数学简史(概 述)
数学发展史简介
近代数学时期 (公元17世纪——19世纪初)
我下们面来主简要要介说绍明以这下个这时个期时的期数世界学的成经果济和背数景学和历名史家背: 景。
3经41..济.代微背笛数分景卡基方:尔本家程的定庭、坐理手变标(工分系1业法(79作、196年坊微37)分→年几→的何《工、几场复何手变学工函》业数)→、→概机率器论大工业;
•而个的变微是证分分基函明法和数。研积本。该究分定结的也理是就果断这立言样刻,,一成在如种为复极必解数值要范问的析围题了里几,…,所…何n求”次的、多极项微值式不方积是程点分有或n、个数根,。 微 已分成方为程高,等高学等校代数数学、教概育率的论 主等 要内,容。 ••推几微那然2微学对微与5已纪.广何积么科.积的时分微经里在“到问分这学牛分一间几分成,1分三 题 及8样的顿的些的何几为其世析维的其,中和起新关是何与繁纪”情代中由心莱源问系关相代荣,、形数变于布,题求于联→数程由“,技量→经尼主,路曲系、度微代并巧、“济兹要已程线的几远积数突的函变扩的来知;和解何远分”破界数量张微自路二曲析并超、、了限和、的积对程是面几列过微“笛。极函需分解对几的何的了分几卡限数要(决时何一在数代方何尔等”,两间学般11学数程78”当概。对个的的理的和世世、三年念运方关一论三几纪纪变大解,动面系些。大何后也分分析运和 问 求 老学。半有法支几动变题速问科期长等何、化的度题,)足构仅变的需,,并的成仅化研要及且发的作等究:已在展“为思成一知这,分求想了是速个被析解,自力度世”
综述,第三时期(近代数学时期) •历这微恩史一分格背时方斯景期程::代论“贸数研数易学究学及的的中殖主是的民题这转地仍样折→然一点→是种是代航方笛数海程卡方业,儿程空方的。前程变1发中数8世展的,纪。未有的知了最项变后不数一是,年数运,,
数学简史知识点总结归纳
数学简史知识点总结归纳1. 古代数学古代数学是从古埃及、古希腊、古印度和古中国等地区开始发展起来的。
在古埃及,人们利用几何学解决了土地测量的难题,同时古埃及人还发明了一些数学符号和计算方法。
古希腊的数学以几何学为主,数学家毕达哥拉斯提出了著名的毕达哥拉斯定理,创立了毕达哥拉斯学派。
古印度数学的发展与宗教信仰和日常生活密不可分,古印度数学家为了解决宗教仪式和天文观测问题,开创了代数、几何等数学概念。
古中国数学的发展主要体现在算术和几何方面,古代数学家刘徽撰写《九章算术》,成为中国古代数学的经典著作。
2. 中世纪数学中世纪数学是指从公元5世纪到15世纪的欧洲数学发展历程。
在这一时期,数学主要受到宗教和神学的影响,在天文学、几何学和代数学等方面取得了一些进展。
文艺复兴时期,数学得到了较大的发展,文艺复兴学者对古代数学知识进行了整理和研究,同时大航海时代的到来也促进了数学的发展,航海家和地图制作者需要对航海和天文进行精确的数学计算。
伽利略、开普勒等科学家的研究成果为数学的发展注入了新的活力。
3. 近代数学近代数学的发展可以追溯到17世纪的科学革命,牛顿和莱布尼兹的微积分学的发明是近代数学的里程碑。
微积分学为物理学和天文学等自然科学领域的发展提供了重要的数学工具,同时也推动了数学的发展。
18世纪,欧拉、拉普拉斯、拉格朗日等数学家对微积分学、分析学、代数学等领域进行了深入研究,为数学建立了新的理论体系。
19世纪,高斯、黎曼、阿贝尔等数学家的工作推动了代数、几何和数论等领域的发展,同时复数、矩阵、群论等数学概念的提出也为数学提供了新的发展方向。
4. 现代数学现代数学的发展可以追溯到20世纪初,20世纪是数学发展的黄金时期,数学家们对几何学、拓扑学、数论、逻辑学、概率论、统计学等各个领域进行了深入研究。
在这一时期,勒贝格、卡尔曼、冯·诺伊曼等数学家提出了测度论、控制论、算法等数学理论,为现代数学的建立和发展做出了重要贡献。
数学史简介(精)
掌握了加、减、乘、除等基本算术运算,并应用于 实际问题的解决。
希腊数学
80%
几何学
希腊数学家欧几里德创作了《几 何原本》,奠定了几何学的基础 ,对后世产生了深远影响。
100%
代数学
希腊人开始研究代数方程,并尝 试用几何方法解决代数问题。
80%
数学哲学
希腊数学家追求严谨的数学证明 ,对数学的本质和哲学意义进行 了深入探讨。
近代数学分支领域拓展
01
02
03
04
代数领域
随着微积分学和概率论的发展 ,代数学也得到了极大的拓展 ,如抽象代数、线性代数等分 支领域的出现。
几何领域
非欧几何、拓扑学等分支领域 的出现,丰富了几何学的研究 内容和方法。
分析领域
实分析、复分析、泛函分析等 分支领域的出现,使得数学分 析的研究更加深入和广泛。
利用计算机进行数学定理的证明,大 大提高了证明效率和准确性。如四色 定理、开普勒猜想等复杂问题的证明 。
计算复杂性理论
研究计算问题复杂性的数学分支,探 讨问题的可解性、算法效率等问题。 为计算机科学和数学提供了重要桥梁 。
05
跨时代数学家及其贡献
阿基米德与浮力原理及圆周率计算
阿基米德浮力原理
阿基米德发现了物体在液体中受到的浮力等于其排开的液体的重量,这一原理 对于航海、水利工程等领域有重要影响。
提倡多元化教学方法
历史上,数学的发展受益于不同文化和方法论的交流,教 育体制应鼓励教师采用多元化的教学方法,以适应不同学 生的需求。
重视数学与其他学科的融合
数学史展示了数学与其他学科的紧密联系,教育体制应促 进数学与其他学科的交叉融合,以培养学生的跨学科思维 。
数学简史
“如何从数学出发讨论人类文明的其他方面?这正是本书试图探讨的一个问题”,作者按照时间,地域,以 及数学发展顺序,介绍了做出关键贡献的数学家的人物传记。
任何一门学科都有自己发展的历史,能理解其逐步演变至今的思想变化,才能更好地理解自己所学的知识[呲 牙]。
巴比伦人还把一天分成24个小时,每个小时60分钟,每分钟60秒。这种计时方式后来传遍全世界,至今已沿 用4000多年。
当人们发现一对雏鸡和两天之间有某种共同的东西(数字2)时,数学就诞生了。——伯特兰·罗素 一门科学的历史是那门科学最宝贵的一部分,因为科学只能給我们知识,而历史却给我么智慧。 阿拉伯数系也被称为印度—阿拉伯数系,这是因为它是印度人发明的,经由阿拉伯人改造后传递到西方。 几何学(geometry)就产生并发展起来了,geo意指土地,metry是测量。
目录分析
尼罗河文明
数学的起源
在河流之间
柏拉图学园
数学家的引子
宋元六大家
从印度河到恒河 从北印度到南印度
神赐的土地 波斯的智者
欧洲的文艺复 兴
微积分的创立
分析时代
法国大革命
几何学的变革
代数学的新生
艺术的新纪元
数学的应用
走向抽象化
数学与逻辑学
作者介绍
数学简史
读书笔记模板
01 思维导图
03 读书笔记 05 目录分析
目录
02 内容摘要 04 精彩摘录 06 作者介绍
思维导图
本书关键字分析思维导图
关系
希腊
简史
数学
先哲
数学发展简史
数学发展简史(摘自张顺燕《数学的源与流》,高等教育出版设2001)大数学家庞加莱说:“若想预见数学的未来,正确的方法是研究它的历史和现状”。
法国人类学家斯特劳斯说:“如果他不知道他来自何处,那就没有人知道他去向何方”。
我们需要知道,我们现在出在何处,我们是如何到达这里的,我们将去何方。
数学史将公司我们来自何处。
数学的发展史大致可以分为四个基本上本质不同的阶段。
第一个时期——数学形成时期。
这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念。
简单的计算法,并认识了最简单的几何形式,逐步的形成了理论与证明之间的逻辑关系的“纯粹”数学。
算术与几何还没有分开,彼此紧密地交错着。
第二个时期称为初等数学,即常数数学时期。
这个时期的基本的、最简单的成果构成现在中学数学的主要内容。
这个时期从公元前5世纪开始,也许更早一些,知道17世纪,大约持续了两千年。
在这个时期,逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
按照历史条件不同,可以把初等数学史分为三个不同的时期:希腊的、东方的和欧洲文艺复兴时代的。
希腊时期正好与希腊文化普遍繁荣的时代一致。
到公元前3世纪,在最伟大的古代几何学家欧几里德、阿基米德、阿波罗尼奥斯的时代达到了顶峰,而终止于公元6世纪。
当时最光辉的著作是欧几里德的《几何原本》。
尽管这部书是两千多年钱写成的,但是它的一般内容和叙述的特征,却与我们现在通用的几何教科书非常接近。
希腊人不仅发展了初等几何,并把它导向完整的体系,还得到许多非常重要的结果。
例如,他们研究了圆锥曲线:椭圆、双曲线、抛物线;证明了某些属于射影几何的定理,一天问学的需要为指南,建立了球面几何,以及三家学的原理,并计算出最初的正弦表,确定了许多复杂图形的面积和体积。
在算术与代数方面,希腊人也做了比绍工作。
他们奠定了数论的基础,并研究了丢番图方程,吗发现了无理数,找到了求平方根、立方根的方法,知道了算术级数与几何级数的性质。
中国数学简史
数学文化课程报告论文题目:中国数学简史定义数学(mathematics或math),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
上述是百度百科对数学所下的定义,在我看来数学是有所不同的。
最早,在幼儿园的时候,老师就开始教我们阿拉伯数字。
被蒙在鼓里很久才知道阿拉伯数字并不是由阿拉伯人创造,而是由印度人发明,由阿拉伯人传入欧洲将其现代化。
因为阿拉伯人的传播,成为该种数字最终被国际通用的关键节点,所以人们称其为“阿拉伯数字”。
从幼儿园到小学,从小学到初中到高中,直到现在,至始至终数学都陪伴在我们身边。
第一次感受到数学的魅力是在小学阶段,那时还没有学设未知数求解。
脑子里总觉得少了个东西,前后思维连不上。
后来在大哥的指导下,用设未知数的方法很快便把问题解决了。
我看着结果,愣了好半天。
这种新的思维新方法让我对数学这门学科产生了浓厚的学习兴趣。
再后来随着笛卡尔坐标系、三维坐标系的学习,我深深地感受到数学并不是他们所说的那么高深,它来源于生活,能在纸上用数学的简洁形式表现出来,它可以理想化,取微元、求极限,它用自己独特的方式展现着不同寻常的美。
回望人类光辉的发展史,数学在其中扮演着举足轻重的角色。
各种科学只有在成功应用了数学才算达到真正完善的地步。
数学分支1:数学史2:数理逻辑与数学基础3:数论4:代数学5:代数几何学6:几何学7:拓扑学8:数学分析9:非标准分析10:函数论11:常微分方程12:偏微分方程13:动力系统14:积分方程15:泛函分析16:计算数学17:概率论18:数理统计学19:应用统计数学20:应用统计数学其他学科21:运筹学22:组合数学23:模糊数学24:量子数学25:应用数学(具体应用入有关学科)26:数学其他学科中国数学简史中国数学从远古走来,分为先秦萌芽时期、汉唐奠基时期、宋元全盛时期、西学输入时期以及近现代数学发展时期五个阶段。
上古至先秦萌芽时期1.传说(4000年前):上古结绳而治;皇帝使吏首作数;伏羲造八卦、规矩。
数学简史
( 3)旧约圣经中也有圆周率为 3的记述。
(4)中国也使用 3为粗率之值,古书「九章算术」 第一章方田引题:「今有圆田,周三十步,径十 步,为田几何?」就认定圆周率为3。故有人推 测在公元前若干世纪,就已经使用圆周率为3了。
(1)阿基米德用几何的方法,证明了圆周率是介于 22/7与243/71之間。 (2)公元150年左右,希腊天文学家托勒密制作弦表(正弦函數表的雏形)来计算圆周 率,其值为 377/ 120= 3.1416,比阿基米德更进步。
• 兰伯特(Johann Heinrich Lambert, 1728 1777) • 原籍瑞士的德国数学 家 • 1761 年,他证明了 不能表示成分数,即 不是一个有理数。 • 是一个无理数。
无处不在的
• 高斯(Carl Friedrich Gauss, 1777 1855) • 德国数学家。 • 计算出统计学上「正态分 布」曲线的公式。
1 f ( x) e 2
( x ) 2 2 2
蒲豐拋針
• 蒲豐(Comte de Buffon, 1707 • 1788) 法國數學家。 • 在 1777 年刊行的 《或然算術試驗》 一書 Buffon, 1707 • 1788) 法國數學家。 • 在 1777 年刊行的 《或然算術試驗》 一書中,導入了一 條著名的問題。
欧拉
• 欧拉(Leonhard Euler, 1707 1783)
• 瑞士数学家。 • “” 符号的倡导者。 • 13岁入大学,17岁 取得硕士学位,30岁 右眼失明,60岁完全 失明。
欧拉公式
1 1 1 3 5 tan 2 tan 4 7 79 2 1 1 1 1 2 2 2 2 6 1 2 3 4
数学史简介
数学史简介数学,作为人类智慧的结晶,自古以来就与人类文明的发展紧密相连。
从最初的计数和测量,到抽象的代数和几何,再到现代的计算机科学和量子力学,数学始终在各个领域发挥着重要作用。
本文将简要介绍数学的发展历程,以展示这一学科的无穷魅力。
一、古代数学数学的起源可以追溯到史前时期,当时的人们为了解决实际问题,如土地测量、天文观测等,开始研究数学。
古埃及和巴比伦是数学发展最早的地区之一,他们研究了几何学和算术,并制定了一些数学规则。
约公元前300年,古希腊数学家欧几里得发表了《几何原本》,这是一部系统地阐述了平面几何知识的著作,对后世产生了深远影响。
二、中世纪数学在中世纪,阿拉伯世界成为了数学研究的中心。
阿拉伯数学家对古希腊数学进行了翻译和传承,并在此基础上进行创新。
他们引入了印度数学中的数字系统,即阿拉伯数字,这一系统在当时比罗马数字更为先进。
阿拉伯数学家还研究了代数学,提出了方程的解法和代数符号。
三、文艺复兴时期数学文艺复兴时期,欧洲数学迅速发展。
这一时期的数学家开始研究更为复杂的数学问题,如三次方程的解法、无穷级数等。
意大利数学家伽利略和德国数学家开普勒在天文学领域取得了重要成果,为后来牛顿和莱布尼茨创立微积分奠定了基础。
四、现代数学17世纪,英国数学家牛顿和德国数学家莱布尼茨几乎同时发明了微积分。
这一学科的出现标志着现代数学的诞生。
此后,数学家们开始研究更为抽象的数学问题,如拓扑学、群论等。
19世纪,法国数学家庞加莱提出了拓扑学的基本概念,为现代几何学的发展奠定了基础。
20世纪,数学家们继续深入研究各个领域,如概率论、数论、计算机科学等,使数学得到了空前的发展。
五、数学在中国中国古代数学也有着悠久的历史。
早在商周时期,我国就有了甲骨文中的数学记载。
汉代,数学家赵爽提出了勾股定理的证明,被称为“赵爽定理”。
唐代,数学家李冶、秦九韶等人研究了高次方程的解法。
宋代,数学家贾宪、杨辉等人研究了几何学和算术。
数学发展简史
二、现代文明的发祥地—希腊
世界上曾经存在21种文明,但只有希腊文化转 变成了今天的工业文明,究其原因,乃是数学在希 腊文明中提供了工业文明的要素.
古希腊的世界并不限于今天称作“希腊”的那 部分,而是东部扩展到爱奥尼亚(土耳其的西部), 西部扩展到意大利南部和西西里,南部扩展到亚历 山大(埃及) .
怀特海对此评论道:“阿基米德死于罗马士兵之手是世 界巨变的象征.务实的罗马人取代了爱好理论的希腊人,领 导了欧洲……,罗马人是一个伟大的民族,但是受到这样的 批评:讲求实效,而无建树.他们没有改进祖先的知识,他 们的进步只限于工程上的技术细节.他们没有梦想,得不出 新观点,因而不能对自然的力量得到新的控制.”
到公元前3世纪,在最伟大的古代几何学家欧 几里得、阿基米德、阿波罗尼奥斯的时代达到了顶 峰,而终止于公元6世纪.当时最光辉的著作是欧几 里得的《几何原本》,尽管这部书是两千多年以前 写成的,但是它的一般内容和叙述的特征,却与现 在我们通用的几何教科书非常相近.
上一页 下一页 主 页 返回 退出
欧几里得(Euclid,约公元前300年)是古代最 杰出的数学家之一,欧几里得的《几何原本》的出 现是数学史上的一个伟大的里程碑.自1482年第一 个印刷本出版以后,至今已有一千多种版本.在我 国,明朝时期意大利传教士利玛窦与我国的徐光启 合译前6卷,于1607年出版.
知道二次方程的求根公式.
印度—阿拉伯数字的诞生地
印度数学的发展晚于埃及、巴比伦、希腊和中国.印度人的 特殊贡献有: 阿拉伯数字是印度人的发现,他们大约在公元前4世纪就开始 使用这种数字,直到公元8世纪才传入阿拉伯国家,后经阿拉
伯人传入欧洲.
用符号“0”表示零是印度人的一大发明.
上一页 下一页 主 页 返回 退出
数学发展简史
数学发展简史《数学发展简史》目录导言:为什么学习数学史第一讲:早期文明中的数学1.古埃及的数学2.巴比伦的数学3.中国早期的数学第二讲:古希腊的数学1.希腊数学——从爱奥尼亚到亚历山大2.亚历山大时期第三讲:中国古代的数学1.汉以前的中国数学2.从魏晋到隋唐时期的中国数学3.十二、三世纪的宋元数学第四讲:印度与阿拉伯的数学1.印度的数学2.阿拉伯数学第五章:数学的复兴1.中世纪的欧洲数学2.经验主义数学观的形成及其对于近代数学实践的影响3.三次、四次方程的求根公式的解决4.三角学的历史第六讲:近代数学的兴起1.对数2.解析几何的诞生3.微积分的产生与发展4.概率论的产生第七讲:近代数学的发展1.几何学的发展2.代数学的发展3.分析学的发展4.公理化运动第八讲:现代数学概观1.集合论悖论与数学基础的研究2.纯数学的发展3.应用数学的发展4.六十年代以后的数学导言:为什么学习数学史1.为了更全面、更深刻地了解数学每一门学科都有它的历史,文学有文学史,哲学有哲学史,天文学有天文学史等等。
数学有它自己的发展过程,有它的历史。
它是活生生的、有血有肉的。
无论是概念还是体系,无论是内容还是方法,都只有在与其发展过程相联系时,才容易被理解。
可以说,不懂得数学史,就不能真心地理解数学。
数学课本上的数学,经过多次加工,已经不是原来的面貌;刀斧的痕迹,清晰可见。
数学教师要把课本上的内容放到历史的背景上考察,才能求得自己的理解;然后,才有可能帮助学生理解。
2.为了总结经验教训,探索发展规律我国自古以来就非常重视历史、“前事之不忘,后事之师”(《战国策·赵策一》)早已成为人们的共识。
英国哲学家培根(Francis Bacon,1561—1626)的名言“历史使人明智”(Histories make men wise)也是尽人皆知的成语。
数学有悠久的历史,它的成长道路是相当曲折的。
有时兴旺发达,有时衰败凋残。
探索它的发展规律,可以指导当前的工作,使我们少走或不走弯路,更好地做出正确的判断,制定合理的政策。
数学简史——精选推荐
数学简史数学简史[代数学]⽤符号表⽰未知数这种代数的原始思想,和⼗进位计数法⼀样,来源与印度。
在⽂艺复兴时期,它作为新的数学经阿拉伯传到欧洲。
但是,⽤⽂字来表⼀般表达式的符号⽅法是到F.Viete(1540-1603)才开始确⽴的。
这样,代数学的第⼀个问题就是解⽅程。
低次代数⽅程的解法在远古⼈们就已经知道。
代数学传⼊欧洲以后,⾸先由G.Cardano,L.Ferrari得出三次和四次⽅程的⼀般解法。
关于五次以上的⽅程,⼈们都在努⼒寻求⼀般解法。
⼀直持续到⼗九世纪中叶,这种努⼒仍然没有成功。
最后,N.H.Abel(1802-1829)和E.Galois(1811-1832)把这个问题否定的解决了。
他们不仅考虑每个⽅程,⽽且考虑以其根的有理变式为根的所有⽅程,从⽽引进了域的概念。
他们还注意到由根的置换群的性质刻画代数解的问题。
在发现Galois群以后,代数的主流已进⼊群论或者⽤群论⽅法进⾏研究的时代(Galois理论)这在当时代数的算术化乃⾄公理化构造的⽓氛中,发展成为本世纪的抽象代数学。
在⼗九世纪与⼆⼗世纪之交,H.Weber的三卷巨著被认为是代数学的标准著作。
E.Steinitz的域论就是它的初期的⼀个⾥程碑。
今天,代数学的研究对象是代数系,既在元素之间定义了合成法则的抽象元素的集合,着重研究它们的结构。
群、环、域与格等就是最原始的和最基本的代数系,其中其基本作⽤的概念是同构、同态。
把同⼀种代数系以及它们之间的同态映射合在⼀起来考虑就产⽣了范畴的概念,⽽函⼦就是范畴之间的⼀种同态(范畴和函⼦)。
从⼆⼗世纪四⼗年代到五⼗年代,这些概念⾸先在同调代数中得到应⽤,同调代数是由于代数拓扑的⽅法的引进⽽发展起来的,⽽现在在整个数学中成为⼴泛应⽤的基本概念。
⼀个重要的有⼴泛应⽤的代数分⽀的线性空间(或者更⼀般的是某个环上的模)的理论。
这个分⽀称为线性代数(linear algebra)。
关于环上的有限⽣成模之间的同态,可由矩阵表⽰出来。
数学简史笔记
数学简史笔记《数学简史》是一部思想史,它追溯了从古希腊到1931年这期间复杂的数学思想的轨迹。
哥德尔的论文不仅让数学家们颜面扫地,还证明了象牙塔本身就是一个毫无根据的神话。
[美] 莫里斯•克莱因(Morris Kline,1908—1992)数学史大家、数学哲学家。
二战期间在美国军方的 Signal Corps(通信部门)工作,他以物理学家的身份,在当时研发了雷达的工程实验室工作。
二战结束之后,他继续研究电磁学,并于 1946 年在库朗数学研究所担任所长一职。
1952年回到他的母校纽约大学,成为全职数学教授,并一直从事数学史研究、写作和教学直到逝世。
他的《古今数学思想》是经典之作。
数学史上发生了多次危机:非欧几何对欧氏几何的冲击、无理数的发现及数的扩张、微积分带来的分析困境;集合论悖论和其他逻辑悖论出现……使得数学大厦一次次面临倒塌的危险……本书探讨数千年来数学在直觉、逻辑、应用之间穿梭往复的炫目旅程,再现真实数学的发展过程,阐述数学的起源、数学的繁荣和科学的数学化,直到当代数学的现状:数学与确定性(逻辑,严密性,完备性)渐行渐远。
克莱因透过数学史上的大事件一步一步剥开数学思想与数学思维变迁的脉络。
精彩内容:在所有早期文明中,这些问题的回答都是宗教领袖给出的,并为人们所普遍接受。
只有古希腊文明是个例外。
希腊人发现(人类所作出的最伟大的发现)了推理的作用。
正是古典时期(公元前600 年至前300 年间的鼎盛时期)的希腊人,认识到人类有智慧、有思维(有时佐以观察或实验),能够发现真理。
最早提出自然界数学模式的是以毕达哥拉斯(Pythagoras)为领袖的座落于意大利南部的毕达哥拉斯学派。
毕达哥拉斯学派之所以能把音乐归结为数与数之间的简单关系,乃是因为他们发现了下列两个事实:第一,弦所发出的声音取决于弦的长度;第二,两根绷得一样紧的弦,若一根是另一根长的两倍,就会产生谐音。
换言之,两个音相差八度。
如两弦长为3 比2,则发出另一谐音。
《数学简史》教学大纲
《数学简史》教学大纲中央电大“人才培养模式改革和开放教育试点”《数学简史》教学大纲第一部分大纲说明一、课程的性质和任务《数学简史》是中央广播电视大学“人才培养模式改革和开放教育试点”小学教育(本科)专业的省开选修课。
数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
通过本课程的学习使学员从数学发展的角度理解数学的真实含意,从教育工作者的角度掌握数学教育的根本方法,开阔眼界,激发兴趣,提高文化素养。
二、课程设置的目的和要求数学史主要介绍从上古时代至19世纪初2000年间主要数学概念的发展。
由于数学知识具有继承性和积累性,所以重大的发现和发明并不能完全归功于某一个人。
本课程主要讲述数学思想是怎样经过漫长的历史岁月,经过多个朝代、多个地区、多个民族发展而成,要揭示人民和数学家们用怎样卓越的思想方法攻克数学难题,以无畏的胆略和远见卓识的精神推动数学史发展的。
学习数学史的目的,不仅是为了了解数学科学的发生和发展,以便在科学研究的方法和途径方面获得启示,而且可以从科学家身上学到孜孜不倦的献身精神。
人们往往体会不到科学家们所经历的艰辛努力,以及在工作中所碰到的巨大困难。
通过学习本课程,可以使我们从前人的探索与奋斗中汲取教益,获得鼓舞和增强信心。
三、教学建议1、本课程是对人类文明史研究的重要组成部分,在教学中应注意运用已有的数学,物理,天文等方面的理论和知识来分析古今数学史实和数学思想,它不仅是单纯的数学成就的编年记录,更是对前人在数学创造中探索与奋斗的真实写照。
2、本课程是数学和历史的交叉学科,涉及到较多的古典数学及相关科学文献,学员在学习中一定会遇到不少困难,在教学中要使学员清楚此课程是一门累积性很强的科学,每一个重大的数学理论总是在继承和发展原有理论基础上建立发展、丰富起来的。
3、本课程教学的基本指导原则要注意它与其他知识的不同,强调它的积累性与连续性。
它的特点是每一代人都是在古老的大厦上更上一层楼,并且数学科学各个部分之间相互联系密不可分。
数学的发展历史概述
数学的发展历史概述数学史研究证明:数学的发源地除古代非洲的尼罗河,还有西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河、东亚的黄河和长江。
知识简介:尼罗河-世界上最长的大河尼罗河纵贯非洲大陆东北部,流经布隆迪、卢旺达、坦桑尼亚、乌干达、埃塞俄比亚、苏丹、埃及,跨越世界上面积最大的撒哈拉沙漠,最后注入地中海。
流域面积约335万平方公里,占非洲大陆面积的九分之一,全长6650公里,年平均流量每秒3100立方米,为世界最长的河流。
尼罗河——阿拉伯语意为“大河”。
“尼罗,尼罗,长比天河”,是苏丹人民赞美尼罗河的谚语。
古埃及人在这里创造出高度的文明。
世界三大河流:非洲尼罗河、南美洲亚马逊河、亚洲长江中国第一大河——长江长江的上源沱沱河出自青海省西南边境唐古拉山脉各拉丹冬雪山,干流全长6300公里。
以干流长度和入海水量论,长江均居世界第三位。
长江流经青海、西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海,注入东海。
长江在湖北省宜昌市以上为上游,宜昌至江西省湖口间为中游,湖口以下为下游长江流域是中国人口密集经济繁荣的地区,沿江重要城市有重庆、武汉、南京、上海。
长江在四川奉节以下至湖北宜昌为雄伟险峻的三峡江段(瞿塘峡、巫峡、西陵峡)世界最大的水利枢纽工程三峡工程位于西陵峡中段的三斗坪(1994年12月14日开工,总工期17年)中华民族的母亲河—黄河黄河,发源于青海省巴颜喀拉山脉的约古宗列渠,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区,最后于山东省东营垦利县注入渤海。
干流河道全长5464千米,仅次于长江,为中国第二长河,世界第五长河黄河从源头到内蒙古自治区托克托县河口镇为上游,河口镇至河南郑州桃花峪间为中游,桃花峪以下为下游.数学的发展史一般分为四个时期(有很多分法),即数学的萌芽时期,古代数学时期,近代数学时期和现代数学时期。
一、数学萌芽时期(公元前6世纪以前)1.“数”概念的产生早在远古时代,人类就已具备了识别事物多少的能力。
数学史简介
记数法
• 艰难的过程 • 限制中国数学深入的瓶颈 • 印度阿拉伯数字
中国数学记数法:
进位制:
• 史上曾经有过二进制,五进制,十进制, 十二进制,十六进制,六十进制。 • 汉字一二三四五六七八九十对十进制的贡 献 • 长期运用后留下二进制十进制 • 据推测五进制十进制与人的手指个数有关
现代澳大利亚托列斯峡群岛上一
四大文明古国:印度
• • • • • • • 印度有3500至4000年 最大成就是印度数码,十进制 五世纪后“零”的符号在印度出现 与占星术,宗教,农业关系密切 方法与结果用树皮树叶记载,大多失散 用晦涩的诗歌表述,难于理解 知道勾股定理,三角学并计算出
2 1.414215686 10 3.162 ,
万物皆数
• 他们把线段的长度看作是线段锁包含的原子数 目,因而任意两条线段长度之比就是它们各自 原子数之比。 • 由此观点出发,毕氏研究了音乐美术天文地理。 • 应用在数学上,从埃及的黄金三角形(各边之 比为3:4:5)发现5:12:13,8:15:17, 这就是中国说的“勾股定理” • 它们只相信直角三角形的三边之比都应该是整 数比
与数论
• 现代数论统一理论的创建者 • 20岁决定献身数学,最终成为最伟大的 数学家之一 • 1801年结束费尔玛数论,开创纯理论数 论研究 • 追随者:戴德金,狄利克雷,刘维尔, 闵可夫斯基,创建:代数数论,解析数 论,超越数论,几何数论
哥德巴赫猜想与陈景润
• 1742年,德国哥德巴赫老师发现“大于2的偶数, 可以表示为两个素数之和” • 求教欧拉:欧拉说“虽然我不能证明它,但我确 信它完全正确” • 1900年希尔伯特(德国数学家,1862~1943)把 它列为23个世纪难题,称为“皇冠上的明珠” • 1966年中国人陈景润(1933~1996)证明“1+ 2” ,1973年发表,离摘取明珠咫尺之遥 • 陈氏定理被誉为“光辉顶点”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,最迟在商代,即已出现用十进制数字表示大数的方法;至秦汉之际,即已出现完满的十进位制。在不晚于公元一世纪的《九章算术》中,已载了只有位值制才有可能进行的开平方、开立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。
中国几何学以测量和计算面积、体积的量度为中心任务,而古希腊的传统则是重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响遍及于整个数学的发展。特别是平行公理的研究,导致了19 世纪非欧几何的产生。
欧洲自文艺复兴时期起通过对绘画的透视关系的研究,出现了射影几何。18世纪,蒙日应用分析方法对形进行研究,开微分几何学的先河。高斯的曲面论与黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪克莱因以群的观点对几何学进行统一处理。此外,如康托尔的点集理论,扩大了形的范围;庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。这些都使几何学面目一新。
由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界的。生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键性的作用。理论上的丰富提高与应用的广泛深入在数学史上始终是相伴相生,相互促进的。
但Байду номын сангаас于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。计算方法的优越有助于对实际问题的具体解决。由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。而在古希腊则着重思维,追求对宇宙的了解。由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。
形的研究属于几何学的范畴。古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象是由于工具的制作与测量的要求所促成的。规矩以作圆方,中国古代夏禹泊水时即已有规、矩、准、绳等测量工具。
《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽的《海岛算经》给出了用矩观测天地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题。例如求任意多边形面积的出入相补原理;求多面体的体积的阳马鳖需的二比一原理(刘徽原理);5世纪祖(日恒)提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。
在十七世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。
十八世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。由于自然界的客观规律大多是以微分方程的形式表现的,所以微分方程的研究一开始就受到很大的重视。
中国的数学体系在宋元时期达到高峰以后,陷于停顿且几至消失。而在欧洲,经过文艺复兴、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。机器的使用,不论中外都由来已久。但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。
在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。解析几何与微积分的诞生,成为数学发展的一个转折点。17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。
力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些数学知识。
十九世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展,也产生了把数学看作是一个整体的各种思潮和数学基础学派。特别是1900年,德国数学家希尔伯特在第二届国际数学家大会上的关于当代数学重要问题的演讲,以及三十年代开拓的,以结构概念统观数学的法国布尔巴基学派的兴起,对二十世纪数学的发展产生了巨大、深远的影响,科学的数学化一语也开始为人们所乐道。
开平方和开立方是解最简单的高次方程所必须用到的运算。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。
在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。在欧洲,十四世纪奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽。十七世纪笛卡尔提出了系统的把几何事物用代数表示的方法及其应用。在其启迪之下,经莱布尼茨、牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。这是数学史上的一件大事。
数学的外围向自然科学、工程技术甚至社会科学不断渗透扩大并从中吸取营养,出现了一些边缘数学。数学本身的内部需要也孽生了不少新的理论与分支。同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固。
在数学的蓬勃发展过程中,数与形的概念不断扩大且日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。如把函数看成是某种空间的一个点之类。这种做法之所以行之有效,归根结底还是因为数学家们已经熟悉了那种简易的数学运算与图形关系,而后者又有着长期深厚的现实基础。而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。因此如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。
刘徽在他注解的《九章算术》中,还提出过用十进制小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪斯蒂文以后)十进制小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率 的一般方法。
虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化,并依据数的不同运算规律,对一般的数系统进行了独立的理论探讨,形成数学中的若干不同分支。
在中国以外,九世纪阿拉伯的花拉米子的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。
16世纪时,韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质进行探讨,是从线性方程组引出的行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗华理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集合的理论研究。
在现实世界中,数与形,如影之随形,难以分割。中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。例如勾股测量提出了开平方的要求,而开平方、开立方的方法又奠基于几何图形的考虑。二次、三次方程的产生,也大都来自几何与实际问题。至宋元时代,由于天元概念与相当于多项式概念的引入,出现了几何代数化。
微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了现代的微分几何。19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。对客观世界中随机现象的分析,产生了概率论。第二次世界大战军事上的需要,以及大工业与管理的复杂化产生了运筹学、系统论、控制论、数理统计学等学科。实际问题要求具体的数值解答,产生了计算数学。选择最优途径的要求又产生了各种优化的理论、方法。
20世纪出现各种崭新的技术,产生了新的技术革命,特别是计算机的出现,使数学又面临一个新时代。这一时代的特点之一就是部分脑力劳动的逐步机械化。与17世纪以来数学之以围绕连续、极限等概念为主导思想与方法不同,由于计算机研制与应用的需要,离散数学与组和数学开始受到重视。
计算机对数学的作用已不限于数值计算,符号运算的重要性日趋明显(包括机器证明等数学研究)。计算机还广泛应用于科学实验。为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出。代数几何是一门高度抽象化的数学,最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一。总之,数学正随着新的技术革命而不断发展。