人教版数学七年级上册第三单元一元一次方程知识点

合集下载

人教版七年级数学上册—第3章一元一次方程单元总结

人教版七年级数学上册—第3章一元一次方程单元总结

第三章 一元一次方程知识点一 :一元一次方程的概念1.方程的定义:含有未知数的等式.①未知数;②等式. 2.一元一次方程的定义:只.含有一个..未知数(元),未知数的最高次数是.....1.,等号两边都是整式的方程叫一元一次方程. 一元一次方程的一般形式....:ax+b=0(a 、b 为常数,且a≠0,即末知数的系数一定不能为0). 3.方程的解:使方程等号左、右两边相等的未知数的值. 4.解方程:求方程的解的过程. 例题:1. (1)下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-= D .12x x-= (2)下列各式中,是一元一次方程的是( )A. 6x y -=B. 1223x x --= C. 34x - D. 21x x += 2.(1)已知2x1-m +4=0是一元一次方程,则m= ________.(2)已知方程04)2(1||=+--a xa 是一元一次方程,则=a __________(3)若2(21)30a x bx c +--=是关于x 的一元一次方程,则一定有( )A. 12a =-,0b ≠,c 为任意数 B. 12a =-,b 、c 为任意数 C. 12a =-,0,0b c ≠= D. 12a =,0,0bc =≠(4)若2(1)(1)30k x k x -+++=是关于x 的一元一次方程,求k 的值3.下列说法:①等式是方程; ②x=4是方程5x+20=0的解; ③x=-4和x=6都是方程│x-1│=5的解.其中说法 正确的是___ _.(填序号)4.(1)下列方程中,解为4的方程是( )A. 104x x =-B. 5(2)2(27)x x +=+C.62355y y -=+ D. 50.594x x =+ (2)已知4x =-是方程231x a x +=-的解,则a 的值是 5.根据条件列出方程(1)某数的2倍,再减去1等于5 (2)某数的3倍与它的12的和等于106.(1)买4本练习本和5支铅笔一共用了4.9元,已知铅笔每支0.5元,练习本每本多少元?若设练习本每本x 元,则可列方程为(2)一辆汽车从A 地到B 地后,用去了邮箱里的汽油的25%,还剩40升,邮箱里原有汽油多少升?若设邮箱里原有汽油x 升,可列方程为知识点二:等式的基本性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a ±c =b ±c等式的性质2:等式两边都乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb 例题:1.(1)若a b =,则下列式子正确的有( )①22a b -=- ②1132a b =③3344a b -=- ④5151a b -=-. A.1个 B.2个 C.3个 D.4个(2)如果ma mb =,那么在下列变形中,不一定成立的是( )A. 11ma mb +=+B. 33ma mb -=-C. 1122ma mb -=- D. a b = (3)下列变形中,正确的是()A.若ac=bc ,那么a=bB.若cbc a =,那么a=b C.a =b ,那么a=b D.若a 2=b 2那么a=b (4)运用等式的性质进行变形,正确的是( )A.如果a b =,那么a c b c +=-;B.如果a bc c=,那么a b = C.如果a b =,那么a bc c= D.如果23a a =,那么3a = 2.(1)给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为;其中变形正确的是( ) A .①③④ B .①②④C .②③④D .①②③(2)下列各式的变形中,错误的是 ( )A. 260x +=变形为26x =-B.312x x +=-变形为322x x +=- C. 2(4)2x --=-变形为41x -= D. 1122x +-=变形为11x -+=3.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的; (1)如果810x +=,那么10x =- (2)如果437x x =+,那么4x - =7 (3)如果38x -=,那么x = (3)如果123x =-,那么 =-6 4.完成下列解方程: (1)1343x -= 解:两边 ,根据 得13343x --= 于是13x -=两边 ,根据 得x =(2)5234x x -=+解:两边 ,根据 ,得 =3x+6 两边 ,根据 ,得2x=两边 ,根据 ,得x= 5.根据下列变形,填写过程及理由21100.10.2x -= 解:20101012x -=( ) 20510x -= ( )2015x = ( )34x = ( )6.利用等式的性质解下列方程并检验 (1)1262x += (2)1543x --= (3)328x -=-7.当x 为何值时,式子453x -与31x +的和等于9?8.列方程并求解:一个两位数,个位上的数字比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数(提示,设个位上的数字为x )9.如果方程21x a x +=-的解是x=-4,求32a -的值10.等式2(2)10a x ax -++=是关于x 的一元一次方程,求这个方程的解知识点三:一元一次方程的解法(一般步骤、注意事项) 1.解方程的一般步骤:把含未知数的项归在方程的一边,把常数项归到方程的另一边,将方程化为最简的形式ax b =(0)a ≠,然后根据方程两边都除以a ,化为bx a=的形式。

人教版七年级数学上册—第3章一元一次方程单元总结

人教版七年级数学上册—第3章一元一次方程单元总结

第三章 一元一次方程知识点一 :一元一次方程的概念1.方程的定义:含有未知数的等式.①未知数;②等式. 2.一元一次方程的定义:只.含有一个..未知数(元),未知数的最高次数是.....1.,等号两边都是整式的方程叫一元一次方程. 一元一次方程的一般形式....:ax+b=0(a 、b 为常数,且a≠0,即末知数的系数一定不能为0). 3.方程的解:使方程等号左、右两边相等的未知数的值. 4.解方程:求方程的解的过程. 例题:1. (1)下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-= D .12x x-= (2)下列各式中,是一元一次方程的是( )A. 6x y -=B. 1223x x --= C. 34x - D. 21x x += 2.(1)已知2x1-m +4=0是一元一次方程,则m= ________.(2)已知方程04)2(1||=+--a xa 是一元一次方程,则=a __________(3)若2(21)30a x bx c +--=是关于x 的一元一次方程,则一定有( )A. 12a =-,0b ≠,c 为任意数 B. 12a =-,b 、c 为任意数 C. 12a =-,0,0b c ≠= D. 12a =,0,0bc =≠(4)若2(1)(1)30k x k x -+++=是关于x 的一元一次方程,求k 的值3.下列说法:①等式是方程; ②x=4是方程5x+20=0的解; ③x=-4和x=6都是方程│x-1│=5的解.其中说法 正确的是___ _.(填序号)4.(1)下列方程中,解为4的方程是( )A. 104x x =-B. 5(2)2(27)x x +=+C.62355y y -=+ D. 50.594x x =+ (2)已知4x =-是方程231x a x +=-的解,则a 的值是 5.根据条件列出方程(1)某数的2倍,再减去1等于5 (2)某数的3倍与它的12的和等于106.(1)买4本练习本和5支铅笔一共用了4.9元,已知铅笔每支0.5元,练习本每本多少元?若设练习本每本x 元,则可列方程为(2)一辆汽车从A 地到B 地后,用去了邮箱里的汽油的25%,还剩40升,邮箱里原有汽油多少升?若设邮箱里原有汽油x 升,可列方程为知识点二:等式的基本性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a ±c =b ±c等式的性质2:等式两边都乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb 例题:1.(1)若a b =,则下列式子正确的有( )①22a b -=- ②1132a b =③3344a b -=- ④5151a b -=-. A.1个 B.2个 C.3个 D.4个(2)如果ma mb =,那么在下列变形中,不一定成立的是( )A. 11ma mb +=+B. 33ma mb -=-C. 1122ma mb -=- D. a b = (3)下列变形中,正确的是()A.若ac=bc ,那么a=bB.若cbc a =,那么a=b C.a =b ,那么a=b D.若a 2=b 2那么a=b (4)运用等式的性质进行变形,正确的是( )A.如果a b =,那么a c b c +=-;B.如果a bc c=,那么a b = C.如果a b =,那么a bc c= D.如果23a a =,那么3a = 2.(1)给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为;其中变形正确的是( ) A .①③④ B .①②④C .②③④D .①②③(2)下列各式的变形中,错误的是 ( )A. 260x +=变形为26x =-B.312x x +=-变形为322x x +=- C. 2(4)2x --=-变形为41x -= D. 1122x +-=变形为11x -+=3.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的; (1)如果810x +=,那么10x =- (2)如果437x x =+,那么4x - =7 (3)如果38x -=,那么x = (3)如果123x =-,那么 =-6 4.完成下列解方程: (1)1343x -= 解:两边 ,根据 得13343x --= 于是13x -=两边 ,根据 得x =(2)5234x x -=+解:两边 ,根据 ,得 =3x+6 两边 ,根据 ,得2x=两边 ,根据 ,得x= 5.根据下列变形,填写过程及理由21100.10.2x -= 解:20101012x -=( ) 20510x -= ( )2015x = ( )34x = ( )6.利用等式的性质解下列方程并检验 (1)1262x += (2)1543x --= (3)328x -=-7.当x 为何值时,式子453x -与31x +的和等于9?8.列方程并求解:一个两位数,个位上的数字比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数(提示,设个位上的数字为x )9.如果方程21x a x +=-的解是x=-4,求32a -的值10.等式2(2)10a x ax -++=是关于x 的一元一次方程,求这个方程的解知识点三:一元一次方程的解法(一般步骤、注意事项) 1.解方程的一般步骤:把含未知数的项归在方程的一边,把常数项归到方程的另一边,将方程化为最简的形式ax b =(0)a ≠,然后根据方程两边都除以a ,化为bx a=的形式。

(完整)人教版七年级数学上册-第三单元一元一次方程

(完整)人教版七年级数学上册-第三单元一元一次方程

2☆下列各数是方程a A.2 B. -2 C.1 D. 1和-23☆下列方程是一元一次方程的是( )A.x2+1=5 B. 3(m -1)-1=2 C. x-y=6 D.都不是 4★若x=4是方程a x -2=4的解,则a 等于( ) A. 0 B. 21C.-3D.-25★★已知关于x 的一元一次方程a x -b x=m 有解,则有( )A. a ≠b B.a>b C.a<b D.以上都对二、【方程变形——解方程的重要依据】1、▲等式的基本性质(P_83~84页)·等式的性质1:等式的两边同时加(或减) ( ),结果仍相等。

即:如果a =b ,那么a ±c =b 。

·等式的性质2:等式的两边同时乘 ,或除以 数,结果仍相等。

即:如果a =b ,那么ac =bc ; 或 如果a =b ( ),那么a/c =b/c[# 注:等式的性质(补充): 等式的两边,结果仍相等。

即:如果a =b ,那么b =a #]2、△分数的基本的性质[4]分数的分子、分母同时乘以或除以同一个不为0分数的值不变。

即:b a =bm am =mb ma ÷÷(其中m ≠0) [基础练习] 1☆ 利用等式的性质解方程:2x+13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 ,解得:x=2★ 下列变形中,正确的是( )55,253==-x x x A 得、由23,23-==-x x B 得、由21,4)1(2=-=-x x C 得、由23,032==y y D 得、由3★★解方程:103.013.031.02.0=--x x三、【解一元一次方程的一般..步骤】图示1、上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;2、解方程时,一定要先认真观察方程的形式,再选择步骤和方法;3、对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解。

人教版初一七年级数学第三单元知识点及练习题

人教版初一七年级数学第三单元知识点及练习题

第三章 一元一次方程一.知识框架二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解). 4.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度=速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.本章内容是代数学的核心,也是所有代数方程的基础。

七年级数学上册《一元一次方程》知识点归纳

七年级数学上册《一元一次方程》知识点归纳

七年级数学上册《一元一次方程》知识点归纳【第一部分】知识点分布、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

()求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±=b±(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

【第一部分】知识点分布1、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

()求出使方程左右两边的值相等的未知数的值,叫做x=a(a常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。

2、解一元一次方程——去括号与去分母(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

七年级上册数学人教版第三章 一元一次方程知识点梳理

七年级上册数学人教版第三章 一元一次方程知识点梳理

第三章一元一次方程1. 方程1.1. 方程:含有未知数的等式叫做方程1.2. 方程的解:使方程等号左右两边相等的未知数的值叫做方程的解1.3. 解方程:求方程解的过程叫做解方程1.4. 一元一次方程1.4.1. 定义1.4.1.1. 只含有1个未知数,未知数的次数都是1,等号两边都是等式,这样的方程叫做一元一次方程.1.4.2. 解法1.4.2.1. 解一元一次方程的一般步骤: (1) 去分母:方程两边都乘各分母的最小公倍数,别漏乘. (2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常数项移到方程右边,移项时注意要改变符号. (4) 合并同类项:把方程化成 ax=b (a ≠ 0) 的形式. (5) 系数化为1:方程两边同除以 x 的系数,得 x=m的形式.2. 等式的性质2.1. 等式的性质1:等式两边加 (或减) 同一个数 (或式子),结果仍相等.如果 a=b,那么 a±c= b±c.2.2. 等式的性质2:等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等.如果 a=b,那么 ac=bc;如果 a = b (c ≠ 0),那么 a/c= b/c .3. 实际问题与一元一次方程3.1. 解题步骤(重点:等量关系)3.1.1. 审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x. 列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案 (包括单位).3.2. 常见的几种方程类型及等量关系3.2.1. (1)行程问题中基本量之间关系:3.2.1.1. 路程=速度×时间.①相遇问题:全路程=甲走的路程+乙走的路程;②追及问题:甲为快者,被追路程=甲走路程-乙走路程;③流水行船问题: v顺=v静+v水,v逆=v静-v水.3.2.2. (2) 工程问题中基本量之间的关系:3.2.2.1. ①工作量 = 工作效率×工作时间;②合作的工作效率 = 工作效率之和;③工作总量 = 各部分工作量之和 = 合作的工作效率×工作时间;④在没有具体数值的情况下,通常把工作总量看作 1.3.2.3. (3) 销售问题中基本量之间的关系:3.2.3.1. ①商品利润 = 商品售价-商品进价。

人教版七年级上册第三章-一元一次方程知识要点梳理(汇编)

人教版七年级上册第三章-一元一次方程知识要点梳理(汇编)

第三章一元一次方程知识要点梳理一.元一次方程及解的概念1、一元一次方程的概念只含有一个未知数,并且未知数的次数都是1的方程叫做一元一次方程。

一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。

2、方程的解使方程左右两边的值相等的未知数的值叫做方程的解注意:(1)一元一次方程必须满足的3个条件:只含有一个未知数;未知数的次数是1次;整式方程.(2)判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.二.方程变形——解方程的重要依据1、等式的基本性质(也叫做方程的同解原理)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

即:如果,那么;(c为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

即:如果,那么;如果,那么2、分数的基本的性质分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为的形式:-=1.6。

方程的右边没有变化,这要与“去分母”区别开。

三.解一元一次方程的一般步骤1、解一元一次方程的基本思路通过对方程变形,把含有未知数的项归到方程的一边,把常数项归到方程的另一边,最终把方程“转化”成x=a的形式。

2、解一元一次方程的一般步骤是变形名称具体做法变形依据去分母在方程两边都乘以各分母的最小公倍数等式基本性质2去括号先去小括号,再去中括号,最后去大括号去括号法则、分配律移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号) 等式基本性质1合并同类项把方程化成ax=b(a≠0)的形式合并同类项法则系数化成1 在方程两边都除以未知数的系数a,得到方程的解x=等式基本性质2注意:(1) 解方程时应注意:①解方程时,表中有些变形步骤可能用不到,并且也不一定按照自上而下的顺序,要根据方程形式灵活安排求解步骤。

【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题

【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题

【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。

一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

人教版七年级数学上册第三章 一元一次方程知识点复习

人教版七年级数学上册第三章 一元一次方程知识点复习

的值相等,那么这个数就是方程的解;如果不相等,那么这个数就不是方程的解。
温馨提示 ②方程可能无解,可能只有一个解,也可能有多个解。
③等式的基本性质是解方程的依据。
④方程的解是结果,而解方程得到这个结果的一个过程。
课堂练习
1.下面等式变形:①若������ = ������,则������������ = ������������;②若������������ = ������������,则������ = ������;③若4������ = 7������,则������������ = 74;④若������������ = 74,则4������ = 7������。
去括号 先去小括号,再去中括号,最后去大括号
移项
把含有未知数的项移到方程的一边,其他各项都移到方程的另 一边(记住移项要变号)
合并同类项 把方程化为������������ = ������(������ ≠ 0)的形式
系数化为1
在方程的两边都除以未知数的系数������,得到方程的解������
=
1
3
������.方程 ‒ 3������ = 2的解是������ = ‒ 2
6.用等式性质求下列方程的解。
(1)3������ ‒ 1 = 2 + ������;
(2)12������
+
1 3
=
2������

12。
3.2 解一元一次方程
知识点 1.一元一次方程 1.定义 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。 2.标准形式
������ ������
变形依据 等式性质2 去括号法则、分配律

人教版七年级数学上册第三章《一元一次方程》知识点

人教版七年级数学上册第三章《一元一次方程》知识点

一、知识框架二、知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:方程左右两边相等的未知数的值叫做方程的解。

一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.三、题型解析一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值。

七年级上册第三单元一元一次方程知识点总结 (人教版)

七年级上册第三单元一元一次方程知识点总结 (人教版)
第2步:设未知数。根据题意及各个量的关系设未知数。
第3步:列方程(组)。根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。根据方程(组)的类型采用相应的解法。
第5步:答。
变形名称
依据
具体做法
注意事项
去分母
等式的性质2
在等号两边都乘各分母的最小公倍数
(1)不要漏乘不含分母的项;
(2)若分子是一个多项式,需加上括号
去括号
乘法分配律、去括号法则
先去小括号,再去中括号,最后去大括号
(1)不要漏乘括号里的项;
(2)不要弄错符号
移项
移项法则
把含有未知数的项移动到方程的一边,其他的项移动到方程的另一边
重点解读
3、方程的解与解方程
定义
实质
方程的解ቤተ መጻሕፍቲ ባይዱ
使方程等号左右两边相等的未知数的值叫做方程的解
具体数值
解方程
求方程解的过程叫做解方程
变形过程
4、等式的性质
语言叙述
字母表示
等式性质1
等式两边加(或减)同一个数(或式子),结果仍相等
如果 ,那么
等式性质2
等式两边乘同一个数,或除以一个不为 的数,结果仍相等
如果 ,那么 ;
如果 ,那么
重点解读
(1)注意等式左右两边同时加、减、乘或除以不能遗漏任一边,并且同时加、减、乘或除以的数必须是同一个数;
(2)等式的两边除以一个数或整式时,这个数或整式不能为0;
(3)等式还有以下性质:①如果 , ,那么 ;②如果 ,那么
5、解一元一次方程的一般步骤
①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
(1)移项要变号;
(2)不要丢项

七年级数学上第三章 一元一次方程分析总结

七年级数学上第三章  一元一次方程分析总结

第三章 一元一次方程3.1从算式到方程一、基础知识1、方程:含有未知数的等式。

2、一元一次方程:只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程。

3、方程的解:求出使方程中等号左右两边相等的未知数的值。

4、等式的性质:等式两边加(或减)同一个数(或式子),结果仍相等;等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

二、应知应会1、根据描述设未知数并列出方程。

2、利用等式的性质解方程。

3、检验某数是否为方程的解。

三、方法规律1、若a=b ,那么a ±c=b±c ;ac=bc ;cb c a 2、列方程:分析实际问题中的数量关系,利用其中的相等关系列出方程。

四、易错分析1、把分母中含有未知数的方程作为一元一次方程。

2、列方程时未注意单位变化。

五、拓展应用1、已知方程(m -2)x |m|-1+3=m -5是关于x 的一元一次方程,求m 的值,•并写出其方程。

2、A 、B 两超市销售额去年共为150万元,今年共为170万元,A 、B 超市销售额今年比去年分别增加15%和10% ,列关于销售额的方程。

3、当x= 时,4x+8与3x-10互为相反数。

4、某项工作甲单独做4天完成,乙单独做6天完成,若甲先干一天,然后,甲、乙合作完成此项工作,若设甲一共做了x 天,乙工作的天数为_________ ,由此可列出方程_________________________ 。

5、已知某数x ,若比它的43大1的数的相反数是5,求x.则可列出方程 ( ) 6、下列语句:①含有未知数的代数式叫方程;②方程中的未知数只有用方程的解去代替它时,该方程所表示的等式才成立;③等式两边都除以同一个数,所得结果仍是等式;其中错误的语句的个数为()个。

7、运用等式性质进行的变形,正确的是( )A.如果a=b,那么a+c=b-c ;B.如果c b c a =,那么a=b ; C.如果a=b,那么cb c a =;D.如果a 2=3a,那么a=38、图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g 。

新人教版七年级数学上册第三章一元一次方程知识与题型总结

新人教版七年级数学上册第三章一元一次方程知识与题型总结

每个学生都可以用的“超级数学学习笔记”一元一次方程知识框架与典型例题一、知识点知识点一:1、含有______________的等式是方程,使方程的等式两边的相等的值教方程的解,方程中含有____个未知数,未知数的_________________的方程称为一元一次方程(注意:方程一定是等式,等式不一定是方程)知识点二:等式的性质1 等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____.等式的性质2 等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____.知识点三:解方程的步骤:1、 如果有分母,先去____, (注意去分母时等式两边每一项都乘以最小公倍数)2、 后去_____,(去括号时,注意括号前面的符合)3、 再_____、(移项要变号)4、 ______得到标准形式ax=b(a ≠0),最后两边同除以______的系数。

(合并同类型)5、 易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、常考题型题型总结题型一:判定是不是方程1下列各式中:① 3+3=6 ② 123>+x ③ 39-x =7 ④ 122=-z z⑤ 0=m (6) 239=-π(7)236=-πx有______条是方程,其中__________(填写编号)是一元一次方程。

每个学生都可以用的“超级数学学习笔记”2、下列式子谁有资格进入住方程乐园?2973=+x ,62-=x x ,y x 21-,071<-x ,422=-y x ,224-=+- 3、判断是不是一元一次方程?2(x +100)=600 , (x +200)+ x +(x -448)=300644x +(x +4)=8, x +5=8 , x -2y =6 , 32x -2y =120题型二:判定是不是一元一次方程1、如果单项式121-2n a b +与213n m a b -是同类项,则n=___,m=____ 2 如果代数式3x-5与1-2x 的值互为相反数,那么x=____ 3 若方程3x-5=4x+1与3m-5=4(m+x)-2m 的解相同,求()200820m +的值4.关于x 的方程230m mx m ++-=是一个一元一次方程,则m =_______.5.关于x 的方程()112436x x m +=-+的解是116-,则()20021m -=_______. 6.关于x 的方程39x =与4x k +=解相同,则代数式212kk-的值为_______. 7.若关于x 的方程()23202k x kx -+-=k 是一元一次方程,则k =_______,方程的解为_______. 8.当x =_______时,代数式12x -与113x +-的值相等.9 若关于x 的一元一次方程231,32x k x k---=的解是x= -1,则k 的值是( )A 27B 1C 1311- D 011.已知方程112332x x x ---=+-与方程2224334kx xk +--=-的解相同,则k 的值为( ) A.0B.2C.1D.1-11.已知方程233mx x -=+的解满足10x -=,则m 的值是( ) A.6-B.12-C.6-或12-D.任何数12.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A.12B.6C.6-D.12-13.(8分)解关于x 的方程()0b x x aa b a b+-=≠≠. 14.(10分)已知2ym my m +=-.每个学生都可以用的“超级数学学习笔记”(1)当4m =时,求y 的值;(2)当4y =时,求m 的值.15 已知x=- 2是方程22328x mx m -+=的解,求m 的值。

人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。

人教版 数学 七年级 上册 第三单元 一元一次方程 知识点

人教版 数学 七年级 上册 第三单元 一元一次方程 知识点

人教版 数学 七年级 上册 第三单元 一元一次方程知识点3.1 从算式到方程(1)方程:含未知数的等式;(2)一元一次方程:只含一个未知数(元)且未知数的次数都是1的方程;标准式:ax+b=0(x 是未知数;a 、b 是已知数;且a ≠0);(3)方程的解:使方程等号左右两边相等的未知数的值;(4)等式的性质1:等式两边加(或减)同一个数(或式子);结果仍相等;如果a=b ;那么a ±c=b ±c;等式的性质2:等式两边乘同一个数;或除以同一个不为0的数;结果仍相等; 如果a=b ;那么ac=bc;如果a=b ;c ≠0;那么cb c a =; 3.2、3.3解一元一次方程——合并同类项与移项、去括号与去分母(1)合并同类项:把含x 的项合并在一起;(2)移项:把等式一边的某项变号反移到另一边;(3)一元一次方程解法的一般步骤:去分母----------两边同乘最简公分母去括号----------注意符号变化移项----------注意要变号合并同类项--------合并后注意符号系数化为1---------等式右边除以x 的系数3.4实际问题与一元一次方程(1)“表示同一个量的两个不同的式子相等”是一个基本的相等关系;“工作量=人均效率×人数×时间”是计算工作量的常用数量关系式;(2)列一元一次方程解应用题:①读题分析法: 多用于“和;差;倍;分问题”仔细读题;找出表示相等关系的关键字;例如:“大;小;多;少;是;共;合;为;完成;增加;减少;配套……”;利用这些关键字列出文字等式;并且据题意设出未知数;最后利用题目中的量与量的关系填入代数式;得到方程.②画图分析法: 多用于“行程问题”仔细读题;依照题意画出有关图形;使图形各部分具有特定的含义;通过图形找相等关系是解决问题的关键;从而取得列方程的依据;最后利用量与量之间的关系(可把未知数看做已知量);填入有关的代数式是获得方程的基础.(3)列方程常用公式1.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距2.工程问题:工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=1工程问题常用等量关系:先做的+后做的=完成量3.顺水逆水问题:顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度;抓住两码头间距离不变;水流速和船速(静不速)不变的特点考虑相等关系. 顺水逆水问题常用等量关系: 顺水路程=逆水路程4.商品利润问题: 售价=定价 ; %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润商品销售额=商品销售价×商品销售量商品的销售利润=(销售价-成本价)×销售量商品打几折出售;就是按原价的百分之几十出售;如商品打8折出售;即按原价的80%出售.5.若干应用问题等量关系的规律(1)和、差、倍、分问题 此类题既可有示运算关系;又可表示相等关系;要结合题意特别注意题目中的关键词语的含义;如相等、和差、几倍、几分之 几、多、少、快、慢等;它们能指导我们正确地列出代数式或方程式。

七年级数学上册第三章一元一次方程重点知识点大全

七年级数学上册第三章一元一次方程重点知识点大全

七年级数学上册第三章一元一次方程重点知识点大全单选题1、解一元一次方程12(x+1)=1−13x时,去分母正确的是()A.3(x+1)=1−2x B.2(x+1)=1−3xC.2(x+1)=6−3x D.3(x+1)=6−2x答案:D解析:根据等式的基本性质将方程两边都乘以6可得答案.解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.小提示:本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.2、若关于x的方程2k−3x=4与x−2=0的解相同,则k的值为()A.−10B.10C.−5D.5答案:D解析:根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.3、若方程(m −1)x |m−2|−8=0是关于x 的一元一次方程,则m =( )A .1B .2C .3D .1或3答案:C解析:根据一元一次方程的定义解答.解:由题意得|m −2|=1,m −1≠0,解得m =3,故选:C .小提示:此题考查了一元一次方程的定义: 只含有一个未知数,并且未知数的最高次数是1的方程是一元一次方程.4、甲数是2019,甲数比乙数的14还多1,设乙数为x ,则可列方程为( )A .4(x −1)=2019B .4x −1=2019C .14x +1=2019D .14(x +1)=2019答案:C解析:根据甲数比乙数的14还多1,列方程即可.解:设乙数为x ,根据甲数比乙数的14还多1,可知甲数是14x +1,则14x +1=2019本题考查列一元一次方程,是重要考点,掌握相关知识是解题关键.5、已知x=y,字母m为任意有理数,下列等式不一定成立的是()A.x+m=y+m B.x−m=y−m C.mx=my D.x1+m =y1+m答案:D解析:根据等式的基本性质对各选项分析判断后利用排除法求解.解:A、等式两边同时加上m,依据等式的基本性质1,∴所得等式成立;B、等式两边同时加上﹣m,依据等式的基本性质1,∴所得等式成立;C、等式两边同时乘以m,依据等式的基本性质2,∴所得等式成立;D、等式两边同时除以1+m,而1+m有可能为0,则所得等式无意义,∴此等式不一定成立.故选:D.小提示:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6、若x=1是方程3−m+x=6x的解,则关于y的方程m(y−3)−2=m(2y−5)的解是()A.y=−10B.y=3C.y=43D.y=4答案:B解析:根据x=1为已知方程的解,将x=1代入方程求出m的值,代入所求方程即可求出y的值.将x=1代入已知方程得:3﹣m+1=6,解得:m=-2.所求方程化为-2(y ﹣3)﹣2=-2(2y ﹣5),解得:y=3.故选B .小提示:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.7、下列方程变形正确的是( )A .由3+x=5,得x=5+3B .由3=x ﹣2,得x=3+2C .由12y=0,得y=2D .由7x=﹣4,得x=﹣74 答案:B解析:各项中方程变形得到结果,即可做出判断.A 选项:由3+x=5,得x=5-3,错误;B 选项:由3=x-2,得x=3+2,正确;C 选项:由12y=0,得y=0,错误;D 选项:由7x=-4,得x=-47,错误,故选B .小提示:考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.8、把1−9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为:()A.1B.3C.4D.6答案:A解析:根据题意求出“九宫格”中的y,再求出x即可求解.如图,依题意可得2+5+8=2+7+y解得y=6∴8+x+6=2+5+8解得x=1故选A.小提示:此题主要考查一元一次方程的应用,解题的关键是根据题意得到方程求解.填空题9、规定一种新运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________.答案:107 解析:根据题中的新定义化简所求方程,求出方程的解即可.根据题意得:13x -14×2=13×1-14x ,712x=56, 解得:x =107,故答案为x =107.小提示:此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.10、甲、乙两站的路程为360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米.(1)两列火车同时开出,相向而行,经过_____小时相遇;(2)快车先开25分钟,两车相向而行,慢车行驶了______小时两车相遇;(3)若两车同时开出,同向而行,_______小时后,两相距720千米.答案: 3 114 15或45解析:(1)设x 小时后,两车相遇,根据两车一共行驶了360千米列出方程,即可解题;(2)设x 小时后,两车相遇,根据快车先走25分钟,即可计算快车行驶距离,根据共行驶了360千米列出方程,即可解题;(3)设x 小时后,快车与慢车相距720千米,分慢车在快车的后面,快车在慢车的后面两种情况,列方程求解.解:(1)设x小时后,两车相遇,由题意得:72x+48x=360,解得x=3,∴经过3小时两车相遇,所以答案是:3;(2)设慢车行驶了x小时,两车相遇,由题意得:)+48x=360,72(x+2560解得x=11,4∴慢车行驶了11小时两车相遇,4所以答案是:11;4(3)设x小时后,快车与慢车相距720千米,若慢车在快车的后面,72x-48x=720-360,解得x=15,若快车在慢车的后面,72x-48x=720+360,解得x=45,∴15小时或45小时后快车与慢车相距720千米,所以答案是:15或45.小提示:此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.11、若关于x的一元一次方程3x+m−2=x+1的解是负数,则m的取值范围是___.答案:m>3.解析:把m看做已知数表示出方程的解,由解为负数求出m的范围即可.解:由3x+m−2=x+1解得x=3−m2,∵关于x的一元一次方程3x+m−2=x+1的解是负数,∴3−m2<0,解得:m>3,故答案为m>3.小提示:本题考查了一元一次方程的解以及解一元一次不等式,方程的解即为能使方程左右两边相等的未知数的值.12、若方程12(x−1)=5与方程13ax−4=a的解相同,则a=_____________.答案:32解析:先求出方程12(x−1)=5的解,再将其代入方程13ax−4=a可得一个关于a的一元一次方程,然后解方程即可得.12(x−1)=5,x−1=10,x=11,由题意,x=11是方程13ax−4=a的解,a−4=a,则1138a=4,3a=3,2所以答案是:3.2小提示:本题考查了解一元一次方程、一元一次方程的解,熟练掌握方程的解法是解题关键.13、若单项式4x1+m y2与-5x4y n是同类项,则m+n=_____;答案:5.解析:利用同类项的概念,相同字母的指数相同,来构造方程,解之求出m、n,再代入求值即可.若单项式4x1+m y2与-5x4y n是同类式,1+m=4,m=3,n=2,当m=3,n=2时,m+n=3+2=5,所以答案是:5.小提示:本题考查同类项的概念,掌握同类项的概念,会用同类项的概念构造方程,会解方程,和求代数式的值是解题关键.解答题14、解下列方程:(1)9x=5x−2;(2)x+23−1=2−x6.答案:(1)x=-12;(2)x=43.解析:(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.(1)解:移项得:9x-5x=-2,合并得:4x=-2,系数化为1得:x=-12;(2)解:去分母得:2(x+2)-6=2-x,去括号得:2x+4-6=2-x,移项得:2x+x=2-4+6,合并得:3x=4,解得:x=43.小提示:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,未知数系数化为1.15、甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行.11出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A 地问:(1)甲车速度是________千米/小时,乙车速度是_________千米/小时.A ,B 距离是_______千米.(2)这一天,若乙车晚1小时出发,则再经过多长时间,两车相距20千米?答案:(1)15,45,180;(2)2912小时或3712小时 解析:(1)设甲的速度为xkm /h ,根据出发后经3小时两人相遇列出方程,解之即可;(2)设再经过y 小时,两人相距20km ,根据两车相距20千米分相遇前和相遇后分别列出方程,解之即可. 解:(1)设甲的速度为xkm /h ,则乙的速度为3x+903=x +30(km /h ),根据题意得:3x =x +30,解得:x =15,∴x +30=45,∴AB 的距离为:45×4=180km ,∴AB 的距离为180km ;(2)设再经过y 小时,两人相距20km ,则15(y +1)+45y =180-20或15(y +1)+45y =180+20,解得:y =2912或3712, ∴再经过2912小时或3712小时后,两人相距20km . 小提示:本题考查了一元一次方程,解题的关键是理解题意,得到相应的等量关系,列出方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学七年级上册第三单元一元
一次方程知识点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第三章 一元一次方程
3.1 从算式到方程
(1)方程:含未知数的等式;
(2)一元一次方程:只含一个未知数(元)且未知数的次数都是1的方程; 标准式:ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0);
(3)方程的解:使方程等号左右两边相等的未知数的值;
(4)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等; 如果a=b ,那么a ±c=b ±c;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;
如果a=b ,那么ac=bc;
如果a=b ,c ≠0,那么c
b c a =; 3.2、3.3解一元一次方程——合并同类项与移项、去括号与去分母
(1)合并同类项:把含x 的项合并在一起;
(2)移项:把等式一边的某项变号反移到另一边;
(3)一元一次方程解法的一般步骤:
去分母----------两边同乘最简公分母
去括号----------注意符号变化
移项----------注意要变号
合并同类项--------合并后注意符号
系数化为1---------等式右边除以x 的系数
3.4实际问题与一元一次方程
(1)“表示同一个量的两个不同的式子相等”是一个基本的相等关系; “工作量=人均效率×人数×时间”是计算工作量的常用数量关系式;
(2)列一元一次方程解应用题:
①读题分析法: 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
②画图分析法: 多用于“行程问题”
仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
(3)列方程常用公式
1.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题 快行距+慢行距=原距
(2)追及问题 快行距-慢行距=原距
2.工程问题: 工作量=工作效率×工作时间
工作效率=工作量÷工作时间
工作时间=工作量÷工作效率
完成某项任务的各工作量的和=总工作量=1
工程问题常用等量关系:先做的+后做的=完成量
3.顺水逆水问题:
顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
顺水逆水问题常用等量关系: 顺水路程=逆水路程
4.商品利润问题: 售价=定价 , %100⨯-=成本
成本售价利润率; 利润问题常用等量关系: 售价-进价=利润
商品销售额=商品销售价×商品销售量
商品的销售利润=(销售价-成本价)×销售量商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.
5.若干应用问题等量关系的规律
(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之 几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

增长量=原有量×增长率 现在量=原有量+增长量
(2)等积变形问题:常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S ·h =r2h
②长方体的体积 V =长×宽×高=abc
6:数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。

然后抓住数字间或新数、原数之间的关系找等量关系列方程.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n-1表示。

相关文档
最新文档