法中应采取哪种( )A .两极板的电荷量加倍,板间距离为原来的4倍B .两极板的电荷量减半, 板间距离为原来的4倍C .两极板的电荷量加倍, 板间距离为原来的2倍D .两极板的电荷量减半, 板间距离为原来的2倍16.传感器是一种采集信息的重要器件, 如图所示的是一种测定压力的电容式传感器,当待测压力F 作用于可动膜片的电极上时,以下说法中正确的是( )① 若F 向上压膜片电极, 电路中有从a 到b 的电流② 若F 向上压膜片电极, 电路中有从b 到a 的电流③ 若F 向上压膜片电极, 电路中不会出现电流④ 若电流表有示数 , 则说明压力 F 发生变化⑤ 若电流有有示数 , 则说明压力 F 不发生变化A. ②④B. ①④C. ③⑤D. ①⑤17. 如图所示, 质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点 (不计P 、Q 的重力以及它们间的相互作用),则从开始射入到打到上极板的过程, 下列说法中不正 确的是( )A. 它们运动的时间相等B. 它们所带的电荷量之比21=Q P q q C. 它们的电势能减小量之比21=∆∆Q P E E D. 它们的动量增量之比21=∆∆Q P P P 18. 电阻R 与两个完全相同的二极管连成如图所示的电路,a 、b 端加上电压ab U =1OV 时,a 点的电流为0.01A ;当ab U =-0.2V 肘 ,a 点的电流也为0.0lA,电阻R 的阻值为( )A .1020Ω B. 1000Ω C. 980Ω D. 20Ω19. 有一内阻为4.4Ω的直流电动机和一盏标有“110V 6OW ”的灯泡串联后接在电压恒定为22OV 的电路两端, 灯泡正常发光 , 则( )A. 电动机的输入功率为 60 WB. 电动机的发热电功率为 60 WC. 电路消耗的总功率为 6OWD. 电动机的输出功率为 6O W20. 如图所示的电路, 开关S 原来是闭合的, 当S 开时, 电流表的示数变化情况是 ( 电池内阻符号为 r )( )A. r=0 时示数不变 ,r≠0时示数变大B. r=0 时、 r≠0时示数都变大C .r=0 时示数变小 ,r ≠0时示数变大D. r=0时示数变大,r ≠0时示数变小21. 如图所示是一火警报警器的部分电路示意图. 其中R2为用半导体热敏材料制成的传感器, 电流表为值班室的显示器,a、b之间接报警器. 当传感器R2所在处出现火情时, 显示器的电流I、报警器两端的电压U的变化情况是( )A. I 变大, U 变大B. I 变大 ,U 变小C. I 变小 ,U 变大D. I 变小 ,U 变小22. 如图所示的电路图是测量电流表G内阻的实验电路图, 根据实验原理分析可知( )A. 测量值比真实值偏大B. 测量值比真实值偏小C. 测量值与真实值相等D. 测量值与真实值是否相等难以确定23. 如图所示的电路中,电阻R1=R2,外加电压U保持不变,在双刀双掷开关分别掷向3、6位置和掷向1 、4位置的两种情况下,电路在单位时间里放出的总热量之比是( )A.4 :1B.l :4C.2 :1D.1 :224. 在如图所示电路中,电源的电动势为E,内电阻为r,当变阻器R3的滑动触头P向b端移动时( )A. 电压表示数变大,电流表示数变小B. 电压表示数变小,电流表示数变大C. 电压表示数变大,电流表示数变大D. 电压表示数变小,电流表示数变小25. 如图所示是一种测量电阻阻值的实验电路图, 其中R1、R2是未知的定值电阻,R3是保护电阻. R是电阻箱,Rx为待测电阻. V0是一只零刻度在中央、指针可以左右偏转的双向电压表, 闭合开关S1、S2 , 调节R. 使电压表V0的指针指在零刻度处, 这时R的读数为90Ω,将R1、R2互换后再次闭合S1、S2, 调节R, 使指针指在零刻度处, 这时R的读数为 160Ω, 那么被测电阻Rx的数值和R1与R2的比值分别为 ( )A.120Ω,3 :4B. 125Ω,4 :3C.160Ω,16 :9D. 25OΩ,9 :1626. 某同学做电学实验 , 通过改变滑动变阻器电阻大小, 测量并记录了多组电压表和电流表的读数, 根据表格中记录的数据分析, 他所连接的电路可能是下列电路图中的( )27. 如图所示, R 1为定值电阻,R 2为可变电阻,E 为电源电动势,r 为电源的内电阻, 以下说法中正确的是( )A. 当R 2=R 1+r 时 ,R 2上获得最大功率B. 当R 2=R 1+r 时 ,R 1上获得最大功率C. 当R 2=0 时 , 电源的效率最大D. 当R 2=0 时 , 电源的输出功率一定最大28. 临沂市电厂发电机的输出电压稳定, 它发出的电先通过电厂附近的升压变压器升压,然后用输电线路把电能输送到远处居民小区附近的降压变压器, 经降低电压后输送到用户, 设升、降变压器都是理想变压器, 那么在用电高峰期, 白炽灯不够亮, 但电厂输送的总功率增加 , 这时( )A. 升压变压器的副线圈的电压变大B. 降压变压器的副线圈的电压变大C. 高压输电线路的电压损失变大D. 用户的负载增多, 高压输电线中的电流减小29. 计算电功率的公式RU P 2=中,U 表示用交流电压表测出的加在用电器两端的电压值,R 是用欧姆表测出的用电器的电阻值, 则此式可用于计算 ( )A. 电冰箱的功率B. 电风扇的功率C. 电烙铁的功率D. 洗衣机的功率30. 如图所示, 理想变压器的输入电压U 1不变 , R 1、R 2、R 3、R 4为定值电阻,R 为滑动变阻器 , 设电压表和电流表的示数分别为U 和I, 当R 的滑动触头向图中b 移动时,则( )A. U 不变 , I 不变B.U 减小 ,I 增大C.U 不变 ,I 增大D.U 减小 ,I 不变31. 如图所示,T 为理想变压器,A 1、A 2 为交流电流表 , R 1、R 2为定值电阻,R 3为滑动变阻器 ,原线圈两端接恒压交流电源, 当滑动变阻器的滑动触头向下 滑动时 ( )A. A 1读数变大 ,A 2 读数变大B. A 1读数变大 ,A 2读数变小C. A 1读数变小 ,A 2读数变大D. A 1读数变小, A 2读数变小32. 如图甲所示为分压器电路图, 已知电源电动势为E, 内电阻不计, 变阻器总电阻为 R 0=50Ω. 闭合开关S后, 负载电阻R L 两端的电压U 随变阻器a 端至滑动触头间的阻值Rx 变化而改变. 当负载电阻分别为R L1=20O Ω和R L2=2O Ω时, 关于负载电阻两端的电压U 随Rx 变化的图线大致接近图乙中哪条曲线的下列说法中, 正确的是( )A.R L1大致接近曲线① ,R L2大致接近曲线②B.R L1大致接近曲线②,R L2大致接近曲线①C.R L1大致接近曲线③,R L2大致接近曲线④D.R L1大致接近曲线④,R L2大致接近曲线③33. 如图所示为一理想变压器, 其原、副线圈的匝数均可调节, 原线圈两端电压为一最大值不变的正弦交流电, 为了使变压器输入功率增大, 可使 ( )A. 其他条件不变, 原线圈的匝数n 1增加B. 其他条件不变, 副线圈的匝数n 2的减小C . 其他条件不变 .负载电阻R 的阻值增大D . 其他条件不变 .负载电阻R 的阻值减小34. 如图所示 .理想变压器、原副线圈匝数之比n 1:n 2=3:l , 且分别接有阻值相同的电阻R 1和R 2,所加交流电源电压的有效值为U, 则( )A. R 1两端电压与R 2两端电压之比为3:1B. R1、R2消耗功率之比为1:9C. R 1、R 2两端电压均为U/4D. R 1 、R 2 消耗功率之比为l:l35. 如图所示, 理想变压器原、副线圈匝数之比n 1: n 2=4:1, 原线圈两端连接光滑导轨, 副线圈与电阻R 相连组成闭合回路. 当直导线AB在均强磁场中沿导轨匀速地向右做切割磁感线运动时, 电流表A 1 的读数是12mA, 那么电流表A 2的读数为 ( )A.OB. 3mAC.48mAD. 与电阻 R 大小有关36. 如图所示, 有一个理想变压器,0为副线圈中心抽出的线头 , 电路中两个电阻R 1和R 2的阻值相同, 开关S 闭合前后, 原线圈的电流分别为I 1和I 2, 则I 1:I 2等于 ( )A. 1:1B. 2:1C. 1:2D. 4:137. 如图所示, 理想变压器原、副线圈的匝数比为10:1,b 是原线圈的中心抽头, 电压表V 和电流表A 均为理想电表, 除R 以外其余电阻不计, 从某时刻开始在原线圈两端加上交变电压,其瞬时值表达式为u 1=220t π100sin 2V). 下列说法中正确的是( ) A. t=6001s 时, ac 两点间的电压瞬时值为110V B. t=6001s 时, 电压表的读数为22V C. 滑动变阻器触头向上移, 电压表和电流表的示数均变大D. 单刀双掷开关由a 搬向b,电压表和电流表的示数均变小38. 图(a)为某型号电热毯的电路图, 将电热丝接在u=156sin120πtV 的电源上, 电热毯被加热到一定温度后, 由于P 的作用使输入的正弦交流电仅有半个周期能够通过, 即电压变为图(b)所示波形, 从而进入保温状态, 则此时交流电压表的读数是( )A. 156VB. 110VC. 78VD. 55V39. 自藕变压器的特点是在铁心上只绕一个线圈,它的结构如图所示,P 、M 之间可以当作一个线圈,移动滑动触头P, 可以改变这个线圈的匝数;N 、M 之间可以当作另一个线圈. M 、N 与一个滑动变阻器相连,Q 为滑动变阻器的滑动触头, 下列论述中正确的是( )A. 当恒压电源接到a 、b 时, 向上移动滑动触头P, 电压表V 1的示数不变, V 2示数变大B. 当恒压电源接到a 、b 时, 向上移动滑动触头P, 电压表V 1的示数变大, V 2示数也变大C. 当恒压电源接到c 、d 时, 向上移动滑动触头Q, 电压表V 1的示数不变, V 2示数不变D. 当恒压电源接到c 、d 时, 向上移动滑动触头Q, 电压表V 1的示数变大, V 2示数不变40. 如图所示 , 三只白炽灯L 1、L 2、L 3分别和电感、电阻、电容器串联后并联接在同一个交变电源上. 当交变电源的电压为U, 频率为5OHz 时,三只灯泡的亮度相同, 那么当交变电源的电压不变,而频率增大后, 三只灯泡的亮度变化将是( )A. L 1变暗, L 2不变, L 3变亮B. L l 变亮, L 2不变, L 3变暗C. L l 变暗, L 2变亮, L 3变亮D. L 1变亮, L 2变亮, L 3变暗41. 一直升飞机停在南半球的地磁极上空。
电磁学经典练习题及答案
电磁学经典练习题及答案高中物理电磁学练习题一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.1.如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔张开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①~④四个选项中选取一个正确的答案.[]图3-1B.图②C.图③D.图④2.下列关于静电场的说法中正确的是[]3.在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]于ΔE/dqΔE/q4.将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]5.如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说法正确的是[]图3-2心力不相等6.如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[]图3-3B.c点场强D.c点电势7.如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说法正确的是[]图3-42μmgsμmgsμmgsμmgs8.如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[]图3-59.将一个6V、6W的小灯甲连接在内阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则 [ ]一定正常发光10.用三个电动势均为1.5V、内阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是 [ ]图3-611.如图3-10所示的电路中,R1、R2、R3、R4、R5为阻值固定的电阻,R6为可变电阻,A为内阻可忽略的电流表,V为内阻很大的电压表,电源的电动势为,内阻为r.当R6的滑动触头P向a端移动时 [ ]图3-10大12.如图3-11所示的电路中,滑动变阻器的滑片P从a滑向b的过程中,3只理想电压表的示数变化的绝对值分别为ΔU1、ΔU2、ΔU3,下列各值可能出现的是 [ ]图3-11 ΔU1=3V、ΔU2=2V、ΔU3=1VΔU1=1V、ΔU2=3V、ΔU3=2V ΔU1=0.5V、ΔU2=1V、ΔU3=1.5V ΔU1=0.2V、ΔU2=1V、ΔU3=0.8V 13.如图3-12甲所示电路中,电流表A1与A2内阻相同,A2与R1串联,当电路两端接在电压恒定的电源上时,A1示数为3A,A2的示数为2A;现将A2改为与R2串联,如图3-12乙所示,再接在原来的电源上,那么 [ ]图3-12 1的示数必增大,A2的示数必减小 1的示数必增大,A2的示数必增大 1的示数必减小,A2的示数必增大 1的示数必减小,A2的示数必减小 14.如图3-13所示为白炽灯L1(规格为“220V,100W”)、L2(规格为“220V,60W”)的伏安特性曲线(I-U图象),则根据该曲线可确定将L1、L2两灯串联在220V的电源上时,两灯的实际功率之比大约为 [ ]图3-131∶2 B.3∶5 C.5∶3 D.1∶3 15.如图3-14所示的电路中,当R1的滑动触头移动时 [ ]图3-14 1上电流的变化量大于R3上电流的变化量 1上电流的变化量小于R3上电流的变化量 2上电压的变化量大于路端电压的变化量 2上电压的变化量小于路端电压的变化量 16.电饭锅工作时有两种状态:一种是锅内水烧干前的加热状态,另一种是锅内水烧干后保温状态,如图3-15所示是电饭锅电路原理示意图,S是用感温材料制造的开关.下列说法中正确的是 [ ]图3-152是供加热用的电阻丝2在保温状态时的功率为加热状态时的一半,R1/R2应为2∶12在保温状态时的功率为加热状态时的一半,R1/R2应为(-1)∶1 17.如图3-16所示M为理想变压器,电源电压不变,当变阻器的滑动头P向上移动时,读数发生变化的电表是 [ ]图3-16 1 B.A2 C.V1 D.V2 18.如图3-17甲所示,两节同样的电池(内电阻不计)与滑线变阻器组成分压电路和理想变压器原线圈连接,通过改变滑动触头P的位置,可以在变压器副线圈两端得到图3-17乙中哪些电压? [ ]图3-17 19.如图3-18所示的电路中,L1和L2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法正确的是 [ ]图3-18 1先亮,L2后亮,最后一样亮1和L2始终一样亮 1立刻熄灭,L2过一会儿才熄灭 1和L2都要过一会儿才熄灭 20.如图3-19所示,理想变压器的副线圈上通过输电线接有三个灯炮L1、L2和L3,输电线的等效电阻为R,原线圈接有一个理想的电流表.开始时,开关S接通,当S断开时,以下说法中正确的是 [ ]图3-191和L2变亮21.如图3-20所示是一个理想变压器,A1、A2分别为理想的交流电流表,V1、V2分别为理想的交流电压表,R1、R2、R3均为电阻,原线圈两端接电压一定的正弦交流电源,闭合开关S,各交流电表的示数变化情况应是 [ ]图3-20 1读数变大 B.A2读数变大 1读数变小 D.V2读数变小22.如图3-21所示电路中,电源电动势为,内电阻为r,R1、R2为定值电阻,R3为可变电阻,C为电容器.在可变电阻R3由较小逐渐变大的过程中[ ]图3-21 2的电流方向是由b到a23.如图3-22所示是一理想变压器的电路图,若初级回路A、B两点接交流电压U时,四个相同的灯泡均正常发光,则原、副线圈匝数比为 [ ]图3-224∶1 B.2∶1 C.1∶3 D.3∶124.如图3-23所示,一个理想变压器的原、副线圈匝数之比为n1∶n2=10∶1,在原线圈上加220V的正弦交变电压,则副线圈两端c、d间的最大电压为[]图3-2322VB.22VC.零D.11V25.如图3-24所示,某理想变压器的原、副线圈的匝数均可调节,原线圈两端电压为一最大值不变的正弦交流电,在其它条件不变的情况下,为了使变压器输入功率增大,可使[]图3-241增加2增加26.如图3-26甲所示,闭合导体线框abcd从高处自由下落,落入一个有界匀强磁场中,从bc边开始进入磁场到ad边即将进入磁场的这段时间里,在图3-26乙中表示线框运动过程中的感应电流-时间图象的可能是[]图3-2627.如图3-28所示,abcd是粗细均匀的电阻丝制成的长方形线框,导体棒MN有电阻,可在ad边与bc边上无摩擦滑动,且接触良好,线框处在垂直纸面向里的匀强磁场中,在MN由靠近ab边处向dc边匀速滑动的过程中,下列说法正确的是[]图3-28端的电压先减小后增大28.一平行板电容器充电后与电源断开,负极板接地.在两极板间有一正电荷(电量很小)固定在P点,如图3-30所示.以E表示两板间的场强,U表示电容器两板间的电压,W表示正电荷在P点的电势能.若保持负极板不动,将正极板移到图中虚线所示位置,则[]图3-30B.E变大,W变大D.U不变,W不变29.如图3-31所示,有一固定的超导体圆环,在其右侧放着一条形磁铁,此时圆环中没有电流.当把磁铁向右方移走时,由于电磁感应,在超导体圆环中产生了一定的电流[]图3-3130.如图3-32所示的哪些情况中,a、b两点的电势相等,a、b两点的电场强度矢量也相等? []图3-32带电时,极板间除边缘以外的任意两点a、bb31.在图3-33中虚线所围的区域内,存在电场强度为E的匀强电场和磁感强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转.设重力可以忽略不计,则在这区域中E和B的方向可能是[]图3-33向,并与电子运动方向相反32.在一根软铁棒上绕有一组线圈,a、c是线圈的两端,b为中心抽头,把a端和b抽头分别接到两条平行金属导轨上,导轨间有匀强磁场,方向垂直于导轨所在平面并指向纸内,如图3-35所示,金属棒PQ在外力作用下以图示位置为平衡位置左右做简谐运动,运动过程中保持与导轨垂直,且两端与导轨始终接触良好,下面的过程中a、c点的电势都比b点的电势高的是[]图3-35中33.质量为m、电量为q的带电粒子以速率v垂直磁感线射入磁感强度为B的匀强磁场中,在磁场力作用下做匀速圆周运动,带电粒子在圆周轨道上运动相当于一环形电流,则[]34.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图3-36所示.若小球运动到A点时,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是[]图3-3635.如图3-37所示,竖直面内放置的两条平行光滑导轨,电阻不计,匀强磁场方向垂直纸面向里,磁感强度B=0.5T,导体棒ab、cd长度均为0.2m,电阻均为0.1Ω,重力均为0.1N,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨接触良好),此时cd静止不动,则ab上升时,下列说法正确的是[]图3-372N2m/s2s内,拉力做功,有0.4J的机械能转化为电能2s内,拉力做功为0.6J36.如图3-38所示,闭合矩形线圈abcd与长直导线MN在同一平面内,线圈的ab、dc两边与直导线平行,直导线中有逐渐增大、但方向不明的电流,则[]图3-3837.如图3-39甲所示,A、B表示真空中水平放置相距为d的平行金属板,板长为L,两板加电压后板间电场可视为匀强电场,现在A、B两极间加上如图3-39乙所示的周期性的交变电压,在t=T/4时,恰有一质量为m、电量为q的粒子在板间中央沿水平方向以速度v射入电场,忽略粒子重力,下列关于0粒子运动状态表述正确的是[]图3-39A.粒子在垂直于板的方向的分运动可能是往复运动的值同时满足一定条件,粒子可以沿与板平行0的方向飞出.38.如图3-40甲所示,两块大平行金属板A、B之间的距离为d,在两板间加上电压U,并将B板接地作为电势零点,现将正电荷q逆着电场线方向由A板移到B板,若用x表示称动过程中该正电荷到A板的距离,则其电势能随x变化的图线为图3-40乙中的[]图3-4039.如图3-41所示,用绝缘细丝线悬吊着的带正电小球在匀强磁场中做简谐振动,则[]图3-4140.如图3-42甲所示,直线MN右边区域宽度为L的空间,存在磁感强度为B的匀强磁场,磁场方向垂直纸面向里.由导线弯成的半径为R(L>2R)的圆环处在垂直于磁场的平面内,且可绕环与MN的切点O在该平面内转动.现让环以角速度ω顺时针转动.图3-42乙是环从图示位置开始转过一周的过程中,感应电动势的瞬时值随时间变化的图象,正确的是[]图3-4241.空间某区域电场线分布如图3-43所示,带电小球(质量为m,电量为q)在A点速度为v1,方向水平向右,至B点速度为v2,v2与水平方向间夹角为α,A、B间高度差为H,以下判断正确的是[]图3-431/2)mv22-(1/2)mv12)/q2cosα-v1)1/2)mv22-(1/2)mv12-mgH2sinα42.如图3-44所示,一块金属导体abcd和电源连接,处于垂直于金属平面的匀强磁场中,当接通电源、有电流流过金属导体时,下面说法中正确的是[]图3-44两侧存在电势差,且a点电势低于d点电势43.如图3-45所示,MN、PQ是间距为l的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置,并以速度v向右匀速滑动.则 [ ]图3-453 2Blv/344.如图3-46所示,Q1、Q2带等量正电荷,固定在绝缘平面上,在其连线上有一光滑的绝缘杆,杆上套一带正电的小球,杆所在的区域同时存在一个匀强磁场,方向如图,小球的重力不计.现将小球从图示位置从静止释放,在小球运动过程中,下列说法中哪些是正确的 [ ]图3-4645.一根金属棒MN放在倾斜的导轨ABCD上处于静止,如图3-47所示,若在垂直于导轨ABCD平面的方向加一个磁感强度均匀增大的匀强磁场,随着磁感强度的增大,金属棒在倾斜导轨上由静止变为运动,在这个过程中,关于导轨对金属棒的摩擦力f的大小变化情况是 [ ]图3-47大小 46.如图3-48所示,一个质子和一个α粒子垂直于磁场方向从同一点射入一个匀强磁场,若它们在磁场中的运动轨迹是重合的,则它们在磁场中运动的过程中 [ ]图3-48α粒子冲量的2倍 α粒子的冲量是质子冲量的2倍 47.如图3-49甲所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN成水平沿导轨滑下.在与导轨和电阻R组成的闭合电路中,其他电阻不计,当金属杆MN进入磁场区后,其运动的速度图象可能是图3-49乙中的 [ ]图3-49二、解答应写出必要的文字说明、方程式和重要演算步骤,答案中必须明确写出数值和单位.1.如图3-87所示的电路中,电源电动势=24V,内阻不计,电容C=12μF,R1=10Ω,R3=60Ω,R4=20Ω,R5=40Ω,电流表G的示数为零,此时电容器所带电量Q=7.2×10-5C,求电阻R2的阻值?图3-87 2.如图3-88中电路的各元件值为:R1=R2=10Ω,R3=R4=20Ω,C=300μF,电源电动势=6V,内阻不计,单刀双掷开关S开始时接通触点2,求:图3-88 1)当开关S从触点2改接触点1,且电路稳定后,电容C所带电量.2)若开关S从触点1改接触点2后,直至电流为零止,通过电阻R的电1量.3.光滑水平面上放有如图3-89所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m,距滑板的A壁为L距离的B处放有一质量为m,电1量为+q的大小不计的小物体,物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中.初始时刻,滑块与物体都静止,试问:图3-89多大?1)释放小物体,第一次与滑板A壁碰前物体的速度v12)若物体与A壁碰后相对水平面的速率为碰前速率的3/5,则物体在第二次跟A壁碰撞之前,滑板相对于水平面的速度v和物体相对于水平面的速度v分别为多大?23)物体从开始运动到第二次碰撞前,电场力做的功为多大?(设碰撞所经历时间极短)4.如图3-90所示,半径为r的金属球在匀强磁场中以恒定的速度v沿与磁感强度B垂直的方向运动,当达到稳定状态时,试求:图3-901)球内电场强度的大小和方向?2)球上怎样的两点间电势差最大?最大电势差是多少?5.如图3-91所示,小车A的质量M=2kg,置于光滑水平面上,初速度为=14m/s.带正电荷q=0.2C的可视为质点的物体B,质量m=0.1kv0g,轻放在小车A的右端,在A、B所在的空间存在着匀强磁场,方向垂直纸面向里,磁感强度B=0.5T,物体与小车之间有摩擦力作用,设小车足够长,求图3-911)B物体的最大速度?2)小车A的最小速度?3)在此过程中系统增加的内能?(g=10m/s2)6.把一个有孔的带正电荷的塑料小球安在弹簧的一端,弹簧的另一端固定,小球穿在一根光滑的水平绝缘杆上,如图3-92所示,弹簧与小球绝缘,弹簧质量可不计,整个装置放在水平向右的匀强电场之中,试证明:小球离开平衡位置放开后,小球的运动为简谐运动.(弹簧一直处在弹性限度内)图3-927.有一个长方体形的匀强磁场和匀强电场区域,它的截面为边长L=0.20m的正方形,其电场强度为E=4×105V/m,磁感强度B=2×10-2T,磁场方向垂直纸面向里,当一束质荷比为m/q=4×10-10kg/C的正离子流以一定的速度从电磁场的正方形区域的边界中点射入如图3-93所示,图3-931)要使离子流穿过电磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?2)在离电磁场区域右边界0.4m处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a点,若撤去磁场,离子流击中屏上b点,求ab间距离.8.如图3-94所示,一个初速为零的带正电的粒子经过M、N两平行板间电场加速后,从N板上的孔射出,当带电粒子到达P点时,长方形abcd区域内出现大小不变、方向垂直于纸面且方向交替变化的匀强磁场.磁感强度B=0.4T.每经t=(π/4)×10-3s,磁场方向变化一次.粒子到达P点时出现的磁场方向指向纸外,在Q处有一个静止的中性粒子,P、Q间距离s=3m.PQ直线垂直平分ab、cd.已知D=1.6m,带电粒子的荷质比为1.0×104C/kg,重力忽略不计.求图3-941)加速电压为220V时带电粒子能否与中性粒子碰撞?2)画出它的轨迹.3)能使带电粒子与中性粒子碰撞,加速电压的最大值是多少?9.在磁感强度B=0.5T的匀强磁场中,有一个正方形金属线圈abcd,边长l=0.2m,线圈的ad边跟磁场的左侧边界重合,如图3-95所示,线圈的电阻R=0.4Ω,用外力使线圈从磁场中运动出来:一次是用力使线圈从左侧边界匀速平动移出磁场;另一次是用力使线圈以ad边为轴,匀速转动出磁场,两次所用时间都是0.1s.试分析计算两次外力对线圈做功之差图3-9510.如图3-97所示的装置,U1是加速电压,紧靠其右侧的是两块彼此平行的水平金属板,板长为l,两板间距离为d.一个质量为m、带电量为-q的质点,经加速电压加速后沿两金属板中心线以速度v0水平射入两板中,若在两水平金属板间加一电压U2,当上板为正时,带电质点恰能沿两板中心线射出;当下板为正时,带电质点则射到下板上距板的左端l/4处.为使带电质点经U1加速后,沿中心线射入两金属板,并能够从两金属之间射出,问:两水平金属板间所加电压应满足什么条件,及电压值的范围.图3-9711.矩形线圈M、N材料相同,导线横截面积大小不同,M粗于N,M、N由同一高度自由下落,同时进入磁感强度为B的匀强场区(线圈平面与B垂直如图3-99所示),M、N同时离开磁场区,试列式推导说明.图3-9912.匀强电场的场强E=2.0×103Vm-1,方向水平.电场中有两个带电质点,其质量均为m=1.0×10-5kg.质点A带负电,质点B带正电,电量皆为q=1.0×10-9C.开始时,两质点位于同一等势面上,A的初速度vAo=2.0m·s-1,B的初速度vBo=1.2m·s-1,均沿场强方向.在以后的运动过程中,若用Δs表示任一时刻两质点间的水平距离,问当Δs的数值在什么范围内,可判断哪个质点在前面(规定图3-100中右方为前),当Δs的数值在什么范围内不可判断谁前谁后?图3-10013.如图3-101所示,两根相距为d的足够长的平行金属导轨位于水平的xy平面内,一端接有阻值为R的电阻.在x>0的一侧存在沿竖直方向的均匀磁场,磁感强度B随x的增大而增大,B=kx,式中的k是一常量,一金属直,方杆与金属导轨垂直,可在导轨上滑动,当t=0时位于x=0处,速度为v0向沿x轴的正方向.在运动过程中,有一大小可调节的外力F作用于金属杆以保持金属杆的加速度恒定,大小为a,方向沿x轴的负方向.设除外接的电阻R外,所有其它电阻都可以忽略.问:图3-1011)该回路中的感应电流持续的时间多长?/2时,回路中的感应电动势有多大?2)当金属杆的速度大小为v03)若金属杆的质量为m,施加于金属杆上的外力F与时间t的关系如何?14.如图3-102所示,有一矩形绝缘木板放在光滑水平面上,另一质量为m、带电量为q的小物块沿木板上表面以某一初速度从A端沿水平方向滑入,木板周围空间存在着足够大、方向竖直向下的匀强电场.已知物块与木板间有摩擦,物块沿木板运动到B端恰好相对静止,若将匀强电场方向改为竖直向上,大小不变,且物块仍以原初速度沿木板上表面从A端滑入,结果物块运动到木板中点时相对静止.求:图3-1021)物块所带电荷的性质;2)匀强电场的场强大小.15.(1)设在磁感强度为B的匀强磁场中,垂直磁场方向放入一段长为L的通电导线,单位长度导线中有n个自由电荷,每个电荷的电量为q,每个电荷定向移动的速率为v,试用通过导线所受的安掊力等于运动电荷所受洛伦兹力的总和,论证单个运动电荷所受的洛伦兹力f=qvB.图3-1032)如图3-103所示,一块宽为a、厚为h的金属导体放在磁感应强度为B的匀强磁场中,磁场方向与金属导体上下表面垂直.若金属导体中通有电流强度为I、方向自左向右的电流时,金属导体前后两表面会形成一个电势差,已知金属导体单位长度中的自由电子数目为n,问:金属导体前后表面哪一面电势高?电势差为多少?16.如图3-104(a)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O、O′,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动.其速度图象如图3-104(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m=3.2×10-21kg、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计).求图3-104(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?2)粒子从边界MN射出来的位置之间最大的距离为多少?17.如图3-108所示是一个电子射线管,由阴极上发出的电子束被阳极A与阴极K间的电场加速,从阳极A上的小孔穿出的电子经过平行板电容器射向荧光屏,设A、K间的电势差为U,电子自阴极发出时的初速度可不计,电容器两极板间除有电场外,还有一均匀磁场,磁感强度大小为B,方向垂直纸面向外,极板长度为d,极板到荧光屏的距离为L,设电子电量为e,质量为m.问图3-1081)电容器两极板间的电场强度为多大时,电子束不发生偏转,直射到荧光屏S上的O点; 2)去掉两极板间电场,电子束仅在磁场力作用下向上偏转,射在荧光屏S上的D点,求D到O点的距离x. 18.如图3-109所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1kg的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面.当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω.不计一切摩擦,g取10m/s2.求:图3-1091)导体棒所达到的稳定速度是多少?2)导体棒从静止到达稳定速度的时间是多少?答案:一、1.B 2.ACD 3.BD 4.AD 5.BC 6.AD 7.AD 8.AD 9.AB 10.C 11.AC 12.BD 13.A 14.D 15.AC 16.ABD 17.AB 18.BCD 19.D 20.D 21.ABD 22.AB 23.D 24.B 25.BD 26.CD 27.BD 28.AC 29.D 30.BD 31.ABC 32.C 33.CD 34.ACD 35.BC 36.BC 37.AD 38.C 39.AD 40.D 41.CD 42.AD 43.CD 44.AD 45.B 46.D 47.ACD1.解:电容器两端电压 UC=Q/C=6V,R4/R5=U4/(-U4), 4=8V. U1=6+8=14V,则有1/(-U1)=R1/R2,∴R2=7.14Ω. 1=8-6=2V,则有-U′1)=R1/R2,∴R2=110Ω. 2.解:(1)接通1后,电阻R1、R2、R3、R4串联,有/(R1+R2+R3+R4)=0.1A.C=U3+U4=I(R3+R4)=4V. Q=CUC=1.2×10-3C. 2)开关再接通2,电容器放电,外电路分为R1、R2和R3、R4两个支路,通过两支路的电量分别为I1t和I2t,I=I1+I2;I1与I2的分配与两支路电阻成反比,通过两支路的电量Q则与电流成正比,故流经两支路的电量Q12和Q34与两支路的电阻成反比,即 12/Q34=(R3+R4)/(R1+R2)=40/20=2,12+Q34=Q=1.2×10-3C,所以 Q12=2Q/3=0.8×10-3C. 3.解:(1)对物体,根据动能定理,有1=(1/2)mv12,得 v1=.2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1′;滑板的速度为v,则 1=mv1′+4mv. 1′=(3/5)v1,则v=v1/10,因为v1′>v,不符合实际,故应取v1′=-(3/5)v1,则v=(2/5)v1=(2/5).做匀速运动,在这段时间内,两者相对于水平面的位移相同. 2+v1′)/2t=v·t,v2=(7/5)v1=(7/5).3)电场力做功 1/2)mv12+((1/2)mv22-(1/2)mv1′2)=(13/5)qEL1.4.(1)稳定时球内电子不做定向运动,其洛伦兹力与电场力相平衡,有Bev=Ee,∴ E=Bv,方向竖直向下. 2)球的最低点与最高点之间的电势差最大 max=Ed=E×2r=2Bvr. 5.解:(1)对B物体:fB+N=mg, 0, vmax=mg/Bq=10m/s. 2)A、B系统动量守:Mv0=Mv+mvmax, ∴ v=13.5m/s,即为A的最小速度. 3)Q=ΔE=(1/2)Mv02-(1/2)Mv2-(1/2)mvmax2=8.75J. 6.解:设小球带电荷量为q,电场的电场强度为E,弹簧的劲度系数为k. 0. 0=qE. ① 0+x,以向右为正,小球所受合外力 合=qE-k(x0+x), ② F合=-kx. 指向平衡位置,与相对于平衡位置的位移成正比,所以小球所做的运动为简谐运动. 7.解:(1)电场方向向下,与磁场构成粒子速度选择器,离子运动不偏转,则qE=qBv, 2×107m/s.2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力为洛伦兹力,于是2/R,R=mv/qB=0.4m.θ=L/R=1/2,即θ=30°.如图17甲所示.1=R-Rsinθ=0.05m.距离为y=y1+Dtgθ=0.28m.a=qE/mθ′如图17乙所示,则tgθ′=vy/v=(qEL/mv2)·(1/2),图172′=(1/2)at2=0.05m.y′=y2′+Dtgθ′=0.25m,=0.53m.8.解:(1)设带电粒子在磁场中做匀速圆周运动的半径为r,周期为T.2πm/Bq=(π/2)×10-3s,t恰为半个周期.1/2)mv2和r=mv/Bq,0.5m,可见s=6r.200V时,带电粒子能与中性粒子碰撞.2)如图18所示图183)带电粒子与中性粒子碰撞的条件是:PQ之间距离s是2r的整数n倍,且r≤D/2,2,即r′=0.75m.max=(1/2)mv′2,解得Umax=450V.9.使线圈匀速平动移出磁场时,bc边切割磁感线而产生恒定感应电动势,线圈中产生恒定的感生电流=Blv,①/R,②。
高中物理电磁学经典例题
高中物理典型例题集锦(电磁学部分)25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有小孔M、N。
今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好为零,然后按原路径返回。
若保持两板间的电压不变,则:A.若把A板向上平移一小段距离,质点自P点下落仍能返回。
B.若把B板向下平移一小段距离,质点自P点下落仍能返回。
C.若把A板向上平移一小段距离,质点自P点下落后将穿过N孔继续下落。
图22-1D.若把B板向下平移一小段距离,质点自P点下落后将穿过N孔继续下落。
分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回,应选A。
若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功增加,所以它将一直下落,应选D。
由上述分析可知:选项A和D是正确的。
想一想:在上题中若断开开关S后,再移动金属板,则问题又如何?(选A、B)。
26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。
现有一离子束,其中每个离子的质量为m,电量为q,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。
设离子通过平行板所需的时间恰为 T(与电压变化周期相同),且所有离子都能通过两板间的空间打在右端的荧光屏上。
试求:离子击中荧光屏上的位置的范围。
(也就是与O‘点的最大距离与最小距离)。
重力忽略不计。
分析与解:各个离子在电场中运动时,其水平分运动都是匀速直线运动,而经过电场所需时间都是T,但不同的离子进入电场的时刻不同,由于两极间电压变化,因此它们的侧向位移也会不同。
高中物理练习题电磁学中的电场与磁场练习
高中物理练习题电磁学中的电场与磁场练习电磁学中的电场与磁场练习电磁学是物理学中非常重要的一个分支,它研究电荷的相互作用以及电磁力的产生和应用。
其中,电场和磁场是电磁学中非常基础的概念和理论。
本文将通过一些实例来探讨高中物理中与电场和磁场相关的练习题。
一、电场相关练习题1. 一个带正电的粒子在电场中受到一个向上的电力3 N,该电场强度大小为多少?解析:根据库仑定律,电场强度E等于电力F除以电荷量q。
即E = F/q。
已知电力F为3 N,电荷量q未知。
将已知数据代入公式计算可得电场强度E的大小。
2. 在均匀电场中,一个电子受到的电力与一个质子受到的电力相比如何?解析:根据库仑定律,电力F等于电场强度E乘以电荷量q。
电子和质子的电荷量分别为-1.6x10^-19 C和1.6x10^-19 C(取绝对值)。
由于电场强度是标量,电力的大小只与电荷量有关,与电荷正负无关。
因此,一个电子受到的电力与一个质子受到的电力大小相等。
3. 两个相同带电体之间的力是否总是相等?解析:两个相同带电体之间的力不总是相等。
根据库仑定律,电力F等于电荷量q1乘以电荷量q2再乘以库仑常数k,除以两者之间的距离的平方。
如果两个带电体的电荷量或者距离不同,那么它们之间的力也会不同。
二、磁场相关练习题1. 一个长直导线通以电流I,如果离导线a距离为r1处的磁感应强度为B1,距离为r2处的磁感应强度为B2,那么r2与r1之间的关系是什么?解析:根据安培环路定理,磁感应强度B等于磁场中点离导线的距离r乘以导线电流I乘以导线元素长度dl,再除以2πr。
由于长直导线磁场沿径向分布,所以磁感应强度与距离r成反比关系,即B与1/r成正比。
因此,r2与r1之间的关系是r2/r1 = B1/B2。
2. 一根载流直导线在磁场中受到的磁力是否会随着磁感应强度的改变而改变?解析:一根载流直导线在磁场中受到的磁力不会随着磁感应强度的改变而改变。
根据洛伦兹力定律,磁力F等于磁感应强度B乘以导线电流I乘以导线长度L,再乘以正弦角度θ。
高中物理电磁学磁场经典大题例题
(每日一练)高中物理电磁学磁场经典大题例题单选题1、如图所示,在M、N处存在与纸面垂直,且通有大小相等、方向相反电流的长直导线,已知a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等。
下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的的磁感应强度方向相反C.c、d两点处的磁感应强度方向相同D.a、c两点处的磁感应强度方向不同答案:C解析:A.a、b、c、d四个点的磁感应强度均为M、N两长直导线在各点的磁感应强度的叠加,由安培定则可知,M、N在O点处磁感应强度的方向相同,合磁感应强度竖直向下,不为零,故A错误;B.M在a处产生的磁场方向竖直向下,在b处产生的磁场方向竖直向下,N在a处产生的磁场方向竖直向下,b处产生的磁场方向竖直向下,根据场强的叠加知,a、b两点处磁感应强度大小相等,方向相同,故B错误;C.M在c处产生的磁场方向垂直于cM偏向右下,在d处产生的磁场方向垂直dM偏向左下,N在c处产生的磁场方向垂直于cN偏向左下,在d处产生的磁场方向垂直于dN偏向右下,根据平行四边形定则,知c处的磁场方向竖直向下,d处的磁场方向竖直向下,且合场强大小相等,故C正确;D.由以上分析可知,a、c两点处磁感应强度的方向都竖直向下,方向相同,故D错误。
故选C。
2、如图所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O 是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°角射出的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为()A.πa3v B.√3πa3vC.4πa3v D.2πav答案:C解析:当θ=60°时,粒子的运动轨迹如图甲所示,根据几何关系有a=R sin30°解得R=2a设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t=α2πT即α越大,粒子在磁场中运行的时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R=2a,此时圆心角αm为120°,即最长运行时间为T3,因T=2πRv=4πav所以粒子在磁场中运动的最长时间为4πa3v。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理典型例题集锦(电磁学部分)25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有小孔M、N。
今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好为零,然后按原路径返回。
若保持两板间的电压不变,则:A.若把A板向上平移一小段距离,质点自P点下落仍能返回。
B.若把B板向下平移一小段距离,质点自P点下落仍能返回。
C.若把A板向上平移一小段距离,质点自P点下落后将穿过N孔继续下落。
图22-1D.若把B板向下平移一小段距离,质点自P点下落后将穿过N孔继续下落。
分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回,应选A。
若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功增加,所以它将一直下落,应选D。
由上述分析可知:选项A和D是正确的。
想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。
26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。
现有一离子束,其中每个离子的质量为m,电量为q,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。
设离子通过平行板所需的时间恰为T(与电压变化周图23-1 图23-1(b)期相同),且所有离子都能通过两板间的空间打在右端的荧光屏上。
试求:离子击中荧光屏上的位置的范围。
(也就是与O‘点的最大距离与最小距离)。
重力忽略不计。
分析与解:各个离子在电场中运动时,其水平分运动都是匀速直线运动,而经过电场所需时间都是T,但不同的离子进入电场的时刻不同,由于两极间电压变化,因此它们的侧向位移也会不同。
当离子在t=0,T,2T……时刻进入电场时,两板间在T/2时间内有电压U0,因而侧向做匀加速运动,其侧向位移为y1,速度为V。
接着,在下一个T/2时间内,两板间没有电压,离子以V速度作匀速直线运动,侧向位移为y2,如图23-2所示。
这些离子在离开电场时,侧向位移有最大值,即(y1+y2)。
当离子在T=t/2,3/2T,5/2T……时刻进入电场时,两板间电压为零,离子在水平方向做匀速直线运动,没有侧向位移,经过T/2时间后,两板间有电压U0,再经过T/2时间,有了侧向位移y1,如图图23-323-3所示。
这些离子离开电场时有侧向位移的最小值,即y1。
当离子在上述两种特殊时刻之外进入电场的,其侧向位移值一定在(y1+y2)与y1之间。
根据上述分析就可以求出侧向位移的最大值和最小值。
所以,离子击中荧光屏上的位置范围为:27、如图24-1所示,R1=R2=R3=R4=R,电键S闭合时,间距为d的平行板电容器C 的正中间有一质量为m,带电量为q的小球恰好处于静止状态;电键S断开时,小球向电容器一个极板运动并发生碰撞,碰撞后小球带上与极板同种性质的电荷。
设碰撞过程中没有机械能损失,小球反弹后恰好能运动到电容器另一极板。
若不计电源内阻,求:(1)电源的电动势,(2)小球与极板碰撞后的带电量。
分析与解:(1)电键S 闭合时,R 1、R 3并联与R 4串联,(R 2中没有电流通过)U C =U 4=(2/3)ε对带电小球有:mg=qE=qU C /d=(2/3)q ε/d 得:ε=(3/2)mgd/q(2)电键S 断开后,R 1、R 4串联,则U C ’=ε/2=(3/4)mgd/q [1]小球向下运动与下极板相碰后,小球带电量变为q ’,向上运动到上极板,全过程由动能定理得:mgd/2-qU C ’/2-mgd+q ’U C ’=0 [2]由[1][2]式解得:q ’=7q/6。
28、如图25-1所示为矩形的水平光滑导电轨道abcd ,ab 边和cd 边的电阻均为5R 0,ad 边和bc 边长均为L ,ad 边电阻为4R 0,bc 边电阻为2R 0,整个轨道处于与轨道平面垂直的匀强磁场中,磁感强度为B 。
轨道上放有一根电阻为R 0的金属杆mn ,现让金属杆mn 在平行轨道平面的未知拉力F 作用下,从轨道右端以速率V 匀速向左端滑动,设滑动中金属杆mn 始终与ab 、cd 两边垂直,且与轨道接触良好。
ab 和cd 边电阻分布均匀,求滑动中拉力F 的最小牵引功率。
分析与解:mn 金属杆从右端向左端匀速滑动切割磁感线产生感应电动势,mn 相当于电源(),其电路为内电路,电阻为内电阻。
当外电阻最大时,即当mn滑到距离ad=(2/5)ab 时,此时电阻R madn =R mbcn =8R 0时,外阻最大值R max =4R 0,这时电路中电流最小值:I min =ε/(R max +r)=BLV/(4R 0+R 0)=BLV/5R 0所以,P min =F min V=BLI min V=BLVBLV/5R 0=B 2L 2V 2/5R 029、如图26-1所示,用密度为D 、电阻率为ρ的导线做成正方形线框,从静止开始沿竖直平面自由下落。
线框经过方向垂直纸面、磁感应强度为B 的匀强磁场,且磁场区域高度等于线框一边之长。
为了使线框通过磁场区域的速度恒定,求线框开始下落时的高度h 。
(不计空气阻力)分析与解:线框匀速通过磁场的条件是受到的竖直向上的安培力与重力平衡,即:F 安=mg [1] 图24-1图25-1设线框每边长为L ,根据线框进入磁场的速度为,则安培力可表达为:F 安=BIL=[2]设导线横截面积为S ,其质量为:m=4LSD [3]其电阻为:R=ρ4L/S [4]联立解[1]、[2]、[3]、[4]式得: h=128D 2ρ2g/B 4想一想:若线框每边长为L ,全部通过匀强磁场的时间为多少(t=2L/V)t=t1+t2,t1=L/V=t2; 线框通过匀强磁场产生的焦耳热为多少(Q=2mgL)(能量守恒)30、如图27-1所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨道h 高处由静止下滑,设导轨足够长。
试求:(1)ab 、cd 棒的最终速度,(2)全过程中感应电流产生的焦耳热。
分析与解:ab 下滑进入磁场后切割磁感线,在abcd 电路中产生感应电流,ab 、cd 各受不同的磁场力作用而分别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时,ab 、cd 不再受磁场力作用,各自以不同的速度匀速滑动。
全过程中系统内机械能转化为电能再转化为内能,总能量守恒。
(1) ab 自由下滑,机械能守恒:mgh=(1/2)mV 2 [1]由于ab 、cd 串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度 L ab =3L cd ,故它们的磁场力为:F ab =3F cd [2]在磁场力作用下,ab 、cd 各作变速运动,产生的感应电动势方向相反,当εab =εcd 时,电路中感应电流为零,(I=0),安培力为零,ab 、cd 运动趋于稳定,此时有:BL ab V ab =BL cd V cd 所以V ab =V cd /3 [3]ab 、cd 受磁场力作用,动量均发生变化,由动量定理得: 图26-1图27-1F ab△t=m(V-V ab) [4]F cd△t=mV cd [5]联立以上各式解得:V ab =(1/10),V cd =(3/10)(2)根据系统能量守恒可得:Q=△E机=mgh-(1/2)m(V ab2+V cd2)=(9/10)mgh说明:本题以分析ab、cd棒的受力及运动情况为主要线索求解。
注意要点:①明确ab、cd运动速度稳定的条件。
②理解电磁感应及磁场力计算式中的“L”的物理意义。
③电路中的电流、磁场力和金属棒的运动之间相互影响制约变化复杂,解题时抓住每一瞬间存在F ab=3F cd及终了状态时V ab=(1/3)V cd的关系,用动量定理求解十分方便。
④金属棒所受磁场力是系统的外力,且F ab≠F cd时,合力不为零,故系统动量不守恒,只有当L ab=L cd时,F ab=F cd,方向相反,其合力为零时,系统动量才守恒。
31、如图28-1所示,X轴上方有匀强磁场B,下方有匀强电场E。
电量为q、质量为m、重力不计的粒子在y轴上。
X轴上有一点N(L,0),要使粒子在y轴上由静止释放而能到达N点,问:(1)粒子应带何种电荷(2)图28-1释放点M应满足什么条件(3)粒子从M点运动到N点经历多长的时间分析与解:(1) 粒子由静止释放一定要先受电场力作用(磁场对静止电荷没有作用力),所以M点要在-Y轴上。
要进入磁场必先向上运动,静上的电荷要向上运动必须受到向上的电场力作用,而场强E方向是向下的,所以粒子带负电。
(2)粒子在M点受向上电场力,从静止出发做匀加速运动。
在O点进入匀强磁场后,只受洛仑兹力(方向沿+X轴)做匀速周围运动,经半个周期,回到X轴上的P点,进入匀强电场,在电场力作用下做匀减速直线运动直到速度为零。
然后再向上做匀加速运动,在X 轴上P点进入匀强磁场,做匀速圆运动,经半个周期回到X轴上的Q点,进入匀强电场,再在电场力作用下做匀减速运动直到速度为零。
此后,粒子重复上述运动直到X轴上的N 点,运动轨迹如图28-2所示。
设释放点M的坐标为,在电场中由静止加速,则:qEy O =mV2 [1]图28-2在匀强磁场中粒子以速率V 做匀速圆周运动,有:qBV=mV 2/R [2]设n 为粒子做匀速圆周运动的次数(正整数)则:L=n2R ,所以R=L/2n [3]解[1][2][3]式得:V=qBL/2mn ,所以y O =qB 2L 2/8n 2mE (式中n 为正整数)(3)粒子由M 运动到N 在电场中的加速运动和减速运动的次数为(2n-1)次,每次加速或减速的时间都相等,设为t 1,则:y O =at 12=qEt 12/m所以t 1=粒子在磁场中做匀速圆周运动的半周期为t 2,共n 次,t 2=πm/qB粒子从M 点运动到N 点共经历的时间为:t=(2n-1)t 1+nt 2=(2n-1)BL/2nE+n πm/qB (n=1、2、3……) 32、平行金属板长米,两板相距米,两板间匀强磁场的B 为×10-3特斯拉,两板间所加电压随时间变化关系如29-1图所示。
当t=0时,有一个a 粒子从左侧两板中央以V=4×103米/秒的速度垂直于磁场方向射入,如29-2图所示。