2012年全国初中数学竞赛决赛试题及参考答案

合集下载

2012年全国初中数学竞赛试题及参考答案

2012年全国初中数学竞赛试题及参考答案
形 . LA DC=3 。 D =3 D =5 0 ,A ,B ,则 C 的长 为 ( D )





c 口+a b的 ÷一 + 值为— — . +
7 甲) 图 4 ( .如 ,正 方 形 A C 的 边 BD ,E、F分 别 是 A B、B 的 C
( A)3 / 、2
4 甲) ( .小倩 和小玲每人都有若干面值为整数元的人民币. 小
题均给 出了代 号为 A,B,c ,D的 四个选项 ,其 中有且只有 一 倩对小 玲说 :“ 若给我 2元 ,我 的钱数将 是你 的 n倍” 你 ;小玲
个 选 项 是 正 确 的 .请 将 正 确 选 项 的 代 号 填 入 题 后 的 括 号 里 , 不 对小倩说 :“ 你若给我 n元 ,我的钱数将是你 的 2倍” .其 中 n为 填 、 多填 或错 填都 得 0分 )
( B)4
长为 2
曰 C
( C)2 / 、5
( D)45 .
中 点 ,AF与 D E、D 分 别 交 于 点 、 B N, ̄ AD MN的面积是
图2
3 5

7 乙 ) 如 图 5 60 的半 径 为 2 , ( . , 3 0 C 点 E在 O D. D上 ,且 DC=D E,B E的 延 长 线 与 6 0 交 于点 F 3.
( )P B 。
( D)P 3



2 甲) ( .如果 正 比例 函数 Y=一( ≠0 与反 比例 函数 Y Ⅱ ) = ( ≠0 的图象有两个交点 ,其 中一个交点 的坐标为( 3 2 ,那 b ) 一 ,一 ) 么另一个交点的坐标为 (
( ( ,3 A) 2 ) ( C)( 2

2012年全国初中数学联赛(浙江赛区)

2012年全国初中数学联赛(浙江赛区)

2012年全国初中数学联合竞赛(浙江赛区)试题及参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( ) A. a b c << B. a c b << C. b a c << D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( )A .3.B .4.C .5.D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )A .3 B .3 C .3 D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分) 1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t = . 2.使得521m⨯+是完全平方数的整数m 的个数为 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= . 4.已知实数,,a b c满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= . 答案:选择题:1.C 2.B 3.D 4.B 5.B 6.C填空题:1.1± 2. 1 3.4.332第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤. 根据勾股定理可得222a b c+=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩ 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. 又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即222(30)()m b m c+=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM//BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.。

-2012全国初中数学竞赛试题及答案(安徽赛区)

-2012全国初中数学竞赛试题及答案(安徽赛区)

中国教育学会中学数学教学专业委员会 2012年全国初中数学竞赛试题【安徽赛区】一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1、如果2a =-11123a+++的值为【 】(A)(B(C )2 (D)解:B ∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22、 在平面直角坐标系xOy 中,满足不等式y x y x 2222+≤+的整数点坐标(x ,y )的个数为【 】 (A )10 (B )9 (C )7 (D )5 解:B 解法一:y x y x 2222+≤+化为()()21122≤-+-y x因为x 、y 均为整数,因此()()01122=-+-y x 或()()11122=-+-y x 或()()21122=-+-y x分别解得⎩⎨⎧==11y x 或⎩⎨⎧==10y x ⎩⎨⎧==12y x ⎩⎨⎧==01y x ⎩⎨⎧==21y x 或⎩⎨⎧==20y x ⎩⎨⎧==22y x ⎩⎨⎧==00y x ⎩⎨⎧==02y x 所以共有9个整点 解法二:y x y x 2222+≤+化为()()21122≤-+-y x 它表示以点(1,1)为圆心,2为半径的圆内,画图可知,这个圆内有9个(0,2)、(0,1)(0,0),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)3、如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为【 】(A )23 (B )4 (C )52 (D )4.5解:图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,BCD BCA ACD DCE ACD ACE ∠=∠+∠=∠+∠=∠.所以 △BCD ≌△ACE , BD = AE .又因为30ADC ∠=︒,所以90ADE ∠=︒.在Rt △ADE 中,53AE AD ==,,于是4=,所以CD = DE = 4.4、如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是【 】 (A ) 5 (B ) 6 (C ) 7 (D ) 8解:C ∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x ∴正根为3242<++q p p解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p 5、黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是【 】 (A )2012 (B )101 (C )100 (D )99 解:C 1)1)(1(-++=++b a ab b a ∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++二、填空题(共5小题,每小题7分,共35分) 6、如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为 .解:7在910111=+++++a c c b b a 两边乘以9=++c b a 得103=++++++ac bc b a b a c 即7=+++++ac bc b a b a c 7、如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 .解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8、设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n 240252012⋯⋯=÷所以共有2012-402=1600个数9、如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c(,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 . 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+a c b cb a 111,所以ac b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得c a a c a +-<1即ac ac a c -<-化简得0322<+-c ac a ,两边除以2c 得 0132<+-⎪⎭⎫⎝⎛c a c a 所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤c a 综合得1253≤<-c a 10、已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .解:依题意得()()b a b a b a n -+=-=22 由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个 但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个 三、解答题(共4题,每题20分,共80分)11、如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△, 因此 CO = BO = 6.于是(08)A -,,(60)B ,,(60)C -,.设点D 的坐标为()m n ,.由C O E A D E S S =△△,得C D B A O B S S =△△.所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯.解得 4n =-. 因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△ABC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+.将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-. 12、如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证: (1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD.(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠.所以CID CDI ∠=∠, CI = CD . 同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线.(2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由 BCCD =,知OC ⊥BD . 因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==.故2AB AD BD +=. 13、给定一个正整数n ,凸n 边形中最多有多少个内角等于150︒?并说明理由. 解:14、将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得b a c =,求n 的最小值.解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+- , , , , , 和{}84521- , , , . 在数组{}88162322121+- , , , , , 中,由于38821632221<>-(,),所以其中不存在数a b c ,,,使得ba c =.在数组{}84521- , , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得ba c =. 所以,162n ≥. 下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时ba c =;如果8在第二组,我们取16482a b c ===,,,此时b a c =.综上,162n =满足题设条件. 所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。

2012年全国初中数学联合竞赛试题

2012年全国初中数学联合竞赛试题

这样的四位数共有 A . 36 个
B. 40 个
C. 44 个
D. 48 个
()
二、填空题(本题满分 28 分,每小题 7 分)
得分 评卷人
本题共有 4 个小题,要求直接将答案写在横线上 .




1
1
1
1.已知互不相等的实数 a,b, c 满足 a
b
c
t ,则 t _________ .
b
c
a
不 内
线


2.使得 5 2m 1 是完全平方数的整数 m 的个数为




BC
3.在△ ABC 中,已知 AB = AC ,∠A = 40°,P 为 AB上一点,∠ ACP =20°,则 =

AP
4. 已知实数 a, b, c 满足
a
b
c
4
abc
1, a b c
4, a2
3a 1
b2
3b 1
c2
3c 1
于点 F,连接 BF 并延长与线段 DE交于点 G,则 BG的长为
()
校 学
6
A.
3
5
B.
3
26
C.
3
25
D.
3
4. 已知实数 a, b 满足 a 2 b 2 1 ,则 a 4 ab b 4 的最小值为
1
A.
8
B.0
C.1
9
D.
8
()




( 市
2012 年全国初中数学联合竞赛试题
第一试
第 1 页(共 2 页)

2012年全国初中数学联赛试题详解

2012年全国初中数学联赛试题详解

2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<解答:1a ===b ==,2c ===1显然:b a c <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6. 解答:222222223232()234x xy y x xy y y x y y ++=+++=++=由0、1、2、3、4、5、6的平分别是0、1、4、9、16、25、36知唯有16+2⨯9=34故5555544444x y x y x y x y x y y y y y y +=-+=+=+=-⎧⎧⎧⎧+=±=±⎨⎨⎨⎨===-=-⎩⎩⎩⎩、,由、、、得 4444=9=1=9=1y y y y x x x x ===-=-⎧⎧⎧⎧⎨⎨⎨⎨--⎩⎩⎩⎩、、、共4组解。

3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A.3 B.3 C.3 D.3EBD解答:如图,做G H ⊥BE 于H ,易证Rt △AB E ∽Rt △GHB ,设GH=a ,则HE=a ,BH=2-a , 由GH BH a 2-a 2==a=AB BE 123得解得,故BG=3。

4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B )A .18-. B .0. C .1. D .98. 解答:44222222219=2=21=2()48a ab b a b a b ab a b ab ab +++-+-++--+2() 考查以ab 整体为自变量的函数的图像为抛物线219y=2()48ab --+其对称轴为14ab = 由22222020a b ab a b ab +-≥++≥和知1122ab -≤≤ 又1111()4242-->-,故当12ab =-时,函数取最小值0。

2012全国初中数学竞赛试题参考答案和评分标准(湖南卷)

2012全国初中数学竞赛试题参考答案和评分标准(湖南卷)

中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题参考答案一、选择题 1.C 2.D 3.D 4.B 5.D二、填空题 6.8 7.7<x ≤19 8.8 9.32-10.223 三、解答题11.解: 因为当13x -<<时,恒有0y <,所以 23420m m ∆=+-+>()(), 即210m +>(),所以1m ≠-. …………(5分)当1x =-时,y ≤0;当3x =时,y ≤0,即 2(1)(3)(1)2m m -++-++≤0, 且233(3)2m m ++++≤0, 解得m ≤5-. …………(10分)设方程()()2320x m x m ++++=的两个实数根分别为12x x ,,由一元二次方程根与系数的关系得 ()121232x x m x x m +=-+=+,. 因为1211910x x +<-,所以 121239210x x m x x m ++=-<-+, 解得12m <-,或2m >-.因此12m <-. …………(20分)12.解:因为sin ∠ABC =45AO AB =,8AO =,所以 AB = 10.由勾股定理,得 BO6=.易知△ABO ≌△ACO , 因此 CO = BO = 6.于是A (0,-8),B (6,0),C (-6,0). 设点D 的坐标为(m ,n ),由S △COE = S △ADE ,得S △CDB = S △AOB . 所以 1122BC |n |=AO BO , 1112()8622n ⨯-=⨯⨯, 解得n =-4. 因此D 为AB 的中点,点 D 的坐标为(3,-4). …………(10分) 因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△A BC的重心,所以点E 的坐标为),(380-. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为y =a (x -6)(x +6). 将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为 228273y x =-. …………(20分) 13. 证明:连接BD ,因为OB 为1O 的直径,所以90ODB ∠=︒.又因为DC DE =,所以△CBE 是等腰三角形. …………(5分)设BC 与1O 交于点M ,连接OM ,则90OMB ∠=︒.又因为OC OB =,所以 22BOC DOM DBC ∠=∠=∠12DBF DO F =∠=∠. …………(15分)又因为1BOC DO F ∠∠,分别是等腰△BOC ,等腰△1DO F 的顶角,所以△BOC ∽△1DO F . …………(20分)14.解:设a -b = m (m 是素数),ab = n 2(n 是正整数).因为 (a +b )2-4ab = (a -b )2,所以 (2a -m )2-4n 2 = m 2,(2a -m +2n )(2a -m -2n ) = m 2. …………(5分)因为2a -m +2n 与2a -m -2n 都是正整数,且2a -m +2n >2a -m -2n (m 为素数),所以2a -m +2n =m 2,2a -m -2n =1.解得:a =2(1)4m +,n =214m -. 于是 b = a -m =214m -(). ………(10分) 又a ≥2012,即2(1)4m +≥2012. 又因为m 是素数,解得m ≥89. 此时,a ≥41)(892+=2025. 当2025a =时,89m =,1936b =,1980n =.因此,a 的最小值为2025. …………(20分)。

2012年全国初中数学联合竞赛试题及解答

2012年全国初中数学联合竞赛试题及解答
2 2
又 c a ( 6 2) ( 2 1) 6 ( 2 1) ,而 ( 6) ( 2 1) 3 2 2 0 .所 以 6
2 1 ,故 c a .因此 b a c .
2.方程 x 2 xy 3 y 34 的整数解 ( x, y ) 的组数为(
因为 2 | ab | a b 1 ,所以
2 2
因此 a ab b 的最小值为 0,当 a
4 4
2 2 2 2 或a 时取得. ,b ,b 2 2 2 2
5.若方程 x 2 px 3 p 2 0 的两个不相等的实数根 x1 , x2 满足 x1 x1 4 ( x2 x2 ) ,
2
验证可知: b 因此, t 1 . 方法二:由 a
1 a 1 1 a 1 时 t 1; b 时 t 1 . ,c ,c 1 a a 1 a a
1 1 bc . b 可得 bc b c a b ca a b 同理可得: ca , ab . bc ca
1
) D.
6 3
B.
5 3
C.
2 6 3
2 5 3
易知 BG:GH=2:1,所以 BG =
2 2 5 BH 3 3
A F
D G
H
B
2 2 4
C
4
P
E

4.已知实数 a, b 满足 a b 1 ,则 a ab b 的最小值为 ( A. 【答】B.
1 . 8
B.0.
C.1.
D.
m 2
m 2
设 n 2k 1 (其中 k 是正整数) ,则 5 2 4k (k 1) ,即 5 2

2012年全国初中数学联赛四川赛区决赛赛试题及解答(WORD)完美精校版

2012年全国初中数学联赛四川赛区决赛赛试题及解答(WORD)完美精校版

2012全国初中数学联赛四川赛区决赛试题及解答2012全国初中数学联赛四川赛区决赛试题及解答姓名:____ 班级:____考号:____成绩:____一 .选择题(每小题7分,共42分)1 .若-3<x <-1,则化简2|1|x -+得( ).A .1-xB .-3+xC .3-xD .3+x 2 .若抛物线y =x 2-4x +m 的顶点在x 轴上,则m 的值是( ). A .0 B .1 C .2 D .4 3 .菱形ABCD 的边长为1,面积为79,则AC +BD 的值是( ). A .43B .169C .83D .3294 .在凸四边形ABCD 中,AB =2AD ,BC =1,∠ABC =∠BCD =60°,∠ADC =90°,则AB 的长度是( ).ABC.2 D.3 5 .一个活动小组,如果有5个13岁的成员退出,或者有5个17岁的人员加入(两种情况不同时发生),其成员的平均年龄都增加1岁,则这个活动小组原有成员的人数是( ).A .10B .12C .14D .166 .一个正整数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”.比如:1、11、121都是回文数,而110则不是回文数,将所有“回文数”从小到大排成一列:1、2、…、9、11、22、…,则第2012个“回文数”是( ).A .1011101B .1013101C .1021201D .1030301 二 .填空题(每小题7分,共28分)7 .设1x 、2x 是方程x 2-2x -m =0的两根,且122x x +=0,则m 的值是_____.8 .在△ABC 中,∠ACB =45°,D 是AB 边上异于A 、B 两点的任意一点,△ABC 、△ADC 和△BDC 的外接圆圆心分别为O 、1O 、2O ,则∠12O OO 的度数等于____.9 .已知a ,b 为正实数,m 为正整数,且满足14,48,a b ab m +≤⎧⎨≥+⎩则m 的值是_____.10 .在一次球类比赛中有8个队参赛,每两队要进行一场比赛,胜一场得2分,平一场得1分,负一场得0分.一个队要确保进入前四名(即积分至少要超过其他四个队),则他的积分最少是______.三 .简答题(第11题20分,其余两题均为25分) 11 .已知抛物线2y x =与直线(2)(21)y k x k =+--.(1)求证:无论k 为什么实数,该抛物线与直线恒有两个不同的交点;(2)设该抛物线与直线的两个不同的交点分别为A (1x ,1y ),B (2x ,2y ),若1x ,2x 均为整数,求实数k 的值.12 .如图,已知⊙A 与⊙B 相交于C 、D 两点,延长AC 交⊙B 于E ,延长BC 交⊙A 于F . 求证:C 是△DEF 的内心.13 .将10,11,12,…,98,99这90个正整数写在黑板上,擦去其中的n 个数,可使黑板上剩下的所有数的乘积的个位数是1,求n的最小值.- 2 –2012全国初中数学联赛四川赛区决赛试题及解答2012全国初中数学联赛四川赛区决赛试题及解答姓名:____ 班级:____ 考号:____成绩:____一 .选择题(每小题7分,共42分)1 .若-3<x <-1,则化简2|1|x -+得( D ).A .1-xB .-3+xC .3-xD .3+x2 .若抛物线y =x 2-4x +m 的顶点在x 轴上,则m 的值是( D ). A .0 B .1 C .2 D .43 .菱形ABCD 的边长为1,面积为79,则AC +BD 的值是( C ). A .43B .169C .83D .3294 .在凸四边形ABCD 中,AB =2AD ,BC =1,∠ABC =∠BCD =60°,∠ADC =90°,则AB 的长度是( B ).ABC.2 D.3 5 .一个活动小组,如果有5个13岁的成员退出,或者有5个17岁的人员加入(两种情况不同时发生),其成员的平均年龄都增加1岁,则这个活动小组原有成员的人数是( A ).A .10B .12C .14D .166 .一个正整数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”.比如:1、11、121都是回文数,而110则不是回文数,将所有“回文数”从小到大排成一列:1、2、…、9、11、22、…,则第2012个“回文数”是( B ).A .1011101B .1013101C .1021201D .1030301二 .填空题(每小题7分,共28分)7 .设1x 、2x 是方程x 2-2x -m =0的两根,且122x x +=0,则m 的值是__8___.8 .在△ABC 中,∠ACB =45°,D 是AB 边上异于A 、B 两点的任意一点,△ABC 、△ADC 和△BDC 的外接圆圆心分别为O 、1O 、2O ,则∠12O OO 的度数等于__135°__.9 .已知a ,b 为正实数,m 为正整数,且满足14,48,a b ab m +≤⎧⎨≥+⎩则m 的值是__1___.10 .在一次球类比赛中有8个队参赛,每两队要进行一场比赛,胜一场得2分,平一场得1分,负一场得0分.一个队要确保进入前四名(即积分至少要超过其他四个队),则他的积分最少是__11分____.三 .简答题(第11题20分,其余两题均为25分) 11 .已知抛物线2y x =与直线(2)(21)y k x k =+--.(1)求证:无论k 为什么实数,该抛物线与直线恒有两个不同的交点;(2)设该抛物线与直线的两个不同的交点分别为A (1x ,1y ),B (2x ,2y ),若1x ,2x 均为整数,求实数k 的值.解:(1)由题意,有:2,(2)(21),y x y k x k ⎧=⎨=+--⎩x 2-(k +2)x +(2k -1)=0,△=(k +2)2-4(2k -1)=k 2+4k +4-8k +4=(k -2)2+4≥4>0, 所以恒有两个不同的交点.(2)由根与系数关系,得12122, 21, x x k x x k +=+⎧⎨=-⎩①②②-①×2,得12122()5x x x x -+=-,所以12122()41x x x x -++=-, 12(2)(2)1x x --=-,所以1221,21,x x -=⎧⎨-=-⎩或1221,21,x x -=-⎧⎨-=⎩(与前者同),解之得123,1,x x =⎧⎨=⎩代入①,得k =2.- 4 –12 .如图,已知⊙A 与⊙B 相交于C 、D 两点,延长AC 交⊙B 于E ,延长BC 交⊙A 于F .求证:C 是△DEF 的内心.证明:13 .将10,11,12,…,98,99这90个正整数写在黑板上,擦去其中的n 个数,可使黑板上剩下的所有数的乘积的个位数是1,求n 的最小值.。

2012年全国初中数学竞赛试题

2012年全国初中数学竞赛试题

2012年全国初中数学竞赛试题考试时间 2012年3月18日 9:30-11:30 满分150分答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.如果实数a ,b ,ca b b c +++可以化简为( )A .2c -aB . 2a -2bC . –aD .a2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标(x ,y )的个数为( )A .10B .9C . 7D .53.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.∠ADC =30°,AD =3,BD =5,则CD的长为( )A .B .4C .D .4.5(第1题图)BADC4.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( )A .1B .2C .3D .45.黑板上写有1111,,,,23100⋅⋅⋅共有100个数字.每次操作先从黑板上的数中选取2个数a ,b ,然后删去a ,b ,并在黑板上写上数a+b+ab ,则经过99次操作后,黑板上剩下的数是( )A .2012B .101C .100D .99二、填空题(共5小题,每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是____________.7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且OC =12.延长BC ,与⊙O 分别交于D ,E 两点,则CE -BD 的值等于___________.8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为x 1,x 2,那么2011120122x x 的值为_______________.9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为_____________.10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD =DC .分别延长BA ,CD ,交点为E .作BF ⊥EC ,并与EC 的延长线交于点F .若AE =AO ,BC =6,则CF 的长为___________.(第6题图)AB OCED(第7题图)三、解答题(共4题,每题20分,共80分)11.如图,在平面直角坐标系xOy 中,AO =8,AB =AC ,sin ∠ ABC =45.CD 与y 轴交于点E ,且C O E A D E S S ∆∆=.已知经过B ,C ,E 三点的图像是一条抛物线,求这条抛物线对应的二次函数的解析式.12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证:(1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD .13.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数.当a ≥2012时,求a 的最小值.14.将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a ,b ,c (可以相同)使得ba c =,求n 的最小值.IABDOC2012年全国初中数学竞赛试卷答案(考试时间:120分钟 总分:150分)一、选择题(每小题7分,共35分)1.如果实数a ,b ,c a b b c ++可以化简为( C )A .2c a -B .22a b -C .a -D .a解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以()()()a b b c a a b c a b c a +++=-+++--+=-2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标()x y ,的个数为( B ) A .10 B .9 C .7 D .5解:由题设2222x y x y +≤+,得220(1)(1)2x y ≤-+-≤.因为x ,y 均为整数,所以有22(1)0(1)0x y ⎧-=⎪⎨-=⎪⎩,22(1)0(1)1x y ⎧-=⎪⎨-=⎪⎩,22(1)1(1)0x y ⎧-=⎪⎨-=⎪⎩,22(1)1(1)1x y ⎧-=⎪⎨-=⎪⎩ 解得11x y =⎧⎨=⎩,12x y =⎧⎨=⎩,10x y =⎧⎨=⎩,01x y =⎧⎨=⎩,21x y =⎧⎨=⎩,00x y =⎧⎨=⎩,02x y =⎧⎨=⎩,20x y =⎧⎨=⎩,22x y =⎧⎨=⎩以上共计9对()x y ,3.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( B )A .23B .4C .52D .4.5 解:如图,以CD 为边作等边△CDE ,连接AE .由于AC = BC ,CD = CE ,BCD BCA ACD DCE ACD ACE ∠=∠+∠=∠+∠=∠.所以 △BCD ≌△ACE , BD = AE . 又因为30ADC ∠=︒,所以90ADE ∠=︒. 在Rt △ADE 中,53AE AD ==,,于是DE 4=,所以CD = DE = 4.4.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( D )A .1B .2C .3D .4解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数.由题设可得 2(2)2()x n y y n x n +=-⎧⎨+=-⎩.消去x 得,(27)4y n y -=+,(27)1515212727y n y y -+==+--. 因为1527y -为正整数,所以27y -的值分别为1,3,5,15.y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1. 所以 x 的值分别为14,7,6,7.5.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( C )A .2012B .101C .100D .99解:因为1(1)(1)a b ab a b +++=++,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为x ,则1111(11)(1)(1)(1)23100x +=+++⋅⋅+ , 解得,1101x +=,100x =.二、填空题(每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 719x <≤ .解:前四次操作的结果分别为32x -,3(32)298x x --=-,3(98)22726x x --=-,3(2726)28180x x --=-.由已知得,27264878180487x x -≤⎧⎨->⎩.解得719x <≤.容易验证,当719x <≤,32487x -≤,98487x -≤,故x 的取值范围是719x <≤.7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 .解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,.z CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 32-.解:根据题意,关于x 的方程有22394(3)042k k k ∆=--+≥,由此得2(3)0k -≤.又2(3)0k -≥,所以2(3)0k -= ,3k =.此时方程为29304x x ++=,解得1232x x ==-.故20111201222123x x x ==-9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 8 .解:设平局数为a ,胜(负)局数为b ,由题设知 23130a b +=.由此得043b ≤≤.又(1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++.于是0130(1)(2)43b m m ≤=-++≤,87(1)(2)130m m ≤++≤. 由此得8m =或9m =. 当8m =时,40b =,5a =; 当9m =时,20b =,35a =,5522a b a +>=.不合题设.故8m =. 10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD DC =.分别延长BA ,CD ,交点为E .作BF E C ⊥,并与EC 的延长线交于点F .若AE AO =,6BC =,则CF 的长为 223 .解:如图,连接AC ,BD ,OD .由AB 是⊙O 的直径知90BCA BDA ∠=∠=︒.依题设90BFC ∠=︒,四边形ABCD 是⊙O 的内接四边形, 所以BCF BAD ∠=∠.所以Rt BCF Rt BAD △∽△,因此BC BACF AD=.因为OD 是⊙O 的半径,AD CD =, 所以OD 垂直平分AC ,OD BC ∥,于是2DE OEDC OB==. 因此223DE CD AD CE AD ===,. 由AED CEB △∽△,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,,所以 32322BA AD AD BA ⋅=⋅,BA =.故AD CF BC BA =⋅==. 三、解答题(每题20分,共80分)11.如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△, 因此 CO = BO = 6.于是(08)A -,,(60)B ,,(60)C -,. 设点D 的坐标为()m n ,. 由COE ADE S S =△△,得CDB AOB S S =△△. 所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯. 解得 4n =-.因此D 为AB 的中点,点 D 的坐标为(34)-,. 因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△A BC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+. 将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-.12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线;(2)2AB AD BD +=. 解:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠.所以CID CDI ∠=∠, CI = CD . 同理,CI = CB . 故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC , 所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线. (2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由 BCCD =,知OC ⊥BD . 因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==. 故2AB AD BD +=.13.已知整数a ,b 满足:a b -是素数,且ab 是完全平方数.当2012a ≥时,求a 的最小值.解:设a b m -=(m 是素数),2ab n =(n 是正整数).因为 22()4()a b ab a b +-=-,所以 222(2)4a m n m --=,2(22)(22)a m n a m n m -+--=.因为22a m n -+与22a m n --都是正整数,且2222a m n a m n -+>--(m 为素数), 所以 222a m n m -+=,221a m n --=.解得2(1)4m a +=, 214m n -=.于是214m b a m -=-=().又2012a ≥,即2(1)20124m +≥. 又因为m 是素数,解得89m ≥. 此时,2(891)4a +≥=2025.当2025a =时,89m =,1936b =,1980n =. 因此,a 的最小值为2025.14.将23n , , ,(2n ≥)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得b ac =,求n 的最小值.解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+- , , , , , 和{}84521- , , , .在数组{}88162322121+- , , , , , 中,由于38821632221<>-(,),所以其中不存在数a b c ,,,使得ba c =. 在数组{}84521- , , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得ba c =. 所以,162n ≥. 下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时ba c =;如果8在第二组,我们取16482abc ===,,,此时ba c =. 综上,162n =满足题设条件. 所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。

【数学竞赛】2012年全国初中数学联赛试题答案

【数学竞赛】2012年全国初中数学联赛试题答案

【数学竞赛】2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =-,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A B C D 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=.4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即。

(整理)全国初中数学联赛试题参考答案和评分标准

(整理)全国初中数学联赛试题参考答案和评分标准

2012年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准•第一试,选择题和填空题只设7分和0分两档;第二试各题, 请按照本评分标准规定的评分档次给分•如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数•第一试一、选择题:(本题满分42分,每小题7分)1.已知2012 , b:=,3- .2 , c:=,6- 2,那么a,b,c的大小关系是( )A. a< b< cB. a < c< bC. b< a< cD.b< c< a 【答】C.1 _因为一二\ 2 + 1,=3 +、、2 ,1 1 l所以0 ,故b a .又c-a = (、.-2) -1)―飞a b a b(、,2 1),而(、.6)2 -(.2 1)2=3 -0,所以,6.21,故c a.因此b ::a : c.2 22.方程x 2xy 3y =34的整数解(x, y)的组数为()A . 3.B . 4. C. 5. D . 6.【答】B.方程即(x y)2 2y2 =34 ,显然x y必须是偶数,所以可设x,y=2t,则原方程变为2 2I t = 2,2t2 y2 =17 ,它的整数解为'从而可求得原方程的整数解为(x,y)= (-7,3), (1,3), (7,-3),ly v,3.已知正方形ABCD勺边长为1, E为BC边的延长线上一点, BF 并延长与线段DE交于点G,贝U BG的长为A .迈3【答】D.过点C作CP//BG,交DE于点P.因为BC= CE= 1,所以CP是△ BEG 的中位线,所以P为EG的中点.又因为AD= CE= 1 , AD//CE,所以△ ADF^A ECF,所以CF= DF,又CP//FG ,所以FG是厶DCP的中位线,所以G为DP的中点.1 寸2因此DG = GP= PE= — DE =——3 3连接BD,易知/ BDC=Z EDC= 45°,所以/ BDE= 90 °又BD= J2,所以BG= J BD 2+ DG 2= ^2^~ ¥934.已知实数a, b满足a2 b2 =1,则a4 ab b4的最小值为CE= 1,连接AE,与CD交于点F,连接()C.19A ..B . 0.C . 1.D .—.8 8【答】B.4422222221 2 9 a 4ab b 4=(a 2 b 2)-2a 2b 2 - ab =1 -2a 2b 2ab 二-2(ab_—)2—.4 8”221 1 3 1 1 1 29因为2|ab^a b =1,所以ab ,从而 ab,故0乞(ab ),因此2 244 44 161?99 亦 44 90 _ -2(ab ),即 0 _ a ab b 488 8因此a 4ab b 4的最小值为0,当a2,b2或a 2, b 2时取得.2 2 2 22323X 1,X 2 满足 X 1 X 1 =4-(X 2 - X 2),则实数 p的所有可能的值之和为3 A . 0.B ..4【答】B.2 2 2 2x-i x 2 = (x , x 2) _2片 x 2 = 4 p 6p 4 , x ; x ; =(x 「x 2)[(x 1 - x 2)2-3捲 x 2] = -2p(4 p 29p ■ 6).2323223322又由 X 1 X 1 =4-(X 2 X 2)得 X 1 X 2 =4 -(X 1 X 2),所以 4p 2 6p 4 = 4 2p(4p 2 9 p 6),3所以 p(4p 3)( p 1)=0,所以 5 =0, p 2 二一3, p 3=—1.43代入检验可知:p 1 =0, p 2均满足题意,p 3 =-1不满足题意.433因此,实数p 的所有可能的值之和为p 1 p^ 0 ().44abcd (数字可重复使用),要求满足a ^b d .这样的四5.若方程x 2 • 2px -3p -2 =0的两个不相等的实数根 C . -1.由一元二次方程的根与系数的关系可得 X 1 X 2 = -2p ,论 x 2 = -3 p - 2,所以6.由1 , 2, 3, 4这四个数字组成四位数 位数共有A . 36 个.B . 40 个.【答】C.根据使用的不同数字的个数分类考虑: (1) 只用1个数字,组成的四位数可以是 (2) 使用2个不同的数字,使用的数字有( )C . 44 个.D . 48 个. 1111, 2222, 3333, 4444,共有 4 个.6 种可能(1、2, 1、3, 1、4, 2、3, 2、4, 3、4).如果使用的数字是1、2,组成的四位数可以是1122, 1221, 2112, 2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6X 4= 24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232 , 2123,2321 , 3212, 2343, 3234, 3432, 4323,共有8 个.(4)使用4个不同的数字1 , 2, 3, 4,组成的四位数可以是1243, 1342, 2134 , 2431 , 3124 , 3421 , 4213 , 4312 ,共有8 个.因此,满足要求的四位数共有 4 + 24+ 8+ 8= 44个. 二、填空题:(本题满分28分,每小题7分)1 1 1 1. ___________________________________________________________________ 已知互不相等的实数 a,b,c 满足a +—= b +—= c +—= t ,贝U t= _________________________________ .bca【答】_1.1 1 1 11 由a t 得b ,代入b t 得 t ,整理得ct 2-(ac T )t • (a-c ) =0①b t -ac t -a c 1 2 2 2又由c t 可得ac •仁at ,代入①式得ct -at ・(a -c )=:0,即(c-a )(t -1)=0,又c = a ,a所以t 2 -1 =0,所以t验证可知:b 匚山二口 时t -1; b J,c = -L 时t =-1.因此,t =T .1-a a 1 +a a2. 使得5 2m 1是完全平方数的整数 m 的个数为 ____________ . 【答】1.设5 2m ,1= n 2 (其中n 为正整数),则5 2m = n 2-1=(n ,1)(n-1),显然n 为奇数,设n = 2k-1 (其中 k 是正整数),则 5 2m =4k (k -1),即 5 2m ,=k (k -1).因此,满足要求的整数 m 只有1个.因为 a 2 —3a -1 =a 2 —3a abc =a(bc a - 3) = a(bc — b — c 1) = a(b —1)(c-1),所以显然k 1,此时k 和k -1互质,所以L 严或L m.k-1=1, k-1=2「k = 2m_2或 ’解得k =5,m = 4.k-1=5,3.在厶 ABC 中,已知 AB = AC ,/ A = 40 P 为 AB 上一点,/ ACP = 20°,则匹AP【答】、、3 .设D 为BC 的中点,在△ ABC 外作/ CAE = 20°,则/ BAE = 60° . 1 作 CEL AE, PF 丄 AE,则易证△ ACE^A ACD 所以 CE= CD= - BC.2J31又 PF = PA sin / BAE = PA S in 60°= AP, PF = CE 所以AP = BC2 2 2因此匕BC =丿3 .AP4.已知实数 a,b,c 满足 abc - -1 , a b 4 ,a b — a - 3a -1 b - 3b -1 c - 3c -1c 2【答3322a -3a -1 (b-1)(c-1)1c1,~2=(a -1)(c-1) c -3c-1 (a-1)(b-1)4所以—(a -1)(b -1)(c -1) =(a -1) (b -1) (c-1).91 结合 abc = -1, a b c = 4,可得 ab bc ac . 4 222 233 因此,a b c = (a ■ b c) -2(ab bc ac) .21 1实际上,满足条件的 a,b,c 可以分别为 ,一,4.2 2第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为 解 设直角三角形的三边长分别为a,b,c ( aEbcc ),贝U a + b + c = 30.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由 a _b : c 及 a b c =30得 30 二a b c : 3c ,所以 c 10. 由 a b c 及a b c =30得 30 = a b c 2c ,所以 c :: 15. 又因为c 为整数,所以11乞C 乞14........................... 5分根据勾股定理可得 a 2 b^c 2,把c =30-a -b 代入,化简得ab-30(a b) 45^ 0 ,所以2 2(30 -a)(30-b) =450 =2 3 5 ,........................ 10分30 - a = 52,1 a = 5,因为a,b 均为整数且a 兰b ,所以只可能是2解得彳............... 15分[30 —b = 2汽32,lb = 12. 169所以,直角三角形的斜边长 C =13,三角形的外接圆的面积为 竺二................ 20分4.. 2•(本题满分25分)如图,PA 为。

2012年全国初中数学竞赛试题(副题答案)

2012年全国初中数学竞赛试题(副题答案)

2012年全国初中数学竞赛试题(副题)参考答案一、选择题1.D解:第k行的最后一个数是,故第100行的最后一个数是.2. B解:这个表格中的矩形可由对角线的两个端点确定,由于包含黑色小方格,于是,对角线的一个端点确定,另一个端点有3×4=12种选择.3.B解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得;当时,解得.4. C解:当函数为二次函数时,有k2-1≠0,=(k+1)2-4(k2-1)<0.解得k>,或k<-1.当函数为一次函数时,k=1,此时y=-2x+1与x轴有公共点,不符合题意.当函数为常数函数时,k=-1,此时y=1与x轴没有公共点.所以,k的取值范围是k>,或k≤-1.5. B(第5题)解:如图,设,作BKCE,则,于是A,B,E,C四点共圆. 因为是的中点,所以,从而有,即平分.二、填空题6. 30(第6题)解:如图,连接PD,则.7.180解:设甲、乙、丙三车的速度分别为每分钟x,y,z米,由题意知,.消去z,得.设甲车出发后t分钟追上乙车,则,即,解得.8.<解:由a n==,得a1+a2+…+a2012==<1.9.25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法.同理可得y=5,或者z=5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法.10. 6(第10题)解:如图,设△ABC内切圆为⊙I,半径为r,⊙I与BC,CA,AB分别相切于点D,E,F,连接IA,IB,IC,ID,IE,IF.由切线长定理得AF=p-a,BD=p-b,CE=p-c,其中p=(a+b+c).在Rt△AIF中,tan∠IAF=,即tan.同理,tan,tan.代入已知等式,得.因此a+c=.三、解答题11. 解:已知,又,且,所以b,c是关于x的一元二次方程的两个根.故≥0,≥0,即≥0,所以≥20.于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.12. 解:将abc=d代入10ab+10bc+10ca=9d得10ab+10bc+10ca=9abc.因为abc≠0,所以,.不妨设a≤b≤c,则≥≥>0.于是,<≤,即<≤,<a≤.从而,a=2,或3.若a=2,则.因为<≤,所以,<≤,<b≤5.从而,b=3,4,5. 相应地,可得c=15,(舍去),5.当a=2,b=3,c=15时,d=90;当a=2,b=5,c=5时,d=50.若a=3,则.因为<≤,所以,<≤,<b≤.从而,b=2(舍去),3.当b=3时,c=(舍去).因此,所有正整数解为(a,b,c,d)=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).13. 证明:延长DA至,使得,则,于是△DPC∽△,故,所以PO∥.(第13题)又因为△DPO ∽△,所以.同理可得,而AB∥CD,所以,故OP=OQ.14.解:(1)由题设可得,或,或.由,解得;由,解得;由,解得.所以满足题设要求的实数.(2)不存在.由题设(整数≥1)满足首项与末项的积是中间项的平方,则有,解得,这与矛盾.故不存在这样的数列.(3)如果删去的是1,或者是,则由(2)知,或数列均为1,1,1,即,这与题设矛盾.如果删去的是,得到的一列数为,那么,可得.如果删去的是,得到的一列数为,那么,开得.所以符合题设要求的的值为1,或.2012-04-16 人教网。

2012年全国初中数学竞赛试卷及答案(福建赛区)

2012年全国初中数学竞赛试卷及答案(福建赛区)

2012年全国初中数学竞赛试卷(福建赛区)(考试时间:120分钟,总分:150分)一、选择题(每小题7分,共35分)1.如果实数a ,b ,ca b b c ++可以化简为( )A .2c a -B .22a b -C .a -D .a2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标()x y ,的个数为( )A .10B .9C .7D .53.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( )A .23B .4C .52D .4.54.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( )A .1B .2C .3D .45.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( )A .2012B .101C .100D .99二、填空题(每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 . 7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 .8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为1x ,2x ,那么2012220111x x 的值为.9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 .10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD DC =.分别延长BA ,CD ,交点为E .作BF EC ⊥,并与EC 的延长线交于点F .若AE AO =,6BC =,则CF 的长为 .三、解答题(每题20分,共80分)11.如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线;(2)2AB AD BD +=.13.已知整数a ,b 满足:a b -是素数,且ab 是完全平方数.当2012a ≥时,求a 的最小值.14.将23n , , ,(2n ≥)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得ba c =,求n 的最小值.2012年全国初中数学竞赛试卷答案(福建赛区)(考试时间:120分钟,总分:150分)一、选择题(每小题7分,共35分)1.如果实数a ,b ,c a b b c ++可以化简为( C )A .2c a -B .22a b -C .a -D .a解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以()()()a b b c a a b c a b c a ++=-+++--+=-2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标()x y ,的个数为( B )A .10B .9C .7D .5解:由题设2222x y x y +≤+,得220(1)(1)2x y ≤-+-≤.因为x ,y 均为整数,所以有22(1)0(1)0x y ⎧-=⎪⎨-=⎪⎩,22(1)0(1)1x y ⎧-=⎪⎨-=⎪⎩,22(1)1(1)0x y ⎧-=⎪⎨-=⎪⎩,22(1)1(1)1x y ⎧-=⎪⎨-=⎪⎩解得11x y =⎧⎨=⎩,12x y =⎧⎨=⎩,10x y =⎧⎨=⎩,01x y =⎧⎨=⎩,21x y =⎧⎨=⎩,00x y =⎧⎨=⎩,02x y =⎧⎨=⎩,20x y =⎧⎨=⎩,22x y =⎧⎨=⎩,以上共计9对()x y ,3.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( B )A .23B .4C .52D .4.5解:如图,以CD 为边作等边△CDE ,连接AE .由于AC = BC ,CD = CE , BCD BCA ACD DCE ACD ACE ∠=∠+∠=∠+∠=∠.所以 △BCD ≌△ACE , BD = AE .又因为30ADC ∠=︒,所以90ADE ∠=︒.在Rt △ADE 中,53AE AD ==,,于是DE 4=,所以CD = DE = 4.4.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( D )A .1B .2C .3D .4解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数. 由题设可得 2(2)2()x n y y n x n +=-⎧⎨+=-⎩.消去x 得,(27)4y n y -=+,(27)1515212727y n y y -+==+--.因为1527y -为正整数,所以27y -的值分别为1,3,5,15.y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1.所以 x 的值分别为14,7,6,7.5.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( C ) A .2012 B .101 C .100 D .99解:因为1(1)(1)a b ab a b +++=++,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为x ,则1111(11)(1)(1)...(1)23100x +=+++⋅⋅+, 解得,1101x +=,100x =.二、填空题(每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 719x <≤ .解:前四次操作的结果分别为32x -,3(32)298x x --=-,3(98)22726x x --=-,3(2726)28180x x --=-.由已知得,27264878180487x x -≤⎧⎨->⎩.解得719x <≤. 容易验证,当719x <≤,32487x -≤,98487x -≤,故x 的取值范围是719x <≤. 7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 .解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为1x ,2x ,那么2012220111x x 的值为32-.解:根据题意,关于x 的方程有22394(3)042k k k ∆=--+≥,由此得2(3)0k -≤.又2(3)0k -≥,所以2(3)0k -= ,3k =.此时方程为29304x x ++=,解得1232x x ==-.故20111201222123x x x ==-9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 8 .解:设平局数为a ,胜(负)局数为b ,由题设知 23130a b +=.由此得043b ≤≤.又(1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++.于是0130(1)(2)43b m m ≤=-++≤,87(1)(2)130m m ≤++≤. 由此得8m =或9m =.当8m =时,40b =,5a =;当9m =时,20b =,35a =,5522a b a +>=.不合题设.故8m =. 10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD DC =.分别延长BA ,CD ,交点为E.作BF EC ⊥,并与EC 的延长线交于点F .若AE AO =,6BC =,则CF 的长为 223 .解:如图,连接AC ,BD ,OD . 由AB 是⊙O 的直径知90BCA BDA ∠=∠=︒. 依题设90BFC ∠=︒,四边形ABCD 是⊙O 的内接四边形,所以BCF BAD ∠=∠.所以Rt BCF Rt BAD △∽△,因此 BC BACF AD=. 因为OD 是⊙O 的半径,AD CD =,所以OD 垂直平分AC ,OD BC ∥,于是 2DE OEDC OB==.因此223DE CD AD CE AD ===,.由AED CEB △∽△,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,,所以 32322BA AD AD BA ⋅=⋅,BA =.故2AD CF BC BA =⋅==. 三、解答题(每题20分,共80分)11.如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△,因此 CO = BO = 6. 于是(08)A -,,(60)B ,,(60)C -,.设点D 的坐标为()m n ,.由COE ADE S S =△△,得CDB AOB S S =△△. 所以 1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯.解得 4n =-.因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线, 点E 为△A BC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+.将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-. 12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线;(2)2AB AD BD +=.解:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠. 所以CID CDI ∠=∠, CI = CD .同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线. (2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由BC CD =,知OC ⊥BD .因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE .又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==. 故2AB AD BD +=.13.已知整数a ,b 满足:a b -是素数,且ab 是完全平方数.当2012a ≥时,求a 的最小值.【解答1】设a b m -=(m 是素数),2ab n =(n 是正整数).因为 22()4()a b ab a b +-=-,所以 222(2)4a m n m --=,2(22)(22)a m n a m n m -+--=. 因为22a m n -+与22a m n --都是正整数,且2222a m n a m n -+>--(m 为素数), 所以 222a m n m -+=,221a m n --=.解得2(1)4m a +=, 214m n -=. 于是214m b a m -=-=().又2012a ≥,即2(1)20124m +≥. 又因为m 是素数,解得89m ≥. 此时,2(891)4a +≥=2025. 当2025a =时,89m =,1936b =,1980n =.因此,a 的最小值为2025.【解答2】设a b m -=(m 是素数),2ab n =(n 是非负整数)。

2012全国初中数学竞赛试题及答案(现只有选择题答案)

2012全国初中数学竞赛试题及答案(现只有选择题答案)

中国教育学会中学数学教学专业委员会答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1. 如果2a =-+11123a+++的值为( ).(A )(B (C )2 (D )解:B∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22. 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ).(A )10 (B )9 (C )7 (D )5 解:B解法一:y x y x 2222+≤+化为()()21122≤-+-y x因为x 、y 均为整数,因此()()01122=-+-y x 或()()11122=-+-y x 或()()21122=-+-y x分别解得⎩⎨⎧==11y x 或⎩⎨⎧==10y x ⎩⎨⎧==12y x ⎩⎨⎧==01y x ⎩⎨⎧==21y x 或⎩⎨⎧==20y x ⎩⎨⎧==22y x ⎩⎨⎧==00y x ⎩⎨⎧==02y x 所以共有9个整点解法二:y x y x 2222+≤+化为()()21122≤-+-y x 它表示以点(1,1)为圆心,2为半径的圆内, 画图可知,这个圆内有9个(0,2)、(0,1)(0,0),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)3. 如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ). (A )23 (B )4 (C )52 (D )4.5 解:4. 如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 解:C∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x∴正根为3242<++qp p 解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p5. 黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 解:C1)1)(1(-++=++b a ab b a∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++二、填空题(共5小题,每小题7分,共35分)6. 如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为 . 解:7 在910111=+++++a c c b b a 两边乘以9=++c b a 得 103=++++++a c b c b a b a c 即7=+++++ac b c b a b a c7. 如图,正方形ABCD 的边长为2E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 解:8易证△ABF ≌△DAE ,因此AF ⊥DE ∴()()351515222=+==AF DE∴323515152=⋅=AM ,()()343215222=-=DM易证△AND ∽△FNB ,且相似比为2:1∴331032==AF AN ,33531==AF FN ∴334323310=-=MN ∴83433421=⋅⋅=∆DMN S8. 设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n240252012⋯⋯=÷所以共有2012-402=1600个数9. 如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c (,,)均为三角形数,且a ≤b ≤c ,则a c的取值范围是 . 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+ac b c b a 111,所以a c b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得 c a a c a +-<1即ac a c a c -<-化简得0322<+-c ac a ,两边除以2c 得0132<+-⎪⎭⎫⎝⎛c a c a所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤ca综合得1253≤<-ca10. 已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 . 解:依题意得()()b a b a b a n -+=-=22由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个三、解答题(共4题,每题20分,共80分)11. 已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围. 解:12. 如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线; (2)AB +AD = 2BD .13.给定一个正整数n,凸n边形中最多有多少个内角等于150︒?并说明理由.,,(可14.将2,3,…,n(n≥2)任意分成两组,如果总可以在其中一组中找到数a b c以相同)使得b a c=,求n的最小值.。

2012年全国初中数学联赛决赛试题及参考答案(WORD)完美版(B卷)

2012年全国初中数学联赛决赛试题及参考答案(WORD)完美版(B卷)

2012年全国初中数学联合竞赛决赛试题及参考答案(B 卷)第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =-,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A .3 B .3 C .3 D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=.4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π.二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E.证明:∠BAE =∠ACB.证明:连接OA ,OB ,OC ,BD.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD , ∴PD BDCD OD =, ∴2BD CD PD OD AD ⋅=⋅=,∴BD AD AD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB.三、(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM//BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.。

志英杯备考-2012年全国初中数学竞赛试题(含答案)-推荐下载

志英杯备考-2012年全国初中数学竞赛试题(含答案)-推荐下载

由已知得
7.8
27x-26≤487,
81x-80>487.
个,所以
解得 7<x≤19.
解:连接 DF,记正方形 ABCD 的边长为 2 a . 由题设易知△ BFN ∽△ DAN ,所以
2012 全国赛决赛卷 第 3 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题题 号 一 二 三总 分1~5 6~10 11 12 13 14 得 分 评卷人 复查人一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.如果实数a ,b ,c 在数轴上的位置如图所示,22||()||a a b c a b c ++-+可以化简为( ).(A )2c -a (B )2a -2b (C )-a (D )a2.如果正比例函数y = ax (a ≠ 0)与反比例函数y =x b(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2) 3.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )144.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )45.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的(第1题图)概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p 二、填空题(共5小题,每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .7.如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 .8.如果关于x 的方程x 2+kx +43k 2-3k +92= 0的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 .10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD = DC . 分别延长BA ,CD ,交点为E . 作BF ⊥EC ,并与 EC 的延长线交于点F . 若AE = AO , BC = 6,则CF 的长为 .(第6题图)(第7题图)(第10题图)三、解答题(共4题,每题20分,共80分)11.已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围.12.如图,⊙O 的直径为AB ,⊙O 1过点O ,且与⊙O 内切于点B .C 为⊙O 上的点,OC 与⊙O 1交于点D ,且OD CD >.点E 在OD 上,且DC DE =,BE 的延长线与⊙O 1交于点F ,求证:△BOC ∽△1DO F .13.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2012时,求a 的最小值.14.求所有正整数n ,使得存在正整数122012x x x ,, ,,满足122012x x x <<<,且122012122012n x x x +++=.(第12题图)中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题参考答案一、选择题1.C解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以||||()()()a b b c a a b c a b c ++=-+++--+a =-.2.D解:由题设知,2(3)a -=⋅-,(3)(2)b -⋅-=,所以263a b ==,.解方程组236y x y x⎧=⎪⎪⎨⎪=⎪⎩,,得32x y =-⎧⎨=-⎩,; 32.x y =⎧⎨=⎩,所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).3.D解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a a b a b++++++=, 于是 4423421444a b a b ++++-=.4.D解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数. 由题设可得2(2)2()x n y y n x n +=-⎧⎨+=-⎩,, 消去x 得 (2y -7)n = y +4, 2n =721517215)72(-+=-+-y y y .因为1527y -为正整数,所以2y -7的值分别为1,3,5,15,所以y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1;x 的值分别为14,7,6,7.5.D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以01239891036363636p p p p ====,,,,因此3p 最大.二、填空题 6.7<x ≤19解:前四次操作的结果分别为3x -2,3(3x -2)-2 = 9x -8,3(9x -8)-2 = 27x -26,3(27x -26)-2 = 81x -80.由已知得 27x -26≤487, 81x -80>487.解得 7<x ≤19.容易验证,当7<x ≤19时,32x -≤487 98x -≤487,故x 的取值范围是 7<x ≤19.7.8解:连接DF ,记正方形ABCD 的边长为2a . 由题设易知△BFN ∽△DAN ,所以21AD AN DN BF NF BN ===, 由此得2AN NF =,所以23AN AF =.在Rt △ABF 中,因为2AB a BF a ==,,所以225AF AB BF a =+=,于是 25cos AB BAF AF ∠==. 由题设可知△ADE ≌△BAF ,所以 AED AFB ∠=∠,0018018090AME BAF AED BAF AFB ∠=-∠-∠=-∠-∠=. 于是 25cos AM AE BAF =⋅∠=, (第7题)23MN AN AM AF AM =-=-=,415MND AFD S MN S AF ∆∆==. 又21(2)(2)22AFD S a a a ∆=⋅⋅=,所以2481515MND AFD S S a ∆∆==.因为a =8MND S ∆=.8.32-解:根据题意,关于x 的方程有∆=k 2-4239(3)42k k -+≥0,由此得 (k -3)2≤0.又(k -3)2≥0,所以(k -3)2=0,从而k =3. 此时方程为x 2+3x +49=0,解得x 1=x 2=32-.故2012220111x x =21x =23-. 9.8解:设平局数为a ,胜(负)局数为b ,由题设知23130a b +=,由此得0≤b ≤43. 又 (1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++. 于是0≤130(1)(2)b m m =-++≤43,87≤(1)(2)m m ++≤130,由此得 8m =,或9m =.当8m =时,405b a ==,;当9m =时,2035b a ==,,5522a b a +>=,不合题设.故8m =.10.223 解:如图,连接AC ,BD ,OD .由AB 是⊙O 的直径知∠BCA =∠BDA = 90°. 依题设∠BFC = 90°,四边形ABCD 是⊙O 的内接四边形,所以∠BCF =∠BAD ,所以 Rt △BCF ∽Rt △BAD ,因此BC BACF AD=. 因为OD 是⊙O 的半径,AD = CD ,所以OD 垂直平分AC ,OD ∥BC , 于是2DE OEDC OB==. 因此 223DE CD AD CE AD ===,.由△AED ∽△CEB ,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,, 所以 32322BA AD AD BA ⋅=⋅,BA =22AD ,故 AD CF BC BA =⋅=32222=. 三、解答题11.解: 因为当13x -<<时,恒有0y <,所以23420m m ∆=+-+>()(),即210m +>(),所以1m ≠-. …………(5分)当1x =-时,y ≤0;当3x =时,y ≤0,即2(1)(3)(1)2m m -++-++≤0,且 233(3)2m m ++++≤0,解得m ≤5-.…………(10分)设方程()()2320x m x m ++++=的两个实数根分别为12x x ,,由一元二次方(第10题)程根与系数的关系得()121232x x m x x m +=-+=+,.因为1211910x x +<-,所以 121239210x x m x x m ++=-<-+, 解得12m <-,或2m >-.因此12m <-.…………(20分)12. 证明:连接BD ,因为OB 为1O 的直径,所以90ODB ∠=︒.又因为DC DE =,所以△CBE 是等腰三角形.…………(5分)设BC 与1O 交于点M ,连接OM ,则90OMB ∠=︒.又因为OC OB =,所以22BOC DOM DBC ∠=∠=∠12DBF DO F =∠=∠.…………(15分)又因为1BOC DO F ∠∠,分别是等腰△BOC ,等腰△1DO F 的顶角,所以△BOC ∽△1DO F .…………(20分)13.解:设a -b = m (m 是素数),ab = n 2(n 是正整数). 因为 (a +b )2-4ab = (a -b )2, 所以 (2a -m )2-4n 2 = m 2,(2a -m +2n )(2a -m -2n ) = m 2.…………(5分)因为2a -m +2n 与2a -m -2n 都是正整数,且2a -m +2n >2a -m -2n (m 为素数),所以2a -m +2n =m 2,2a -m -2n =1.(第12题)解得 a =2(1)4m +,n =214m -.于是 b = a -m =214m -().…………(10分)又a ≥2012,即2(1)4m +≥2012.又因为m 是素数,解得m ≥89. 此时,a ≥41)(892+=2025.当2025a =时,89m =,1936b =,1980n =. 因此,a 的最小值为2025.…………(20分)14.解:由于122012x x x ,, ,都是正整数,且122012x x x <<<,所以1x ≥1,2x ≥2,…,2012x ≥2012.于是 122012122012n x x x =+++≤1220122012122012+++=. …………(10分)当1n =时,令12201220122201220122012x x x ==⨯=⨯,, ,,则1220121220121x x x +++=. …………(15分)当1n k =+时,其中1≤k ≤2011,令 1212k x x x k ===,, ,,122012(2012)(1)(2012)(2)(2012)2012k k x k k x k k x k ++=-+=-+=-⨯,,,则1220121220121(2012)2012k k x x x k+++=+-⋅-1k n =+=. 综上,满足条件的所有正整数n 为122012, , , .…………(20分)。

相关文档
最新文档