常见的复合材料有玻璃钢和碳纤维增强复合材料28页PPT
合集下载
3.复合材料的增强材料课件

复合材料的增强材料
3.1 玻璃纤维 3.2 碳纤维 3.3 芳纶纤维 3.4 超高分子量聚乙烯纤维
3.5 碳化硅纤维
3.6 硼纤维 3.7 氧化铝纤维 3.8 纳米增强材料 晶须和碳纳米管 蒙脱土 无机纳米粒子
3.1.1 玻璃纤维的类型、成分及性能(1)
E 玻璃纤维 无碱玻璃,一种硼硅酸盐玻璃(碱金属氧化物含量低); 良好的电气绝缘性及机械性能,但易被无机酸侵蚀; 广泛用于生产电绝缘材料、玻璃钢等。 C 玻璃纤维 中碱玻璃,耐酸性优于无碱玻璃,但电气性能、机械强度差低; 我国中碱玻纤占据玻纤产量的 60%,广泛用于玻璃钢的增强以及过滤
同时喷少量树脂使纤维网固定成形,然后将成形的纤维网片移入金 属模具中,注入树脂热压成形,即得制品。对于这种工艺的无捻粗
纱的性能要求与对喷射无捻粗纱的要求基本相同。
短切原丝与磨碎纤维
短切原丝
用于玻璃钢的短切原丝又分为热固性树脂( BMC)用短切原丝
和热塑性树脂用短切原丝两大类。
增强热塑性塑料要求用无碱玻璃纤维,它强度高、电绝缘性好、 原丝集束性好、流动性好、白度较高。 增强热固性塑料要求原丝集束性好、浸透树脂快、机械强度及 电气性能好。
1560
13.0
720
玻璃纤维的拉伸强度随长度增加而下降!
影响玻纤强度的因素—化学组成、表面缺陷
品种 A 玻纤 80-150 500-700 强度/ MPa 2000 7000 E 玻纤 80-150 600-800 2100 3000 铝硅酸盐 玻纤 80-150 800-1000 2500 3300 石英 玻纤 80-150 2000 4000 表面缺陷 状况 表面有微裂纹
玻璃纤维纱
玻璃纤维纱是玻璃纤维的加捻合股纱.它的电绝缘性能好,强度高,吸湿 少,耐高温,适用于作电机电器绕组线的绝缘材料和其它工业用纱。
3.1 玻璃纤维 3.2 碳纤维 3.3 芳纶纤维 3.4 超高分子量聚乙烯纤维
3.5 碳化硅纤维
3.6 硼纤维 3.7 氧化铝纤维 3.8 纳米增强材料 晶须和碳纳米管 蒙脱土 无机纳米粒子
3.1.1 玻璃纤维的类型、成分及性能(1)
E 玻璃纤维 无碱玻璃,一种硼硅酸盐玻璃(碱金属氧化物含量低); 良好的电气绝缘性及机械性能,但易被无机酸侵蚀; 广泛用于生产电绝缘材料、玻璃钢等。 C 玻璃纤维 中碱玻璃,耐酸性优于无碱玻璃,但电气性能、机械强度差低; 我国中碱玻纤占据玻纤产量的 60%,广泛用于玻璃钢的增强以及过滤
同时喷少量树脂使纤维网固定成形,然后将成形的纤维网片移入金 属模具中,注入树脂热压成形,即得制品。对于这种工艺的无捻粗
纱的性能要求与对喷射无捻粗纱的要求基本相同。
短切原丝与磨碎纤维
短切原丝
用于玻璃钢的短切原丝又分为热固性树脂( BMC)用短切原丝
和热塑性树脂用短切原丝两大类。
增强热塑性塑料要求用无碱玻璃纤维,它强度高、电绝缘性好、 原丝集束性好、流动性好、白度较高。 增强热固性塑料要求原丝集束性好、浸透树脂快、机械强度及 电气性能好。
1560
13.0
720
玻璃纤维的拉伸强度随长度增加而下降!
影响玻纤强度的因素—化学组成、表面缺陷
品种 A 玻纤 80-150 500-700 强度/ MPa 2000 7000 E 玻纤 80-150 600-800 2100 3000 铝硅酸盐 玻纤 80-150 800-1000 2500 3300 石英 玻纤 80-150 2000 4000 表面缺陷 状况 表面有微裂纹
玻璃纤维纱
玻璃纤维纱是玻璃纤维的加捻合股纱.它的电绝缘性能好,强度高,吸湿 少,耐高温,适用于作电机电器绕组线的绝缘材料和其它工业用纱。
复合材料的增强材料 ppt课件

2020/12/2
5
1)按纤维形状分类
• 纤维类增强体 • 颗粒类增强体 • 晶须类增强体 • 片状物增强体:主要为陶瓷薄片,用于陶
瓷薄片叠压成型CMC。
2020/12/2
6
纤维类增强体
➢连续纤维增强体: • 分单丝、束丝(数百至几万根单丝组成) • 长度>100m,一般直径在1~20μm,直径
国内玻璃纤维特点:
较国外起步较晚,中碱玻璃纤维仍然占大多 数,正向粗纤维方向发展,池窑拉丝工艺正在推 广,新型偶联剂不断出现,改善了纤维-树脂界 面,重视纤维-树脂界面的研究。
2020/12/2
18
3.1.2 玻璃纤维的分类
玻璃纤维的分类方法很多,一般可 从玻璃原料成分、单丝直径、纤维外 观及纤维特性等方面进行分类。
第三章 复合材料的增强材料
• 定义:复合材料中凡能提高基体材料力学性 能的物质。
• 纤维:在复合材料中起增强作用,是主要承 力组分。可使复合材料的强度、刚度以及耐 热性、韧性得到较大幅度提高,且可减小收 缩。
• 例如:PS塑料中加入玻璃纤维后
拉伸强度可从600MPa提高到1000MPa,
弹性模量可从3GPa提高到8GPa,
发还要细得多的玻璃纤维之后,它就
变得像合成纤维那样柔软,而坚韧的 程度甚至超过了同样粗细的不锈钢丝!
玻璃纤维有啥用处呢?
2020/12/2
11
• 玻璃绳 • 玻璃布 • 绝缘材料 • 玻璃纤维复合材料 • 玻璃棉 • 纤维内窥镜 • 光导纤维
2020/12/2
12
• 用于内窥镜的照明、冷光传导 单丝直径35微米,通光口径1---30 mm,保护层为不锈钢金 属软管+硅胶管
材料导论第十四章复合材料ppt课件

混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维
料
编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维
料
编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等
第三章复合材料的增强材料PPT课件

面再沉积一层碳。 ➢ 商品牌号:SCS-2,SCS-6,SCS-8,SCS-9等。
(例如SCS-2是在纤维表面涂有1μm厚的碳层。 SCS-9是直径为80μm的较细的纤维。) ➢ 特现性出:了C优V异D的-S高iC温/C强纤度维。用于Si3N4基复合材料时表
SiC纤维
PC-SiC纤维(前驱体法) • 将以有机硅聚合物形式的硅,与碳为主的材料进行多羧硅
• 玻璃纤维的最大特征是拉伸强度高,一根连续纤维的拉伸强度,E玻 璃可达3400MPa,而S玻璃可达4800MPa。
• 玻璃长纤维的70%以上用于强化树脂,其余的多用于电绝缘,工业机 器等。
玻璃纤维
玻璃纤维
玻璃纤维
3.1.3 高熔点金属纤维
➢ 种类:Ta、Mo、W、Nb、Ni与不锈钢纤维等 ➢ 制备方法:拔丝 ➢ 特点:直径可以自由地选择。通常10~600μm。 ➢ 优点:
烷纺丝,经热氧化不熔处理后,烧成而制。 • 成分接近Si3C4O。以β-SiC为主。 • 纤维直径为~14μm • 在1200~1300℃烧成时可获得最高的抗拉强度与弹性模
量。
ቤተ መጻሕፍቲ ባይዱiC纤维
• 结构:热分解碳呈2~5nm的结晶状态。Si的氧化 物呈非晶状态,彼此均匀分布。
• 物理性能:电阻率随烧成温度而异。可在106~ 103Ωcm的范围变化。
• 用途:该类纤维用于强化环氧树脂基复合材料, 其压缩强度和冲击强度与碳纤维强化环氧树脂相 比,可提高2倍。且由于具有电波透过性,可用于 雷达无线电罩。该类纤维也用于强化Al基复合材 料。不仅力学性能优异,且容易形变加工。
SiC纤维
• 将非晶结构Si-Ti-C-O等的材料进行纺丝,再经热氧化不融 处理,烧成制作了纤维。该类纤维的直径可达10μm以下, 且柔韧性好,所以适合于三维编织物。纤维的高温性能较 好,用其强化的复合材料不仅在与纤维平行方向强度很高, 而且在纤维垂直的方向上也获得了较高的强度。该类纤维 对金属、陶瓷的适应性较好,可望得到大的发展。
(例如SCS-2是在纤维表面涂有1μm厚的碳层。 SCS-9是直径为80μm的较细的纤维。) ➢ 特现性出:了C优V异D的-S高iC温/C强纤度维。用于Si3N4基复合材料时表
SiC纤维
PC-SiC纤维(前驱体法) • 将以有机硅聚合物形式的硅,与碳为主的材料进行多羧硅
• 玻璃纤维的最大特征是拉伸强度高,一根连续纤维的拉伸强度,E玻 璃可达3400MPa,而S玻璃可达4800MPa。
• 玻璃长纤维的70%以上用于强化树脂,其余的多用于电绝缘,工业机 器等。
玻璃纤维
玻璃纤维
玻璃纤维
3.1.3 高熔点金属纤维
➢ 种类:Ta、Mo、W、Nb、Ni与不锈钢纤维等 ➢ 制备方法:拔丝 ➢ 特点:直径可以自由地选择。通常10~600μm。 ➢ 优点:
烷纺丝,经热氧化不熔处理后,烧成而制。 • 成分接近Si3C4O。以β-SiC为主。 • 纤维直径为~14μm • 在1200~1300℃烧成时可获得最高的抗拉强度与弹性模
量。
ቤተ መጻሕፍቲ ባይዱiC纤维
• 结构:热分解碳呈2~5nm的结晶状态。Si的氧化 物呈非晶状态,彼此均匀分布。
• 物理性能:电阻率随烧成温度而异。可在106~ 103Ωcm的范围变化。
• 用途:该类纤维用于强化环氧树脂基复合材料, 其压缩强度和冲击强度与碳纤维强化环氧树脂相 比,可提高2倍。且由于具有电波透过性,可用于 雷达无线电罩。该类纤维也用于强化Al基复合材 料。不仅力学性能优异,且容易形变加工。
SiC纤维
• 将非晶结构Si-Ti-C-O等的材料进行纺丝,再经热氧化不融 处理,烧成制作了纤维。该类纤维的直径可达10μm以下, 且柔韧性好,所以适合于三维编织物。纤维的高温性能较 好,用其强化的复合材料不仅在与纤维平行方向强度很高, 而且在纤维垂直的方向上也获得了较高的强度。该类纤维 对金属、陶瓷的适应性较好,可望得到大的发展。
复合材料的增强体纤维PPT课件

第一次飞跃
东丽公司发明的聚合催化环化原纤维,改革了传统的 炭化工艺,缩短了生产周期提高了质量。
第二次飞跃 39
第三十九页,共98页。
2). 碳纤维的制造
➢ 碳纤维不能用熔融法或溶液法直接纺丝,只能以有机纤维为原料, 采用间接方法来制造。 ➢碳元素的各种同素异形体(金刚石、石墨、非晶态的各种过渡态碳), 根据形态的不同,在空气中在350℃以上的高温中就会不同程度的氧 化;在隔绝空气的惰性气氛中(常压下),元素碳在高温下不会熔融,
1909年,将碳在惰性气体中加热到2300度,获得
了石墨纤维。
1910年, 钨灯丝的发明,使碳纤维的研究停滞。
37
第三十七页,共98页。
1959年日本工业技术大阪工业实验所近藤召南以聚 丙烯腈为原料制得碳纤维,1969年日本炭素公司实现低模量 聚丙烯脂基碳纤维(Polyacry lontrile--based carbon firber, PANCF)的工业化生产;
22
第二十二页,共98页。
高强玻璃纤维
纤维特性
高模量玻璃纤维
耐碱玻璃纤维
耐酸玻璃纤维
普通玻璃纤维(指无碱及中碱玻璃纤维)
23
第二十三页,共98页。
4). 玻璃纤维的性能
玻璃纤维具有一系列优良性能,拉伸强度高,防火、 防霉、防蛀、耐高温和电绝缘性能好等。
玻璃纤维的缺点是具有脆性,不耐腐,对人的皮 肤有刺激性等。
1963年日本群马大学大谷杉郎教授以石油沥青为原料 制成碳纤维,1970年日本昊羽化学公司实现工业化生产。
38
第三十八页,共98页。
1964年英国航空材料研究所(Royal Aircraft Establishment,RAE)开发出高模量聚丙烯脂基碳纤维 (高温牵伸技术);
东丽公司发明的聚合催化环化原纤维,改革了传统的 炭化工艺,缩短了生产周期提高了质量。
第二次飞跃 39
第三十九页,共98页。
2). 碳纤维的制造
➢ 碳纤维不能用熔融法或溶液法直接纺丝,只能以有机纤维为原料, 采用间接方法来制造。 ➢碳元素的各种同素异形体(金刚石、石墨、非晶态的各种过渡态碳), 根据形态的不同,在空气中在350℃以上的高温中就会不同程度的氧 化;在隔绝空气的惰性气氛中(常压下),元素碳在高温下不会熔融,
1909年,将碳在惰性气体中加热到2300度,获得
了石墨纤维。
1910年, 钨灯丝的发明,使碳纤维的研究停滞。
37
第三十七页,共98页。
1959年日本工业技术大阪工业实验所近藤召南以聚 丙烯腈为原料制得碳纤维,1969年日本炭素公司实现低模量 聚丙烯脂基碳纤维(Polyacry lontrile--based carbon firber, PANCF)的工业化生产;
22
第二十二页,共98页。
高强玻璃纤维
纤维特性
高模量玻璃纤维
耐碱玻璃纤维
耐酸玻璃纤维
普通玻璃纤维(指无碱及中碱玻璃纤维)
23
第二十三页,共98页。
4). 玻璃纤维的性能
玻璃纤维具有一系列优良性能,拉伸强度高,防火、 防霉、防蛀、耐高温和电绝缘性能好等。
玻璃纤维的缺点是具有脆性,不耐腐,对人的皮 肤有刺激性等。
1963年日本群马大学大谷杉郎教授以石油沥青为原料 制成碳纤维,1970年日本昊羽化学公司实现工业化生产。
38
第三十八页,共98页。
1964年英国航空材料研究所(Royal Aircraft Establishment,RAE)开发出高模量聚丙烯脂基碳纤维 (高温牵伸技术);
《复合材料玻璃纤维》PPT课件

粗纤维: 30μm;初级纤维:20μm 中级纤维:10μm~20μm; 高级纤维:3μm~10μm(亦称纺织纤维); 超细纤维:单丝直径小于4μm。
单丝直径的不同,不仅纤维的性能有差异,
而且影响到纤维的生产工艺、产量和成本。一般
5μm-10μm纤维作为纺织制品用;10μm-14μm
的纤维一般做无捻粗纱、无纺布、短切纤维毡等
以二氧化硅为主的称为硅酸盐玻璃; 以三氧化二硼为主的称为硼酸盐玻璃。 氧化钠、氧化钾等碱性氧化物为助熔氧化物,它可 以降低玻璃的熔化温度和粘度,使玻璃溶液中的气泡容 易排除,它主要通过破坏玻璃骨架,使结构疏松,从而 达到助溶的目的。 氧化钠和氧化钾的含量越高,玻璃纤维的强度、电 绝缘性和化学稳定性会相应的降低
•
导电纤维 等
16
无捻粗纱
玻璃粉
短切纤维
17
1.2 玻璃纤维的结构与组成
1.2.1 玻璃纤维的物态
•玻璃纤维是纤维状的玻璃。 •玻璃是无色透明具有光泽的脆性固体。 •定义:
由熔融态过冷时因粘度增加而具有固体物理机 械性能的无定形物体,各向同性的均质材料。
•特点:没有固定的熔点
18
1.2.2 玻璃纤维的结构 网络结构假说
25
玻璃纤维高温成型时减少了玻璃溶液的不均 一性,使微裂纹产生的机会减少;玻璃纤维的 断面较小,使微裂纹存在的几率也减少,从而 使玻璃纤维强度增高。
分子取向假说:
在玻璃纤维成型过程中,由于拉丝机的牵引 作用,使玻璃纤维分子产生定向排列,从而提高 了玻璃纤维强度。
26
影响玻璃纤维强度的因素:
① 纤维直径和长度对拉伸强度的影响 直径越细,拉伸强度越高 随着纤维长度的增加,拉伸强度显著下降
20
玻璃钢简介ppt课件

玻璃钢的基本性能
玻璃钢的基本性能主要取决于其两大组分 和它们之间的结合。玻璃钢集中了玻璃纤 维及合成树脂的特性,具有质量轻、强度 高、耐化学腐蚀、电绝缘性好,透过电磁 波、隔音、减震和耐瞬时高温烧蚀等特点。 因此,玻璃钢已成为国防和国民经济建设 中不可缺少的重要材料之一。
1)玻璃钢的物理性能
玻璃钢的拉伸强度与碳钢接近,甚至超过碳 素钢,而比强度可以与高级合金钢相比。这 得益于玻璃在经高温熔融、快速拉成细丝时, 由于比表面积增大,玻璃纤维内部及表面就 难以存在大缺陷,因而强度提高。因此,在 航空、火箭、宇宙飞行器、高压容器以及在 其他领域应用中,都具有卓越成效。
我国有90%以上的FRP产品是手糊法生 产的,其他有模压法、缠绕法、层压法等。 日本的手糊法仍占50%。从世界各国来看, 手糊法仍占相当比重,说明它仍有生命力。 手糊法的特点是用湿态树脂成型,设备简 单,费用少,一次能糊10m以上的整体产 品。缺点是机械化程度低,生产周期长, 质量不稳定。近年来,我国从国外引进了 挤拉、喷涂、缠绕等工艺设备,随着FRP 工业的发展,新的工艺方法将会不断出现。
浸渍、入模与固化、牵引、切割。
3.成型工艺流程
增强材料(玻璃纤维无捻粗纱、玻璃纤 维连续毡及玻璃纤维表面毡等)在拉挤设备 牵引力的作用下,在浸胶槽充分浸渍胶液后, 由一系列预成型模板合理导向,得到初步的 定型,最后进入被加热了的金属模具,模具 高温的作用下反应固化,从而可以得到连续 的、表面光洁、尺寸稳定、强度极高的玻璃 钢型材
备和压制两个阶段。其基本过程是:将 一定量经一定预处理的模压料放入预热 的模具内,施加较高的压力使模压料填 充模腔。在一定的压力和温度下使模压 料逐渐固化,然后将制品从模具内取出, 再进行必要的辅助加工即得产品。
碳纤维复合材料应用 ppt课件

PPT课件
4
汇报交流
3 复合材料分类
按基体分
树脂基复合材料 金属基复合材料 陶瓷基复合材料
按增强体分
颗粒增强复合材料 夹层增强复合材料 纤维增强复合材料
PPT课件
5
汇报交流
常见复合材料
PPT课件
6
汇报交流
碳纤维复合材料分类
碳纤维增强热固性树脂复合材料(CFRTS) 碳纤维增强热塑性树脂复合材料(CFRTP) 碳纤维增强碳基复合材料(C/C) 碳纤维增强金属基复合材料(CFRM) 碳纤维增强陶瓷基复合材料(CFRC) 碳纤维增强橡胶基复合材料(CFRR) 碳纤维增强木材复合材料(CFRW)
PPT课件
13
汇报交流
四、笔记本外壳现状
1 聚碳酸酯-工程塑料 (PC-ABS)
PC:优良耐热耐候性、尺寸稳定性和耐冲击性能 ABS: 优良的加工流动性、耐磨性、染色性、成型加工性。万元以下 笔记本电脑中,70%采用的都是以ABS为主的工程塑料 优点:成本较低 、易于加工 、尺寸稳定性好,性价比高 缺点:质量较重 、散热性不佳
PPT课件
9
汇报交流
3、工业领域的应用
① 风力发电 据预测,到2020年中国市场将需求超过2.5万台大 容量风机,合计需要CFCM 30000吨。
②碳纤维汽车 汽车传动轴、发动机罩、上下悬架臂等 ③石油开采 抽油杆、张力腿平台、管材等
PPT课件
10
汇报交流
4、体育休闲 羽毛球拍、网球拍、钓鱼竿、高尔夫球杆 5、建筑补强
增强体( reinforcement)——分散相
组成
基体( matrix)——连续相
PPT课件
3
汇报交流
2 复合材料特点
碳纤维及其复合材料PPT课件

含碳量95%左右的称为碳纤维; 含碳量99%左右的称为石墨纤维。 优点:碳纤维比重小、比强度、比模量大,耐热性 和耐腐蚀性好,成本低,批量生产量大,是一 类极为重要的高性能增强剂。
第2页/共65页
用碳纤维制成的树脂基复合材料比模量比钢和铝合金高5倍,比强度高3倍以 上; 同时耐腐蚀、耐热冲击、耐烧蚀性能均优越
石墨层片的缺陷 及边缘碳原子
基本结构单元
石墨微晶
原纤维构成碳纤维单丝
二级结构单元
碳纤维的三级结构单元
第38页/共65页
石墨微晶在整个纤维中的分布是不均匀的,碳纤维由表皮层和 芯子两部分组成,中间是连续的过渡区。 皮层的微晶较大,排列较整齐有序,占直径的14%,芯子占39 %,由皮层到芯子,微晶减小,排列逐渐紊乱,结构不均匀性愈 来愈显著。
美国的碳纤维主要用于航空航天领域,欧洲在航空航天、体育用品和工业方 面的需求比较均衡,而日本则以体育器材为主。
第6页/共65页
6.2 碳纤维的制备
很多纤维能用溶液纺丝或熔融纺丝来制作!!! 面条?? 粉丝?? 一些高分子丝??
碳纤维能不能用这两种方式呢??
在空气中在350℃以上的高温中就会氧化;在隔绝空气 的惰性气氛中,元素碳在高温下不会熔融,但在3800K以 上的高温时不经液相,直接升华,所以不能熔纺!!
碳在各种溶剂中不溶解,所以不能溶液纺丝。
第7页/共65页
6.2 碳纤维的制备
在惰性气氛中将小分子有机物(如 烃或芳烃等)在高温下沉积成纤维。 此法用于制造晶须或短纤维,不能用 于制造长纤维。
将有机纤维经过稳定化处理变成耐焰纤维, 然后再在惰性气氛中于高温下进行焙烧碳化,使 有机纤维失去部分碳和其他非碳原子,形成以碳 为主要成分的纤维状物。此法用于制造连续长纤 维。
第2页/共65页
用碳纤维制成的树脂基复合材料比模量比钢和铝合金高5倍,比强度高3倍以 上; 同时耐腐蚀、耐热冲击、耐烧蚀性能均优越
石墨层片的缺陷 及边缘碳原子
基本结构单元
石墨微晶
原纤维构成碳纤维单丝
二级结构单元
碳纤维的三级结构单元
第38页/共65页
石墨微晶在整个纤维中的分布是不均匀的,碳纤维由表皮层和 芯子两部分组成,中间是连续的过渡区。 皮层的微晶较大,排列较整齐有序,占直径的14%,芯子占39 %,由皮层到芯子,微晶减小,排列逐渐紊乱,结构不均匀性愈 来愈显著。
美国的碳纤维主要用于航空航天领域,欧洲在航空航天、体育用品和工业方 面的需求比较均衡,而日本则以体育器材为主。
第6页/共65页
6.2 碳纤维的制备
很多纤维能用溶液纺丝或熔融纺丝来制作!!! 面条?? 粉丝?? 一些高分子丝??
碳纤维能不能用这两种方式呢??
在空气中在350℃以上的高温中就会氧化;在隔绝空气 的惰性气氛中,元素碳在高温下不会熔融,但在3800K以 上的高温时不经液相,直接升华,所以不能熔纺!!
碳在各种溶剂中不溶解,所以不能溶液纺丝。
第7页/共65页
6.2 碳纤维的制备
在惰性气氛中将小分子有机物(如 烃或芳烃等)在高温下沉积成纤维。 此法用于制造晶须或短纤维,不能用 于制造长纤维。
将有机纤维经过稳定化处理变成耐焰纤维, 然后再在惰性气氛中于高温下进行焙烧碳化,使 有机纤维失去部分碳和其他非碳原子,形成以碳 为主要成分的纤维状物。此法用于制造连续长纤 维。
碳纤维复合材料PPT课件

表6-7 C/C在航天飞机上的应用 表6-8 C/C在战略导弹上的应用。
图6-1 C/C在航天飞机上的应用部位
航天飞机表面温度
C/C在航天飞机上应用部位
图6-2 导弹鼻嘴
6.5.2 刹车材料方面的应用
法国欧洲动力公司大量生产C/C刹车片,用 作飞机(如幻影式战斗机)、汽车(如赛 车)和高速火车的刹车材料。
T-50-221-44
X-y向
Z向
1.9
ATJ-5 结晶向 ⊥结晶向
1.83
拉伸强度 24
140
126
39.6
30.5
/MPa
2500
280
231
54.3
43.4
抗拉模量 24
59.4
52.4
11.7
7.8
/GPa
2500 40.9
30.5
11.2
7.4
断裂延伸率 24
0.18
0.2
0.45
0.54
三、CVD法的优缺点
优点:基体性能好,且与其他致密化工艺 一起使用,充分利用各自的优势。可以将 CVD法和液态浸渍法联合应用,可以提高 材料的致密度。
缺点:沉积碳的阻塞作用形成很多封闭的 小空隙,得到的C/C复合材料密度低。
表6-6 树脂/沥青浸渍与CVD制C/C复合材料 性能比较
6.5 C/C复合材料的应用
波音747上使用C/C刹车装置,大约使机身 质量减轻了816.5kg。
日本C/C用作飞机刹车材料已有10年的历史。 日本协和式超音速客机共8个轮,刹车片约 用300kgC/C复合材料,可使飞机减轻 450kg。用作F-1赛车刹车片,可使其减轻 11kg。
6.5.3 其他方面的应用
图6-1 C/C在航天飞机上的应用部位
航天飞机表面温度
C/C在航天飞机上应用部位
图6-2 导弹鼻嘴
6.5.2 刹车材料方面的应用
法国欧洲动力公司大量生产C/C刹车片,用 作飞机(如幻影式战斗机)、汽车(如赛 车)和高速火车的刹车材料。
T-50-221-44
X-y向
Z向
1.9
ATJ-5 结晶向 ⊥结晶向
1.83
拉伸强度 24
140
126
39.6
30.5
/MPa
2500
280
231
54.3
43.4
抗拉模量 24
59.4
52.4
11.7
7.8
/GPa
2500 40.9
30.5
11.2
7.4
断裂延伸率 24
0.18
0.2
0.45
0.54
三、CVD法的优缺点
优点:基体性能好,且与其他致密化工艺 一起使用,充分利用各自的优势。可以将 CVD法和液态浸渍法联合应用,可以提高 材料的致密度。
缺点:沉积碳的阻塞作用形成很多封闭的 小空隙,得到的C/C复合材料密度低。
表6-6 树脂/沥青浸渍与CVD制C/C复合材料 性能比较
6.5 C/C复合材料的应用
波音747上使用C/C刹车装置,大约使机身 质量减轻了816.5kg。
日本C/C用作飞机刹车材料已有10年的历史。 日本协和式超音速客机共8个轮,刹车片约 用300kgC/C复合材料,可使飞机减轻 450kg。用作F-1赛车刹车片,可使其减轻 11kg。
6.5.3 其他方面的应用
纤维增强复合材料PPT课件

CHENLI
18
• 各种材料的发展状况
玻璃钢和树脂基复合材料 非常成熟
广泛的应用 金属基复合材料
开发阶段 某些结构件的关键部位 陶瓷基复合材料及功能复合材料等
尚处于研究阶段 有不少科学技术问题有待解决
CHENLI
19
复合材料的设计--从常规设计向仿生设计发展
• 仿照竹子从表皮到内层纤维由密排到疏松的特点,成功地制 备出具有明显组织梯度与性能梯度的新型钢基耐磨梯度复合 材料。
• 仿照鲍鱼壳的结构,西雅图华盛顿大学的研究人员利用由碳、 铝和硼混合成陶瓷细带制成了10微米厚的薄层,由此得到的 层状复合材料比其原材料坚固40%。
• 仿照骨骼的组织特点,人们制造了类似结构的风力发电机和 直升飞机的旋翼,外层是刚度、强度高的碳纤维复合材料, 中层是玻璃纤维增强复合材料、内层是硬泡沫塑料。
CHENLI
8
基体和增强材料
Matrix and Reinforcement
• 基体——连续相 • 增强材料——分散相
– 也称为增强体、增强剂、增强相等 – 显著增强材料的性能 – 多数情况下,分散相较基体硬,刚度和强度较基体大。 – 可以是纤维及其编织物,也可以是颗粒状或弥散的填料。
• 在基体和增强体之间存在着界面。
• 单靠金属与合金难以具有优良的综合物理性能,而要 靠优化设计和先进制造技术将金属与增强物做成复合 材料来满足需求。
• 主要的金属基体是纯铝及铝合金、纯铜及铜合金、银、 铅、锌等金属。
CHENLI
Chapter 9 Composites
复合材料
CHENLI
1
本章内容
1. 复合材料概述 2. 复合材料分类 3. 复合材料的基体 4. 复合材料的增强相 5. 复合材料的复合原理 6. 复合材料的成型工艺
[正式版]碳纤维增强复合材料ppt资料
![[正式版]碳纤维增强复合材料ppt资料](https://img.taocdn.com/s3/m/f7b0d9e8cc17552706220839.png)
纤维缠绕成型的主要特点是, 纤维能保持连续完整,制件线形可 按制品受力情况设计即可按性能要 求配置增强材料,结构效率高,制 品强度高;可连续化、机械化生产, 生产周期短,劳动强度小;产品不 需机械加工,但设备复杂。
拉挤成型
拉挤成型是一种连续生产固定截面 型材的成型方法。主要过程是将浸有树 脂的纤维连续通过一定型面的加热口模, 挤出多余树脂,在牵引条件下进行固化。
性能对比
碳纤维力学性能
加工成型方法
• 喷射成型 • 注射成型 • 纤维缠绕成型 • 拉挤成型
喷射成型
喷射成型是通过喷枪将短切纤维和雾化树 、 、法国的固体发动机壳体主要采用碳纤维复合材料。
RIM的基本原理是将两种反应物(高活性的液状单体或齐聚物)精确计量,经高压碰撞混合后充入模内,混合物在模具型腔内迅速发生聚
出色的耐热性(可以耐受电2000力℃以是上的高国温) 家能源的重中之重,作为典型的 清洁能源,核电具有很多优势,实现核电清 高强度(是钢铁的5倍)
当前,汽车工业正面临资源和环境的严峻挑战,推进汽车轻量化以降低油耗,是汽车工业发展的主题。 另一方面.CFRP具有高的阻尼特性,可使击球时间延长,球被击得更远
拉挤成型的最大特点是连续成型, 制品长度不受限制,力学性能尤其是纵 向力学性能突出,结构效率高,制造成 本低,自动化程度高,制品性能稳定, 生产效率高, 原材料利用率高,不需要 辅助材料
碳纤维复合材料的应用
• 在体育方面的应用 • 在航天领域的应用 • 在石油开发中的应用 • 在核电站中的应用 • 在电动汽车上的应用
料不同的是,其外
形有显著的各向
异性、柔软、可加工成各种织物,沿纤维轴方向表现
出很高的强度。碳纤维比重小,因此有很高的比强
拉挤成型
拉挤成型是一种连续生产固定截面 型材的成型方法。主要过程是将浸有树 脂的纤维连续通过一定型面的加热口模, 挤出多余树脂,在牵引条件下进行固化。
性能对比
碳纤维力学性能
加工成型方法
• 喷射成型 • 注射成型 • 纤维缠绕成型 • 拉挤成型
喷射成型
喷射成型是通过喷枪将短切纤维和雾化树 、 、法国的固体发动机壳体主要采用碳纤维复合材料。
RIM的基本原理是将两种反应物(高活性的液状单体或齐聚物)精确计量,经高压碰撞混合后充入模内,混合物在模具型腔内迅速发生聚
出色的耐热性(可以耐受电2000力℃以是上的高国温) 家能源的重中之重,作为典型的 清洁能源,核电具有很多优势,实现核电清 高强度(是钢铁的5倍)
当前,汽车工业正面临资源和环境的严峻挑战,推进汽车轻量化以降低油耗,是汽车工业发展的主题。 另一方面.CFRP具有高的阻尼特性,可使击球时间延长,球被击得更远
拉挤成型的最大特点是连续成型, 制品长度不受限制,力学性能尤其是纵 向力学性能突出,结构效率高,制造成 本低,自动化程度高,制品性能稳定, 生产效率高, 原材料利用率高,不需要 辅助材料
碳纤维复合材料的应用
• 在体育方面的应用 • 在航天领域的应用 • 在石油开发中的应用 • 在核电站中的应用 • 在电动汽车上的应用
料不同的是,其外
形有显著的各向
异性、柔软、可加工成各种织物,沿纤维轴方向表现
出很高的强度。碳纤维比重小,因此有很高的比强