人教版九年级下册数学课本知识点总结
人教版九年级下数学知识点
人教版九年级下数学知识点一、代数(Algebra)1. 数的性质与运算:包括整数、分数、小数的加减乘除运算规则以及数轴上的表示与比较。
2. 一元一次方程与不等式:介绍一元一次方程的解法,包括基本的移项、去括号和合并同类项等步骤。
还有一元一次不等式的解法。
3. 二元一次方程组:学习通过消元法、代入法来解决二元一次方程组。
4. 百分数与利率:介绍百分数与小数的关系,以及利率的计算方法。
5. 平方根与立方根:学习求平方根和立方根的方法,掌握简化根式的技巧。
6. 幂与指数:介绍幂的运算法则,包括同底数幂的乘法和除法,以及指数归零法则。
7. 图形的坐标与表示:学习平面直角坐标系,了解坐标的含义以及如何用数学语言表示图形。
8. 几何的初步认识:介绍几何的基本概念,包括点、线、面等,探索平行线与垂线的性质。
9. 图形的变换:学习平移、旋转、翻转等图形变换的定义和性质,以及如何描述它们。
10. 直角三角形:介绍直角三角形的基本概念和性质,学习三角函数的定义与运用。
二、数据与统计(Data and Statistics)1. 数据的收集与整理:学习调查数据的收集方法,包括问卷调查、实地观察以及信息收集与整理。
2. 统计指标:介绍数据的集中趋势度量,包括平均数、中位数和众数等。
3. 样本调查与总体估计:学习对样本数据进行推断统计,了解如何通过样本推断总体信息。
4. 折线图与统计图:学习如何用折线图和统计图来展示数据,了解图表的特点以及如何阅读和解读。
三、几何(Geometry)1. 平面图形的认识:介绍多边形、圆、三角形等平面图形的定义和性质,了解它们的特点。
2. 类比与相似:学习相似图形的定义和判定条件,探索相似图形的性质和应用。
3. 平行四边形与梯形:介绍平行四边形和梯形的性质,学习求解相关问题的方法。
4. 圆的性质与应用:了解圆的相关定义和性质,学习应用圆的知识解决问题。
5. 空间图形的认识:介绍立体图形的基本概念,包括长方体、正方体、圆柱体和圆锥体等。
九年级人教版数学全册知识点
九年级人教版数学全册知识点一、代数1. 代数式的定义和基本性质2. 一元一次方程及其应用3. 一元一次不等式及其应用4. 线性函数及其应用5. 平方根与二次方程6. 平方根与二次函数7. 分式与分式方程8. 速度与比例二、几何1. 线段比例及其性质2. 相似三角形及其性质3. 直角三角形中的三角函数4. 平面直角坐标系5. 二次函数的图像与性质6. 平面向量三、数据统计与概率1. 统计与统计图2. 等可能事件与概率3. 条件概率与事件独立性4. 排列与组合5. 正态分布与抽样调查四、实数1. 整式的加减运算2. 整式的乘法和因式分解3. 分式的加减运算4. 分式的乘法和除法5. 二次根式的性质和计算五、函数与方程1. 一元二次方程2. 一元二次函数3. 二次函数与二次方程4. 一元二次不等式5. 一元一次不等式六、立体几何与图形1. 空间几何图形2. 直线与点的位置关系3. 平面与空间直线的位置关系4. 空间图形的投影5. 立体图形的计算七、三角函数1. 任意角与弧度制2. 三角函数及其图像性质3. 三角函数的诱导公式4. 三角函数的图像变换5. 三角恒等变换八、二次函数1. 二次函数的定义与性质2. 二次函数的函数图像3. 二次函数的最值与判别式4. 直线与二次函数的交点5. 二次函数的应用九、统计1. 统计调查与参数估计2. 统计图的应用与分析3. 数据的分类与分组4. 数据的比较与分析5. 综合统计应用题以上就是九年级人教版数学全册的知识点概述。
在这些知识点中,我们将学习代数、几何、数据统计与概率、实数、函数与方程、立体几何与图形、三角函数二次函数和统计等内容。
通过系统的学习和练习,我们将能够掌握九年级数学的核心知识,提高数学解题和分析问题的能力。
希望同学们能够认真学习,并在实践中不断提高自己的数学水平!。
九年级下数学所有知识点
九年级下数学所有知识点一、代数与函数1. 整式与分式整式的定义与性质分式的定义与性质2. 一次函数与二次函数一次函数的概念及性质二次函数的概念及性质一次函数与二次函数的图像特征3. 指数与对数指数的概念与性质对数的概念与性质指数函数与对数函数的关系4. 平面直角坐标系与直线平面直角坐标系的引入直线的斜率与方程二、几何1. 四边形与圆四边形的性质与分类圆的概念与性质2. 相似与全等三角形相似三角形的定义与性质全等三角形的定义与性质3. 空间几何体立体几何体的概念与性质立体几何体的计算4. 平行线与比例平行线的性质与判定比例的概念与性质三、概率与统计1. 事件与概率事件的基本概念概率的计算与性质2. 数据的收集与整理数据的统计方式与方法数据的分析与解读3. 统计的图表与分布条形图、折线图、饼图的绘制与解读频率分布表的制作与分析4. 抽样与推断随机抽样的概念与方法样本与总体的关系与推断四、数与量1. 数集与数的性质数集的分类与表示奇偶性、整除与因数2. 分数与小数分数的四则运算与性质小数的运算与应用3. 数量关系与变化比例与比例关系速度与密度的计算4. 三角函数与图形正弦、余弦、正切的概念与性质图形的平移、旋转、翻折与对称以上是九年级下数学的所有知识点的简要概述,涵盖了代数与函数、几何、概率与统计以及数与量等方面的内容。
通过学习这些知识,同学们将能够熟练掌握数学中的基本概念、性质和应用技巧,为进一步的学习做好铺垫,并培养良好的数学思维能力和解决问题的能力。
希望同学们在学习过程中勤加练习,加强对知识的理解与应用,做到理论联系实际,努力提高数学水平。
人教版九年级下册数学课本知识点总结
人教版九年级下册数学课本学问点总结第二十六章反比例函数一、反比例函数的概念1.()可以写成()的形式,留意自变量x的指数为,在解决有关自变量指数问题时应特殊留意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以快速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图像与x轴、y轴无交点.二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x≠,函数值0y≠,所以它的图像与x 轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但恒久达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应留意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越准确;③连线时,必需依据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:()2.自变量的取值范围:3.图像:(1)图像的形态:双曲线,越大,图像的弯曲度越小,曲线越平直。
越小,图像的弯曲度越大。
(2)图像的位置与性质:当时,图像的两支分别位于一、三象限;在每个象限内,y随x 的增大而减小;当时,图像的两支分别位于二、四象限;在每个象限内,y随x 的增大而增大。
(3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支。
图像关于直线对称,即若(a,b)在双曲线的一支上,则(,)与(,)在双曲线的另一支上。
.4.k的几何意义如图1,设点P(a,b)是双曲线上随意一点,作PA⊥x 轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO与三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|。
人教版九年级数学下知识点
人教版九年级数学下知识点九年级数学下册是学生们学习数学的最后一学期,也是复习和巩固基础知识的重要时期。
本文将介绍该教材中的几个重要的知识点,以帮助同学们更好地学习和理解。
一、有理数的加减乘除有理数是整数和分数的统称,包括正整数、负整数、零以及正负分数。
有理数的加减乘除是九年级数学下册的重要内容之一。
在加法运算中,正数加上正数,负数加上负数,都是同号相加;正数加上负数,要使用减法运算;在乘法和除法运算中,同号得正,异号得负。
二、平方根和立方根平方根是一个数的平方等于这个数本身的一个非负数根。
立方根是一个数的立方等于这个数本身的一个根。
在九年级数学下册中,学生们会学习怎样计算一个数的平方根和立方根,并掌握相关的运算技巧。
三、比例和比例的应用比例是九年级数学下册中的一个重要概念。
比例通常用两个分数、两个小数或者两个整数比较大小的关系来表示。
比例的应用非常广泛,在日常生活和实际问题中经常会使用到。
例如,商业中的折扣计算和图形中的缩放等等。
四、平行线与三角形平行线是指在同一个平面内永远不相交的直线。
在九年级数学下册中,学生们将学习如何判定两条直线是否平行,并掌握计算平行线之间的夹角的技巧。
此外,三角形也是重要的几何形状之一,学生们将掌握三角形的性质和相关定理,如三角形内角和为180度等。
五、统计与概率统计学是研究收集、处理和分析数据的一门学科。
九年级数学下册会涉及到数据的收集和整理,如频数表、频率表和统计图表等。
同时,学生们还将学习到概率相关的知识,包括随机事件、概率计算和事件之间的关系等。
六、空间几何体空间几何体是三维图形的统称,包括球体、圆柱体、圆锥体和棱柱体等。
九年级数学下册将学习空间几何体的性质和计算方法,如体积和表面积的计算等。
这些知识在现实生活中有广泛的应用,比如计算物体的容积和表面积等。
总结:九年级数学下册的知识点涉及到有理数的运算、平方根与立方根、比例与应用、平行线与三角形、统计与概率以及空间几何体等。
初三数学下册知识点总结
初三数学下册知识点总结一、平面图形的认识1. 点、线、面的基本概念2. 角的概念及角的分类3. 直线的分类及直线的性质4. 平行线的判定方法及平行线的性质5. 三角形的分类及三角形的性质6. 等腰三角形、等边三角形的性质7. 直角三角形、等腰直角三角形的性质8. 平行四边形、菱形、矩形、正方形的性质二、数据处理1. 平均数的概念及计算2. 中位数的概念及计算3. 众数的概念及计算4. 极差的概念及计算5. 百分数及其应用6. 棒形图、折线图、饼图的绘制及解读7. 统计调查设计三、方程式与不等式1. 一元一次方程的解法及应用2. 一元一次方程的解集及解集图的绘制3. 度量图形的方程式4. 解一元一次方程的应用题5. 一元一次不等式的认识及解法6. 一元一次不等式的应用题7. 二元一次方程组的解法及应用四、几何变换与成分比例1. 平移的性质及计算2. 旋转的性质及计算3. 对称的性质及计算4. 两个全等图形之间的性质及计算5. 两个相似三角形之间的性质及计算6. 成分比例的概念及计算7. 成分比例在几何形体中的应用五、平面向量1. 向量的概念及表示法2. 平面向量的加减法及性质3. 向量的数量积与性质4. 平面向量的数量积的性质及应用5. 平面向量的夹角和垂直的判定与计算6. 向量、点及直线的共线关系及应用7. 用平面向量解决平面几何问题六、三角函数1. 角度制与弧度制的相互转换2. 弧度的概念及性质3. 任意角与标准角的关系4. 正弦定理及应用5. 余弦定理及应用6. 正切定理及应用7. 三角函数基本关系式及应用8. 三角函数在直角三角形中的定值七、概率与统计1. 随机事件、样本空间及基本事件的认识2. 频率、概率的概念及计算3. 事件的复合及事件的计算4. 独立事件及概率的计算5. 试验次数的期望及概率模型6. 渐近性及概率的计算7. 初步了解贝叶斯公式及应用以上是初三数学下册的知识点总结,每个知识点都应掌握其概念、性质、计算方法及应用。
九年级数学下册知识点总结(最新最全)
九年级数学下册知识点总结(最新最全)九年级下册知识点第一章直角三角形边的关系1、正切:定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边。
①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。
(P1-6,11、P3-6、P4-12)2、正弦:定义:在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边;3、余弦:定义:在Rt△ABC中,锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边;4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则①sinA=cos(90°?∠A)等等。
6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。
(P4-13、P5-15,16、P10-11、P12-3)7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
0≤sinα≤1,0≤cosα≤1。
同角的三角函数间的关系:tαnα·cotα=1,tanα=sinα/cosα,cotα=cosα/sinα,sin2α+cos2α=18、在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有:(1)三边之间的关系:a2+b2=c2;(2)两锐角的关系:∠A+∠B=90°;(3)边与角之间的关系:sinα等;(4)面积公式;(5)直角三角形△ABC内接圆⊙O的半径为(a+b-c)/2;(6)直角三角形△ABC外接圆⊙O的半径为c/2。
(完整)人教版数学九年级下册学习重点难点梳理整理
九年级下册重难点梳理学习重点:1.从现实情境中探索直角三角形的边角关系。
理解正切、倾斜程度、坡度、锐角三角函数正弦、余弦的数学意义,密切数学与生活的联系。
能用sinA、cosA表示直角三角形两边的比。
2.能根据直角三角形的边角关系,进行简单的计算。
能够进行含30°、45°、60°角的三角函数值的计算,会比较锐角三角函数值的大小。
3.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用。
发展学生数学应用意识和解决问题的能力。
学习难点:1.理解正切的意义,并用它来表示两边的比。
2.用函数的观点理解正弦、余弦和正切。
3.根据相关术语,常用的方向角度准确的画出图像。
学习重点:1.能够表示简单变量之间的二次函数。
利用描点法作出y=x2的图像过程中,理解掌握二次函数y=x2的性质。
2.二次函数y=ax2、y=ax2+c的图像和性质,推导和研究二次函数y=ax2+bx+c的图像和性质。
学习时结合图像分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析.3.能够根据二次函数的不同表示方式,从不同的侧面对函数进行研究.函数的综合题目,往往是三种方式的综合应用,由三种不同方式,都能把握函数性质,才会正确解题。
4.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值。
5.把握二次函数图像与x轴(或y=h)交点的个数与一元二次方程的根的关系。
理解二次函数y=ax2+bx+c图像与x轴交点,即y=0,即ax2+bx+c=0,从而转化为方程的根,再应用根的判别式,求根公式判断,求解即可。
学习难点:1.函数图像的画法,及由图像概括出二次函数y=x2性质,由图像概括性质,结合图像记忆性质。
2.由函数图像概括出y=ax2、y=ax2+c的性质.函数图像都由列表、描点、连线三步完成。
难点在于根据函数图像来联想函数性质,由性质来分析函数图像的形状和位置。
九年级数学下册知识点
九年级数学下册知识点九年级下册数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a 都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
九年级下册数学全部知识点
九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。
在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。
数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。
通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。
希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。
九年级下册数学知识点汇总(人教版)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
九年级数学下册各章知识点
九年级数学下册各章知识点第一章:有理数1. 有理数的概念:有理数是整数和分数的统称,包括正数、零和负数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的加减法:通分后相加减。
4. 有理数的乘除法:同号异号相乘、除法转化为乘法求解。
5. 有理数的乘方:正数与负数的幂的性质。
第二章:代数式与方程1. 代数式的概念:包含有常数和变量,并且包含加减乘除等运算符号的式子。
2. 代数式的运算:常数与变量的运算、代数式的合并与展开。
3. 简单方程的解法:等式的转化与解方程。
4. 一元一次方程:含有一个未知数的一次方程的解法与应用。
5. 实际问题中的应用:运用方程进行实际问题的解答。
第三章:函数与图像1. 函数的概念:函数是自变量与因变量之间的关系,每个自变量对应唯一一个因变量。
2. 函数的表示:函数关系可以通过表格、图像、公式等形式表示。
3. 线性函数:函数图像为直线的函数。
4. 平方函数:函数图像为抛物线的函数。
5. 函数的最值:函数图像的最大值和最小值。
第四章:全等与相似1. 图形的基本概念:点、线、面及其性质。
2. 直线、射线、线段的比较:长度比较和角度比较。
3. 全等三角形:全等三角形的判定条件与性质。
4. 相似三角形:相似三角形的判定条件与性质。
5. 相似三角形的应用:运用相似三角形进行实际问题的解答。
第五章:平面图形的性质1. 四边形的性质:平行四边形、矩形、正方形、菱形等四边形的特殊性质。
2. 三角形的性质:等腰三角形、等边三角形等三角形的特殊性质。
3. 圆的性质:圆心角、圆内外切等与圆相关的性质。
4. 圆的应用:运用圆的性质解答实际问题。
5. 长方体与棱柱:长方体、正方体、棱柱的性质及计算表面积和体积。
第六章:统计与概率1. 统计调查:设计统计调查方案、收集数据、整理数据等。
2. 统计图表:直方图、折线图、饼图等图表的绘制与分析。
3. 概率的概念:事件发生的可能性。
4. 事件与概率:事件的概率计算、相互独立事件的概率计算等。
2024年人教版九年级数学知识点总结(2篇)
2024年人教版九年级数学知识点总结一、代数与函数1. 代数式和多项式- 代数式的概念和性质- 同类项的概念和合并方法- 多项式的加减法、乘法和除法2. 一元一次方程与一元一次不等式- 一元一次方程的解法(整数解、小数解、分数解)- 一元一次方程的应用题解法- 一元一次不等式的解法和绘制解集的方法3. 二元一次方程组- 二元一次方程组的解法(代入法、消元法)- 二元一次方程组的应用题解法4. 平方根和简化与扩展- 平方根的概念和性质- 简化与扩展式的概念和计算方法5. 二次根式与二次方程- 二次根式的概念和性质- 二次方程的解法(配方法、求判别式)- 二次方程的应用题解法6. 等差数列与等比数列- 等差数列的概念和性质- 等差数列的通项和求和公式- 等差数列的应用题解法- 等比数列的概念和性质- 等比数列的通项和求和公式- 等比数列的应用题解法7. 幂与指数函数- 幂的基本性质和运算法则- 指数函数的定义和性质- 幂函数与指数函数的应用题解法二、几何与图形1. 平行线与三角形- 平行线的判定方法和性质- 平行线的性质在三角形中的应用- 三角形的分类和性质- 三角形的周长和面积计算方法2. 四边形与多边形- 平行四边形的性质和判定方法- 矩形、正方形、菱形的性质和计算方法- 多边形的性质和计算方法(正多边形、不规则多边形)3. 圆与圆的性质- 圆的定义和基本性质- 圆的面积和周长计算方法- 圆心角、弧长和扇形面积的计算方法- 圆与圆的位置关系(相交、相切等)4. 空间几何体- 空间几何体的基本概念(球、柱、锥、棱镜等)- 空间几何体的面积和体积计算方法5. 相似与全等三角形- 三角形的相似判定和性质- 三角形的相似比例和相似比例的性质- 三角形的全等判定和全等条件- 三角形的全等性质和全等定理的证明三、数与统计1. 整数与有理数- 整数的性质和运算法则- 有理数的概念和性质- 有理数的加减乘除法运算法则2. 分数与实数- 分数的概念和性质- 分数的加减乘除法运算法则- 实数的分类和计算方法3. 数据与统计- 数据的收集和整理方法- 统计量的计算和表示方法- 点图、折线图、柱状图、饼图的制作方法4. 概率与统计- 随机事件的概念和性质- 概率的计算方法(几何概率、频率概率)- 概率的应用(事件的独立性、互斥性)以上是____年人教版九年级数学的主要知识点总结,总字数约为____字。
九年级下册数学人教版电子课本
九年级下册数学人教版电子课本
一、数的基本概念
1. 数是用来表示物体的多少或次序的符号。
2. 数的分类:自然数、整数、分数、有理数、无理数和混合数。
3. 自然数是从1开始,按1递增的数,它们是数的基本元素。
4. 整数是正整数、负整数和零的总称,它们是自然数的扩展。
5. 分数是由分子和分母组成的有理数,它们是表示物体的比
例的一种数。
6. 有理数是由有理数、分数和整数组成的数,它们可以用有
限个十进制位表示。
7. 无理数是不能用有限个十进制位表示的数,它们是有理数
的扩展。
8. 混合数是由整数和分数组成的数,它们是数的一种组合。
二、数的运算
1. 加法是把两个或多个数相加,得到一个新的数。
2. 减法是把一个数减去另一个数,得到一个新的数。
3. 乘法是把两个或多个数相乘,得到一个新的数。
4. 除法是把一个数除以另一个数,得到一个新的数。
5. 幂运算是把一个数的乘方运算,得到一个新的数。
6. 根号运算是把一个数开根号,得到一个新的数。
7. 组合运算是把加法、减法、乘法和除法组合起来,得到一个新的数。
人教版九年级数学全册各单元知识点总结
人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。
希望对你的学习有所帮助!。
人教版九年级下册数学反比例函数知识点总结及典型题
人教版九年级下册数学知识点总结第二十六章反比例函数一、反比例函数的定义(k为常数,k≠0,x≠0)函数,叫做反比例函数,x是自变量,y是x的函数,x的取值范一般的,形如y=kx围是不等于0的一切实数,且y也不能等于0。
其中k叫做反比例系数。
反比例函数的表达式也可以写成下面是一些常见的形式1.y=kx−1(k≠0)2.xy=k(k≠0)因为在反比例函数的解析式y=k(k≠0)中,只有一个待定系数k,确定了k的值,也就确定了反比例函数x的解析式。
因而只要给出一组x或者y的值或图像上任意一点的坐标,然后代入y=k中即可求出k的值,进而确x定反比例函数的解析式。
练习1.若函数y=(m−1)x m2−2是反比例函数,则m的值是 .的自变量x的取值范围是 .练习2.函数y=3x−2二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x和y轴,但永远不会与x轴和y轴相交.反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
注意:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,一般根据自变量大小从左至右用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,图像与坐标轴无限接近但不能与坐标轴相交。
练习4.画反比例函数y=的图象.(1)列表(请填空);x﹣4﹣3﹣2﹣11234y(2)描点、连线(请在图中的平面直角坐标系中完成);(3)点(12,)在y=的图象上吗?为什么?练习5.问题呈现:我们知道反比例函数的图象是双曲线,那么函数(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数的图象有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数的图象.(1)画出函数图象.①列表:x…﹣6﹣5﹣4﹣3﹣201234…y…﹣1﹣2﹣4421…②描点并连线.(2)观察图象,写出该函数图象的两条不同类型的特征:①,②;(3)理解运用:函数的图象是由函数的图象向平移个单位,其对称中心的坐标为.(4)灵活应用:根据上述画函数图象的经验,想一想函数的图象大致位置,并根据图象指出,当x满足时,y≥3.练习6.将函数y=的图象先向左平移1个单位长度,再沿y轴翻折,所得到的图象对应的函数表达式是.三、反比例函数的性质1.图像的形状:|k|越大,反比例函数的图象离坐标轴的距离越远,图像的弯曲度越小;|k|越小,反比例函数的图象离坐标轴的距离越近,图像的弯曲度越大。
人教版九年级数学下册知识点总结:第二十六章反比例函数
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
人教版九年级数学下册详细知识点
人教版九年级数学下册详细知识点1. 整式的加减运算- 同类项的加减法- 不同类项的加减法- 图形法- 代数法- 消元法2. 二次根式的运算- 二次根式的化简- 二次根式的加减法- 二次根式的乘法- 二次根式的除法- 二次根式的混合运算3. 平面向量- 平面向量的概念- 平面向量的加法- 平面向量的数乘- 平面向量的线性运算- 平面向量的模- 平面向量的数量积- 平面向量的投影4. 一次函数与一元一次方程- 一次函数的概念- 一次函数的图象- 一次函数的性质- 一次函数的表示方法- 一元一次方程的概念- 一元一次方程的解- 一元一次方程的应用5. 特殊三角函数值的计算- 30°、45°、60°特殊角的三角函数值- 任意角的正弦、余弦、正切值的计算6. 相似三角形与三角比- 相似三角形的条件- 相似三角形的性质- 三角比的定义- 三角比的性质和应用- 相似三角形和三角比的综合应用7. 幂的乘法与除法- 幂的乘法- 幂的除法- 科学计数法- 根式及其运算8. 多边形的面积- 任意多边形的面积- 三角形的面积- 正多边形的面积- 扇形和梯形的面积9. 数据的收集、整理和分析- 数据的收集和整理- 数据的图形表示- 数据的分析与解释- 统计指标的运算以上是人教版九年级数学下册的详细知识点。
不同章节涵盖了整式的运算、二次根式的处理、平面向量的操作、一次函数与一元一次方程、特殊三角函数值的计算、相似三角形与三角比、幂的乘除法、多边形的面积以及数据的收集、整理和分析等内容。
通过学习这些知识,学生将能够更好地掌握九年级数学下册的重点内容。
九年级数学下册重要知识点总结
初三数学下册重要知识点总结第 25章概率1、必然事件、不可能事件、随机事件的区别2、概率注意:( 1)概率是随机事件发生的可能性的大小的数量反映.( 2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.3、求概率的方法(1)用列举法求概率(列表法、画树形图法)(2)用频率估计概率:一方面,可用大量重复试验中事件发生频率来估计事件发生的概率. 另一方面 , 大量重复试验中事件发生的频率稳定在某个常数 ( 事件发生的概率 ) 附近,说明概率是个定值 , 而频率随不同试验次数而有所不同 , 是概率的近似值 , 二者不能简单地等同 .第 26 章二次函数1.二次函数的一般形式:y=ax2+bx+c.(a ≠ 0)4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c ,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c 的值 ,从而求出解析式 -------待定系数法.5.二次函数的顶点式:y=a(x-h)2+k(a≠ 0) ;由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k.6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设2解析式为y=a(x -h) + k ,再代入另一点的坐标求a,从而求出解析式.8.二次函数 y=ax 2+bx+c (a ≠ 0) 的图象及几个重要点的公式:9. 二次函数y=ax 2+bx+c (a ≠ 0) 中, a、b、 c 与的符号与图象的关系:(1)a> 0<=>抛物线开口向上; a < 0 <=>抛物线开口向下;(2)c> 0<=>抛物线从原点上方通过;c=0 <=> 抛物线从原点通过;c< 0<=>抛物线从原点下方通过;(3)a, b异号 <=> 对称轴在 y 轴的右侧; a, b 同号 <=> 对称轴在 y 轴的左侧;b=0 <=>对称轴是 y 轴;(4)b2- 4ac > 0<=> 抛物线与 x 轴有两个交点;b2- 4ac =0 <=>抛物线与x轴有一个交点(即相切); b 2-4ac < 0 <=>抛物线与 x 轴无交点 .10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.第 27章相似形1“平行出比例”定理及逆定理:几何表达式举例:( 1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段(1) ∵DE∥BC ∴ADAE成比例;DB EC AD E(2) ∵DE∥BC∴AD AEDE( 1)( 3)A(2)AC AB ∵ AD AEB C(3)∴DE∥BCB C DB EC2.比例的基本性质:a:b=c:d a c;ad=bcb d3.定理:“平行”出相似平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.4.定理:“ AA”出相似如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.5.定理:“ SAS”出相似如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似 .AE几何表达式举例:DADE∽ ABC∵ DE∥BC∴DAEB CCB A几何表达式举例:E∵∠ A=∠A又∵∠ AED=∠ACB∴Δ ADE∽ABCDB C几何表达式举例:AE∵AD AB又∵∠ A=∠ADAE AC∴Δ ADE∽ABCB C6.“双垂”出相似及射影定理:几何表达式举例:( 1)直角三角形被斜边上的高分成的两个直角三角A(1) ∵AC⊥CB形和原三角形相似;D又∵ CD⊥AB ∴ACD∽Δ CBD∽Δ ABC( 2)双垂图形中,两条直角边是它在斜边上的射影(2)2∵AC⊥CB CD⊥AB ∴ AC=AD· AB和斜边的比例中项,斜边上的高是它分斜边所成BBC2 =BD· BA DC2 =DA·DB 两条线段的比例中项 .C7.相似三角形性质:A( 1)相似三角形对应角相等,对应边成比例;E ( 2)相似三角形对应高的比,对应中线的比,对应角平分线、周长的比都等于相似比;( 3)相似三角形面积的比,等于相似比的平方.B DC FHG(1) ∵ ABC∽ΔEFG(2) ∵Δ ABC∽ EFG S∴AB BC AC又∵ AD、EH是对应中线(3) ∵Δ ABC∽ EFG ∴∠BAC=∠FEG S2ABCABEFGEFEF FG EG∴AD ABEH EF四、位似1、利用位似,可以将一个图形放大或缩小.作图时要注意: ①首先确定位似中心,位似中心的位置可随意选择; ②确定原图形的关键点, 如四边形有四个关键点, 即它的四个顶点;③确定位似比, 根据位似比的取值, 可以判断是将一个图形放大还是缩小; ④符合要求的图形不惟一, 因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.第 28 章解三角形1. 三角函数的定义:在 Rt ABC 中 , 如∠ C=90°,那么sinA=对a;cosA=对 b; tanA=对a;cotA=邻b .斜c斜c邻b对aBac2.余角三角函数关系 ------“正余互化公式”如∠ A+∠ B=90° , 那么: sinA=cosB ; cosA=sinB;tanA=cotB;cotA=tanB.3. 同角三角函数关系:22;tanA ·co tA =1. tanA=sin Asin A+cos A =1 cos A4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余CbA切函数随角的增大,函数值反而减小.Ak, 它可以推出特殊5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设角的直角三角函数值,要熟练记忆它们.60 °2KK∠ A30°45°60°30°sinA1 2 3 C3KB22 2AcosA3 2 12K22 2 KtanA3 1345 °3 CK BcotA31336. 解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边 .7.坡度: i = 1:m = h/l = tanα ; 坡角 : α .8. 方位角:h北偏西30i=1:m北a东 l南偏东709.仰角与俯角:铅垂线仰角俯角水平线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级下册数学课本知识点总结
第二十六章反比例函数
一、反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图像与x轴、y轴无交点.
二、反比例函数的图像画法
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0
x≠,函数值0
y≠,所以它的图像与x 轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:
①列表时选取的数值宜对称选取;
②列表时选取的数值越多,画的图像越精确;
③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;
④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质
1.函数解析式:()
2.自变量的取值范围:
3.图像:
(1)图像的形状:双曲线,越大,图像的弯曲度越小,曲线越平直。
越小,图像的弯曲度越大。
(2)图像的位置和性质:
当时,图像的两支分别位于一、三象限;在每个象限内,y随x 的增大而减小;
当时,图像的两支分别位于二、四象限;在每个象限内,y随x 的增大而增大。
(3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支。
图像关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上。
.
4.k的几何意义
如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x 轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|。
5.说明:
(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。
(2)直线与双曲线的关系:
当时,两图像没有交点;当时,两图像必有两个交点,且这两个交点关于原点成中心对称.
四、实际问题与反比例函数
1.求函数解析式的方法:
(1)待定系数法;(2)根据实际意义列函数解析式。
2.注意学科间知识的综合,但重点放在对数学知识的研究上.五、充分利用数形结合的思想解决问题
第二十七章相似三角形
一、图形的相似
1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽)
性质:相似多边形的对应角相等,对应边的比相等。
2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比:相似多边形的对应边的比叫相似比。
相似比为1时,相似的两个图形全等。
二、相似三角形
1.性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
2.判定.①如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
②如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
③如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(①三边对应成比例②两个三角形的两个角对应相等;③两边对应成比例,且夹角相等;④相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
)
3.相似三角形应用
视点:眼睛的位置;仰角:视线与水平线的夹角;盲区:看不到的区域。
4.相似三角形的周长与面积:①相似三角形周长的比等于相似比。
②相似多边形周长的比等于相似比。
③相似三角形面积的比等于相似比的平方。
④相似多边形面积的比等于相似比的平方。
三、位似
1.位似图形:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
2.性质:在平面直角体系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形的对应点的坐标的比等于k或-k。
注意
1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;
2、两个位似图形的位似中心只有一个;
3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;
4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;
5.位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
位似多边形的对应边平行或共线。
位似可以将一个图形放大或缩小。
位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
6.根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
第二十八章锐角三角函数
一、锐角三角函数
1.正弦:在Rt△ABC中,锐角∠A的对边a与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边=a/c;
2.余弦:在Rt△ABC中,锐角∠A的邻边b与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边=b/c;
3.正切:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边=a/b。
①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。
4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A 的余切,记作cotA,即cotA=∠A的邻边/∠A的对边=b/a;
5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正
弦、余弦互为余函数。
同样,也称正
切、余切互为余函数,可以概括为:
一个锐角的三角函数等于它的余角
的余函数)用等式表达:
若∠A 为锐角,则①sinA = cos(90°−∠A)等等。
6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。
7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
0≤sinα≤1,0≤cosα≤1。
同角的三角函数间的关系:tanα·cotα=1,tanα=sinα/cosα,cotα=cosα/sinα,sin2α+cos2α=1
二、解直角三角形
1.解直角三角形: 在直角三角形中,由已知元素求未知元素的过程。
2.在解直角三角形的过程中用到的关系:(在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,)
(1)三边之间的关系:a2+b2=c2;(勾股定理)
(2)两锐角的关系:∠A+∠B=90°;
(3)边与角之间的关系:
sinA =a/c;(a= c sinA)
cosA =b/c;(b= c cosA)
tanA=a/b。
sinA= cosB cosA =sinB sinA= cos(90°-A)
sin2α+cos2α=1
第二十九章投影与视图
一、投影
1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:由平行光线形成的投影是平行投影。
(光源特别远)
3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
物体正投影的形状、大小与它相对于投影面的位置有关。
5.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。
当物体的某个面顶斜于投影面时,这个面的正投影变小。
当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。
二、三视图
1.三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。
三视图就是主视图、俯视图、左视图的总称。
另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
2.主视图:在正面内得到的由前向后观察物体的视图。
3.俯视图:在水平面内得到的由上向下观察物体的视图。
4.左视图:在侧面内得到的由左向右观察物体的视图。
5.三个视图的位置关系:①主视图在上、俯视图在下、左视图在右;
②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。
③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。
6.画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。