材料2004级《材料力学性能》考试答案AB

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应;

因缺口的存在,改变了缺口根部的应力的分布状态,出现:

①应力状态变硬(由单向拉应力变为三向拉应力);

②应力集中的现象称为缺口效应。

解理台阶;

在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。

冷脆转变;

当温度T℃低于某一温度T K时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。

热疲劳;

因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。

咬合磨损;

在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附

二、计算题(共42分,第1题22分,第2题20分)

1、一直径为10mm,标距长为50mm的标准拉伸试样,在拉

力P=10kN时,测得其标距伸长为50.80mm。求拉力P=32kN 时,试样受到的条件应力、条件应变及真应力、真应变。(14分)

该试样在拉力达到55.42kN时,开始发生明显的塑性变形;在拉力达到

67.76kN后试样断裂,测得断后的拉伸试样的标距为57.6mm,最小处截面

直径为8.32mm;求该材料的屈服极限σs、断裂极限σb、延伸率和断面收缩率。(8分)

解:d0=10.0mm, L0= 50mm,

P1=10kN时L1= 50.80mm;P2=32kN

因P1、P2均远小于材料的屈服拉力55.42kN,试样处于弹性变形阶段,据虎克定律有:P1: P2 =⊿L1:⊿L2 =(L1-L0):(L2-L0)

L2-L0 =(L1-L0)×P2/P1 =0.8 ×32/10 =2.56(mm)=> L2 = 52.56(mm)

2 分此时:F0 =πd02/4 =78.54 mm2

由:F2×L2=F0×L0 => F2= F0×L0/L2 =78.54×50/52.56=74.71 (mm2)

2 分条件应力:σ= P/F0 =32kN/78.54mm2=407.44Mpa 2分

相对伸长:ε= (L2-L0)/L0=(52.56-50)/50= 0.0512 = 5.12% 2分相对收缩:ψ=(F0 –F2)/F0=( 78.54 -74.71)/78.54= 0.0488=4.88%2分真实应力:S=P/F2= 32kN/74.71mm2=428.32Mpa 2分真实应变:e =ln(L2 /L0)=ln(52.56/50)=0.0499=4.99%= -ψe 2分L k = 57.6mm,

d k = 8.32mm, F k =πd K2/4 = 54.37 mm2

屈服极限:σS =55.42kN/78.54 mm2 = 705.6MPa 2分断裂极限:σb = 67.76kN/78.54 mm2 = 862.7Mpa 2分延伸率:δ= (L K-L0)/L0= (57.6-50)/50 = 0.152= 15.2% 2分断面收缩率:ψk=(F0-F k)/F0=(78.54-54.37)/78.54=0.3077= 30.77% 2分2、某大型构件中心有长为4mm的原始裂纹,该构件在频率为50Hz,σMAX =-σMIN =85MPa

的周期循环应力下工作,已知该裂纹的扩展速率为:dɑ/dN =C(ΔK )n,其中:n=3,C=2.4×10-16,且知Y=√π,2ɑC=32mm,问该构件在此循环应力下能安全工作多长时间?解:ɑ0 = 4mm/2 = 2mm=0.002m,ɑC=32mm/2 = 0.016m 4分Δσ=σMAX -σMIN=85Mpa-(-85MPa)=170Mpa 2分ΔK = K MAX-K MIN =YσMAX√ɑ- YσMIN√ɑ

= Y(σMAX -σMIN)√ɑ= YΔσ√ɑ2分dɑ/dN= C(ΔK )n => dN=[1/ C(ΔK )n] dɑ

Nf = ∫0Nf dN =∫ɑ0ɑc[1/ C(ΔK )n] dɑ=∫ɑ0ɑc[1/ C(YΔσ√ɑ)n] dɑ

= ∫ɑ0ɑc[1/(2.4×10-16 ×π3/2 ×1703 ×ɑ3/2)] dɑ

= 1016/(2.4×3.143/2×1703)∫ɑ0ɑc[1/ɑ3/2] dɑ

=1.523×108×[ (-1)/(3/2-1)] [1/ɑC1/2 -1/ɑ01/2]

=1. 523×108×2(1/0.0021/2-1/0.0161/2) =1. 523×108×2×(22.36-7.91)

= 4.406×109 (次)

10分工作时间:T=4.406×109/50(Hz)=8.81×107(s) = 8.81×107/3600 (hr)

=24479.5hr 2分

结论:在该应力条件下,该构件大约可工作24480小时。

三、简述题(共24分,每小题12分)

1说明冲击韧性测试原理,测试的力学性能指标A K的物理意义并说

明它由哪几个阶段部分组成?

冲击试验原理:能量原则——摆锤冲断试样前后所产生的能量损失A K;

A K= G(H1-H2) αK = A K/ F F =8×10mm2

A K的物理意义:试样冲断过程中所吸收的总能量A K;

A K可分为三个部分:AⅠ、AⅡ、AⅢ

A K= AⅠ+AⅡ+AⅢ

其中A

Ⅰ为弹性功,A

为形变强化阶段的弹塑性变形功,A

为裂纹扩展阶段的裂纹扩展

功。

2.何谓J积分的守恒性?在应用J积分处理裂纹扩展问题时有何特点?

J积分的守恒性是指:J积分与积分路径无关

在应用J积分处理裂纹扩展问题时:

①积分回路很小时,其包围区域可仅为裂纹尖端,此时J积分仅描述了裂纹尖端聚集

的能量,也即该裂纹尖端的应力应变的集中程度,可表征该裂纹的扩展能力,即J I

也可看成裂纹扩展的动力;

②积分回路很大时,积分回路可扩展至裂纹尖端屈服区之外而进入完全的线弹性变形

区,此时可在线弹性状态下求解该J积分,解决弹塑性变形条件下的裂纹扩展问题。

③由于塑性变形不可逆,不允许卸载,故J积分原则上不能处理裂纹失稳扩展的问题,只能处理

J IC指裂纹开始扩展点,而非失稳扩展点。

四、作图题(共14分)

已知某材料的σ-1为600Mpa,σb为800Mpa,作出其疲劳图并在图

中标出其应力循环的安全工作区,求其应力循环对称系数为r时的σr,并在疲劳图上标出其相应的σmax、σmin、σm、σa,该材料在σmax=720Mpa,σmin=220Mpa的循环应力下工作,问是否安全?

σm=(σmax + σmin)/2 =(720+ 220)/2=470(Mpa)

σa=(σmax -σmin)/2 =(720- 220)/2=250(Mpa)

图中位于D点,坐标为(470,250),处于应力循环的安全工作区,故该应力循环安全。

相关文档
最新文档