初中数学不等式ppt
合集下载
新人教版数学七年级下册第九章《9.1.2不等式的性质(2)》公开课课件PPT
例3 解不等式 3(1-x)>2(1-2x)
解: 去括号,得 3-3 x >2-4x 移项,得 -3x +4x >-3+2 合并同类项,得 x >-1 ∴原不等式的解集是x >-1
比一比,谁做得又快又好!
解下列不等式,并把它们的解集在数轴上 表示出来。
(1)x+4>3
(2)7x+6 ≥ 6x+3
学科网
不等式的基本性质1: 如果a >b,那么a±c>b±c. 就是说,不等式两边都加上 (或减去)同一个数(或式子), 不等号方向不变。
不等式基本性质2:
a b 如果a >b,c > 0 ,那么 ac>bc(或 c c )
就是说不等式的两边都乘以(或除以)同一个 正数,不等号的方向不变。 不等式基本性质3:
(3)7x-1 ≤ 6x+1 (4)3-5x < 2(2-3x)
例如 解不等式3+3x>2+4x 解:移项,得
-4x+3x>2- 3 合并同类项,得 -x>-1
∴ 原不等式的解集是
x<1
写不等式的解集时,要把表示未知数 的字母写在不等号的左边。
思考
1、求不等式
3(x-3)+6 < 2x+1的正整数 解。
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
问题1:实心小圆点和空心小圆圈分别在什么时候适用
例2
解一元一次不等式 8x-2≤7x+3, 并把它的解在数轴上表示出来。
解:移项,得 8x- 7x ≤3+2 ∴ x ≤5
这个不等式的解集在数轴上表示如下:
-1 0 1 2 3 4 5 6 7
5 x 3m m 5 m为何值时,方程 4 2 4 的解是非正数.
2.1等式性质与不等式性质课件(人教版)PPT
不等式两边同乘一个正数, 所得不等式与原不等式同向; 不等式两边同乘一个负数,
所得不等式与原不等式反向.
高中数学
二、 不等式性质
性 质 1 : 如 果a=b, 那么b=a. 性 质 2 : 如 果a >b, b>c, 那么a >c.
性质3:如果a >b,那么a+c> b+c.
性 质 4 : 如 果 a>b,c> 0, 那么 ac>bc;
高中数学
二、不等式性质
性质3:如果a>b, 那么a+ c>b+c 追问2:两个实数大小关系还可以形象地在 数轴上表达出来,你能从几何意义的角度 对这个性质进行解释吗?
高中数学
二、不等式性质
性质3:如果a>b, 那么a+ c>b+c 追问2:两个实数大小关系还可以形象地在 数轴上表达出来,你能从几何意义的角度 对这个性质进行解释吗?
高中数学
二、不等式性质
性质3:如果a>b, 那么a+ c>b+c 追问2:两个实数大小关系还可以形象地在 数轴上表达出来,你能从几何意义的角度 对这个性质进行解释吗?
高中数学
二、不等式性质
追问3:你能从性质3中得到什么结论吗? 由性质3可得
a+b>c→a+b+(-b)>c+(-b)
→a >c-b
如果a>b>0, 那么 a²>b²
性质7:如果 a>b>0, 那么a”>b”
(n∈N*,n≥2)
高中数学
三、 不等式的简单应用
例:已知a>b>0,c<0, 求证
初中七年级下册数学92 一元一次不等式(第2课时)课件q
价的90%收费
我店累计购买50元商品后,
再购买的商品按原价的
95%收费
甲
乙
如果你要分别购买40元、80 元、140元、 160元商品,应该去哪家商店更优惠?
9.2 一元一次不等式/
3.初步认识一元一次不等式的应用价值,发展 分析问题、解决问题的能力. 2.培养将实际问题向数学模型转化的能力.
1.掌握用一元一次不等式解决实际问题的步骤 .
9.2 一元一次不等式/
3.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每
捆材料重20kg,电梯最大负荷1 050kg,则该电梯在此3人乘
坐的情况下最多能搭载 42
捆材料.
9.2 一元一次不等式/
4.我班几个同学合影留念,每人交0.70元.已知一张彩色底片 0.68元,扩印一张相片0.50元,每人分一张,在将收来的钱 尽量用掉的前提下,这张相片上的同学最少有几人?
9.2 一元一次不等式/
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分, 小华得分要超过120分,他至少要答对的题的个数为( C )
A.13
B.14
C.15
D.16
9.2 一元一次不等式/
基础巩固题
1.某商品原价500元,出售时标价为900元,要保持利润不低
于26%,则最低可打 ( B )
人教版 数学 七年级 下册
9.2 一元一次不等式 (第2课时)
9.2 一元一次不等式/
我店累计购买110000元商品
后,再购买的商品按原
价的90%收费
我店累计购买550元商品后,
再购买的商品按原价的
95%收费
甲
乙
甲商店购物款达多少元后可以优惠?
不等式完整PPT课件
学习 提示
与 只是符号,而不表示具体的数.
返回
• 问题:
• 一次函数的图像、一元一次方程与一元一次不等式之间 存在着哪些联系?
• 比如: • 一次函数:y=2x-6 • 一元一次方程:2x-6=0 • 一元一次不等式:2x-6>0或2x-6<0
• 归纳: • 观察函数y=2x-6的图像:
• 方程2x-6=0的解恰好是函数图像与x轴交点的横坐标;在x 轴上方的函数图像所对应的自变量x的取值范围,恰好是 不等式2x-6>0的解集{x|x>3};在x轴下方的函数图像所对 应的自变量x的取值范围,恰好是不等式2x-6<0的解集 {x|x<3}.
念
ax2+bx+c>(≥)0 或 ax2+bx+c<(≤)0, 其中,a、b、c 为常数,且 a≠0.
如果一元二次不等式中的二次项系数是负数,即 a 0 ,则可
以根据不等式的性质,将不等式两边同乘以 1,使其二次
项系数化为正数,然后再求解.
(1)当方程 ax2+bx+c=0 的判别式=b2-4ac>0 时,方程有两个不相等 的实数根 x1、x2(x1<x2),此时不等式 ax2+bx+c>0 的解集为(-∞, x1)∪(x2,+∞);不等式 ax2+bx+c<0 的解集为(x1,x2).
x a(a 0) 型不等式来求解.这种方法称为“变量替换法”或
“换元法”.
返回
返回
• 问题: • 资料显示:随着科学技术的发展,列车运行速度不断
提高.运行时速达200公里以上的旅客列车称为新时 速旅客列车.在北京与天津两个直辖市之间运行的, 设计运行时速达350公里的京津城际列车呈现出超越 世界的“中国速度”,使得新时速旅客列车的运行速度 值界定在200公里/小时与350 公里/小时之间.
不等式ppt课件
不等式的应用场景
01
02
03
04
数学领域
解决各种不等关系的问题,如 最值、范围等。
物理领域
描述物理现象和规律,如力学 、电磁学等。
经济领域
描述经济变量之间的关系,如 价格、成本等。
实际生活
描述日常生活中的不等关系, 如时间、距离等。
02
不等式的类型
算术平均数与几何平均数的不等式
总结词
算术平均数与几何平均数的不等式是一种基本的不等式,它反映了平均值与方 差之间的关系。
实际应用定义
描述实际生活中两个量之 间的不等关系,如价格、 距离等。
不等式的性质
加法单调性
即同向不等式相加,不等号不 改变方向。
反身性
任何实数都大于它本身。
传递性
如果a>b,b>c,则a>c。
乘法单调性
即不等式乘以一个正数,不等 号不改变方向;乘以一个负数 ,不等号改变方向。
非空性
不等式的两边都可以取无穷大 或无穷小。
03
不等式的证明方法
利用导数证明不等式
总结词
导数是一阶导数的简称,它描述了函数在某一点的变化率, 可以用来判断函数的单调性和凹凸性,从而帮助我们证明不 等式。
详细描述
首先,我们需要找到不等式两边的函数,然后求导,通过比 较导数值的大小来判断函数的单调性,从而得出不等式的证 明结论。
利用拉格朗日中值定理证明不等式
详细描述
柯西不等式表明,对于任何实数x 和y,都有$x^2+y^2 \geq 2xy$ ,当且仅当x=y时等号成立。这 个不等式在解决一些最优化问题 时非常有用。
排序不等式
总结词
排序不等式是一种基于排序原理的不 等式,它反映了有序实数之间的差值 与乘积之间的关系。
初中数学 人教版七年级下册 9.2一元一次不等式 课件
⑤
两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的字母写在不等号的左边。
练习反馈
4.解下列不等式,并在数轴上表示解集.
(1) -5x ≤10 ;
x ≥ -2
(2)4x-3 < 10x+7 .
x
>
-
5 3
(3) 3x -1 > 2(2-5x) ;
5
x > 13
(4) x 32≥2x23
合并同类项,得 系数化为1,得
2x 1 x 1
2
移项,得 合并同类项,得 系数化为1,得
3x 4x 2 6, x 8,
x 8.
归纳总结 归纳解不等式的一般步骤,并指出每个步骤的根据,完成下表.
步骤
根据
①
去分母
不等式的基本性质2,3
②
去括号
去括号法则
③
移项
不等式的基本性质1
④
合并同类项
合并同类项法则
-5x >-10
x=2
系数化为1
x<2
总结归纳
解一元一次不等式与解一元一次方程的依据和步骤有什么异同点?
相同之处:
议
基本步骤相同:去分母,去括号,移项,合并同类项,
一 议
系数它化们为的1依这.据些不步相骤同中. ,要特别注意的是:
解一元一不次等方式程两的边依都乘(或除以)同一个 据是等式负的数性,质必,须解改变不等号的方向.这是 一元一次与不解等一式元的一依次方程不同的地方.
✓ (2)5x+3<5(x-y) ✓
✕ (4)x(x–1)< x2 -2x ✓
✕ (6) x2-3x-5<6
人教初中数学七下 9.1.2 不等式的性质课件1 【经典初中数学课件 】
【例】利用不等式的性质解下列不等式:
(3) 2 x﹥50;
3
不等式的两边都除以
2
,不等号的方向不变,得
3
x﹥75
这个不等式的解集在数轴上的表示如图所示:
0
75
【例】利用不等式的性质解下列不等式: (4)-4x﹥3.
不等式两边都除以_-_4__,不等号的方向_改__变___,得
x﹤- 3 4
这个不等式的解集在数轴上的表示如图所示:
B
C
D
E
三、巩固提高
一、平面上利用有序数对确定物体位置的方法
• 1、行列定位法: 例如: 座位
• 2、方格纸定位法: 例如: 棋盘
• 3、经纬定位法 例如:地图
• 4、区域定位法 例如:探究四的简图
四、概括整合
生活中还有哪些确定位置的其他方法?
(1)如果全班同学站成一列做早操,现在教师 想找某个同学,是否还需要用2个数据呢?
根据发现的规律填空:当不等式两边加或减 同一个数(正数或负数)时,不等号的方向_不__变___.
(3) 6>2, 6×5__﹥__2×5 , 6×(-5)_﹤___2×(-5) ;
(4)–2<3, (-2)×6_﹤__3×6 , (-2) ×(-6)_﹥__3×(-6 ) 当不等式两边乘同一个正数时,不等号的方向_不__变__; 而乘同一个负数时,不等号的方向_改__变__;
这个不等式的解集在数轴上的表示为:
0
33
【例】利用不等式的性质解下列不等式: (2)3x<2x+1; 解:不等式两边都减去_2_x__,不等号的方向_不__变__,得
3x-2x﹤2x+1-2x x﹤1
这个不等式的解集在数轴上的表示如图所示:
最新人教版初中九年级上册数学【第二十二章 22.2二次函数与不等式】教学课件
=1 或 =2
1<2
1<<2
<1 或 >2
图像
【答疑过程】
例 1 已知二次函数 = − − .
(1) 画出二次函数的图象(如图 1);
(2)顶点在第______象限;
(3)对称轴为直线_______;
(4)与轴的交点坐标为____________;
(5)方程 − − = 的解为________;
(3)看清不等号方向(大于零还是小于零);
(4)写出满足不等式的解集.
2.常用的数学方法:
图象法和数形结合法、观察法.
谢谢观看!
(答疑)
【学习目标】
通过对一道例题的深度剖析,进一步
理解解决二次函数与不等式问题过程中,
数形结合思想的运用以及价值。
【教学回顾】
抛物线 1=2+b+c 与2=k+b的交点(1,1),(2,2)(1
<2)
>0
<0
1>2
<1 或 >2
1<<2
1=2
=1 或 =2
(6)取什么值时,函数值大于 0?
(7)取什么值时,函数值小于 0?
(8)取什么值时,函数值等于 0?
【答疑过程】
【答疑过程】
y>0
y<0
【答疑过程】
(1,3)
(-2,-1)
【
课堂小结
1.解题一般步骤:
(1)看图象找交点;
(2)确定交点坐标(关键是横坐标);
课堂小结
1.解不等式时灵活应用图象法与数形结合
法;
课堂小结
3.解题一般步骤:
(1)看图象找交点;
(2)确定交点坐标(关键是横坐标);
(3)看清不等号方向(大于零还是小于零);
初中数学不等式PPT (2)
10
解不等式:求不等式的解或解集的过 程叫做解不等式。
解未知数为x的不等式,就是要是不等式逐步化 为x>a或x<a的形式。
例:
3(2x+1)-12>2x+6
6x+3-12>2x+6 6x-2x>6-3+12
4x>15
4/8/2020
11
解不等式步骤
1.去分母:不等式两边同时乘以分母的最小公倍数; 2.去括号:注意括号前的符号,若为负要变号; 3.移项 : 移项要变号,不等号方向不发生改变; 4.合并同类项:找同类项; 5.系数化为一:不等号两边同时乘以未知数系数的
一元一次不等式
类似于一元一次方程,含有一个未知数,未 知数的次数是1的不等式,叫做一元一次不等式。 (注:不等式两边必须是正式)
例、下列各式中,一元一次不等式是 (D
)
4/8/2020
16
等式的性质
性质一:等式两边加上(减去)同一个数(或 式子),等式不变。用式子表示为如果a=b, 那么a±c=b±c.
8
联系与区别
联系 解集包括所有解,所有解组成了解集。
区别 解集是能使不等式成立的未知数的取值 范围, 是所有解的集合,而不等式的解是使不等式成 立的未知数的值。
4/8/2020
9
不等式解集在数轴上的表示方法
(1)x>3 (2)x<-1
v -4 -3 -2 -1 0 1 2 3 4 5
4/8/2020
(A)大于2g
(B)小于3g
(C)大于2g且小于3g (D)大于2g或小于3
4/8/2020
14
解不等式,并把它的解集在数轴上表示出来
2021年初中数学七年级下册 9.1.2 不等式的性质 课件(人教版)
4
(5)a2___>__0; (6)a3__<____0; (7)a-1_<____0; (8)|a|__>____0.
新课讲解
思考: 等式有对称性及传递性,那么不等式具有对 称性和传递性吗?
已知x>5,那么5<x吗? x>5 5<x
性质4(对称性):如果a>b,那么b<a. 由8<x,x<y,可以得到8<y吗? 如:8<10,10<15 ,8 < 15.
新课讲解
知识点3 利用不等式的性质解简单的不等式
例4 利用不等式的性质解下列不等式:
(1) x-7>26; (3) 2 x>50;
3
(2) 3x<2x+1; (4) -4x>3.
思路:
解未知数为x 的不等式
目标
化为x>a或x﹤a的形式
方法:不等式基本性质1~3
新课讲解
(1) x-7>26; 解 (1)为了使不等式x-7>26中不等号的一边变为x,
由不等式基本性质1,得 a-5 < b-5 .
新课讲解
练一练 用“>”或“<”填空,并说明是根据不等式
的哪一条性质: (1)若x+3>6,则x__>____3, 根据_不__等__式__性__质__1___; (2)若a-2<3,则a__<____5, 根据_不__等__式__性__质__1_.
新课讲解
(2)已知 a>b,则-a < -b . 因为 a>b,两边都乘-1, 由不等式基本性质3,得 -a < -b.
新课讲解
(3)已知 a<b,则 -a32 > -b32 .
因为 a<b,两边都除以-3,
(5)a2___>__0; (6)a3__<____0; (7)a-1_<____0; (8)|a|__>____0.
新课讲解
思考: 等式有对称性及传递性,那么不等式具有对 称性和传递性吗?
已知x>5,那么5<x吗? x>5 5<x
性质4(对称性):如果a>b,那么b<a. 由8<x,x<y,可以得到8<y吗? 如:8<10,10<15 ,8 < 15.
新课讲解
知识点3 利用不等式的性质解简单的不等式
例4 利用不等式的性质解下列不等式:
(1) x-7>26; (3) 2 x>50;
3
(2) 3x<2x+1; (4) -4x>3.
思路:
解未知数为x 的不等式
目标
化为x>a或x﹤a的形式
方法:不等式基本性质1~3
新课讲解
(1) x-7>26; 解 (1)为了使不等式x-7>26中不等号的一边变为x,
由不等式基本性质1,得 a-5 < b-5 .
新课讲解
练一练 用“>”或“<”填空,并说明是根据不等式
的哪一条性质: (1)若x+3>6,则x__>____3, 根据_不__等__式__性__质__1___; (2)若a-2<3,则a__<____5, 根据_不__等__式__性__质__1_.
新课讲解
(2)已知 a>b,则-a < -b . 因为 a>b,两边都乘-1, 由不等式基本性质3,得 -a < -b.
新课讲解
(3)已知 a<b,则 -a32 > -b32 .
因为 a<b,两边都除以-3,
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品PPT
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
在数学的天地里,重 要的不是我们知道什么 ,而是我们怎么知道什 么。
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
——毕达哥拉斯
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
练习一 1、关于x的不等式组
x<8 x>m
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
解不等式组:
5x 10 3x 12 0
① ②
解 解不等式①,得
x 2
解不等式②,得
x4
在数轴上表示不等式①、②的解集
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
2
所以,这个不等式组的解集是
4x
2 x4
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
2.利用数轴求出这些不等式的解集的公 共部分。
3.写出不等式组的解集。
大大取最大,小小取最小, 大小小大取中间,大大小小解不了。
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件 湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
不等式组
x>-1 x>2 x<-1 x<2 x>-1 x<2
数轴表示
-1 0 1 2 3
解集
解集的确定规律
x 2 同大取大
-1 0 1 2 3 -1 0 1 2 3
x 1 同小取小
1 x 2 “大”小“小” 大 中间找
x>2 x<-1
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
第9套人教初中数学七下 9.1.2 不等式的性质课件1 【经典初中数学课件】
等式逐步化为x﹥a或x﹤a的形式.
解:(1)为了使不等式x-7>26中不等号的一边
变为x,根据不等式的性质1,不等式两边都加7, 不等号的方向不变,得
x-7+7﹥26+7 x﹥33
这个不等式的解集在数轴上的表示如图,
0
33
言必有“据”
(2) 3x<2x+1
为了使不等式3x<2x+1中不等号的一边变为x,
谢谢同学们的努力!
Thank you!
所以不等式组的解集是___________。
三、研读课文
具体分析如下:
用数轴来表示一元一次不等式组的解集,
知
可分为四种情况.
识 点 二
⑷
x x
2, 4
在数轴上表示为:
o
o
0 24
简 所称 以: 不大等大式小组小的分解开集无是解__。无___解_____。
三、练一练
不 组
等
式
x x
2 1
不等式还有什么类似的性质呢?
➢如果 6 >2
那么 6×5 _>___ 2× 5 ,
6÷5 _>___ 2÷ 5 ,
6 ×(-5)__<__2×(-5), 6 ÷ (-5)__<__2÷ (-5)
➢如果-2< 3,
那么-2×6_<___3×6,
-2÷2_<___3÷2,
-2×(- 6)__>__3×( - 6), -2÷ (- 4)_>___3÷ ( - 4)
注意 -
3 4
0
:(3)(4)的求解过程,类似于解方程两边都除以
未知数的系数(未知数系数化为1),解不等式时要注意
未知数系数的正负,以决定是否改变不等号的方向
解:(1)为了使不等式x-7>26中不等号的一边
变为x,根据不等式的性质1,不等式两边都加7, 不等号的方向不变,得
x-7+7﹥26+7 x﹥33
这个不等式的解集在数轴上的表示如图,
0
33
言必有“据”
(2) 3x<2x+1
为了使不等式3x<2x+1中不等号的一边变为x,
谢谢同学们的努力!
Thank you!
所以不等式组的解集是___________。
三、研读课文
具体分析如下:
用数轴来表示一元一次不等式组的解集,
知
可分为四种情况.
识 点 二
⑷
x x
2, 4
在数轴上表示为:
o
o
0 24
简 所称 以: 不大等大式小组小的分解开集无是解__。无___解_____。
三、练一练
不 组
等
式
x x
2 1
不等式还有什么类似的性质呢?
➢如果 6 >2
那么 6×5 _>___ 2× 5 ,
6÷5 _>___ 2÷ 5 ,
6 ×(-5)__<__2×(-5), 6 ÷ (-5)__<__2÷ (-5)
➢如果-2< 3,
那么-2×6_<___3×6,
-2÷2_<___3÷2,
-2×(- 6)__>__3×( - 6), -2÷ (- 4)_>___3÷ ( - 4)
注意 -
3 4
0
:(3)(4)的求解过程,类似于解方程两边都除以
未知数的系数(未知数系数化为1),解不等式时要注意
未知数系数的正负,以决定是否改变不等号的方向
人教版初中数学不等式及其解集ppt教学课件(优选)
弄清楚这些描述不等 关系的语言所对应的不等 号各是什么
火眼金睛
下列式子哪些是不等式?哪些不是不等式?为什么?
①-2<5
⑤a+b≠c
②x+3>6
⑥5m+3=8
③4x-2y≤0 ④ a-2b
⑦8+4<7
⑧
3 x 1
2 5
答:①②③⑤⑦⑧是不等式,④⑥不是,因为④不含不等号,⑥是等式。
例1 用不等式表示下列关系:
②
思考:
观察所得到的式子,它们之间有何区别?
2 x 50 3
2 x 50 3
像这样用等号连接表示相 等关系的式子叫等式。 (equality)
像这样用不等号连接表示不 等关系的式子叫不等式。 (inequality)
1.不等式
像 ①和 ②那样,用不等号“<”或“>”表示不等关系的式
子,叫做不等式。
2.用数轴表示不等式的解集,应记住下面的规律: 大于向右画,小于向左画;有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.
尝试练习
数轴上表示下列不等式的解集 (1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1
解:(1)
-1
0
(2)
-1
0
(3)
-1
0
(4)
-1
0
尝试练习
在数轴上表示x≥-2正确的是 ( D )
•
8.正是在大米的哺育下,中国南方地 区出现 了加速 度的文 明发展 轨迹。 河姆渡 文化之 后,杭 嘉湖地 区兴盛 起来的 良渚文 化,在 东亚大 陆率先 迈上了 文明社 会的台 阶,成 熟发达 的稻作 农业是 其依赖 的社会 经济基 础。